
UNIVERSITÀ DEGLI STUDI DELL’INSUBRIA
DIPARTIMENTO DI INFORMATICA E COMUNICAZIONE

Dottorato di Ricerca in Informatica
XXIII Ciclo – 2007-2010

Ph.D. Thesis

Advanced Languages and Techniques
for Trust Negotiation

Stefano Braghin

Advisor:
Dr. Alberto Trombetta
External Advisor:
Prof. Anna Cinzia Squicciarini

Supervisor of the Doctoral program:
Prof. Gaetano Aurelio Lanzarone

In memory of my grandparents.

Abstract

The Web is quickly shifting from a document browsing and delivery system to a hugely
complex ecosystem of interconnected online applications. A relevant portion of these ap-
plications dramatically increase the number of users required to dynamically authenticate
themselves and to, on the other hand, to identify the service they want to use. In order to
manage interactions among such users/services is required a flexible but powerful mecha-
nism. Trust management, and in particular trust negotiation techniques, is a reasonable
solution.

In this work we present the formalization of the well known trust negotiation framework
Trust-X , of a rule-based policy definition language, called X -RNL.

Moreover, we present the extension of both the framework and of the language to provide
advanced trust negotiation architectures, namely negotiations among groups.

We also provide protocols to adapt trust negotiations to mobile environments, specifi-
cally, we present protocols allowing a trust negotiation to be executed among several, dis-
tinct, sessions while still preserving its security properties. Such protocols have also been
extended to provides the capability to migrate a ongoing trust negotiation among a set of
known, reliable, subjects.

Finally, we present the application of the previously introduced trust negotiation tech-
niques into real world scenarios: online social networks, critical infrastructures and cogni-
tive radio networks.

Acknowledgements

First and foremost, I would like to sincerely thank my advisor Alberto Trombetta for con-
stant support and collaboration. During the last years, as thesis advisor first and as Ph.D.
advisor later, he helped me with precious recommendations and suggestions.

I am also really grateful to prof. Anna Cinzia Squicciarini and dr. Igor Nai Fovino for
their help in teaching me by examples the meaning of “hard work”.

I wish to also thank prof. Gaetano Aurelio Lanzarone, supervisor of the doctoral pro-
gram, for the support he gave to all of us as Ph.D. students.

Moreover, I wish to thank all my Lab colleagues but in particular Michele Chinosi,
Loris Bozzato, Paolo Brivio, Lorenzo Bossi, Mauro Santabarbara, Mauro Ferrari and Pietro
Colombo, essential for all the advices and the coffee breaks we shared.

Finally, I thank my family, my girlfriend Cristina and my friends for encouraging,
supporting and bearing me all the time.

Thank you all,
Stefano

Contents

1 Introduction 1

2 State of the art 6

3 The Trust-X policy definition language and trust negotiation architecture 11
3.1 Introduction . 11
3.2 Resources . 11
3.3 Peers and Groups . 12
3.4 Policies . 12

3.4.1 Quantifications . 14
3.4.2 Verification techniques . 15

3.5 The subjects of the trust negotiation model 17
3.6 Trust Negotiation architecture . 18

3.6.1 Introductory phase . 18
3.6.2 Policy evaluation phase . 20
3.6.3 Credential Exchange Phase . 21

4 Group-based Trust Negotiations 23
4.1 Introduction . 23
4.2 Application Scenario . 24
4.3 Group Managers and Peer Members 25

4.3.1 Group Managers . 25
4.3.2 Group Manager Election . 26

4.4 The Negotiation-based Join Process . 28
4.4.1 Peer Negotiation . 28
4.4.2 Event-Based Formulae Verification 33

4.5 The Negotiation-based Membership Service Architecture 36
4.6 Experimental results . 38

5 Mobile multi-session Trust Negotiations 45
5.1 Introduction . 45
5.2 Credentials’ similarity. 46

5.2.1 OWL model extraction . 47
5.2.2 Credential categorization . 47

CONTENTS v

5.2.3 Application of the matching algorithm 48
5.2.4 Credential substitution . 50

5.3 Negotiation tree switching . 50
5.3.1 Overview of the approach . 50
5.3.2 Negotiation, Suspension, and Nodes Commitment 52
5.3.3 Tree Splitting and Sharing . 53
5.3.4 Tree Recovery . 54
5.3.5 Sharing the Trust Sequence . 55

5.4 Illustrative Example . 57
5.5 Security analysis . 59

5.5.1 Tree Sharing Protocol Analysis 59
5.5.2 Formal Properties of the Multi-Session Protocol 60
5.5.3 Protocols Resiliency To Malicious Or Colluding Parties 65

5.6 Complexity Analysis . 65
5.6.1 Policy Exchange Phase Complexity 66
5.6.2 Communication Complexity 66
5.6.3 Credential Exchange Phase Complexity 67

6 TN for information sharing in critical infrastructures 68
6.1 Introduction to the application environment 68
6.2 Information sharing in critical infrastructure environment 70

6.2.1 Working example . 71
6.3 Knowledge Characterization . 72
6.4 Language extensions . 72

6.4.1 Resource level negotiation . 72
6.4.2 Shrink the resource level . 74
6.4.3 Enlarge the resource level . 75

7 TN for spectrum sharing in cognitive radion networks 82
7.1 Scenario introduction . 82
7.2 A brief overview of spectrum management in Cognitive radio network 84
7.3 Introducing Trust-X in Cognitive radio networks 86

7.3.1 The Spectrum Management Language 87
7.4 Motivating scenario . 88
7.5 Negotiating Resources in a Critical Environment 88

7.5.1 Roles identification and Role Hierarchy 89
7.5.2 Cognitive Radio Authentication 89
7.5.3 Adaptive Spectrum Frequencies Management 91

7.6 Experimental Results . 92

8 TN in On-line Social Network 96
8.1 A brief introduction to OSN access control 96
8.2 Extension of the access control rule definition language 98
8.3 Dynamic relationships and trust level adjustment 99

CONTENTS vi

8.3.1 Trust computation . 100
8.3.2 Practical usage of dynamic relationships 102

8.4 Complexity analysis . 104
8.5 Experimental Results . 105

9 Conclusions and future work 109

A Cryptographic protocols 113
A.1 Pedersen commitment protocol . 113
A.2 Shamir’s Secret Sharing Scheme . 114
A.3 Damgård-Fujisaki commitment scheme and auxiliary protocols . . . 114

A.3.1 Proofs of knowledge . 115
A.4 Fiat-Shamir heuristics . 115

B Implementation 117
B.1 Prototype evolution . 117
B.2 Architecture Overview . 117

B.2.1 Example of execution . 120
B.3 Communication Layer . 120
B.4 Database . 120
B.5 Introductory Phase . 123
B.6 Policy Evaluation Phase . 125
B.7 Credential Exchange Phase . 126
B.8 Negotiation Tree . 126
B.9 Valid View . 127
B.10 Groups . 127

B.10.1 Group Manager . 127
B.10.2 Group Agent . 128

B.11 TrustXMembershipService . 128
B.11.1 Integration in the JXTAShell . 129

B.12 Multisessions . 130
B.12.1 Secret Sharing . 130
B.12.2 Commitment schemas . 131

List of Figures

1.1 An example of identity-based authentication protocol 1

3.1 Differences between weak, strong and strong limited verification tech-
niques . 16

3.2 The negotiation phases . 19
3.3 An example of negotiation tree growth 20

4.1 The ShareForFree P2P network. 25
4.2 Main phases of the negotiation process 30
4.3 FreeSo f tware Group Membership policy’s XML representation 33
4.4 Execution time of a group-based negotiation by number of creden-

tials involved . 38
4.5 Execution time of a group-base negotiation 39
4.6 Comparison of performances between different approach 40
4.7 Execution time for detecting free riders 41
4.8 Time interval required to identify changes in the state of the group . 42
4.9 Impact of peer interaction in detecting changes of state 43

5.1 The three macro phases of a long lasting negotiation 53
5.2 A running example of the multi-session trust negotiation protocol . . 58

6.1 An example of XML document describing a simple attack tree 78
6.2 An example of attack tree . 79
6.3 An example of XML document describing a system component . . . 80
6.4 The negotiation tree modified by the rebate formula 81
6.5 The negotiation tree modified by the extend formula 81

7.1 An example of trust negotiation . 86
7.2 Time required to authenticate with respect to the number of creden-

tials involved . 93
7.3 Stability of the approach with respect of interferences 94
7.4 Stability of the approach with respect to mobility 95

8.1 An example of OSN labeled graph . 97
8.2 Access control protocol for OSN . 98

LIST OF FIGURES viii

8.3 Description of the access control protocol for OSN 106
8.4 Modification to the access control protocol in Figure 2 to support

trust negotiations . 107
8.5 Trust negotiation protocol . 107
8.6 Negotiation tree for Example 4.1 . 108
8.7 Scalability of the prototype . 108

9.1 High level Information Exchange Network schema 111

B.1 The high level class diagram of the Trust-X framework 118
B.2 The main window . 119
B.3 The dialog to configure the connection with the database 119
B.4 The dialog to configure the communication layer 121
B.5 Example of execution of the Trust-X framework 121
B.6 The interface CommunicationLayer . 122
B.7 The class diagram of the package communicationLayer 122
B.8 The interface Database . 122
B.9 The class diagram for the database package 123
B.10 The interface DatabaseGroup . 124
B.11 The interface PolicyEvaluation . 125
B.12 The interface CredentialExchange . 126
B.13 The interface MembershipService . 128
B.14 The methods of the class TrustXAuthenticator 129
B.15 The interface Splitter . 130
B.16 The interface Commitment . 131

List of Tables

5.1 Example of credentials’ categories . 49

List of Algorithms

1 New Group Manager Election: ElectionInitiator 28
2 New Group Manager Election: Peeri . 29

3 Formulae Verification . 44
4 Checking algorithm . 55

5 Identifies the disclosure level appropriate for the terms offered by the
counter-party . 75

6 Protocol for finding enough spectrum band for a given user ui of role ri 92
7 Protocol for distribute the spectrum band released by leaving of the

radio ui, last representative of role ri . 92

8 Updating of the social network graph’s edges and the associated trust
levels . 101

Chapter 1

Introduction

The Web is quickly shifting from a document browsing and delivery system to a
hugely complex ecosystem of interconnected online applications. A relevant por-
tion of these applications dramatically increase the number of users required to dy-
namically authenticate themselves and, on the other hand, to identify the service
they want to use.

Traditional solutions to the authorization problem for distributed systems have
made implicit use of a closed world model, in which users and resources have a priori
knowledge of one another. Therefore, in such model, if a user Alice wants to access
some resource, she must first prove her identity to the resource owner Bob, by
using a username/password pair or more sophisticate authentication techniques
such as X.509 identity certificate [51] or Kerberos ticket [74]. If Alice will be able to
authenticate herself as entitled to the right to access the resource, then she will be
granted by Bob (see Figure 1.1).

Alice Bob

Can I access R?

Who are you?

Alice!

Ok!

Figure 1.1: An example of identity-based authentication protocol

The evolution of the distributed environment to open environment does not al-
low the use of the closed world model. Traditional identity-based access control
systems are not able to establish in a proper way a certain level of trust among ser-
vice users and service providers involving unknown users. Therefore, in order to
provide a proper authorization infrastructure to open environments, like the Web

2

or some large application domains, researchers have begun to investigate novel
attribute-based access control (ABAC for short) systems based on techniques such
as trust management.

In the recent years, trust management has become an active and relevant research
area [87, 126, 60, 114, 15, 17], developing – among other things – efficient techniques
aiming at the automated negotiation of a proper level of trust among (initially) mu-
tually untrusting parties. Usually, this is needed since a party may request access
to a resource owned by another party and there is no shared policy regulating re-
source access. Nevertheless, parties are assumed to possibly posses local access
policies.

Aim of trust management – and of trust negotiation [16, 127, 92, 48] sub-field in
particular – is to build such shared policy starting from parties’ local policies. As a
result, a trust negotiation yields a yes/no answer to an initial request of resource’s
access, given the parties’ policies.

More precisely, trust negotiation [116] is an authorization approach in which re-
sources are protected by attribute-based access policies, rather than explicit access
control lists. Furthermore, each user maintains some collection of digital creden-
tials, like X.509 certificates [51], attesting to various attributes of the user or the
context of his or her surrounding environment. These credentials are generally is-
sued by a trusted third-party, such as professional organizations or employers, like
public key infrastructure (PKI) [56, 2] and webs of trust [41].

A trust negotiation process starts up when a peer is requesting access to a re-
source owned by another peer. As said before, such resource is protected by poli-
cies that will check values of attributes (or credentials) of other resources . The
resources that satisfy the first asked resource’s access control policy may be pro-
tected by access control policies themselves. Thus, rounds in which peer mutually
ask for resources ensues, yielding the so-called trust negotiation.

This is different from the behavior of most of the other distributed proof sys-
tems, such as distributed proof construction. Distributed proof construction [59] is
another approach to trust management parallel to trust negotiation system. Dis-
tributed proof construction is, therefore, another ABAC system in which each prin-
cipal maintains a local knowledge base that encapsulates its own view of the system.
One portion of a principal’s knowledge base is the set of facts that are currently
known by the principal, which may include both local facts as well as digitally-
signed quoted facts asserted by other principals. This set of facts is known as the
principal’s extensional knowledge base. A principal’s knowledge base also contains
a set of derivation rules that can be used to derive new facts from existing local facts
and facts stored in the knowledge bases of other principals. The set of facts that
can be derived using these derivation rules is known as the principal’s intensional
knowledge base. The decentralized nature of the distributed proof process makes it
particularly well-suited for use in open systems, as the incomplete (and often com-
plementary) views of many principals can be used to make decisions involving
knowledge spread across multiple administrative domains.

Distributed proof construction differs from trust negotiation where, on the other

3

hand, little or no protection is offered to the informations used in the authentica-
tion process. This flexibility to define attribute-based release policies for individual
credentials gives users fine-grained, yet flexible, control over the disclosure of their
potentially-sensitive attribute data.

In this thesis we will present some relevant extensions to the well-known trust
negotiation framework Trust-X (described at length in Chapter 2 and Chapter 3) in
order to improve its flexibility and its expressiveness and to increase the provided
features in general. We mainly focused our work on two issues:

1. to extend trust negotiations between groups of peers instead of only between
two peers

2. to make trust negotiations more suitable for mobile environments.

As a side effect we have implemented a full refactoring of the Trust-X proto-
type.

We designed our protocols keeping in mind the peer-to-peer (P2P) environ-
ments. A relevant feature of P2P systems is the possibility to dynamically create
groups. Such groups are typically created to share resources and/or to carry on
joint tasks [125, 80].

For a peer group to successfully pursue its goals, it is crucial that only cooper-
ative and contributing peers be allowed to join the group. Moreover, if the shared
resources and/or common tasks are sensitive, the access of peers joining the group
must be controlled. Also, a peer before joining a group may want to verify condi-
tions concerning the peers of this group, in order to avoid joining a malicious peer
group. Therefore, the group joining process is a crucial phase in the lifetime of peer
groups, because during such phase:

• peer group members can verify that the joining peers own resources of inter-
est for the group and

• joining peers can evaluate the resources and services offered by the members
of the group.

Current P2P systems adopt peer authentication techniques based on the tradi-
tional identity-based mechanisms. Such mechanisms are inadequate for the peer
joining process because the joining criteria are not related with the actual features
of the peers, such as the domain they belong to, or the resources and services they
make available. Therefore, by authenticating the peer there is no actual guarantee
regarding the peer’s trustworthiness and its ability to contribute to the peer group.
Rather, authentication mechanisms that are based on the verification of properties
related to the peers are desirable.

The adoption of trust negotiations into the peer group joining process addresses
the requirement of a simple yet effective authentication mechanism that is property-
based. However, the application of trust negotiation techniques into the P2P joining
process is challenging. First, the policy negotiation language should allow a peer

4

group to state the conditions under which a new peer can join the group and the
conditions that a joining peer wants to be satisfied to join the group. Typical trust
negotiation languages do not support these features [92]; in the context of peer
groups, conditions should be specified against the resources that the joining peer
and the peer group members make available.

Second, the verification of such policies during the joining process might in-
volve a subset of peers in the peer group, while current negotiation processes do
not consider group policy verification. Therefore, the negotiation protocol should
be extended so that the negotiation is carried out according to the disclosure poli-
cies of all the peers in the peer group and the policies verification is a collaborative
process between the peer group members.

Moreover, the policies based on which a peer has joined a group must be satis-
fied not only when the membership has been granted to such peer but for all the
duration of the membership. The policies satisfaction might not be guaranteed for
different reasons:

a) a peer is malicious and does not want to make available the resources it has
promised during the joining process;

b) the peer groups are dynamic and thus the composition of the peer group may
change.

To address such requirements we created a join process for P2P systems based on
trust negotiations. The trust negotiation is driven by policies stating conditions on
peers’ verifiable properties. Such properties can be the peers’ inherent attributes or
properties of the resources offered by the peers.

Beside the dynamic creation of groups, another characteristic of P2P environ-
ment is that the services and resources provided by P2P network are ubiquitously
available. Such availability further improves the usage of mobile devices to access
the available resources. Therefore, such widespread use of mobile devices requires
real applications to provide flexible approaches to trust negotiations. Consider, for
example, mobile clients negotiating accesses to services hosted on servers’ clusters:
negotiations may interrupt due to communication channel fault or may be volun-
tarily suspended, to be resumed under more favorable conditions.

Mobile devices need to be able to seamlessly migrate from different physical
servers belonging to the same service provider. Also, negotiations may last a con-
siderable time span and the involved parties may not be able to support long nego-
tiations. However, none of the existing trust negotiation systems currently support
any form of suspension or interruption, nor do they allow the negotiators to be
replaced (or delegated) while the negotiation is ongoing.

Interruptions in ongoing trust negotiations can be the result of external, unfore-
seeable events (e.g. peers’ crashes, faulty transmission channels) or decisions by
the involved parties. A peer may not be able to advance the negotiation for tempo-
rary lack of resources. Or the peer may not have readily available the credentials
required by the counterpart, although eligible to them. For example, users may

5

not have the capabilities or rights of storing certificates such as birth certificates,
marriage certificates and soon and so forth, although entitled to them.

Peers may also employ one-time credentials to conduct negotiations. Tempo-
rary and one-time credentials allow a peer to disclose sensitive information while
at the same limiting the possibility for an attacker to steal identity related informa-
tion. However, once such a credential is disclosed, it cannot be re-used. Hence,
completing a negotiation in which such type of credential is used becomes crucial.

Interrupted negotiations however represent not only undesired events, but also
vulnerabilities that could facilitate attackers’ eavesdropping and other malicious
behavior. Additionally, abrupt interruptions of trust negotiations may imply the
disclosure of possible sensitive data which did not lead to any successful trust es-
tablishment despite the potential of being so. Starting a new negotiation process
may therefore not always be feasible nor desirable. Unfortunately, there are no
approaches addressing such an issues.

Hence, it is crucial to extend trust negotiation protocols along several directions.
First , the protocols must be able to adapt to context changes and be dependable.

A long lasting trust negotiation [106] should successfully withstand suspensions
and interruptions. Also, given the ubiquitous nature of on-line peer-to-peer sys-
tems, and the increasing number of moving objects involved in online transactions,
negotiators must be allowed to switch roles while the negotiation is ongoing, so
to guarantee dependability, when contextual conditions, such as availability of re-
sources and peers, change.

Resuming the negotiations is often desirable when the involved entities are
peers temporary unable to complete the negotiations, but not willing or not in-
terested in restarting from the beginning, for example due to the usage of one-time
credentials or credentials which the peer is only willing to disclose once, as previ-
ously introduced. Also, some physical constraints may apply, related to network
bandwidth or availability of data. Additionally, long lasting negotiations may rep-
resent a need in case of failure, due to peers’ temporary crash.

The rest of the thesis is organized as follows. We begin discussing related work
in Chapter 2. Subsequently, in Chapter 3, we formalize our policy definition lan-
guage and the base trust negotiation protocol provides by Trust-X . After that, in
Chapter 4 we present our extension to both the language and the protocols pro-
vided by Trust-X in order to support trust negotiation among groups. Chapter 5
presents at length the extension regarding the mobile multi-session trust negotia-
tion. Chapter 6, Chapter 7 and Chapter 8 present applications of the techniques
presented in the previous chapter to real-world scenarios. Finally, we present our
conclusions and discuss promising directions for future work in Chapter 9.

Chapter 2

State of the art

Trust negotiation, especially for web-based application has been recognized as an
interesting and challenging area and it has been an active field of research in the last
years. In the following will be presented an overview of the main work developed.

Trust negotiation was originally introduced by Winsborough et al. [115], who
presented two negotiation strategies for conducting on-line transactions between
strangers.

Generally, the goal of trust negotiation protocols is to enable two stranger en-
tities to establish mutual on-line trust. Such protocols however have several limi-
tations as compared to our approach, in that they do not support negotiations be-
tween a party and a group of parties and do not deal with verification of resource
availability.

Several implementations of different trust negotiation protocols exist.
Up to now, the best-known trust management system is KeyNote [16]. Keynote

was designed to work for a variety of large and small scale Internet-based applica-
tions. It provides a single, language for both local policies and credentials. KeyNote
credentials, called ‘assertions’, contain predicates describing delegations in terms
of actions that are relevant to a given application. As a result, KeyNote policies
do not handle credentials as a mean to establish trust. Therefore, it has several
shortcomings with respect to trust negotiations.

A trust negotiation approach specifically developed for P2P systems is PeerTrust
[124]. PeerTrust is a reputation-based framework, which includes a decentralized
implementation over a structured P2P network. PeerTrust has been extended [124,
73] to support trust negotiation for peers on the Semantic Web.

PeerTrust does not allow one to express policies against group properties.
PeerTrust has been further extended by Nejdl et al. [73] to support trust negotiation
for peers on the Semantic Web. The goal of Nejdl’s approach is to automatically
create a certified proof that a party is entitled to access a particular resource on the
Semantic Web. Their approach therefore does not deal with allowing a party to join
a peer group, which is the goal of ours. The parties’ credentials in the approach by
Nejdl et al. are personal to the users managing the peers and are not related to the

7

actual peers. Also, they consider negotiations as a two party process that does not
relate nor involve peer groups.

The prototype trust negotiation system for the TrustBuilder Project is being de-
signed and developed at the Internet Security Research Lab at Brigham Young Uni-
versity, under Prof. Kent E. Seamons [9]. The implementations utilize the IBM
Trust Establishment system to create X.509v3 certificates. The Trust Establishment
system supports XML role-based access control policies that TrustBuilder uses to
govern access to sensitive credentials, policies, and services. The Trust Establish-
ment runtime system includes a compliance checker that TrustBuilder uses to ver-
ify whether a set of certificates satisfies an access control policy and to determine
which credentials satisfy a policy.

The Trust Establishment Project at Haifa Research Lab has developed a tool (TE)
for enabling trust relationships between strangers based on public key certificates.
The TE system includes an intelligent certificate collector that automatically col-
lects missing certificates from certificate repositories, allowing the use of standard
browsers that can only pass one certificate to the server. The TE system does not
have the notion of sensitive policies nor it supports sensitive credentials.

The TrustBuilder prototype has been extended into TrustBuilder2 [62]. Trust-
Builder2 leverages a plug-in based architecture, extensible data type hierarchy, and
flexible communication protocol to provide a framework within which numerous
trust negotiation protocols and system configurations can be quantitatively ana-
lyzed.

Another interesting actor in the trust negotiation area is Traust [61, 62], which
has been released by the same group of researcher that released Trust Builder.
Traust is a third-party authorization service that leverages the strengths of exist-
ing prototype trust negotiation systems. Traust acts as an authorization broker that
issues access tokens for resources in an open system after entities use trust nego-
tiation to satisfy the appropriate resource access policies. The Traust architecture
is designed to allow Traust to be integrated either directly with newer trust-aware
applications or indirectly with existing legacy applications.

On other hand, Hess et al.[49] proposed a trust negotiation in TLS (TNT) hand-
shake protocol by adding trust negotiation features.

Further, another prototype for trust negotiation designed for the World Wide
Web is Protune [32, 21, 128, 20, 19], a rule-based trust negotiation system. By de-
scribing Protune, we will illustrate the advantages that arise from an advanced
rule-based approach in terms of deployment efforts, user friendliness, communica-
tion efficiency, and interoperability. Protune relies on logic programming for repre-
senting policies and for reasoning with and about them

Several privacy-enabled identity management systems have been proposed,
mainly based on the notion of anonymous credential [27, 30]. In anonymous cre-
dential systems, organizations know the users only by pseudonyms. Different
pseudonyms of the same user cannot be linked.

Brands presents a form of digital credential in which a user has a single public
credential, but that credential is pseudo-anonymous, even to the issuer [26]. The

8

credential holds attributes that the user can selectively prove to a service provider.
Repeated showings of the same credential are linkable, both if shown to the same
or different service providers.

Camenisch et al. have proposed and implemented yet another framework for
managing digital credential, referred to as Idemix [27]. While they describe a sys-
tem for implementing a Chaum-like pseudonym system, their system is much more
flexible, and can be used without pseudonyms. Idemix is the first system im-
plementing anonymous credentials in a federated identity management system.
Idemix provides mechanisms for efficient multi-show credentials and a flexible
scheme for issuing and revoking anonymous credentials. It also provides a mech-
anism for all or nothing sharing and PKI-based non-transferability. Anonymous
credentials however may not be adequate for real world e-commerce applications
and web services that require disclosure of various attributes. In our approach, we
do not require the user identity to be hidden, even if we protect his/her attributes.
Additionally, none of the approaches discussed so far, take into account the pos-
sibility of suspending or accidentally interrupting a negotiation, nor they allow to
delegate the negotiation process to any entity.

Again, Backes et al. also presented an attribute-based authentication mecha-
nism using anonymous credentials [7]. Their work takes advantage of crypto-
graphic protocols such as zero-knowledge protocols to anonymously authenticate
the requester against attribute-based access control policies. Nevertheless, the pre-
sented approach does not allow the requester to specify access control policies on
the attributes used in the verification process.

In order to orchestrate the negotiation process among multiple parties without
a centralized moderator, they introduce an interesting diffusion negotiation proto-
col, that is, a set of message-passing conventions that allows parties to carry out
a negotiation in a distributed fashion. This work, although related to ours, differs
in its overall goal; our goal is not to support multi-party negotiators, but to ensure
robustness and stability of the negotiations, regardless of the actual availability of
the peers who originally started the process.

Our approach has some similarities with SecPal [10], a decentralized autho-
rization language. SecPal is a declarative authorization language that supports
domain-specific constraints and negation. SecPal represents a potential candidate
for supporting the Trust-X protocol, although it would require several extensions.
For example, SecPal does not provide a direct way to address credential-based poli-
cies, nor it provides an approach for specifying conditions against credentials. A
desirable feature supported by SecPal is delegation, which may be very useful in
case mobile negotiators decide to delegate not only the process but also the poli-
cies and credentials required to complete the negotiation on behalf of another party.
However, SecPal does not include the infrastructure and the framework required to
support trust negotiations. Research has also been conducted on logic-based access
control languages for single administrative domains that do not require centralized
delegation of authority. Many of them are based on DataLog [29] or DataLog with
Constraints [65].

9

Our approach to the suspend and resume procedures described in the paper is
similar to saving and restoring a partial proof graph in a Datalog-based trust man-
agement system. When the negotiation is suspended, one of the two negotiating
parties save their copies of the partial proof graph (to-be-proven subgoals are sim-
ilar to “open” subnodes) along with any variable mappings in effect. Claims that
might expire can be denoted along side the proof graph. It would however be nec-
essary to rescan all the provided claims on restart to determine in any of them had
been revoked during the suspension period. Although DataLog provides a good
foundation for access control in distributed systems, it lacks concrete applicability
and does not efficiently model the realistic requirements of peer to peer interac-
tions. Additionally, Datalog does not meet the practical need for policies about
common structured resources, and needs to be augmented with constraints, which
imply an increased complexity and even longer processing time.

Bowers et al. [23] developed an access control framework which uses a par-
ticular extension of linear logic – further extended by Garg et al. [44] by means
of the introduction of the knowledge of the principals within the model – to deal
with consumable credentials. In particular, the atomicity property of their frame-
work is an alternative solution to the issue relative to the consumption of one-time
credentials. By means of contract signing protocols their approach avoids the con-
sumption of credentials performing a rollback of the transaction when the proof is
not successful. However, our approach provides a more flexible solution consent-
ing the parties to perform the verification of the properties over a longer period.
Moreover, their approach requires the presence of online “ratifier” to guarantee
the correctness of the proof while our approach does not involves external entities.

Trust negotiation systems have also been investigated with respect to privacy.
Work along this direction has focused on the protection of sensitive policies and
credentials. Winslett and Yu [127] have developed a unified scheme, known as
Unipro, to model resource protection, which applies to both the actual resources to
be protected and to the policies. Those approaches, however, are based on a notion
of protection closer to the notion of access control. A formal framework for trust
negotiations has been proposed by Winsborough and Li [117]. Their approach to
safe enforcement of policies focuses on a privacy-preserving credential exchange.
A formal notion of safety in automated trust negotiation is given, stating when a
negotiation is secure against inferences that a party may make against the profile
of the other party.

Another related work has been done by Ramakrishna et al. [86]. The authors
propose a negotiation framework for ubiquitous systems. As in our work, the ne-
gotiation process between two peers is driven by local policies. The policies encode
not only rules to carry on the negotiation but facts about the state of the system and
of the negotiating peers. In the approach by Ramakrishna et al. the management
of policies is centralized. Policies are stored in a single database and the access to
these policies is managed by a policy engine. Additionally, a verification protocol
to check the availability of the negotiated resources is not provided, neither dur-
ing the negotiation nor after the negotiation is over. Also, the issue of detecting

10

malicious peers is not addressed.
With respect to extensions to JXTA authentication resources, an approach simi-

lar to the one presented in the following of this thesis has been proposed by Kawu-
lok et al. [57]. Their goal is to develop a Group Membership Service for JXTA ex-
tended with single or bi-directional authentication. The proposed solution sup-
ports bi-lateral authentication based on PKI but does not offer any approach for the
peers to negotiate during the joining process, and it only focuses on authentication
rather than trust establishment based on qualifying resources offered by peers and
peer groups.

Chen et al. [31] have proposed Poblano, a decentralized trust model for JXTA.
Such model represents trust relationships between peers, computed on the basis
of quantitative and qualitative values, such as risks and confidence. Trust is not
negotiated by the peers, but distributed across peers according to the estimated
risks and confidence. This approach, although interesting, does not allow a single
peer to evaluate the trustworthiness of the group during the joining process, rather
it is suitable only once the membership is granted so that peers’ reputation can be
evaluated.

Finally, in relation to the issue on how to replace a failed group manager that is
discussed in Chapter 4.3.2, finding suitable super-peers in P2P groups, according to
given performance metrics, is an active research area. In particular, in [47, 88] it is
pointed out that assessing metrics for identifying suitable candidates for super-peer
role is not a trivial task and several techniques for finding the most suitable candi-
dates are proposed. Two notable proposals for super-peers election are described
in [111, 55]. However, such proposals do not fit within our system: in particu-
lar, the techniques deployed in [111] assume the adoption of routing mechanisms
among peers of a structured, Chord-like P2P network, which is not supported by
the JXTA-based systems. In [55] an adaptive, neural networks-based technique for
identifying a super-peer is proposed. Such approach relies on an ontology (which
is adaptively modified by a neural network), which classifies group peers upon
their features. In our context, the deployment of such advanced classification tech-
niques impose a too heavy computational burden. Hence, we have proposed a
simple yet effective protocol to manage GMs’ election, which takes advantage of
the information about the group available in the GM’s database.

Finally, we cite Trust-X . Trust-X is a comprehensive framework for trust ne-
gotiation, providing both an XML-based language – referred to as X -RNL, which
is an extension of the previously provided X -TNL [42] language – to encode poli-
cies and certificates, and a system architecture. Such framework was originally
developed by Bertino, Ferrari and Squicciarini, which we extended in several di-
rections [101, 105, 24, 106], including in this thesis, and it has been interested by
other researcher [81, 103]

Chapter 3

The Trust-X policy definition
language and trust negotiation
architecture

3.1 Introduction

As mentioned in Chapter 1, the trust negotiation framework here presented uses a
language called X -RNL. In the current chapter will be presented the formalization
of our trust negotiation system, the formal definition of the rule-based policy def-
inition language supported by Trust-X and the formal definition of the resources
supported.

The X -RNL trust negotiation language is the natural evolution of the X -TNL
language[42]. Such new language allows the definition of policies using uncertified
resources and the definition of requirements about properties of groups.

The application described in Appendix B implements a XML[118] serialization
of the language here formalized.

3.2 Resources

We start by precisely stating what are the objects involved in the trust negotiation.
Assuming the existence of a set RN of resource names, a set AN of attribute

names and – for every attribute name a ∈ AN – a corresponding set Va of attribute
values, we define the following building blocks which are required in order to be
able to formalize what we mean with the term “resource”.

First of all we need to define what an attribute is.

Definition 3.2.1 (Attribute). An attribute is a tuple (a, v), where a ∈ AN and v ∈ Va

Attributes characterize resources as follows.

3.3. PEERS AND GROUPS 12

Definition 3.2.2 (Resource). A resource is a tuple (rn, AttrList) where rn ∈ RN and
AttrList, the so called attribute list, is a set of attributes.

A particular kind of resource is represented by credentials. Informally, a creden-
tial is a resource whose content has been digitally signed 1 by a trusted authority.

Definition 3.2.3 (Credential). A credential is a resource signed by an external entity,
which means that the attribute list associated with a resource C, of type credential, con-
tains an attribute with name signature and an attribute with name signatureissuer. Each
attribute has an appropriate value associated.

3.3 Peers and Groups

The resources described in Section 3.2 are objects owned by some subjects in a dis-
tributed environment.

Considering that the Trust-X framework has been designed for a P2P environ-
ment, we will refer to the subjects as peers.

Definition 3.3.1 (Peer). A peer p is a tuple (ID,Rp) where ID is the peer identifies and
Rp is the set of resources owned by p.

Moreover, in P2P environment peers tend to cluster themselves in groups.

Definition 3.3.2 (Peer group). A peer group G is a tuple of the form (GID,PeerGID)
where GID is the peer group identifier and PeerGID is the set of peers operating in G, with
PeerGID 6= ∅

Such groups exist for different reasons, for example for sharing information or
to collaboratively achieve common tasks.

The identification of why such groups exists and how they evolve is beyond the
objectives of this thesis.

3.4 Policies

Having defined of the resource concept, we now pass to the problem of how to
protect the resources owned by a subject. In our system, the access to the resources
is controlled by means of rules called disclosure policies. Again, before being able to
formally define the concept of disclosure policy we define their building blocks.

Definition 3.4.1 (Attribute condition). An attribute conditionAC is a tuple (a, pred, v)
where a ∈ AN , v ∈ Va and pred is one of the binary predicates in {<,≤,=,≥,>}.

1 A digital signature or digital signature scheme is a cryptographic scheme for demonstrating the
authenticity of a digital message or document.

3.4. POLICIES 13

Definition 3.4.2 (Resource condition). A resource condition RC is an expression of the
form

rn(AL)

where rn ∈ RN ∪{“X′′} is a resource name and AL is a list, eventually empty, of attribute
conditions.

Example 3.4.1. Examples of resource condition are the following:

• ID(name=“John”, surname=“Doe”)

• NonDisclosureAgreement(Company=“FooBar”, IssueData¡“2010-01-01”,
ExpireDate=“2012-12-21”)

• BankAccount(BankName=“SomeBank”, AccountID=‘X123456‘,
ExpenceLimit >= 400$)

• X(YearOfBirth≤1981)

We can now define when a resource satisfies a resource condition.

Definition 3.4.3 (Resource condition satisfaction). A resource condition rc is satisfied
by a resource r if and only if, for each access condition (a, pred, v) ∈ AL(rc), there exists
(a′, v′) ∈ AttrList(r) where a′ = a and pred(a′, a) state true and, if rn(rc) 6=“X”, then
rn(rc) = rn(r).

Definition 3.4.4 (Condition set). A condition set CS is a not empty set of resource
conditions.

Intuitively, a condition set represents the conditions which have to be satisfied
simultaneously. In other words all the resource condition rci in a condition set CS ,
with i ∈ {1, . . . , |CS|} are representable as a conjunctive formula of the form

rc1 ∧ . . . ∧ rc|CS|
Therefore, a condition set is satisfied if and only if all the conditions in it are satis-
fied.

Definition 3.4.5 (Condition set satisfaction). A condition set CS is satisfied by a set
of resources R if and only if, for each resource condition rc ∈ CS , there exists a resource
r ∈ R which satisfies rc.

Definition 3.4.6 (Condition formula). A condition formula CF is an expression of the
form

φ(CS1, . . . , CSv)

where each CS i is a condition set and v ≥ 1.

Condition formulæ allow the composition of different condition sets as if they
were connected with the disjunctive connector. Hence, a condition formula is sat-
isfied if at least one of its condition sets is satisfied.

Definition 3.4.7 (Condition formula satisfaction). A condition formula CF, defined
over a set of condition sets {CS1, . . . , CSv}, is satisfied by a set of resources R if and only
if there exists a condition set CS ∈ CF which is satisfied byR.

3.4. POLICIES 14

3.4.1 Quantifications

The policy definition language X -RNL has been designed to work in group envi-
ronments, as it will be described in more details in Chapter 4. The concept of group
will be discussed at length in Chapter 4, just consider a group as a collection of
subjects sharing common interests and willing to cooperate.

The condition formulæ specify requirements which have to be satisfied by a
single subject. On the other hand, when dealing with a group of subjects, such as
with a group of peers, one may specify how many subjects have to satisfy such
requirements.
X -RNL does express this by means of quantified formulæ, where the quantifica-

tion is over the subjects.
Both existential and universal quantification are possible as described in the

follows:

Definition 3.4.8 (Universally quantified formula). A universally quantified for-
mula is an expression of the form

∀φ(CS1, . . . , CSv)

where φ((CS1, . . . , CSv) is a condition formula.

Definition 3.4.9 (Universally quantified formula satisfaction). A universally quanti-
fied formula

φ′ = ∀φ(CS1, . . . , CSv)

is satisfied by a group of peers G = {p1, . . . , p|G|} if and only if ∀pi ∈ G, ∃Ri, a set of
resources owned by pi which satisfies φ(CS1, . . . , CSv).

Definition 3.4.10 (Existentially quantified formula (with cardinality restriction)). A
existentially quantified formula (with cardinality restriction) is an expression of the
form

∃≥nφ(CS1, . . . , CSv)

where φ((CS1, . . . , CSv) is a condition formula.

Definition 3.4.11 (Existentially quantified formula (with cardinality restriction) sat-
isfaction). An existentially quantified formula (with cardinality restriction)

φ′ = ∃≥nφ(CS1, . . . , CSv)

is satisfied by a group of peers G = {p1, . . . , p|G|} if and only if ∃G′ ⊆ G, with u ≥ n,
and ∀p′i ∈ G′, ∃Ri, a set of resources owned by p′i which satisfies φ(CS1, . . . , CSv).

The possibility to state conditions about groups are counter-balanced by the
possibility to define condition about specific members of the group. Such possibil-
ity is provided by means of the so-called named formulae

3.4. POLICIES 15

Definition 3.4.12 (Named formula). A named formula is an expression of the form

@p φ(CS1, . . . , CSv)

where p is a peer identifier and φ(CS1, . . . , CSv) is a condition formula

Definition 3.4.13 (Named formula satisfaction). A named formula

φ′ = @p φ(CS1, . . . , CSv)

is satisfied by a group of peers G = {p1, . . . , p|G|} if and only if there exists a peer p′ ∈ G
such that ID(p′) = p andRp′ , the set of resources owned by p′ satisfies φ(CS1, . . . , CSv).

3.4.2 Verification techniques

Beside expressing conditions about the number or the identity of peers which must
satisfy a given formula, the X -RNL language allows the specification of different
kinds of verification techniques, differing in the time span in which the verification
takes place.

At first, simple case of formula verification occurs when the truth value of the
formula is verified only once (and then the time span collapse to a single instant).
We call such kind of verification techniques weak.

Definition 3.4.14 (Weak assured formula). A weak assured formula is an expression
of the form

φ(CS1, . . . , CSv)
w

where φ((CS1, . . . , CSv) is a formula.

Definition 3.4.15 (Weak assured formula satisfaction). A weak assured formula φ′ =
φ(CS1, . . . , CSv)w is satisfied if and only if at the verification time t the formula
φ(CS1, . . . , CSv) is satisfied.

A users may be interested in stronger requirements. Namely, one may be inter-
ested in a formula that is verified as true at the verification time and in the follow-
ing. Such interest is satisfied by the X -RNL policy definition language by means of
the so-called strong assured formulæ

Definition 3.4.16 (Strong assured formula). A strong assured formula is an expres-
sion of the form

φ(CS1, . . . , CSv)
s

where φ((CS1, . . . , CSv) is a formula.

Definition 3.4.17 (Strong assured formula satisfaction). A strong assured formula
φ′ = φ(CS1, . . . , CSv)s is satisfied if and only if, given a verification time t, for each
t′ ≥ t the formula φ(CS1, . . . , CSv) is satisfied at instance t′.

3.4. POLICIES 16

The difference between strong and weak assured formulæ is relevant. Most of
the times a user may willing to express requirements stronger than the ones ex-
pressible with a weak formula but less then what is expressible with a strong for-
mula. X -RNL satisfies such need with the limited strong assured formulæ, or limited
for short. Informally, a limited formula is a strong formula that is verified true for
a time interval starting from the verification time.

Definition 3.4.18 (Limited strong assured formula). A limited strong assured for-
mula is an expression of the form

φ(CS1, . . . , CSv)
t(n)

where φ((CS1, . . . , CSv) is a formula and n ∈N.

Definition 3.4.19 (Limited strong assured formula satisfaction). A limited strong as-
sured formula φ′ = φ(CS1, . . . , CSv)t(n) is satisfied if and only if, given a verification time
t, for each t ≤ t′ ≤ (t + n) the formula φ(CS1, . . . , CSv) is satisfied at instance t′.

The different verification techniques are sketched in Figure 3.1. Moreover, weak
and strong formula will be further presented in Chapter 4.

time

Strong

Limited

Weak

t t+n

Figure 3.1: Differences between weak, strong and strong limited verification tech-
niques

We have defined the toolkit needed for formally defining disclosure policies
that, informally, is a rule expressing under what conditions a given resources may
be accessed.

Definition 3.4.20 (Disclosure policy). A disclosure policy is an expression of the form

r ← φ

where φ can be, alternatively:

• a condition formula

• a universally quantified formula

• an existentially quantified formula

• a named formula

3.5. THE SUBJECTS OF THE TRUST NEGOTIATION MODEL 17

• a weak assured formula

• a strong assured formula

• a limited strong assured formula

and r is a resource identifier.

Note that the symbol ← is not the implication of the classical logic because,
in our interpretation, the head (or left part) of the rule states true if and only if
the body (or right part) of the rule is true. On the other hand, the implication in
classical logic would state true even if the head is true and the body is false.

Example 3.4.2. Examples of disclosure policies are:

• CreditCard← BestBuyerID

• SensitiveDocument← (PoliceID ∧ ID) ∨ (MilitaryID ∧ ID)

Definition 3.4.21 (Disclosure policy satisfaction). Given a resource r and a disclosure
policy DS = r ← φ where φ is a formula, the disclosure policy DS is satisfied, which
means the resource r can be disclosed, if and only if the formula φ is satisfied.

After the satisfaction of the disclosure policy protecting a resource r, such re-
source can be disclosed to the group of peers satisfying the policy.

3.5 The subjects of the trust negotiation model

After defining the resources exchanged in a trust negotiation and how it is possible
to specify rules to protect them, we formally define the subjects whose interactions
create the trust negotiation.

Recalling the definitions of Section 3.3 and also considering what have been
defined in Section 3.4, we can introduce the concepts TNSubject and X -Profile.

Definition 3.5.1 (TNSubject). A TNSubject is one of:

• a peer p

• a group of peers G = {p1, . . . , pu}
Definition 3.5.2 (X -Profile). Given a TNSubject S, theX -Profile associated to S, denoted
as X -ProfileS, is a tuple of the form 〈RS,PS〉 where RS is the set of resources owned by S
and PS is the set of disclosure policies defined by S to protect the resources inRS.

So far we assumed that a resource is protected by at least a disclosure policy.
This is not always the case, in fact, it is possible for a user to define no disclosure
policy associated with a certain resource. Such possibility creates a particular set of
resources, namely the freely available resources. These resources are called deliver-
able resources.

3.6. TRUST NEGOTIATION ARCHITECTURE 18

Definition 3.5.3 (Deliverable resource). Given a subject S and the corresponding X -
Profile, denoted as X -ProfileS, a resource r ∈ R(X -ProfileS) is defined deliverable, or
DELIV, if and only if 6 ∃P ∈ P(X -ProfileX).

Definition 3.5.4 (Negotiating peer). A negotiating peer is a tuple of the form

< p,Rp,Pp >

where p is the identifier of the peer, Rp is a set of resources owned by p and Pp is a set of
resource policies defined by p to protect the resources inRp.

3.6 Trust Negotiation architecture

A trust negotiation is a protocol involving two negotiating subjects:

• a controller Con and

• a requester Req.

Each subject is associated to a X -Profile, namely, X -ProfileCon is associated to the
controller while X -ProfileReq is associated to the requester.

The trust negotiation begins when Req requests a certain resource r to Con
and, by means of the resources and the disclosure polices contained in their re-
spective X -Profile, the negotiating subjects determine if there exists a certain trust
level disclosing the resource r. As shown in Figure 3.2 and extensively described
in [100, 13, 101], the trust negotiation protocol provided by the Trust-X framework
is subdivided into three different phases:

• the introductory phase,

• the policy evaluation phase and

• the credential exchange phase.

Each phase must successfully terminate in order to successfully terminate the whole
Trust Negotiation.

The improvements introduced into the Trust-X framework, in particular the
ones presented in Chapter 5 and in [106, 105] allow a Trust Negotiation to be per-
formed among different negotiation session. Nevertheless, in order to successfully
terminate, the negotiation still requires to be carried out following the sequence of
phases here described.

3.6.1 Introductory phase

The first phase executed is called Introductory Phase. During such phase the inter-
acting peers identify the terms of the negotiation, which means that they agree on
the language used in the negotiation (X -TNL or alternatively X -RNL) and they

3.6. TRUST NEGOTIATION ARCHITECTURE 19

Introductory
Phase

Policy
Evaluation

Phase

Credential
Exchange

Phase

Figure 3.2: The negotiation phases

identify the resource which the requester wants to access, both stating the request
or using more advanced techniques, such as the ones described in Chapter 6.

Moreover, during the introductory phase it is possible to perform all the acces-
sory protocols, not directly expressible in theX -RNL language, which are provided
by the Trust-X framework. Such protocols will be presented in Chapter 5.

Eventually, before the end of the introductory phase, the system initializes the
data structure which represents the progress of the trust negotiation. Such data
structure is called Negotiation Tree. Informally, a negotiation tree is a labeled, multi-
edge tree rooted in the initially requested resources where each node is a resource
condition and the edges represent the exchanged disclosure policies.

Definition 3.6.1 (Negotiation Tree). Given a resource controller Con and a resource re-
quester Req and the correspondingX -ProfileCon = 〈Con,RCon,PCon〉 andX -ProfileReq
=
〈
Req,RReq,PReq

〉
, a Negotiation Tree is a tuple of the form

NT = 〈N , E , r, ψ〉

where:

• N is the set of nodes, each node n ∈ N corresponds to a resource condition.

• E is the set of edges, each edge e ∈ E represents the disclosure policy protecting
the resource which is the parent node of the edge. More precisely, each condition set
contained in a the represented disclosure policy brings to the creation of a set of edges.
Such edges can be of two kinds: simple edges and multi-edges. A simple edge is
used to model condition sets having only one resource condition while a multi-edge

3.6. TRUST NEGOTIATION ARCHITECTURE 20

links several simple edges in order to represent condition sets having more than one
resource condition. Nodes belonging to a multi edge are thus considered as a whole
during the negotiation.

• r ∈ N is the root of the tree with also r(r) ∈ RCon.

• ψ is the labeling function defined as:

ψ : N → Label

where Label = {DELIV, UNDELIV, OPEN} is a set of states in which each node
can be.

The use of a tree allows one to detect cycles in the policy exchange. Repeated
or recursive policies can be easily detected in the tree, as a they appear twice in the
same sequence. Furthermore, a tree allows one to store all alternative sequences of
policies in a unique structure, rather than having a list for each alternative. A more
detailed description of the negotiation tree can be found in[100].

An example of negotiation tree is shown in Figure 3.3. Namely, Figure 3.3(a)
shows the negotiation tree returned by the initialization phase.

r

(a)

r

r1 r2

r6r5r4 r8

r3

r7

(b)

r

r1 r2

r6r5r4 r8

r3

r7

(c)

Figure 3.3: An example of negotiation tree growth: (a) after the introductory phase,
(b) after the policy evaluation phase and (c) with a valid view highlighted

3.6.2 Policy evaluation phase

The Policy Evaluation Phase is the most relevant one and it is the most expensive
phase of a trust negotiation. In such phase each peer iteratively exchanges the
disclosure policies in charge of protecting the resources requested by the disclosure
policies by the other one.

The exchange of the disclosure policies expands the negotiation tree. Namely,
as introduced in Definition 3.6.1, the exchanged disclosure policies define the next
level of the negotiation tree. When a node is added to the negotiation tree, it is as-
sociated to the label OPEN which means it is unknown whether it will be possible
to successfully verify the resource condition represented by such node.

3.6. TRUST NEGOTIATION ARCHITECTURE 21

When a peer is requested a deliverable resource (see Definition 3.5.3), such re-
sources is inserted into the negotiation tree with label DELIV. After that, the la-
beling function propagate the DELIV state to the ancestors of the newly inserted
node. This is done by checking the label of the children of the parent node. If all
of the children have label DELIV then the parent node is labeled as DELIV too.
Such procedure is applied to the parent of the currently modified node and so on.
If the propagation of the DELIV label reaches the root of the negotiation tree then
the policy evaluation phase successfully ends.

Similarly, when a peer requests a resource not present in the X -Profile of the
other, then the corresponding (unsatisfiable) resource condition is added to the ne-
gotiation tree as a node labeled as UNDELIV. The UNDELIV label is propagated
by the labeling function as the DELIV label with one exception: namely, a node
is labeled as UNDELIV if and only if all of its children are labeled as UNDELIV.
Moreover, if a node labeled as UNDELIV is part of a multi-edge then all its sib-
lings in the edge are labeled as UNDELIV. If the propagation of the UNDELIV
label reaches the root of the negotiation tree then the policy evaluation phase fails
making un-successfully terminate the whole trust negotiation.

In addiction, to maintain a complete log of the exchanged policies, each nego-
tiator updates the tree with the local policies prior sending them to the counterpart.

The successful completion of the policy evaluation phase is signaled by a sub-
tree of the tree rooted at the requested resource consisting only of nodes labeled as
DELIV. We refer to such subtree as Valid View.

Definition 3.6.2 (Valid View). Given a negotiation tree NT = 〈N , E , r, ψ〉 a valid
view is a tuple of the form 〈

N ′, E ′, r
〉

where N ′ ⊆ N and ∀n ∈ N ′, ψ(n) = DELIV. E ′ ⊆ E .

An example of valid view in shown in Figure 3.3(c).
Note that more then one valid view may be found in a given negotiation tree.

Again, the details about how to handle the presence of different valid view and
some informations related to the different negotiation strategies which the negoti-
ating peer may carry out are described in [100].

3.6.3 Credential Exchange Phase

The last phase of the trust negotiation protocol provided by Trust-X is the Credential
Exchange Phase. During such phase the negotiating peers exchange the credentials
in the valid view obtained by the successful termination of the policy evaluation
phase.

Before exchanging resources, the negotiating peers must identify the order in
which such resources must be exchanged. Such order can be extracted from the
valid view. We refer to it as trust sequence or credentials sequence.

3.6. TRUST NEGOTIATION ARCHITECTURE 22

Definition 3.6.3 (Trust Sequence). Given a resource controller Con and a resource re-
quester Req and the correspondingX -ProfileCon = 〈Con,RCon,PCon〉 andX -ProfileReq
=
〈
Req,RReq,PReq

〉
and a valid view VV = 〈N ′, E ′, r〉, the corresponding Trust Se-

quence CSseq is a tuple of the form

〈r1, . . . , ru〉

Where each ri with i ∈ {1, u} is a resource inRCon ∪RReq and such that there exists
among the resources an order satisfying the disclosure policies represented by the edges of
the valid view.

The trust sequence CSeq can be built by traversing the view according to a spec-
ified order defined by the labeling function associated with the negotiation tree,
beginning from the leaves.

Example 3.6.1. As an example, the trust sequence computed on the valid view highlighted
in Figure 3.3(c) is the following:

〈r6, r2, r1, r〉

Hence, the resources are disclosed by both peers following the order dictated by
the trust sequence. Finally, the trust negotiation protocols ends successfully if and
only if all the exchanged resources actually satisfy the disclosure policies defined
by the negotiators.

To summarize, a successful negotiation is typically defined as follows.

Definition 3.6.4. Let p1 and p2 be two negotiation peers, and letX -Pro f ilep1 ,X -Pro f ilep2

be the profiles of p1 and p2, respectively.
A trust negotiation protocol for a resource r is successful if and only if a trust sequence

〈r1, . . . , rn = R〉 is found, where ri ∈ R(X -Profilep1)∪R(X -Profilep2), and such that for
each ri, with i ∈ {1, n}, the associated disclosure policy DPi = ri ← φi is satisfied by a set
of resources {rj1 , . . . , rjk} with jl < j(l+1) and ∀jl , jl < i.

Chapter 4

Group-based Trust Negotiations

4.1 Introduction

As introduced in Chapter 1, a relevant feature of P2P systems is the support for the
dynamic formation of peer groups.

Moreover, as shown in Chapter 3, we use a highly expressive negotiation lan-
guage, called X -RNL, able to support the specification of a large variety of condi-
tions applying to single peers or groups of peers. We remark that X -RNL supports
group-based policies, in which the evaluation of policies may involve more than
one peer (see Chapter 3.4). The specification of group-based policies is supported
by the introduction of a limited form of quantification over the number of peers in
a peer group.

A second important feature of X -RNL is the possibility of expressing policies
that include not only conditions on credentials but also on other types of resources.

Our negotiation-based join protocols include algorithms for policies exchange
and resource verification. A unique feature of our resource verification algorithms
is that the resources’ properties are verified not only at the end of the join process,
but throughout the peers’ life-cycle in the group. In order to guarantee such degree
of control over the group’s resources, without falling into a centralized approach,
we support event-based checking protocols. Peers propagate to special peers, re-
ferred to as group managers, event-based messages, upon detection of events of
interest, such as unavailability of resources, non-responsive peers etc. The mes-
sages trigger checking protocols that verify disclosure policies which may be af-
fected by the events, and not be any longer verified by the peers. As we show in
our experimental evaluation, such protocols help in efficiently detecting free riders,
misbehaving peers or even malicious peer groups.

To validate our framework, we have in fact developed a new type of JXTA [75]
Membership Service. JXTA has a number of important features that make it suit-
able for our benchmark. First, it has a set of standard protocols to implement P2P
applications. Second, it is independent from the programming languages, trans-
portation protocols and system platforms being used. Therefore, by adopting JXTA,

4.2. APPLICATION SCENARIO 24

peers can communicate seamlessly across different P2P system and different com-
munities. Our results show that our negotiation-based join approach is robust to
malicious peers, which are detected both during the negotiation and during the
peer group lifetime. Regardless of the peer group cardinality and interaction fre-
quency, the peers always detect possible free riders within a small time frame. The
peer finding a missing item notifies a group manager peer which promptly triggers
a checking protocol and informs the peers of the group which indicated the missing
resource as a strong requirement for their joining.

4.2 Application Scenario

We consider a file sharing P2P network called ShareForFree in which peers can ex-
change different types of resources such as books, music, movies and videos, soft-
ware, photos, recipes etc or they can even sell stuff such as cars or post advertise-
ments for rentals or house selling. Peers are organized in groups based on the type
of the resources they are going to share, sell or buy. Specifically, we consider the
following group of peers:

FreeBooks The peers belonging to this group exchange books spanning across dif-
ferent categories such as educational books, narrative books etc.

FreeMusic The peers in this group share mainly mp3 files.

FreeMovies The peers in this group exchange videos and movies.

FreeSoftware The peers of this group share open source software.

SharePhotos The peers of this group exchange pictures related to different topics.

CookForFun The peers of this group exchange recipes.

Housing The peers in this group share advertisements about houses for sale or
rentals.

ForSale The peers post advertisement about any kind of item they want to sell or
buy such as cars or electronics.

Figure 4.1 sketches the group organization of the considered P2P network.
To be a member of these groups, peers have certain properties or meet require-

ments related to the resources they provide to the other peers. For example, to be a
member of the group FreeSoftware, a peer does not have to make available to the
other peers in the group licensed software; or to be a member of the FreeMovies a
peer has to share adult content movies only with adult peers, or to be a member of
FreeMusic, a peer has to make available at least 1GB of mp3 files. We assume there
is a peer hosting a service managing the memberships of peers in the group, and a
peer that is responsible for monitoring changes that can occur in the group.

With respect to the policy definition language X -RNL described in Chapter 3.4,
an example of policy for the group described in the current section is what follows:

4.3. GROUP MANAGERS AND PEER MEMBERS 25

ShareForFree

FreeMusicFreeMovies

FreeBooks
FreeSoftware

ForSale

Figure 4.1: The ShareForFree P2P network.

Example 4.2.1. Let us consider the ShareForFree file sharing networking and the group
FreeMusic. Let assume that a peer p wants to join FreeMusic. The membership pol-
icy for FreeMusic FreeMusicMembership ← @p((Mp3(size > 500MB) ∧ State =
Cali f ornia) requires that p shares with the members of the group at least 500MB of Mp3
files and that it is from the state of California. On his side, p is only interested to join
FreeMusic only if the group members provide a good selection of pop and jazz music. p
requirements to join FreeMusic are expressed by the policy

@p((Mp3(size > 500MB)) ←
∃>100FreeMusic.x(@FreeMusic.x(Mp3(Singer = Madonna∨

Singer = Michael Bublé ∨ FrankSinatra ∧ size > 1GB)) (4.1)

specifying that p will share at least 500MB of Mp3 files with the members of FreeMu-
sic there are at least 100 peers in the group who make available a 1GB of Mp3 songs of
Madonna, or Michael Bublé or Frank Sinatra.

The satisfaction of a formula is evaluated with respect to the peer local re-
sources, as given by the peer’s advertisement and credentials, as discussed in the
next sections.

4.3 Group Managers and Peer Members

4.3.1 Group Managers

In order to support our negotiation-based joining process, we introduce a new peer
type, namely the Group Manager (GM for short). The GM controls the overall group
state, by collecting and managing information about peers and peers’ resources
availability. The GM, besides acting as a super-peer, operates as a standard peer,

4.3. GROUP MANAGERS AND PEER MEMBERS 26

and offers resources as any other peer member. In order to prevent reliability and
security problems, one can assume that the GM is physically replicated on different
machines. We refer to existing protocols [33, 66] for details regarding the manage-
ment of GM replicas. We assume that the peer initiating the group becomes the first
GM. The GM stores information about the group and its peer in a database. Such
database can be accessed in a client/server fashion by any peer in the group as de-
scribed in the next section, upon the retrieval of the access credential owned by the
GM. Thus, the availability of the database does not depend on the availability of
the current GM.

The GM plays an important role in the resource verification process, while en-
suring a decentralized approach to the negotiation process. Specifically, its main
role is to ensure the validity of the strong formulae over time.

To be able to do so, the GM collaborates with the peers in the group to be up-
dated on the peer group changes, as further discussed in Section 4.4.2. Group mem-
bers notify the GM about the occurrence of events that may affect the validity of
strong formulæ.

Being the services offered by the GM very relevant components of our frame-
work, it is necessary to ensure their reliability.

4.3.2 Group Manager Election

In case the current GM of a group becomes unresponsive or is unavailable for an
extended time length, the other peers of the group initiate a protocol to replace
it. Several sophisticated approaches for finding a super-peer – as those briefly de-
scribed in Chapter 2 – can be deployed. However, since such approaches rely on
a number of tools and strong assumptions, we here present a simple yet effective
protocol for effective management of GMs.

Our protocol relies on the information stored in the GM database in order to
identify the peer that represents the best candidate to take the role of the GM.
As mentioned, the GM database is a GM-independent, persistent repository that
stores several information about group members. Given the sensitive nature of the
information stored in the GM database, usually the current GM only is allowed
to access it. The right to access the GM database is encoded in an access creden-
tial, which is owned by the GM. The access credential contains the information
required by a peer to access the GM database such as, for example, the database
URL, a valid username and the corresponding password. Note that, additional
information stored in the access credential depends on the type of database used.

In order to grant the possibility to access the GM database to other peers, the
GM splits the access credential into shares, using a Secret Sharing Scheme (SSS) (e.g.
[95]). The motivation of splitting the GM database access credential into shares is to
prevent access to such database by unintended peers. In fact, shares are computed
in such a way it is not possible to reconstruct the access credential from a number
of shares less than a integer threshold M. Such threshold is an input parameter of
the SSS, as the total number of shares, which is equal to the group cardinality (as

4.3. GROUP MANAGERS AND PEER MEMBERS 27

registered into the GM database). Of course, the higher the threshold is, the harder
for a set of peers is to collude.

After having computed the shares, GM gives each peer pi a corresponding share
si. In this way, for a peer (other than GM, of course) to access the GM database, it
is necessary to obtain a number of shares larger than M.

The sharing of shares of the database access credentials enables the election
protocol that is described as follows (see Algorithm 1 and 2):

• The request for identifying a new GM comes from a group member pi that,
after having sent a request to the GM – for example pi wants to share a new
resource r within the group – does not receive any answer from it. Thus, pi
assumes that GM is down and starts a procedure for electing a new GM.

• Peer pi starts by requesting the shares of the credential for accessing the GM
database to the other group members. The GM database stores relevant infor-
mation about group members (e.g. group access time, number of advertised
resources, along with corresponding lists of their features) that may drive
the choice of the next GM (e.g. the oldest group member, or the member that
advertises the largest amount of computational power, etc.). Such election cri-
teria are a-priori fixed and shared among group members. All the messages
exchanged among peers during the election protocol are signed with the key
contained in the membership credential released by the Membership Service
to each peer joining the group. A detailed description of the credential can be
found in Section 4.4.1.

• The group members’ positive answers to pi’s request depend on the verifi-
cation of the signature of pi on the request message and whether GM is ac-
tually unresponsive for a long enough (equal for all peers) period of time.
If pi signature is valid, then the other group members before disclosing the
shares, check whether the GM is unavailable as indicated by pi. In case the
GM is actually down, the peers proceed by sending their credential shares
to pi. After having disclosed their shares once, the peers do not accept any
subsequent shares disclosure request in the same election protocol run. In
the unfortunate case that more than one peer initiate at the same moment the
GM election protocol, it can be that none of them is able to obtain the suffi-
cient access credential shares. In this case, when an initiating peer receives a
share disclosure request from another initiating peer, one of the two agrees to
release all its collected shares to the other, according to a previously agreed
upon criterion (e.g., the shares are collected by the oldest peer). In this way,
only one peer is granted the right to access the GM database. Afterwards, pi
reconstructs the credential and accesses the GM database.

• Once pi has accessed the database, it identifies (according to the GM choice
criteria) the new GM among the group members, as listed in the (old) GM
database. Finally, the new GM is notified to the other group peers and begins
to operate.

4.4. THE NEGOTIATION-BASED JOIN PROCESS 28

Notice that a malicious peer pi wishing to access the GM database while the cur-
rent GM is still up cannot retrieve all the required shares from the other peers. This
is because every peer contacted by pi checks whether the current GM is effectively
down. If a sufficient number of peers succeeds in contacting the actual GM, the re-
quested shares are not disclosed to pi. The issue of colluding peers is still open, in
that peers could possibly join the shares to access sensitive information. This aspect
is however beyond the scope of the current work, and we do not further elaborate
on it.

Input: GMold: GroupManager identifier; pi: initiator peer identifier; si:
owned share; M, integer threshold; Certi: membership certificate
released by the GM; SKi: secret key of pi

Output: New GM identification if the old one is unavailable
begin

if IsGMOffline(GMold) then
ElectionInitiator = true;
GroupSend(pi, ‘‘Share request’’, SigSKi(‘‘Share request’’),

Certi);
Shares Set = GroupReceive();
Shares Set = Shares Set ∪ si;
if |Share Set| ≥ M then

d = Interpolate(Shares Set);
Access Group Manager Database;
Identify new GM GMnew according to the choice criteria;
NotifyGMnew;
Delete d;

Algorithm 1: New Group Manager Election: ElectionInitiator

4.4 The Negotiation-based Join Process

We now discuss how we extended JXTA in order to carry on negotiations. We
present the peer’s negotiation protocol, followed by a discussion on the formulæ
verification process, which is one of the main features of our proposal.

4.4.1 Peer Negotiation

The join-based negotiation consists of three phases: the advertisement discovery phase,
the policy evaluation phase, and the verification phase. Figure 4.2 reports the main
steps of the protocol, for each of the negotiators. As reported, a follow-up compo-
nent of the negotiation is given by the periodic verification of strong formulae, as
further discussed in the remaining of the section.

4.4. THE NEGOTIATION-BASED JOIN PROCESS 29

Input: GMold: GroupManager identifier; sl : owned share
begin
{Sender, Message, Sign, CertSender} = Receive();
if VerifySign(Message, Sign, CertSenter) then

if Message == “Share request” then
if ElectionInitiator == f alse then

if ShareAlreadySent == f alse then
if IsGMOffline(GMold) then

Send(Sender, sl);
ShareAlreadySent = f alse;

else
pk = IdentifyTheOldestElectorInitiator();
if Sender == pk then

Send(Sender, sl ∪ ReceivedShares);

Algorithm 2: New Group Manager Election: Peeri

The negotiation-based join process is carried out following the same interaction
protocol used in the existing JXTA membership services [110]. The membership
service (MS, for short) is a software component instantiated at the time the group is
created. This service is physically located at the peer originating the group, which
may be a GM. The group disclosure policies used by the MS to carry out the ne-
gotiation on behalf of the group are a combination of individual peers’ policies,
exchanged during their join procedure. Such policies are combined using conjunc-
tion operators for strong universal formulae, and using disjunction operators for
all other formula types. Strong universal formulae are conjoined in order not to
exclude any of the peer’s resources. Note that, obsolete policies are discarded after
a certain time interval set up by the group, or when peers leave.

The core phase is the policy evaluation phase, carried out to determine if the
incoming peer p meets the peer group’s joining requirements and, conversely, if p’s
requirements are satisfied by the peer group.

The actual policy exchange occurs between the incoming peer p and G’s MS.
Once the peer and membership service reach a mutual agreement on the policies
to verify, the corresponding resources are identified. The verification of peers’ re-
sources availability is carried out according to the level of assurance of the policy
formulae. Weak formulae express requirements that must be satisfied when p joins
the peer group G. Therefore, the verification of weak formulae is performed one
time only, at the end of policy evaluation phase. On the contrary, strong formulae
express requirements that must also be satisfied for all the duration of p’s mem-
bership. As a consequence, strong formulae are verified after the policy evaluation
phase, and during p’s membership. This type of verification is for critical resources,

4.4. THE NEGOTIATION-BASED JOIN PROCESS 30

Figure 4.2: Main phases of the negotiation process

which the peers need to periodically access over time.

Advertisement Phase Peer p first discovers the advertisement of G. G’s adver-
tisement specifies the Membership Service that adopts resource negotiation as au-
thentication method for the joining peers. Thus p, through MS advertisement, lo-
cates and runs an instance of the resource and, hence, starts the joining process.

Policy Evaluation Phase This phase starts when p runs requests to join G. It
consists of a bilateral policy exchange between p and MS, where MS is hosted by
a peer member. The goal of the policy evaluation phase is to authenticate both the
joining peer and the group, based on the disclosure policies enforced by both p and
MS.

The policy evaluation phase is carried out as follows. Upon p’s request of join-
ing group G, MS sends to p its policy. The policy specifies the trust requirements
to meet, expressed by credentials’ requests, as well as by the resources to make

4.4. THE NEGOTIATION-BASED JOIN PROCESS 31

available to G, in case of a successful negotiation. At this stage, the policy is of
the form MembershipCred ← φ(t1, . . . , tu) where MembershipCred is a shorthand
for the membership credential that p is requiring and φ(t1, . . . , tn) is a formula that
specifies conditions that p should satisfy. Moreover, MembershipCred is the creden-
tial which identifies a peer member of the group. It includes the following fields:

• the group identifier;

• the GM public key;

• a certificate issued by the GM containing the identifier and the public key of
the joining peer. Such certificate is signed using the private key of the GM;

• the joining peer private key.

Note that the membership credential MembershipCred is sent through a secure
channel, like SSL, at the end of a successful negotiation.

Peer p then verifies how to satisfy each term ti in φ(t1, . . . , tn), by checking its
credentials and/or advertisement, depending on what is required. If p does not
have the requested resources/credentials, and/or does not satisfy the conditions
stated by the MS’s policy, it informs the MS, that halts the negotiation process.

Otherwise, p checks whether there are policies regulating the disclosure of such
resources to MS. If this is the case p replies by sending the counter policies to MS. p
counter reply includes its own set of requirements that need to be satisfied by MS
in order for p to join G. These requirements can be related to the specific policies
that p received from MS, or they can express general trust requirements about the
group that p wants to check before joining it.

Similarly, MS, upon receiving p’s policies, verifies whether the received poli-
cies can be satisfied. Since MS carries on the negotiation on behalf of the members
of the group, it access the GM database which stores information about resources
that current peer members make available, so to be able to reason about quantified
formulae along with the policies regulating the disclosure of these resources. Such
disclosure policies are defined by the resource owners’ peers, although managed
and negotiated by MS. Information about resources of peers that are no longer
members are removed from the cache as peers leave the group. Notice that this
approach allows MS to release information about the peers that are members of G
without contacting them (peers leaving the group notify the Membership Service).
If the MS’s local cache contains the resources corresponding to terms in p’s poli-
cies and they all are available, MS checks whether the release of such resources is
ruled by policies. To keep track of the policy exchange order p and MS maintain a
negotiation tree (see Definition 3.6.1).

As described in Chapter 3.6.2, each negotiating party updates its local copy of
the tree every time policies are received from the counterpart and evaluated as
satisfiable. When neither p nor MS have additional policies to exchange and a se-
quence of logically related policies are satisfiable, the two negotiators traverse their
local tree from a leaf node to the root to determine the sequence of formulæ that

4.4. THE NEGOTIATION-BASED JOIN PROCESS 32

have to be verified. The sequence is then partitioned into two lists, one collecting
the policies formed by the strong formulæ and the other one collecting weak for-
mulæ. Recall that, according to our language, each policy corresponds to one single
formula, which can either be strongly or weakly assured.

Example 4.4.1. Let consider the ShareForFree file sharing networking and the group
FreeSoftware. Let assume that a peer p wants to join FreeSoftware. The Membership
Service of FreeSoftware group (denoted as FreeSoftware.MS) sends to p the member-
ship policy for FreeSoftware FreeSo f twareMembership ← @p(So f tware(Licenced =
False ∧ size = 1.5GB) requires that p shares with the members of the group at least 1.5
GB of open source software (the XML representation of this policy is shown in Figure 4.3).
On his side, p is interested to join FreeSoftware only if the peers in the group provides
word processing, antivirus, and threats removal tools. Thus, p sends to FreeSoftware.MS
the disclosure policy

@p(So f tware(Licenced = False ∧ size = 1.5GB)
←

∀FreeSo f tware.x(@FreeSo f tware.x(So f tware(Type = WordProcessor
∧Type = Antivirus ∧ Type = ThreatRemover)

specifying that p will share 1.5 GB of open source software if each peer in FreeSoftware
shares word processing, antivirus, and threats removal tools. FreeSoftware.MS checks if
in his local cache there are for each peer in the group the advertisments for word processing,
antivirus, and threats removal tools. If this is the case, then FreeSoftware.MS controls
if each peer in the group has a disclosure policy for the release of these tools. The peers
p1, p2 and p3 have the following disclosure policies for the sharing of the word processing,
antivirus, and threats removal tools:

• According to disclosure policy in Equation 4.2, in order for p1 to share the tools, p
has to provide a pdf editor.

• On other hand, according to the disclosure policy shown in Equation 4.3, p2 provides
the tools only if p makes available a JAVA IDE.

• p3 shares the tools only if p shares a mobile browser simulator, see Equation 4.4.

@p1(So f tware(Type = WordProcessor∧
Type = Antivirus∧

Type = ThreatRemover))←
@p(So f tware(Type = Pd f Editor))

(4.2)

@p2(So f tware(Type = WordProcessor∧
Type = Antivirus∧

Type = ThreatRemover))←
@p(So f tware(Type = JAVAIDE))

(4.3)

4.4. THE NEGOTIATION-BASED JOIN PROCESS 33

@p3(So f tware(Type = WordProcessor∧
Type = Antivirus∧

Type = ThreatRemover))←
@p(So f tware(Type = MobileSimulator))

(4.4)

Since p is not able to provide the pdf editor, the JAVA IDE and the mobile browser
simulator, the policy evaluation phase fails and as a consequence also the joining process
fails.

<?xml version="1.0" encoding="UTF-8">

<policies target="FreeSoftwareMembership">

<policy>

<term version="strong">Software(Licensed = False)</term>

<term version="strong">Software(size = 1.5GB)</term>

</policy>

</policies>

Figure 4.3: FreeSo f tware Group Membership policy’s XML representation

Notice that the negotiating parties can strengthen the security of the negotiation
process as described above by adopting negotiating strategies. Several strategies
can be employed, such as the trusting or the suspicious strategies [101] as sup-
ported by the Trust-X system. By carefully selecting the credentials and policies
to disclose, parties can minimize the risk of information leakage and carry out safe
and correct negotiations [117].

Resource Verification Phase Once the negotiation parties have reached an agree-
ment about the resources to verify in order for p to join G, the verification phase
begins. During such phase, resources’ availability and their actual attributes are
checked, in order to verify whether the requirements expressed in the exchange
policies are met. We discuss the resource verification protocols in great details in
the next subsection.

4.4.2 Event-Based Formulae Verification

In this section we illustrate the protocols for strong and weak formulæ verification.
The main difference between strong and weak verification is for how long the va-
lidity of the credential or the availability of the resource is checked. As mentioned,
a weak formula must be verified only at the end of the policy exchange phase,
while a strong one must be verified true for all the temporal validity of peer p’s
membership.

The availability of the resources to which the formulae apply is determined ac-
cording to the type of the resources. Specifically, in case the resource is a credential,

4.4. THE NEGOTIATION-BASED JOIN PROCESS 34

once disclosed, its authenticity has to be verified. In case of a resource, its availabil-
ity and main properties are checked, based upon the information contained in the
resource advertisement. Although not implemented by us, an approach similar to
[34] for resource verification can be actually employed.

Since the satisfiability of strong formulae must hold for peers’ lifecycle in a peer
group, there is a need for a mechanism that tracks the changes in peer group status.
Events of interest relate to peers leaving the group or to peers that no longer make
available the promised resources to the other members. To detect variations in
the status of a peer group, we propose an event-based collaborative verification
process.

Before describing such event-based collaborative process, we illustrate the main
steps of the formulae verification process. The outcome of the policy evaluation
consists of two lists of formulae, obtained from the peers’ exchanged policies:
WeakΦ List, the list of weak formulae and StrongΦ List, the list of strong formu-
lae. Each formula in WeakΦ List (StrongΦ List) is mapped onto actual resources
that p or that the members of peer group G need to prove to possess. Specifically,
for a formula of the form Φ(t1, ..., tn), the availability of the n resources R1, . . . , Rn
corresponding to terms t1 . . . , tn needs to be verified.

The pseudo code for the verification protocol is described in Algorithm 3. Al-
gorithm 3 takes as input the identifier of the two parties (Party and Counterpart),
which correspond to the incoming peer member and the peer that ran the negotia-
tion on behalf of the group, along with the associated list of weak/strong assured
formulae to verify, and Form Seq the sequence of formulae they have agreed upon.

If the formula Φ(t1, . . . , tn)i must be satisfied by Party, the local party running
the algorithm calls RetrieveInfo that returns the information to be provided to
Counterpart in order to prove that Φ(t1, . . . , tn)i is satisfied by Party. The selection
of the information to be sent to Counterpart varies according to the type of the for-
mula Φ(t1, . . . , tn)i and to the type of the resources R1,...,Rn. RetrieveInfo returns
the set Cred Set of credentials and the set Adv Set of advertisement to prove the
satisfiability of formula Φ(t1, . . . , tn)i. By contrast, if Φ(t1, . . . , tu)i must be satisfied
by the Counterpart, for each credential in Cred Set, Party verifies the validity of the
credential and for each Advi in Adv Set, Party tries to access resource Ri.

If Φ(t1, . . . , tn)i, is a strong assured formula, Party invokes the method ToEnsure

to notify the GM that Φ is to be ensured as long as Party remains in the group. Once
notified, GM tracks the changes of the availability of each resource Ri present in Φ
during the temporal validity of Party membership.

Example 4.4.2. Let us consider the ShareForFree file sharing networking and the follow-
ing disclosure policies of Example 4.4.1 exchanged during the joining process between peer
p and the membership service of FreeMusic group denoted as FreeMusic.MS:

• ∀FreeMusic.x(@FreeMusic.x(Mp3(Kind = Classic)← @p((Mp3(kind = jazz)w

• @p((Mp3(kind = jazz) ← ∃>100FreeMusic.x(@FreeMusic.x(Mp3(Singer =
Madonna ∨ Singer = Michael Bublé∨ FrankSinatra ∧ size > 1GB)s)

4.4. THE NEGOTIATION-BASED JOIN PROCESS 35

The first disclosure policy is sent by FreeMusic.MS to p. During the formulae verification
phase p has to send to FreeMusic.MS the advertisement of a jazz Mp3 file to prove that
it satisfies the formula @p((Mp3(kind = jazz)w. Since the formula is a weak formula,
FreeMusic.MS has only to verify the validity of the advertisement and try to download the
Mp3 file. If the download of the file starts, the formula is verified by p.

The second policy, instead, is sent by p to FreeMusic.MS which has to check that the
strong formula ∃>100FreeMusic.x(@FreeMusic.x(Mp3(Singer = Madonna∨Singer =
Michael Bublé∨ FrankSinatra ∧ size > 1GB)s) is verified by group FreeMusic.
FreeMusic.MS, in order to prove that the formula is satisfied, retrieves through a look up
process the advertisements of Mp3 files of Michael Bublé, Madonna and Frank Sinatra of
all the peers in the group. Then, it verifies that at least one hundred of them provide at
least 1GB of Mp3 files of the selected singers. If this is the case, the FreeMusic.MS sends
such advertisements to p, that tries to access the files. Since the formula is a strong for-
mula, the FreeMusic.MS also notify the GM that the availability of the Mp3 files needs
to be monitored. Thus, the GM will know about the violation of the requested formula and
will promptly notify p, which will then leave the group and revoking the availability its
resources.

To be able to continuously verify the validity of strong formulae, the GM collab-
orates with the peers in the group to be updated on the peer group changes. Group
members notify the GM to which they are associated about events occur that may
affect the validity of strong formulae. The events handled by the GMs and the peers
are the following:

Peer not found if a peer finds that another one is no longer reachable it commu-
nicates such condition to the associated GM. If the GM determines that such
condition is permanent, it verifies the resources provided by such peer appear
in any formulae of its strong formulae’s list. Permanent in this context means
the peer is unreachable for a significant time interval, where the length is de-
fined during the peer group creation. If a given formula Φ is no longer valid,
due to the missing peer, the GM notifies the peers who have negotiated their
membership using Φ. Such peers are now free to leave the group or adjust to
the new configuration.

Resource not found if a peer receives an error when trying to access a resource
(e.g. an access failure message upon sending a legitimate request), it notifies
the GM which will check if the resource was only temporary unavailable or
if the peer is down; in the latter case, the dead peer will be canceled from
the group. If the peer is only temporary unavailable, or it is up but not pro-
viding resources, its membership credential is revoked. This prevents from
free-riders intentionally failing to provide resources they committed for.

New resource a peer willing to provide a new resource, notifies the associate GM
and provides the identifier of the resource and the resource disclosure policy,
making such resource available for subsequent negotiations. This case is rel-
evant for the validity of universal disclosure policies (i.e., formulae with a ∀

4.5. THE NEGOTIATION-BASED MEMBERSHIP SERVICE ARCHITECTURE 36

operator), which require certain conditions to hold true for all the resources
in the group.

Resource revoked a peer which is no longer providing a resource notifies the as-
sociated GM. The GM handles this event as the resource not found event.

Note that the GM, is a peer itself, besides handling the events triggered by other
peers, it can directly trigger an event-message in case one of the events described
above occur.

We now briefly discuss the issue of the robustness of our system. By robust-
ness, we mean that it is not possible for a peer willing to join the group or a peer
already in the group to incorrectly – possibly in a malicious way – report about
the availability of a given resource, involved in the join negotiation. In order to
argue in favor of the robustness of our system, we note that two kinds of controls
are enforced upon the resources involved in a join negotiation. The former is weak
verification, detailed above in this Section. According to it, if an outer peer (willing
to join the group) declares a resource in the negotiation process, the effective avail-
ability of such resource will be checked by the GM upon entrance of the peer in the
group, in case of successful negotiation.

The latter is strong verification. In this case, the resource availability is period-
ically checked. Thus, even in the case that the resource becomes unavailable once
the peer has joined the group, such event is eventually detected by the GM.

4.5 The Negotiation-based Membership Service Architecture

In order to support the join-based protocol discussed in the paper, we have ex-
tended JXTA along several dimensions. First, we have deployed the JXTA nego-
tiation service to implement a new version of Membership Service, referred to as
TrustMembership Service. Second, we have introduced a Group Membership Infras-
tructure, which includes group members and group agents, to monitor and control
in a collaborative manner the state of the peer group.

The JXTA membership service assigns an identity to a peer within a peer group
by authenticating the peer through a negotiation process. The advertisement of
peer groups that adopt trust negotiations to perform the join process, must contain
the TrustMembership Service advertisement. The classes implementing the new
Membership Service are described in Appendix B.10.

The JXTA negotiation service has been implemented in Java. The policies driv-
ing the group-based negotiation process, as well as credentials and the resource
advertisements used to prove that policies can be satisfied are stored in a MySQL
database. Since the verification processes described in Section 4.4.2 requires the
instantiation of the Discovery Service whenever the local advertisements are to be
retrieved – and the instantiation of the Discovery Service is memory and time ex-
pensive – we store all the advertisements that are in a peer’ local cache into the
previously mentioned MySQL database. This is done by the GM that receives from

4.5. THE NEGOTIATION-BASED MEMBERSHIP SERVICE ARCHITECTURE 37

the peers the advertisements in their local caches. This simplifies the discovery
process, which is done by means of SQL queries. Peers’ local policies and resources
descriptions are stored in peers’ local databases.

The system supports four operations:

1. StartNegotiation,

2. PolicyEvaluation,

3. WeakVerification and

4. StrongVerification.

StartNegotiation allows one to set the negotiation parameters such as the
counterpart’s peer identifier and to initiate the negotiation process with this peer.
Strategies to conduct the negotiation can be selected, according to the peer’s pre-
ferred mode [13]. PolicyEvaluation has a two-fold functionality. By invoking
PolicyEvaluation a peer can send the policies that it wants to be satisfied by the
counterpart and, in turn, it can verify whether it is able to satisfy the received poli-
cies.

As mentioned in Section 4.4.1, we keep trace of policies exchanged between the
negotiators by using a tree structure. WeakVerification allows a peer to select
the weak formulae it has to satisfy. It sends also the resource advertisements/cre-
dentials required by the counterpart. The resource advertisements and credentials
to be sent to the counterpart are retrieved from the peer’s local database. Weak

Verification also enables verification of the counterpart’s weak formulae, on the
basis of the received resource advertisements and credentials.

Finally, StrongVerification provides the same functions of WeakVerification
but it enable also the continuous monitoring of the resources required for verifying
the strong formula.

The second important addition to JXTA, is the support of the Group Management
Infrastructure, composed by a set of Group Managers and of Group Agents. The GM is
a peer in charge of controlling the state of the group and of the resources provided
and requested within strong formulae.

The Group Agents (GAs, for short) are agents residing in each peer and commu-
nicating with the associated GM by means of the event-based messages described
below. The Group Agent component is automatically initialized for a peer using
the TrustMembershipService, upon a successful join operation.

As mentioned, the resources’ availability is monitored through various kinds
of events that model the possible behaviors of the peers. Such events trigger the
GAs to send corresponding messages to the GM, which performs suitable actions,
as detailed below.

In case a peer identifies a missing peer or resource, it calls a method of its GA ob-
ject. The GA sends a XML document to the assigned GM via CommunicationLayer

which may be a TCP/IP Socket, a SSL Socket or a JXTA Socket. The XML docu-
ment specifies the type of event generated and the relative information. The GM

4.6. EXPERIMENTAL RESULTS 38

processes the events depending on the type. On a Resource not found event, as de-
scribed before, the GM searches in the GM database whether the resource missing
on peer p was requested by some other peers as prerequisite to the membership
of p itself. In the affirmative case, the GM revokes the membership of p. Beside
that, the GM checks whether the resource revoked r is required by some another
peer p′ within a quantified formula. If this is the case, the GM notifies p′ about the
violation of the formula and waits for the decision of p′ about remaining or leaving
the group. If the message is of the type Resource Revoked, the same procedure is
executed for the peer whose GA is sending the event message. Upon receiving a
message representing a Peer not found event, the GM searches in the GM database
the resources provided by the peer p. For every such resource, the procedure for
Resource not Found event is executed.

4.6 Experimental results

We carried out a set of experiments to evaluate the performance of our approach.
In particular, we have evaluated the execution time required (1) to carry on a nego-
tiation, (2) to detect free riders peers during the join, and (3) to detect changes in a
peer group using our event-based mechanism.

Figure 4.4: Execution time of a group-based negotiation by number of credentials
involved

We conducted the first set of experiments, that is, the performance evaluation,
by measuring the negotiation execution time with respect to two parameters: the
negotiation length (that is, the number of credentials exchanged during a negotia-
tion) and the negotiation tree height (which represents the number of negotiation

4.6. EXPERIMENTAL RESULTS 39

Figure 4.5: Execution time of a group-based negotiation, varying the number of
rounds and the branching of the tree (1,2,3)

rounds).The results are shown in Figures 4.4 and Figure 4.5, respectively.
In both cases, we tested the worst case scenarios, in which the exchanged cre-

dentials create a complete tree, with fixed branching factors. A negotiation follow-
ing this pattern results in a large number of credentials/policies to be evaluated.

Figure 4.4 shows the negotiation execution time while varying the number of
credentials exchanged. Intuitively, the execution time grows with the number of
credentials being exchanged. For realistic negotiations, which involve up to 40 cre-
dentials, the protocol adds a very low (around 4 sec.) overhead. Figure 4.5 reports
the negotiation execution time while varying the number of negotiation rounds.
To evaluate the impact on the number of negotiation rounds, we consider three test
cases; we vary the number of credentials requested by each disclosure policy from 1
to 3. As in the previous case, the negotiation time significantly increases when sev-
eral hundreds of credentials are involved in the negotiation, but it is still efficient
when the number of credentials involved is reasonable. In the case of negotiation
involving disclosure policies asking 3 credentials/resources each, the negotiation
time begins to be significant with a negotiation of six rounds, i.e., when there are
127 credentials involved.

We have also compared our approach with the approach of Ramakrishna et al.
[86], since it is the approach closest to ours. Our approach significantly outperforms
the performance of Ramakrishna’s protocols. For a negotiation of four rounds, the
approach from Ramakrishna and colleagues takes about 8 seconds while our ap-
proach takes 1.734 seconds. We also notice that, in Ramakrishna’s approach, most
of the time is required to perform I/O operations. Figure 4.6 shows in detail the ex-
ecution time of the negotiation according to the policy settings of [86], comparing
their results with ours.

The second set of experiments, e.g. detecting possible free riders, describes a
key feature characterizing our proposal. Free riders can be detected both during

4.6. EXPERIMENTAL RESULTS 40

Negotiation tree height

Figure 4.6: Comparison of performances of our negotiation approach with Ramakr-
ishna’s [86] one.

and after the negotiation process.
During the negotiation, a peer may detect malicious behavior while verifying

some resources for an incoming member. Malicious behavior can also be detected
after the negotiation, when multiple events related to a misbehaving or an unavail-
able peer are notified to a GM. The lack of previously available resources may im-
pact the validity of strong formulae and, consequently, cause some peers to leave,
altering the peer group configuration. Notice that for this experiment, resources
availability is checked by comparing resources advertisements with requests.

To perform this test case, we consider the scenario of a peer group G and a peer
p who wants to join G. We assume that p is asked to provide a resource r to join the
group. Peers within G have a probabilistic behavior; that is, they try to randomly
access with probability (or interaction frequency) α a resource specified in one of its
strong formulae. The interval between each probabilistic access is defined by the
Time parameter.

To evaluate the detection of free riders, we consider the case in which a free rider
is detected during the policy evaluation phase and the case in which it is detected
during the formulae verification phase. Then, we evaluate the promptness of event-
based verification process with respect to three parameters: the cardinality of the
peer group, the frequency time and the probability α.

To evaluate the impact of the group cardinality, we measure the time to detect
an event “Resource Not Found” by keeping constant α while varying the cardinal-
ity of the group G from 10 to 200. This test also evaluates the scalability of our
approach with respect to the number of peers. On the contrary, to evaluate the
impact of the parameter α, we measure the time to detect “Resource Not Found”
event keeping constant the cardinality of the group G while varying the value of

4.6. EXPERIMENTAL RESULTS 41

Figure 4.7: Execution time for detecting free riders

α ∈ {0.025, 0.05, 0.075, 0.1}. The assumptions about frequency of interaction and
cardinality of the group apply well in case of peer groups similar to the one de-
scribed in Section 4.2.

As reported in Figure 4.7, free riders are always detected within a reasonable
time period. In fact, in the worst case, that is a free rider is detected during the
formulae verification phase, the detection time is around 2.5 seconds (the central
column of Figure 4.7). Otherwise, as shown by the right column of Figure 4.7,
during the policy evaluation phase a free rider is detected in around 1.5 seconds.
In both cases the required time is less then the time required for a successful join.

Figure 4.8 shows the time required by the group to detect the event “Resource
Not Found” by increasing the cardinality of the peer group G. For this case, we
modeled the behavior of the peers using the frequency of the requests of a resource
by means of different time intervals (denoted as time) and probability values (de-
noted as α). The time to detect a change in resource availability decreases for in-
creasing values in the peer group cardinality regardless the value of probability α.
In fact, in this case the number of interactions between the peers is very high and
thus the time to detect that a resource is no longer available is shorter. However, the
graph shows that also for peer groups with low cardinality (20-30) but with a high
values of the interaction probability (0.1 and 0.025) the detection time dramatically
decreases.

Figure 4.9 shows how α, denoting the peers’ interaction frequency, influences
the detection of the event “Resource Not Found” in a group. For this experiment,
we evaluate different values of α for groups of different cardinality, ranging from
groups of 10 peers to groups of 200 peers.

Interestingly, the interaction frequency of the peers α has a higher impact on the
detection times than the cardinality of the group. In fact, for a value of α equal to
0.075 the detection time decreases regardless the group cardinality being consid-
ered. However, we notice that a peer group with a low interaction frequency has
still a good performance as long as it as more than 50 operating members.

4.6. EXPERIMENTAL RESULTS 42

Figure 4.8: Time interval required to identify changes in the state of the group

From both set of tests, we notice that there is a minimum time required to detect
the event, corresponding to 2000 ms. This time is the minimum time for a peer in
the group to complete two tasks:

1. detect the event (notice that this takes some time as the peer will wait for some
milliseconds for a reply before registering the lack of response as a “Resource
Not Found” event) and

2. communicate the detected event to the GM.

From the experimental results obtained, we can conclude that the effectiveness
of our approach depends heavily on the interactions between the peers. The higher
is the frequency of interactions the shorter is the time to detect changes happening
in peer groups. Notice that when a missing resource is detected by any of the peers,
it is notified to a GM, which consequently updates the peer group data and informs
the peers who relied on the resource for any of their strong formulae. Therefore,
our approach proves that even if we employ peers with special roles, the detection
of free riders is truly distributed, and relies on the group nature. As shown, this is
an efficient and effective approach to protect peer groups from misbehaving peers,
and is thus particularly suitable for P2P networks.

4.6. EXPERIMENTAL RESULTS 43

!"#$%$&'&()*#+*,--"*&.(-"%/(&#.

0
"#1,*/%"2&.%'&()

Figure 4.9: Impact of the peer group interaction in detecting changes of state in
groups with constant cardinality

4.6. EXPERIMENTAL RESULTS 44

Input: Party and counterpart identifier; Φ ListParty and Φ ListCounterpart
Form Seq the sequence of agreed formulae

Output: Verification completed
begin

for Φ(t1, ..., tn)i ∈ Form Seq do
if Φ(t1, ..., tn)i ∈ Φ ListParty then
{Cred Set, Adv Set}= RetrieveInfo(Φ(t1, ..., tn)i);
if Cred Set == null ∨ Adv Set == null then

Join f ailed = true;
break;

else
Send(Adv Set,Cred Set, Counterpart);

else
Receive(Adv Set,Cred Set);
for Credi ∈ Cred Set do

val = VerifyValidity(Credi);
if val == false then

Join f ailed = true;
Notify(Join f ailed,Counterpart);
break;

for Advi ∈ Adv Set do
result = AccessResource(Advi);
if Φ(t1, ..., tn)i is a strong formula then

ToEnsure(Advi.Ri, Counterpart);

if result == false then
Join f ailed = true;
Notify(Join f ailed,Counterpart);
break;

Algorithm 3: Formulae Verification

Chapter 5

Mobile multi-session Trust
Negotiations

5.1 Introduction

As shown in Chapter 2, trust negotiation researches has mostly focused on the as-
surance of privacy and confidentiality with the goal of guaranteeing that no actual
information about a negotiator’s properties is disclosed to the counter-part [91, 93,
12].

Typically, these approaches rely on strong cryptographic assumptions, and are
seldom applicable in many real-world scenarios, where properties, stated in digital
credentials, actually need to be disclosed in clear and not only proved to be true.
For example, just proving the possession of a valid credit card is not sufficient to
complete a transaction, and actual account information is to be supplied in order
to enable charging the amount spent. Additionally, protocols that rely on oblivious
credentials or anonymous credentials do not allow the negotiating peers to follow
the progress of the negotiation, since information regarding policies satisfaction is
hidden for confidentiality purposes [64, 50].

In this chapter we introduce a novel approach to trust negotiations that offers
a general solution to those issues by developing major extensions to previous ap-
proaches by us and others [13, 127, 105].

The core of our approach is a trust negotiation protocol supported by the Trust-
X system, described in Chapter 3 and Appendix B.

The main innovative feature of the proposed framework, referred to as multi-
session trust negotiation, is to support crash recovery and the possibility of com-
pleting the negotiation according to multiple sessions. To support the execution of
multi-session negotiations, Trust-X extends the conventional steps characterizing a
trust negotiation protocols. Savepoints are employed to save the negotiation state,
and validity checks concerning events which may happen during the negotiation
suspension and could possibly invalidate the negotiation steps executed before the
suspension.

5.2. CREDENTIALS’ SIMILARITY. 46

Examples of those events include credential revocation or expiration, or modi-
fication of disclosure policies by one of the peers.

To achieve such objective the presented framework exploits a highly config-
urable savepoint technique. Savepoints are copies of the current state of the nego-
tiation, saved on stable storage. The frequency of the savepoints can be defined by
the peers at the beginning of the negotiation.

Additionally, the possibility to safely suspend and resume an ongoing trust ne-
gotiation allow the peers to migrate such negotiation among different authorized
peers, which means a peers is able to suspend an ongoing negotiation and resume
it with a peer different from the one with which the negotiation started. We refer to
such feature as mobile trust negotiation.

To support the secure transfer of negotiations, we defined an authentication
protocol, based on a secret-splitting scheme combined with a zero-knowledge proof
protocol to verify the identity of the peer recovering the negotiation and to assure
the validity of the exchanged data (for further details, refer to Appendix A.2 and
Appendix A.3).

5.2 Credentials’ similarity.

Before presenting our new protocols, we begin introducing some basic concepts.
Credential types syntactically structure the information conveyed by the corre-

sponding credentials, but they do not specify anything about the semantics of the
attributes. Hence, it is impossible to automatically determine whether attributes
belonging to different credentials are semantically related (e.g., they express the
same information, one is the specialization of the other, and so on). This infor-
mation is crucial during a multi-session negotiation, because it allows one to se-
lect among possible different similar credential attributes the one to be disclosed,
thus enhancing flexibility and privacy. To deal with this issue, we borrow some
ideas from work on ontologies. Ontologies represent an essential tool for sharing
among distributed users and applications by providing a common understanding
of a domain of interest. An ontology consists of a set of concepts together with re-
lationships defined among these concepts. In this work, we rely on an OWL [119]
specification. OWL is a standard language for ontology specification. Credentials
similarity relies on mapping among concepts, based on the use of ontologies with
attribute names or categorical values.

In what follows we assume the credentials involved in the trust negotiation pro-
cess to be primarily categorizable on their semantics. Examples of credentials’ cat-
egories are “ID”, “Work life”, “Financial”. Such categories are used to classify the
credentials, so to simplify the identification of the credentials eligible substitutes
of an expired or revoked one. Beside a set of predefined categories, we support
a “Misc” category that contains the credentials that cannot be be associated with
existing categories.

Each category is associated with a predefined OWL model defining the core

5.2. CREDENTIALS’ SIMILARITY. 47

attributes a credential is supposed to contain in order to be classified with the cat-
egory. The OWL model is obtained by the credentials themselves during a pre-
processing phase. When Trust-X is initialized, and every time a new credential is
inserted in the X -Profile, the uncategorized credentials are processed.

5.2.1 OWL model extraction

Preprocessing the credentials contained in the X -Profile consists of extracting an
OWL model from the XML document encoding the credential. This extraction is
automatically performed by sequentially applying a set of XSLT schema [18, 121]
to the XML representing the credential. Such transformation is feasible since Trust-
X credentials are strongly data oriented XML documents. Data oriented XML docu-
ments use XML as interchange format, to facilitate transmission, and their structure
is decided upon the content, rather than their readability, as for the document-
oriented XML documents. Such characteristic greatly improves the accuracy of the
obtained OWL model, preserving the content of the credential with respect to the
representation of the concepts corresponding to attributes, and the relationships
among them.

The process for extracting the OWL model consists of two steps. In the first step,
an XSLT is applied transformation to extract a XSD schema [120] from the XML
document encoding the credential. In the second step, the XSD is transformed into
a OWL model by applying another XSLT transformation.

We remark that other tools and approaches for extracting OWL models from a
set of structured documents exist in literature, such as GRDDL [122, 123].

5.2.2 Credential categorization

After the extraction of the credential’s OWL model from the XML document, the
model is processed by a matching algorithm which evaluates the credential’s OWL
model against different metrics. Such metrics have been chosen to both identify
syntactic and semantic similarities among the credentials’ OWL model and the cat-
egories’ ones. The final result of our matching algorithm is the normalized and
weighted composition of the results of the comparison of the two models using
different algorithms that rely on various metrics.

Similarity metrics

We used different metrics in order to identify syntactic and semantic similarities
among credentials. These metrics are implemented by algorithms provided by the
Falcon AO [54] system and have been used in a number of different domains [76].
In our system, we use the following algorithms:

V-DOC [85]. V-DOC takes a linguistic approach to ontology matching. Basically,
as a collection of weighted words, the virtual document of a domain entity

5.2. CREDENTIALS’ SIMILARITY. 48

(e.g., a class or a property) in an ontology contains not only the local descrip-
tions, but also the neighboring information to reflect the intended meaning of
the entity. Document similarity can be calculated via traditional vector space
techniques, and further be used in certain similarity-based approaches to on-
tology matching.

GMO [52]. GMO is an interactive structural matcher that uses RDF bipartite
graphs to represent ontologies and computes structural similarities between
domain entities and between statements (triples) in ontologies by recursively
propagating similarities in the bipartite graphs. GMO takes a set of external
alignments as input, which are typically found previously by other matchers,
and incrementally generates extra alignments as output. The performance of
GMO improves as the precision of external alignments increases.

The matching algorithm computes the matching between two OWL models re-
ceived (oi and ωj, respectively) in input using the described algorithms. The re-
turned similarity measure, computed according to expression (5.1) below, is the re-
sult of a weighted sum of the similarity measures computed by algorithms V-DOC
and GMO.

µ(oi, ωj) = wV−DOCV − DOC(oi, ωj) + wGMOGMO(oi, ωj) (5.1)

where ωj is the OWL model representing the j category. Therefore ωj ∈ Ω, with
i < j < l where l is the number of categories in which we want to classify the
credentials of the X -Profile. Each wt, with t ∈ {V-DOC, GMO} is a weight asso-
ciated to the corresponding algorithm. Such weights are used, depending on the
context, to emphasize the importance of the metrics they apply to and normalize
the different results of the metrics on a common scale.

5.2.3 Application of the matching algorithm

Once the matching algorithm is applied to a credential c, c is associated with the
most similar category, referred to as primary category, and with a set of other cate-
gories, referred to as the set of secondary categories. Given a credential c, its primary
category is denoted as Pri(c), while the set of secondary categories as Sec(c). The
secondary categories are the categories that with respect to c have a similarity value
lower than the similarity value of the primary category and higher than a thresh-
old value β. To reduce the number of matching categories, we introduce a threshold
value α, with α > β. The thresholds α and β are defined in the system but could be
refined by the end-user to better suit the categories and the credentials contained
in its X -Profile.

We formally define primary and secondary categories in what follows.

Definition 5.2.1 (Primary category). Given a credential c, a set of categories Ω =
{ω1, . . . , ωk} and a matching algorithm µ, we define the primary category for c, denoted
by Pri(c), as ωi ∈ Ω where i is max(µ(ωi, c) > α).

5.2. CREDENTIALS’ SIMILARITY. 49

Credential Primary Secondary
Passport Personal Information Working Life
IdentityCard Personal Information Working Life

Financial
Work ID Working Life Personal Information
CreditCard Financial Working Life

Personal Information
BankAccount Financial Personal Information

Table 5.1: Example of credentials’ categories

Definition 5.2.2 (Secondary category). Given a credential c, a set of categories Ω =
{ω1, . . . , ωk} and a matching algorithm µ, we define the set of the secondary categories
of c, denoted by Sec(c), as {ω1, ω2, . . . , ωs} where µ(ωi, c) > β.

Note that some credentials may not meet the requirements of any category. In
such case, the credential c is associated with a special category called Misc.

Example 5.2.1. Consider the following categories:

1. Personal Information: the model of this category has attributes name, surname,
address, date of birth, and SSN;

2. Work Life: the model of this category has attributes name, surname, and employee

number;

3. Financial: the model of this category has attributes name, surname, bank name,
bank address, and bank account.

A credential representing the passport of a user, called Passport and with attributes
name, surname, address, date of birth, has Personal Information as primary cate-
gory and the other two categories as secondary ones.

Given a credential c we define Sc, the set of similar credentials of c, based on the
categories it belongs to. More formally:

Definition 5.2.3 (Similar credentials). Let c be a credential and Pri(c) be its primary
category as by Definition 5.2.1, and Sec(c) be the set of its secondary categories, as by
Definition 5.2.2. The set of similar credentials Sc for c is defined as:

Sc = {ci|Pri(ci) = Pri(c) ∨ Pri(ci) ∈ Sec(c) ∨ ci ∈ Misc}.

Example 5.2.2. Consider again the categories defined in Example 5.2.1. Let the following
credentials be classified according to Table 5.1.

According to Definition 5.2.3, the credentials similar to the credential Passport are
SPassport = {IdentityCard, Work ID}. The credentials CreditCard and BankAccount
are not similar because they are classified in categories different from the ones of Passport.

5.3. NEGOTIATION TREE SWITCHING 50

5.2.4 Credential substitution

Based on the notion of credential similarity, we are now able to identify a substitute
for a credential c if c has been revoked or has expired.

Definition 5.2.4 (Substitute credential). Given a credential c and a policy pol = Ci ←
φ(t1, . . . , tn), the substitute for c with respect to p is defined as the credential, denoted by
spol

c , such that:

1. spol
c ∈ Sc and

2. if φ(c, c1, . . . , cn) holds true, then φ(spol
c , c1, . . . , cn) holds true.

Example 5.2.3. Let φ(Passport, DrivingLicence) ≡ Passport(Name = “John′′, Surname =
“Doe′′)∧DrivingLicence(Name = “John′′, Surname = “Doe′′, ExpiringYear > 2010).
If the credential Passport is expired, we search within the primary category it belongs to (let
it be “PersonalInformation”) a substitute which will be able to satisfy the above disclosure
policy. For example, assume that the credential IdentityCard contains similar information.
According to Definition 5.2.4, we substitute Passport(Name = “John′′, Surname =
“Doe′′) with IdentityCard(Name = “John′′, Surname = “Doe′′) obtaining:

φ(Passport, DrivingLicence) ≡ IdentityCard(Name = “John′′, Surname = “Doe′′)∧
DrivinLicence(Name = “John′′, Surname = “Doe′′, ExpiringYear > 2010)

Example 5.2.4. Consider the resource condition t = IdCard(Yearo f Birth = 1980). Cre-
dential C1 =IdCard(Pennsylvania, Mary Mork, 322 State Road, Altoona, 1/11/1980) satis-
fies t. An equivalent credential is IdCard(Indiana, Mary Mork, 1980). In case of a resource
condition of the form t2 = X(Yearo f Birth = 1980) a credential with the following struc-
ture DriverLicense(Issuer, Name, Address, YearofBirth, ExpirationDate) is equivalent to
C1 provided that YearofBirth be equal to 1980.

5.3 Negotiation tree switching

In this section we provide the core contribution of our approach to multi-session.
We begin with presenting a high-level discussion of the approach, followed by a
detailed presentation of the new Trust-X algorithms.

5.3.1 Overview of the approach

In order to support long lasting negotiations, we introduce two major features to
trust negotiation protocols. First, we support multi-session negotiations, that is we
allow negotiations to be conducted within multiple separate sessions. We depart
from the assumption of atomic trust negotiations in order to make the negotiation
also suitable for peers with heterogenous capabilities. In the multi-session proto-
col, we do not require both parties to maintain an up to date copy of the negotiation

5.3. NEGOTIATION TREE SWITCHING 51

state at the time of suspension. Relaxing such assumption does not imply going
back to a client-server architecture. Rather, parties are still peers, and therefore
able to control the negotiation process; however the task of storing the negotiation
data at suspension time can be assigned to one of the two parties. This approach
makes trust negotiation protocols suitable for a large variety of environments, in
that it may often be the case that one of the negotiating peers is connected via a
device with limited connection power or small memory. A second important ex-
tension is to allow negotiations to be completed by multiple peers. Essentially, we
now allow the negotiations between two peers, say P1 and P2, to be suspended and
then resumed by different peers. For example, P2 can be replaced by P3, provided
that the replaced –or delegated – peer (e.g, P3) has the ability to complete the pre-
viously started negotiation. We do not expect peers to be replica one of another.
Hence, some interesting security challenges arise, related to the trustworthiness of
the peers and the compatibility with the credentials and policies of their predeces-
sors. To implement these extensions, we introduce a protocol allowing peers to:

• suspend and resume negotiations with a peer different from the original ne-
gotiator;

• share with a different peer in a privacy-preserving way the negotiation tree
so far constructed.

A brief description of the main steps of the multi-session negotiation (MS, for
short) protocol is reported in what follows, and summarized in Figure 5.1.

We begin with focusing on the case of a negotiation that was suspended dur-
ing the policy evaluation phase. We assume, without loss of generality, that P2 is
keeping track of the advance of the negotiation (since, e.g., P1 is a mobile, low-end
device).

1. During the execution of the policy exchange phase, P1 and P2 exchange cre-
dentials as soon as their corresponding nodes in NT reach the DELIV state.
Since it may be not the case that all DELIV nodes are contained in a valid
view (and hence they should not be actually exchanged), the corresponding
credentials are sent in an encrypted form, thus preventing information dis-
closure (see Section 5.3.2).

2. P1 and P2 suspend the negotiation. P2 processes the NT tree in order to hand
it to another peer, which will resume the negotiation, by pruning the delivery
nodes from NT.

3. Subsequently, for every term in the pruned negotiation tree, P2 computes the
corresponding commitments (see Section 5.3.2).

4. P2 linearizes the pruned tree, thus obtaining another tree S. P2 applies the
secret sharing scheme to S, obtaining n, n ≥ 3, shares; let S1, S2, . . . , Sn be
such shares. P2 sends S1 to P1, keeps S2 for itself, and distributes S3, ..., Sn to a

5.3. NEGOTIATION TREE SWITCHING 52

subset P ′ of peers in P , where P corresponds to the set of peers known to P1
as potential delegates (P and P ′ may coincide). In addition to S2, P2 sends the
keys for deciphering the encrypted versions of the credentials corresponding
to DELIV nodes (already exchanged with P1).

5. Suppose that P1 has contacted and authenticated peer P3 ∈ P ′. Upon receiv-
ing S3 from P1, P3 reconstructs the node-by-node committed negotiation tree
(see Section 5.3.3). Now P3 has to build its version of the negotiation tree
starting from the committed tree and from its available credentials. For ev-
ery node in the tree, P3 (by using a non-interactive zero-knowledge proof of
knowledge) checks whether its credentials match the committed terms (see
Section 5.3.4).

6. Having built its version NT′open of the negotiation tree, P3 sends it to P1 and
they can restart the previously suspended negotiation. In the case of success-
ful termination and in case that the valid view contains credentials sent in the
first phase of the negotiation, P3 sends the corresponding keys to P1.

Notice that the case of interruptions is essentially an extension of the above de-
scribed protocol. Unlike suspensions that are voluntarily decided by the negotiat-
ing peers, interruptions are unforeseen by the peers and are due to external events,
like network and system crashes. To support recovery from interruptions, the steps
(2) (3) and (4) above are executed periodically, asynchronously by either peer, with
the only difference that at step (2) the negotiation is not suspended. Each peer
saves a version of the tree and generates a secret for the sharing (step 3). The secret
shares are then distributed to P ′, that will not use them unless necessary. If neither
an interruption nor a suspension occur for a few negotiation rounds, the peers will
periodically update their committed versions of the tree (this can be done incre-
mentally for the new nodes to avoid unnecessary overhead) and create new secrets
shares. The receiving peers in P ′ will simply replace the old secrets with the new
ones. If an interruption occurs, one of the two peers, say P1 will simply stop send-
ing and receiving messages. When P1 recovers, the most recent shares sent by P1
will be used to reconstruct the intermediate state of the negotiation.

5.3.2 Negotiation, Suspension, and Nodes Commitment

As outlined in Step (1) above, peers P1 and P2 exchange credentials as soon as their
corresponding nodes in the negotiation tree NT enter the DELIV state. This ap-
proach is not conventional to trust negotiation strategies that usually postpone cre-
dentials disclosure after a successful path is found. The purpose of anticipating the
disclosure is twofold: first, it provides partial assurance to the negotiating parties
regarding their opponent’s commitment to negotiating; second, it reduces the cost
of the subsequent phases and removes the already processed nodes from the tree.

Notice that, in order to prevent information leakage, what is actually exchanged
is an encrypted version of the credentials, computed by P2 with a (previously agreed

5.3. NEGOTIATION TREE SWITCHING 53

Figure 5.1: The three macro phases of a long lasting negotiation: 1. Negotiation 2.
Suspension and preprocessing 3. Tree sharing upon resume.

upon) symmetric encryption scheme Enc (e.g. AES). Each credential is encrypted
with a different key; all these keys are unilaterally chosen by P2. Upon negotiation
suspension (Step (2) above), P2 prunes from the negotiation tree NT all the DELIV
nodes, obtaining the tree NTopen, which contains open nodes only.

Subsequently, at Step (3), peer P2 computes for each node in NTopen the cor-
responding commitments using the Damgård-Fujisaki commitment scheme (see
Appendix A.3).

Given a node in NTopen, suppose that the associated resource condition has the
form

cred[att1, pred1, val1, conn1, . . . connu, attu, predu, valu]

where conni ∈ {∨,∧}. Then, P2 computes1:

commit(cred)[commit(att1) pred1 commit(val1)
conn1 . . . connu−1commit(attu) predu commit(valu)].

We denote with commit(NTopen) the negotiation tree in which every open node has
been committed.

5.3.3 Tree Splitting and Sharing

If the negotiation is suspended during the policy evaluation phase, the tree is used
for checkpointing. An encrypted version of the tree is generated. Subsequently, P2
serializes it for improved efficiency. We denote the serialized version of the (pruned
and committed) negotiation tree as S = ser(commit(NTopen)). Once serialized, the

1We omit to explicitly indicate the random value r. It is implicit that it changes for every execution
of the commitment algorithm.

5.3. NEGOTIATION TREE SWITCHING 54

tree, being now encoded by a (large) string S, is used as input for the Shamir secret
sharing scheme: P2 generates n secret shares, denoted by S1, S2, and Sn from S.
P2 then sets k = 2 and distributes the share to P3, P4, . . . , Pn, all belonging to P
and being trusted by P2. P2 will, by default, keep one share for itself, and gives
S1 to P1. When P1 recovers and/or restarts, it can select among the peers owning
the other share the one to resume the negotiation with. Notice that the notion of
trust here is loosely used; the peers with whom P2 shares the secret are not peers
which can immediately access the negotiation status in all its details, but peers
who are trusted enough to adhere to the negotiation protocol and complete the
suspended process. P1 therefore will continue the negotiation with any peer among
P2, . . . , Pn ∈ P . Suppose that P3 is selected. Then, the partial secrets of P1 and P3
must be combined. Shares are then pooled by P3. The two shares provide two
distinct points (x; y) = (i; Si) making it possible to compute the coefficients of f (x)
by Lagrange interpolation. The secret is recovered by noting that f (0) = a0 = S.
For increased security, k can be set to three, so that the authentication of peer P3 is
‘witnessed’ by a third party.

5.3.4 Tree Recovery

After peer P3 has recovered the tree Commit(NTopen), it builds its version of the
negotiation tree starting from Commit(NTopen) and its own credentials. P3 builds
its tree by executing knowledge proofs on the commitments. For every committed
node in commit(NTopen) and for every credential cred′[att′ op val′], P3 performs the
following non-interactive zero knowledge proofs. Recall that a committed node
has the form

cc = commit(cred)[commit(att1)pred1commit(val1)
conn1 . . . connu−1commit(attu)preducommit(valu)]

We denote with cP3 the credential set owned by P3. Algorithm 4, reported in ap-
pendix, checks whether, for every committed term cc there is a credential in CP3

with matching credential and attributes names that contains values satisfying the
term predicates.

If every zero-knowledge proof succeeds, P3 has constructed its own negotiation
tree NT′open upon which the negotiation with P1 can be restarted.

As a final step (Step (6) in the above outline), P3 sends the novel negotiation
tree to P1 and they resume the negotiation. In the case in which the trust nego-
tiation succeeds and some encrypted credentials Enc(Credi, ki), . . . ,Enc(Credj, k j)
(exchanged during the negotiation between P1 and P2) belong to the valid view,
P3 sends the corresponding secret keys ki, . . . , k j to P1, which finally deciphers the
encrypted credentials and terminates the negotiation.

5.3. NEGOTIATION TREE SWITCHING 55

Data: commit(NTopen), CP3

Result: NT′open

NT′open = ∅;
for cc ∈ commit(NTopen) do

for c′ ∈ CP3 do
if PK{(m, r1) : c = gcredhr1 ∧ cred = cred′}=true then

for atti ∈ {att1, . . . , attu} do
if PK{(atti, ri) : c = gatti hri ∧ atti = att′i}=true then

if predi =≥ then
if PK{(vali, ri) : c = gvali hri ∧ 0 ≤ vali ≤ val′i}=true then

NT′open := NT′open ∪ cred′[att′i predival′i];

else if predi =≤ then
if PK{(vali, ri) : c = gvali hri ∧ 0 ≤ vali ≤ val′i}=false
then

NT′open := NT′open ∪ cred′[att′i predival′i];

Algorithm 4: Checking algorithm

5.3.5 Sharing the Trust Sequence

A suspension may occur during the verification of the set of credentials identified
as necessary and sufficient to complete the negotiation. This situation presents
some security challenges, because of the sensitive contents exchanged during the
credential evaluation phase. While in the case of policy evaluation phase, only un-
certified statements are exchanged, here the exchange often involve confidential
digitally signed documents. Releasing a credential to a third party for negotiation
may not be desirable, even if this third party is considered trustworthy. Addition-
ally, in order for the verification to be meaningful, both parties should be able to
verify the credentials against previously exchanged policies. Clearly, this is a not
trivial step, given that one of the two peers is, in case of resume, a different one, and
may thus have different credentials and policies. Our approach to address these is-
sues is based on carefully preprocessing the sequence generated by the valid view,
and on a modified verification protocol. The MS protocol for credentials’ exchange
is the following:

1. P1 and P2 agree to suspend, after a sequence of terms CSeq is determined and
partly exchanged2. P2 encrypts the local credentials corresponding to terms
in CSeq that have not been exchanged yet.

2. P2 sends to P1 a single session encryption key ks (upon agreement on a sym-

2Note that the approach is the same even if none of the credentials has been exchanged yet.

5.3. NEGOTIATION TREE SWITCHING 56

metric encryption scheme Enc) to open the encrypted credentials required by
the credential sequence CSeq

3. P2 generates an encrypted version of CSeq as follows: it leaves in clear the
terms of P1, while it replaces with encrypted credentials its own credentials.
Then, it applies the secret splitting protocol on the modified CSeq, obtaining
shares s1, . . . , sk.

4. P2 sends to the possible delegates (i.e, P3, . . . , Pk) the generated secret shares
s1, . . . , sk, and leaves.

5. Assume that P3 is selected. P1 and P3 can now reconstruct the sequence, and
exchange the remaining credentials.

6. During the exchange, P3 receives P1’s credentials Credi, . . . , Credk in order and
in clear. Based on the corresponding terms stored in the CSeq, P3 is able to
verify the validity of each credential and whether or not it satisfies the corre-
sponding term. P3 at its end sends sequentially P2’s encrypted credentials to
P1, which can verify them by using the key ks obtained by P2.

This protocol has a number of desirable features. First it allows P1 and P3 to
complete the negotiation without requiring that P2’s credentials be disclosed to P3.
Second, it protects from possible changes of the sequence either by P1 or P3. Because
the secret is split, P1 cannot decipher with ks P2’s credentials. Finally, it allows P3
to verify the credentials from P1 by using the terms in the sequence. For highly
confidential credentials, it is also possible to replace the exchange of the credentials
with their committed versions, so that only minimal information is disclosed.

An issue of the protocol is that it is not able to handle the case in which a creden-
tial within the sequence expires during the suspension and the subsequent resume
is operated by a different peer. There are two different – and mutually exclusive –
strategies to address this issue:

1. P2 includes within the modified and encrypted CSeq up to d substitute cre-
dentials for each credential Credi in CSeq. Substitute credentials are iden-
tified according to Definition 5.2.3. Each encrypted credential Enc(Credi, ks)
will thus be associated with a timestamp defining the time validity period of
credential Credi. After the recovery of the negotiation, the delegated peer P3
checks whether the credential being sent to P2 is still valid by verifying if the
timestamp has not expired. If this is not the case, P3 will select a substitute
from the list.

2. The resuming peer finds a valid substitute credential. This task is performed
by using the credential categories introduced in Section 5.2. The suspending
peer P1 adds to each encrypted credential C = Enc(Credi, ks) in the modified
CSeq the corresponding OWL model MC. By exploiting MC, P3 identifies
a substitute credential among its X -Profile following the steps described in

5.4. ILLUSTRATIVE EXAMPLE 57

Section 5.2. Obviously, such steps are performed if and only if the credential
Credi has expired.

The proposed strategies do not, however, address the problem of revoked cre-
dentials. P1 is the only peer able to discover such case. If a credential has been
revoked, P1 notifies P3, which will provide a valid substitute credential (using a
credential provided by P2 or using one of its own), if it exists.

5.4 Illustrative Example

In this section we illustrate the features of our approach by an example related to
we discuss a simple yet typical scenario where the unique features introduced by
our framework allow two negotiating peers to establish trust on the fly. We focus on
a distributed mobile environment involving temporary and one-time credentials.
In these domains, there is a strong need of secure and flexible approaches that allow
mobile devices to access services provided by distributed systems in a efficient and
reliable way. Mobile devices are becoming nowadays more and more common and
they need to be able to seamlessly migrate from different physical servers belonging
to the same service provider. Therefore we used such ideas to refine a framework
which could provide the required features in the most general way.

Suppose that user Alice (A, from now on) would like to buy from BestBuy (B,
from now on) a DRM-protected digital movie using a coupon allowing her to obtain
a discount on the movie price. We refer to Figure 5.2 for a graphical representation
of the example.

A connects to B from her PDA, and initiates a negotiation with one of the servers
operating for B and identified as in charge of the negotiation for B’s. Let this server
be denoted by B1, note that, in Figure 5.2 we use the double stroke to indicate the
active server of B.

In order to provide the required movie, B1 requests from A the coupon and the
amount of e-cash required to buy the movie. This policy is encoded by a rule of the
form: Movie(Discount=coupon,title=sometitle)← Coupon(Issuer=BestBuy,Object=Movie)
∧ Cash(amount=10).

Before sending her credentials, as required by B1’s policy, A requires some cre-
dentials from B1. In particular, in order to release her coupon, A

requires a credential attesting that B1 is a BestBuy server. Moreover, A requires
a ticket which allows her to examine B’s bank privacy policies. B1 replies to the first
policy by asking that A presents her BestBuyAccount in order to be authorized to
access the credential showing that B1 is a BestBuy. To disclose the temporary ticket
which will let A access its bank policies, B1 requires to identify a bank account to
which to refer the temporary ticket itself. A is not registered at BestBuy so she asks
to B1 for a temporary suspension of the negotiation – Suspend(1) in Figure 5.2 –,
since A is connected from a limited device that does not allow multiple transactions
at the same time.

5.4. ILLUSTRATIVE EXAMPLE 58

A B1 B2
Movie(discount=coupon,title=sometitle)

M <- Coupon(Issuer=BB, Object=M) and
Cash(amount=10)

Suspend

Resume
B1 B2

End policy evaluation

Suspend

Resume

B1 B2

Split and distribute
negotiation tree

Split and distribute valid
view

Cash, Coupon

Movie

Ok

A

A

Ok

Figure 5.2: A running example of the multi-session trust negotiation protocol

Before the suspension of the negotiation B1 creates the information required to
save the intermediate state of the negotiation (see the protocol in Section 5.3.4) and
sends them to every other server in B’s pool.

When A resumes the negotiation, B1 is temporarily offline for maintenance;
thus another server B2 (in B’s pool) continues the negotiation with A. Since the
negotiation was suspended during the exchange of the policies, B2 checks the com-
mitted negotiation tree initially received from B1 and because B2 has the same poli-
cies referred in the tree, it is able to resume the negotiation with A with no changes.
A decides that the credential required in the current round by B2 are not sensitive
and thus does not impose any additional policy on the disclosure of this creden-
tial. The decision made by A ends the policy evaluation phase of the negotiation
because both A and B2 are now able to identify a valid sequence of credentials that
can lead to the negotiation success. This sequence consists of every credential in-
volved in the negotiation. This means that every credential needs to be exchanged
and verified in order to successfully complete the negotiation. Both peers switch
to the next phase of a Trust-X negotiation, that is, the credential exchange phase.
A asks again to suspend the negotiation because she discovers that her credential
attesting the bank account is expired, indicated as Suspend(2) in Figure 5.2. B2 op-
erates the suspension creating the split version of the credentials’ list and sends it
to the other servers of B’s pool along with the involved credential. After A has
renewed her credential, she resumes the negotiation. This time, B1 is available and
being the server nearest to A, it is in charge of continuing the negotiation. This time

5.5. SECURITY ANALYSIS 59

it operates on behalf of B2 because B2 is the issuer of the temporary ticket required
by A. The exchange of the credential is then completed by B1 with credentials by
B2, as described in Section 5.3.5.

This simple example shows that events that are likely to often arise, such as
short term validity of credentials or temporary inability of a peer to continue the
negotiation, do not impact the negotiation under Trust-X .

5.5 Security analysis

In this section we present a detailed security analysis of the most critical algorithms
characterizing the Trust-X multi-session negotiation, along with the important se-
curity properties satisfied by our approach. We also informally discuss the ability
of our approach to withstand malicious peers and colluding parties.

5.5.1 Tree Sharing Protocol Analysis

In order to ensure the validity and correctness of multi-session negotiations, three
properties must be verified by our protocols. Given a negotiation started between
P1 and P2 and completed on behalf of P2 by a delegate P3, the properties are as
follows:

• Completeness: P3, upon successful completion of Protocol 4, obtains a negoti-
ation tree NT′open whose nodes satisfy the corresponding committed terms in
commitNTopen.

• Soundness: P3, upon successful proof of knowledge for a credential cred, can
safely omit the names and values contained in cred in the construction of
NT′open.

• Zero-knowledge: P3 does not gain any information about the committed values
in commit(NTopen), upon checking its values against them using Protocol 4.

Peer P3 builds its version of the negotiation tree, NT′open, by a node-by-node execu-
tion of proofs of knowledge of committed values obtained by P2 by application of
the Damgaard-Fujisaki commitment scheme. Thus, soundness and completeness
properties are guaranteed by such commitment scheme, whose security is based
on the following well-known cryptographic assumptions (see Appendix A and in
particular [35]):

• Computational Diffie-Hellman (CDH) assumption. Given a finite cyclic group G,
a group generator g and group elements ga, gb, there exists no polynomial
time algorithm that computes gab, with non-negligible probability.

• Strong RSA assumption. Given an RSA modulus n and a random value x in Z∗n,
there exists no polynomial time algorithm that computes e > 1 and y ∈ Z∗n
(with non-negligible probability) such that ye = x mod n.

5.5. SECURITY ANALYSIS 60

• Random oracle hypothesis. Informally, a random oracle is a function H : X → Y
uniformly chosen in the set H of all function from X to Y. It models a real-
world cryptographic hash function, such as SHA-1.

We further note that in our proof Protocol 4 the repeated execution of the proof
of knowledge does not leak information, since all committed values are indepen-
dent from each other. That is, P2 uniformly draws each secret values r to be em-
ployed in the commitment scheme. Regarding the zero-knowledge property, as-
suming the random oracle hypothesis, the non-interactive proofs obtained employ-
ing the Fiat-Shamir heuristics are zero-knowledge, because the interactive proofs
are zero-knowledge [95].

Regarding the security of the resume in the credential exchange phase, de-
scribed in Section 5.3.5, we note that P3 receives an encrypted version Enc(Credi, ks)
of credentials Credi for exchange with P1. However, P3 is not able to decipher them,
since the symmetric key ks has been sent by P2 to P1 only.

Another important aspect of our security model is the security of the delega-
tion process. Essentially, two important properties must be guaranteed. First the
delegate must obtain all and only the data necessary to successfully carry on the ne-
gotiation. Second, and equally important, the delegated party must not leak infor-
mation regarding the peer that originally started the negotiation process. The first
property is guaranteed by the results stated by Theorem 5.5.5 and Theorem 5.5.1.
Based on these results, we can guarantee that the secret share disclosed to the dele-
gate, once combined and opened for the secret disclosure, provides all necessary in-
formation to advance the negotiation. The non-disclosure property, instead, guar-
antees that only the information needed to advance the negotiation is provided to
the delegate.

The zero-knowledge property, introduced in Section 5.5.1, guarantees that the
delegates cannot infer any information concerning the credentials’ content nor the
disclosure policies in that the content of the disclosure policies is hidden.

5.5.2 Formal Properties of the Multi-Session Protocol

We begin by introducing a correctness property.

Definition 5.5.1 (Trust Negotiation correctness). A trust negotiation protocol is correct
if it successfully completes all and only the negotiations satisfying Definition 3.6.4.

In our context, correctness refers to the fact that despite suspension and possi-
ble changes to the originally exchanged credentials and/or policies, the success of
the negotiation is guaranteed if and only if a set of valid credentials satisfying the
policies of both parties is identified.

Theorem 5.5.1. The MS protocol satisfies correctness.

5.5. SECURITY ANALYSIS 61

Proof of Theorem 5.5.1 We prove Theorem 5.5.1 by contradiction. Let CSeq =
(C1, . . . , Cn = R) be a sequence obtained at the end of the trust negotiation that
does not satisfy Definition 5.5.2. Let T = 〈N , R, E〉 be the negotiation tree from
which S has been generated.

There are two possible cases:

1. The sequence is of the form S = (C1, . . . , Cj, . . . , Ck, . . . Cn = R). Assume
without loss of generality that Cj is protected by polj = Cj ← φ(t), where tCk .
According to [13], polj corresponds to a multi-edge e = (tCj , tCk) ∈ E .

Since CSeq is given by traversing the valid view associated with T [13], the
first credential in the list is Ck, followed by Cj. S = (C1, . . . , Ck, . . . , Cj, . . . Cn =
R) is created by Algorithm 2 presented in [13]. The same criteria is followed
by the resume protocol to replace credential, thus preserving the order given
by the policies. However, this is in contradiction with our hypothesis of hav-
ing sequence S = (C1, . . . , Cj, . . . , Ck, . . . cn = R), where Cj precedes Ck and
the thesis holds.

2. The sequence is of the form CSeq = (C1, . . . , Cj, . . . Cn = R). Assume with-
out loss of generality that Cj is protected by polj = Cj ← φ(t), where tCk .
However, Ck does not appear in S. Three possible cases arise:

(a) Cj is being introduced during the policy evaluation phase. However, if
6 ∃n ∈ N s.t. n’s term is equal to tCk , that means that tCj is carried by
a node n′ ∈ N labeled as open. Since S is obtained backtracking tree
nodes all labeled as deliv, Cj 6∈ S. But this is in contradiction with our
hypothesis and the thesis holds.

(b) Cj is being introduced during the credential exchange phase. However,
CSeq is obtained by the terms derived from the tree, and it follows from
the previous case that this is not possible. Consider the case in which
a credential C′j is replaced by a substitute spol

c during the credential ex-

change phase. If C′j is selected thenpolj = spol
c ← φ(t), and C′j ← φ(t′),

where t = t′ and thus the substitute should be satisfied by Ck, i.e. t′Ck

=tCk . Thus Ck belongs to S. But this is in contradiction with our hypoth-
esis, and the thesis holds.

We notice that there is an exceptional case to this result, that occurs when the
peers anticipate the disclosure of credentials, due to the strategy adopted during
the negotiation or due to the anticipated disclosure in light of the upcoming switch
of the negotiator (see Section 5.3). In this case, the correctness result is still valid,
but the credential sequence to be applied is the sequence obtained by adding all the
credentials disclosed between P1 and P2, say {C1, . . . , CK} and between P1 and P3,
{CK+1, . . . , Cn}. That is: CSeq′ = {C1, . . . , CK}

⋃{CK+1, . . . , Cn} . It is straightfor-
ward to apply the above proof to CSeq′. ♦

5.5. SECURITY ANALYSIS 62

Validity is informally defined as the property of using only valid credentials to
determine success of the negotiation.

Definition 5.5.2 (Trust negotiation validity). Let S = (C1, . . . , Ck = R) be a credential
sequence and pol1, . . . , polk be the policies protecting C1, . . . , Ck, respectively. A trust
negotiation protocol is valid if all the credentials in S are valid.

Theorem 5.5.2. The MS protocol satisfies the validity property.

The proof is straightforward. Validity of the negotiation is guaranteed by the
multiple controls about credentials validity that are an integral part of the nego-
tiation process. Our approach prevents the usage of expired credentials by intro-
ducing a preprocessing phase that identifies the critical credentials (collected in the
PSC list), subject to expiration, and by carefully replacing credentials as needed,
while preserving the correctness and minimality of the process.

Another important security property is minimality ensuring that regardless of
the number of exchange and intermediate steps in the negotiation, only credentials
required for the purpose of the negotiation are disclosed. The minimality property
is analyzed with respect to the negotiation final outcome and the overall negoti-
ation data exchange. First, we consider minimality with respect to the success of
negotiation.

Definition 5.5.3 (Trust negotiation minimality). Let S = (C1, . . . , Ck = R) be a cre-
dential sequence and pol = {pol1, . . . , polk} be the policies protecting C1, . . . , Ck, respec-
tively. The credential sequence is minimal if:

1. either for every credential Ci ∈ S there exists a policy polj = Ci ← φ(t1,...,tk) such
that there exists a term t ∈ {t1, . . . , tk} such that tCi holds, or Ci = R;

2. for every policy poli ∈ P, there exists C ⊆ S such that polC
i holds.

Notice that a credential C used for completing the negotiation may be a substi-
tute of previously committed credentials. By definition, as long as policies satisfac-
tion is guaranteed, the minimality property is preserved.

Theorem 5.5.3. The credential sequence CSeq is minimal.

Proof of Theorem 5.5.3 The credential sequence CSeq satisfies Property 1) in Def-
inition 5.5.3: CSeq contains all the credentials in the valid view as obtained by a run
of MS Trust-X protocol. By definition of valid view, credential Ci is contained in
the valid view (or, equivalently, CSeq) if and only if Ci = R or there exists a policy
polj such that polCi

j holds.
The credential sequence CSeq satisfies Property 2) in Definition 5.5.3: Suppose

by contradiction that there exists a policy polj which is not satisfied by any subset
of CSeq. This implies that there exists a credential Ci whose release is controlled by
polj, which is not contained in CSeq. Therefore polj is not in P, which contradiction.

5.5. SECURITY ANALYSIS 63

♦

The second definition related to minimality is given with respect to the suc-
cess of the negotiation process itself. This property implies that all credentials and
policies exchanged during the negotiation, although they may not be used for the
negotiation final sequence of credentials, are required to ensure the negotiation cor-
rectness. By nature, the trust negotiation may involve multiple rounds to explore
the various alternatives, and thus not leading toward the negotiation success. How-
ever, needless rounds are to be prevented, to avoid information leaks and covert
channels. Hence, in order to ensure that minimal and correct negotiations (see Def.
5.5.1) are supported by our protocols, the trust negotiation minimal disclosure must
be preserved. Trust negotiation minimal disclosure is defined in what follows.

Definition 5.5.4 (Trust Negotiation Minimal Disclosure). Let P1 and P2 be two peers
negotiating for a resourceR. Let {m1, . . . , mk} be the set of messages exchanged between P1
and P2. Let P3 be P2’s delegate and {mk, . . . , mk+n} be the second set of messages exchanged
by P1 and P3, where mk+n = R or mk+n = Fail. A trust negotiation has the minimal
information disclosure property if and only if, given the negotiation tree NT = 〈E , R,N〉,
and the related credential sequence CSeq each mi in {m1, . . . , mk} ∪ {mk, . . . , mk+n} is of
one of the following types:

1. mi = ack or mi = deny

2. mi = {pol1, . . . , polk} and ∀ poli = R ← φ(ti, . . . , tn) ∈ mi∃ a corresponding
node n ∈ N

3. mi = {c1, . . . , cm} and ∀ci ∈ CSeq

4. mi = S, that is, a share of a serialized tree

5. mi = {c1, . . . , cm} and each ci ∈ mi is s.t.
ci = spol

c′ ∧ c′ ∈ CSeq.

Under the assumption that peers are honest and faithfully follow the negotia-
tion protocol, the following property holds.

Theorem 5.5.4. The MS protocol guarantees minimal disclosure.

Proof of Theorem 5.5.4 The proof of Theorem 5.5.4 is performed analyzing the
design of the protocol. The original Trust-X protocol described in [13] extended
accepts only messages of type 1), 2) and 3) identified in Definition 5.5.4. The fea-
tures defined in Section 5.3 extends the set of accepted messages with types 4) and
5) making them valid during the suspension and resume of a trust negotiation.
Moreover, the negotiation phase refines the types of messages allowed. During the
policy evaluation phase only messages of type 1) and 2) are allowed while during
the credential exchange phase are the messages of type 1) and 3) the ones allowed
to be exchanged.

5.5. SECURITY ANALYSIS 64

Any other type of message received will cause the negotiation to be aborted.
The same will happen if a message of the wrong type is received during any phase.

♦

Finally, our protocols satisfy the following non-disclosure property. Given a
negotiation, a corresponding re-awakened negotiation does not disclose any addi-
tional information other than the one intended by the negotiation before suspen-
sion. We notice that this property holds even in case of replaced negotiations.

Theorem 5.5.5. The resume of a MS negotiation satisfies the non-disclosure property.

Proof of Theorem 5.5.5 In order to prove that a re-awakened negotiation in which
a credential has been substituted with an equivalent one does not disclose more in-
formation than the original negotiation, we have to extend the definition of equiv-
alence to negotiations. We assume that the information released by a data item
x and its corresponding semantic mapping θ(x) are the same. We formalize such
assumption as follows: we say that two data items x, θ(x) are similar if for every
probabilistic, polynomial time bounded algorithm O (referred thereon as the ob-
server) there exist a ε > 0 such that the following inequality holds

|Pr [O(x) = 1]− Pr [O(θ(x))) = 1]| ≤ ε (5.2)

Next, we define two negotiations N1 and N2 (intended as the lists of the exchanged
credentials) as equivalent in the case that, for every probabilistic, polynomial time
bounded algorithm Oneg there exist an ε > 0, such that the following inequality
holds ∣∣Pr

[
Oneg(N1) = 1

]
Pr
[
Oneg(N2) = 1

]∣∣ ≤ ε. (5.3)

The proof amounts to show that when substituting a credential in N with an
equivalent one, we get a negotiation N′ equivalent to N.

In order to show this, consider the set of exchanged credentials {C1, . . . , Cu}
during negotiation N. By hypothesis, such credentials are exchanged using the
selective disclosure protocol presented in [106].

Now consider the negotiation N′, which differs with N in a single credential
C′i . Suppose further that credential C′i is such that the non-committed attributes
are similar according to Definition 5.2.3. Credential C′i is equivalent to Ci (with re-
spect to the disclosure policy under which Ci was released). In fact, given that the
commitment scheme used in the selective disclosure protocol satisfies the hiding
property, we have that two committed values are similar as well. This means that
there exist no computationally bounded observer able to discern C from C′ (up to
a negligible quantity ε). This implies such an observer does not exists for N and N′

either, given that C and C′ is the only spot in which they differ. ♦

5.6. COMPLEXITY ANALYSIS 65

5.5.3 Protocols Resiliency To Malicious Or Colluding Parties

Our protocol does not explicitly deal with protection of data against hacking and
tampering. Such threats are prevented by standard encryption techniques [107].
Another form of attack the protocol might be vulnerable to is the replay attack.
However, protection from such an attack can be easily achieved by using time-
stamps when messages are exchanged.

We now briefly discuss how our protocol operates if assumptions about the
honesty of the peers are relaxed. Under our approach, the resume procedure may
generate a tree view containing nodes referring to non-existing terms because of
a peer lying about the saved tree. In such a case the negotiation process will fail
because of the lack of the corresponding credentials to disclose during the creden-
tial exchange phase. Even if the honest peer did not have the complete state of the
negotiation handy, because of the assumption of unilateral negotiations, after the
suspension phase both the peers will have reconstructed the intermediate state of
the negotiation, which provides enough information to detect malicious requests.
Finally, in case the negotiation was never suspended and one party had the whole
process on its side, we assume that critical information related to the credentials
involved and the corresponding policies will be available to it, and sufficient to
detect the malicious behavior.

Similarly, fake credentials or terms may be inserted in a CSeq. In such a case the
negotiation process will fail because of the lack of the corresponding credentials to
disclose during the credential exchange phase, as indicated by the CSeq. Whether
the malicious peer is the original peer participating in the negotiation or the dele-
gate, a mismatch of the exchanged credentials with respect to the shared credential
will be determined. If the originator tries to alter the content of one of its creden-
tials, the delegate will not find the matching item in the list. If it rejects a decrypted
credential belonging to P2, it may obtain sensitive information and then purposely
failing the negotiation to fail. The usage of selective disclosure actually defeats such
tedious attacks, since the attacker can only gain very limited information.

Finally, we remark that the secret sharing protocol and the tree protocols en-
sure that any possessor of the secret share cannot infer any information regarding
the negotiation process. Even in case two delegated peers, say P3 and P4, collude
to gather information regarding the negotiation, they cannot gather any private
information. If S = ser(commit(NTopen)) is reconstructed, the only data gathered
by the malicious peers is a committed version of some of the tree nodes. In case
S = CSeq, the colluding peers can only obtain a sequence of encrypted credentials,
which security relies on the strength of the adopted encryption protocol.

5.6 Complexity Analysis

In this section we analyze the complexity of our protocols, in terms of the time
and space and in terms of the number of exchanged messages. We consider the
case in which one of the two peers may change, during the resumption of a trust

5.6. COMPLEXITY ANALYSIS 66

negotiation. For the case in which peers do not change, we refer to [105] for results
about complexity.

5.6.1 Policy Exchange Phase Complexity

Unsurprisingly, the nodes commitment, and tree sharing phases (along with the
non-interactive proofs associated with the commitments) are the most computing-
intensive parts of our approach. We start by analyzing them separately, by evalu-
ating the number of required multiplications.

Nodes commitment. Suppose that the negotiation tree NTopen contains n nodes.
Suppose further that the maximum number of predicates contained in a term
is pmax. Then, the number of commitments to be computed is n(pmax + 1).
Each commitment computation entails two modular exponentiations and each
of them can be computed in O(log(max{m, r})) multiplications. Thus the to-
tal number of multiplications needed to commit all the nodes in NTopen is
O(n · log(max{m, r})). In real-world settings, the value of pmax usually does
not exceed two or three.

Tree sharing. (see Section 5.6.2 and [58]). The modified Shamir’s secret sharing
scheme does not add significative computational overhead and very efficient
polylog algorithms for polynomial evaluation and interpolation are avail-
able [3].

Commitments proofs. For each committed value, an equality zero-knowledge proof
of knowledge requires P2 and P3 to compute each a modular exponentia-
tion (other than those required for computing the commitments themselves,
of course). For a zero-knowledge proof that a committed value lies in a
given interval, P2 must compute two additional commitments and five zero-
knowledge equality proofs [22].

Hence, the overall time complexity, measured by the number of multiplications
needed to execute the commitment, sharing, and zero-knowledge proofs protocols,
linearly depends from the number of nodes contained in NTopen.

5.6.2 Communication Complexity

We measure the communication complexity in terms of the number of exchanged
messages and in their size. The total number of messages that need to be exchanged
is five, assuming that P2 supports multicast and without taking into account the au-
thentication between P1 and P3, as detailed in the following. Once one peer among
P1 and P2 requests a suspension (1st message), P2 computes the two shares of the
committed version of NTopen and sends them to P1 (2nd message) and P3, . . . , Pn
(3rd message, assuming a multicast mechanism for the peers in P2’s pool), respec-
tively. After that, P1 sends a resume request to P3 (4th message) and, in case of its

5.6. COMPLEXITY ANALYSIS 67

correct authentication, P1 sends its share to it (5th message). Once P3 has correctly
built its version of the negotiation tree NT′open, P3 sends it to P1 (6th message).

The upper bound on the size of exchanged messages is the size of a share of
the negotiation tree. Recall that the space-efficient version of the Shamir’s secret
sharing scheme operates on a linearized version of the (node-by-node committed)
tree NTopen, denoted by ser(commit(NTopen)). The size of a committed node linearly
depends on the size of security parameter s, typically an integer with a number of
bits between 512 to 1024. Hence, the size of ser(commit(NTopen)) linearly depends
on the number of nodes in NTopen. Finally, note that the space-efficient version
of the Shamir’s secret sharing scheme yields two shares whose length is half the
length of ser(commit(NTopen)) [58].

5.6.3 Credential Exchange Phase Complexity

The complexity of the operations performed in the credential exchange phase is
significantly smaller than the complexity of the policy evaluation phase.

According to the protocol presented in Section 5.3.5, during the suspension
phase, 3 messages are exchanged:

Message 1: the request from P1 to P2 to suspend the credential exchange;

Message 2: the message from P2 to P1 containing the credential sequence and
the corresponding encryption keys;

Message 3: the message containing the credential sequence along with the
encrypted credentials belonging to P2, which are substituted to the proper
terms. This message is sent from P2 to P3, . . . , Pn (assuming, again, a multicast
mechanism for the peers in P2’s pool).

In addition, one additional message is sent by P1 to P3 to resume the negoti-
ation. Hence, in case of correct authentication, the credential exchange phase re-
sumes. The computational complexity of the second message depends on the sym-
metric encryption scheme chosen. Since standard symmetric encryption schemes
(e.g. AES and/or DES) have linear time complexity, we can safely assume that
the time complexity of suspension and resume of the credential exchange phase is
linear in the number of P2’s credentials contained the credential sequence.

The upper bound on the size of exchanged messages coincides with the size of
the 3rd message. The reason is that such message contains the credential sequence
and the encrypted credentials. The number of encrypted credentials linearly de-
pends on the number of P2’s credentials contained in the credential sequence as
well as on the strategy adopted on how to deal with the substituted credentials.

Chapter 6

TN for information sharing in
critical infrastructures

6.1 Introduction to the application environment

The first application scenario in which we applied the techniques presented in the
previous chapters is the Critical Infrastructure environment. In particular, the con-
text we are describing is related to a community of Energy infrastructure actors.

The peculiarities of the community of Energy Infrastructure actors are several:

• It is a geographically sparse community

• The involved actors can be clustered in categories with widely different needs,
characteristics and roles

• The kind of information which flows among the community goes from com-
pletely unclassified to highly reserved, and different actors can have different
disclosure rights on such information

• The relationships between the different actors of the community can be ex-
tremely complicated and controversial, having to deal for example with gov-
erning authorities, market competitors etc.

• The effects of a failure in the information sharing process could have different
level of impact (market impact, citizen impact etc.)

Roughly speaking we are talking of a community composed by different level
of entities (customers, authorities, hardware providers, energy producers, energy
deliverer etc.), which traditionally are not used to collaborate in order to share se-
curity information.

This lack of collaboration is mainly due to three reasons:

1. Economical: making other competitors aware of internal vulnerabilities, could
put a certain company in a critical situation from a pure market point of view.

6.1. INTRODUCTION TO THE APPLICATION ENVIRONMENT 69

2. Political: the interaction among governing authorities and/or between au-
thorities and other entities, have always been difficult and time/resource con-
suming.

3. All the aspects related with the confidentiality of the data and the trust level of
the different entities have always acted as a barrier, discouraging any attempt
of collaboration in this direction.

Here we concentrate our attention to the last of these problems since once solved
the problem of confidentiality and trust also the relevance of the other two will
drastically diminish.

In the following a brief description of the different actors involved in our moti-
vating scenario is given:

Government Authorities a Government authority is the national entity directly
dependent from the national government entitled to control the national op-
erators, to regulate the Energy normative and legislation, to interact with For-
eign Government authorities in order to coordinate actions at international
level. In our scenario different Government authorities can exist in the na-
tional context. Each one can directly interact with the other entities of the
same country and only indirectly with entities of other countries. There ex-
ists an exception: government authorities of different countries can interact.
Moreover, every Government authority maintains a table of trust related to
the authorities of other countries. Such a table obviously reflects the foreign
politics of every country. On the basis of such table, the different authorities
may have or not the access to selected portion of the information shared/re-
quested.

Producers in this class fall all the industries producing software and hardware for
Energy (or more in general for industrial) infrastructures (SCADA systems,
field actuators etc.). Such Producers, can share information – if they have
some sort of common agreement –, or with the final users – if the product the
user have bought are under guarantee. Other details about the information
policies will be explained in the proper section.

R&D under this class fall all the research centers, universities etc. involved in the
research in the field of critical infrastructure. Also in this case R&D can be
groped into consortiums which can share all the information or only portions
of information about their results. The R&D can be associated into mixed
consortiums having partners like Producers, final Users etc.

End Users the End users are the owner of the critical infrastructures. They can
share information with R&D, with other E.U., with producers.

Generic Entities , that is entities which cannot be classified in one of the previous
classes. Their level of information disclosure can be considered minimum.

6.2. INFORMATION SHARING IN CRITICAL INFRASTRUCTURE
ENVIRONMENT 70

The possible interactions between the actors described can be extremely com-
plex. The core of such interaction is obviously an exchange of information which
can have different level of sensibility and criticality. In the following, some example
of such flows are shortly described:

• Security information: exchange of security knowledge related to new vulner-
abilities – like hardware, software, architectural etc. –, new attacks, new
threats. Such information can be exchanged between end users, between end
users and producers, etc. In any case, is evident how the same information
can be posed under different disclosure constraints depending from the iden-
tity of the actor requiring the information

• International threats: Government Authorities can for example exchange infor-
mation about international threats, and then disclose partially such informa-
tion to the companies based inside their national borders.

• Common Policies: Government Authorities could, for example, exchange in-
formation about common policies, reach new agreements and then inform
the national companies –producers and end users)

6.2 Information sharing in critical infrastructure environ-
ment

The information sharing problem is, first of all a problem of modelling, in other
words, before being shared the information has to be modeled. The Infrastructure
Modeling and Security modeling has been treated mainly for operational and se-
curity analysis purposes. Different approaches have been suggested in order to
model systems in light of security. In the work presented by Alberts & Dorofee
[5], the authors propose a first idea of system description to be used for security
purposes. However such a description lacks mainly in two points: it is not formal
and, more relevant, it cannot deal with complex System-of-Systems. Folker den
Braber et al. present in [37] a risk assessment approach partially based on a system
description. It tries to partially capture the concept of adverse environment by in-
troducing (using UML) the concept of Threat Scenario, of course, is an advance in
the representation of systems that could be adapted for the description of several
interacting systems. Nevertheless, this was not the intention of the authors and
represents only a possible adaptation of the methodology. Masera and Nai Fovino
in four correlated works [71, 70, 72, 67] present an approach based on the concept
of system of systems, that preserves the operational and managerial independence
of the components while capturing at the same time the concept of relationship
among components, services and subsystems. In the present work we adopt this
modeling approach for describing information related to the architecture of a criti-
cal infrastructure. Another relevant information to be shared is related more strictly

6.2. INFORMATION SHARING IN CRITICAL INFRASTRUCTURE
ENVIRONMENT 71

to security issues like attack scenarios, threats and vulnerabilities. Again, in the sci-
entific literature, there exist several methods used to describe security information
related to malicious acts. Historically the first approach in that sense was related to
the creation of vulnerability databases (of which Bugtraq [94] is an example). How-
ever, they are basically focused on the description of vulnerabilities, lacking com-
pletely (but that isn’t their goal) the description of the means and ways by which
they can be exploited by attacks. The most promising approach capturing the lat-
ter characteristic is the Graph Based Attack Models [108]. In this category two can
be considered the main modeling approaches: Petri Net based Models and Attack
Trees models. A good example of the first category is the Attack Net Model in-
troduced by McDermott [68] in which the places of a Petri Net represent the steps
of an attack and the transitions are used to capture precise actions performed by
the attackers. The second approach (attack trees), proposed originally by Bruce
Schneier [90] is based on the use of expansion trees to show the different attack
lines that could affect a system describing their steps and their interrelationships.
Such an approach has been extended by Masera and Nai Fovino [72] by introduc-
ing the concept of Attack Projection. In the present work, to represent attacks and
threat information, we have adopted this approach.

6.2.1 Working example

Consider the following example: a Power Producer Company discovers a major
vulnerability in its infrastructure. To achieve the main scope of the information
sharing network, such company should share in detail all the information related
to the discovered vulnerabilities with all the other companies, with the government
authorities and, if needed, with the hardware producers.

Let considers now the implication of the diffusion of such information: the
hardware producers, in order to fix completely vulnerability may need to know
in detail the infrastructure of the company in which such vulnerability has been
discovered. On the other hand, since the detailed infrastructural information may
represent an added value for the company in the sense that it could be for exam-
ple the results of huge economic investments for optimizing the production. In
that case, to provide the same information to a direct competitor (i.e. the others
Power companies), represents, indirectly, a loss of money. Moreover, this informa-
tion could cause an image and an economic damage to the company if used in a
malicious way.

These few example are sufficient to argue some desirable features a framework
for information sharing and exchange should provide:

1. A language allowing to express the policies and, more generally, the con-
straints which must be satisfied in order to request and obtain information

2. A set of mechanism allowing to define different level of trust, on the basis of
which select which portion of the information can be released

6.3. KNOWLEDGE CHARACTERIZATION 72

3. An architecture implementing a negotiation mechanism for the exchange of
the information allowing to define such levels of trust

4. The possibility, for a group of actors, to elect a member able, in certain cases,
to conduct the negotiation for the entire group, for example in case of negoti-
ation between government authorities.

The framework here presented addresses such features.

6.3 Knowledge Characterization

In the current application scenario, the framework has been adapted in order to
share information about Power Grids, under a security and safety perspective. A
relevant issue in an Information Sharing Framework, is related to the kind and for-
mat of the information to be shared. [71, 70, 67], presented a comprehensive frame-
work allowing to model both systems (from an architectural, service oriented point
of view) and security knowledge. We decided to adopt such compact modeling ap-
proach to model the information to be shared. A system or an architecture is then
modeled in term of components, services provided, relationship among compo-
nents and subsystems. At the same way, according to [72], the Security Knowledge
is modeled in term of vulnerabilities, attacks and threats. For major details about sys-
tem and security knowledge modeling please refer to [71, 72]. In Figure 6.1 and
Figure 6.3 are shown two examples of XML representation: of an attack tree and of
a system component . Moreover, in Figure 6.2, the graphical representation of an
attack tree is provided.

6.4 Language extensions

The application scenario presented in the current Section extends the definition ex-
pressed in Chapter 3. Such extensions are conservative with respect of the original
language in the sense that, if there is no match between the disclosured policies in
X -RNL, then the negotiation fails, while in the newly proposed language it is pos-
sible to re-negotiate the originally requested resource and to exploit a successful
negotiation to obtain more informations related to the previous one.

6.4.1 Resource level negotiation

Up to now, X -RNL provides only all-or-nothing disclosure: That is, a resource R
can only be disclosured or not. As shown in Section 6.2.1, there are very natural
scenarios motivating the introduction of a more flexible way of disclosing complex
resources, as found in a CI setting.

To achieve that we need to introduce some formal definition about the level of
disclosure and to grant to the parties involved in the negotiation the required tools.

6.4. LANGUAGE EXTENSIONS 73

To begin, we introduce the concept of level of (resource) disclosure.
We begin refining the Definition 3.2.2 presented in Chapter 3.

Definition 6.4.1 (Atomic resource). An atomic resource is a resource that can’t be
further divided in smaller pieces.

Definition 6.4.2 (Composite resource). A composite resource is a resource of the form
R = r1, r2, . . . , ru where each ri is an atomic resource.

Using the what just explained, is finally possible to define the concept men-
tioned above.

Definition 6.4.3 (Levels of (resource) disclosure). Given a resource, or service, R, we
define a series of levels of disclosure over R, denoted by R0, R1, R2, R3, . . . , Rv, as
follows:

Considering the composite resource R = {r1, r2, . . . , rt}, where each ri is an atomic
resource, the levels of disclosure can be seen as coverings over R where R0 = R and Rv =
∅.

The remaining levels are chosen in a way to define a partial order among them.

How this association is performed is mandated to the users. In Examples 6.4.1
and 6.4.2 are shown two of the possible levels definitions.

Example 6.4.1. Considering the resource R, defined in Figure 6.1, identified with the term
Library(Type = “4”) it is possible to define on it, for example, 5 levels of disclosure:

• R0 = Library(Type = “4”)[1, 2, 3, 4] = Library(Type = “4”)

• R1 = Library(Type = “4”)[1, 2, 3]

• R2 = Library(Type = “4”)[1, 2]

• R3 = Library(Type = “4”)[1]

• R4 = ∅

Note that R0 is also equivalent to Library(Type“4”).

Example 6.4.2. Again, consider the resource R, defined in Figure 6.1, it is possible to define
a different set of levels of disclosure, composed that time of 8 levels, as follows:

• R0 = Library(Type = “4”)[1, 2, 3, 4] = Library(Type = “4”)

• R1 = Library(Type = “4”)[1, 2]

– R2 = Library(Type = “4”)[1]

– R3 = Library(Type = “4”)[2]

• R4 = Library(Type = “4”)[3, 4]

– R5 = Library(Type = “4”)[3]

– R6 = Library(Type = “4”)[4]

• R7 = ∅

Again, as in Example 6.4.1, R0 may be simply written as Library(Type“4”).

6.4. LANGUAGE EXTENSIONS 74

6.4.2 Shrink the resource level

We now show how to express the resource level to be actually negotiated. In order
to do this, we introduce a new kind of formulae, called rebate formulae.

A rebate formula is an expression of the form ρ(τ1, . . . , τk) where each τi is a
term referring to the corresponding one in a previously exchanged disclosure pol-
icy, that means, given a previously exchanged disclosure policy R ← φ(t1, . . . , tu)
where φ(t1, . . . , tu) ≡ t1 ∧ . . . ∧ tu, k < u and ∀i, 1 ≤ i ≤ k, ∃j such that τi = tj.
The meaning of such expression is that the peer is offering a subset of the terms in-
cluded in the formula of the disclosure policy, in to access the term corresponding
to the (sub-)resource protected by the policy itself.

With the adoption of rebate formulae it is possible to negotiate the level of the
resource, introducing thus a new, key phase in the trust negotiation.

If the reply to the initial request of the resource R is of the form

R← φ(t1, t2, . . . , tu)

where the formula φ(t1, t2, . . . , tu) ≡ t1∧ t2∧ . . .∧ tu, then it is possible for the initial
requester to provide a subset of terms contained in φ in order to obtain at least a
subset of the atomic resources composing R that the provider define as appropriate
for the disclosure terms. The requester rebate with the rebate formula

ρ(τ1, τ2, . . . , τk)

constructed as described before.
If the controller of the resource R accepts the offered terms as enough to disclo-

sure the resource, it replies with a disclosure policy of the form R ← ρ(τ1, . . . , τk)
and the negotiation continues in the normal way. If the controller decides that
the offered terms are not enought, it replies with a disclosure policy of the form
Rl ← ρ(τ1, . . . , τk) where Rl is the level of disclosure associated by the controller
with the offered terms τ1, . . . , τk.

Such process is called level negotiation.
To be able to identify the level associate to a give subset of terms, we need to

define some tools function.

Definition 6.4.4 (Term evaluation function). A term evaluation function is a function
defined as follows:

w : T →N (6.1)

Where T is the set of terms known by a party. That function associates to each term t a
value n, expressing the importance each party associates to the term t.

Definition 6.4.5 (Level of disclosure threshold function). A level of disclosure thresh-
old function is a function defined as follows:

s : L →N (6.2)

6.4. LANGUAGE EXTENSIONS 75

Where L is a set of all disclosure levels. That function associates a value to each disclosure
level. The meaning of that association is to define a threshold above which the level can be
disclosured.

An example of the usage of what have just been described is shown in Exam-
ple 6.4.3.

Example 6.4.3. Let the attack tree show in Figure 6.1 be the resource controlled by a party
called Controller (C). A party, called Requester (R), wants to access that resource. R sends
to C a request of the form: Library(Type = “4”) C replies with the disclosure policy re-
lated to Library(Type = “4”). Let it be Library(Type = “4”) ← φ(t1, t2, t3, t4) where
the formula φ(t1, t2, t3, t4) ≡ t1 ∧ t2 ∧ t3 ∧ t4. R doesn’t own t2 and t3, or doesn’t want
to disclose them to C, it replies with the rebate formula ρ(t1, t4) ≡ t1 ∧ t4 Following Al-
gorithm 5 C identify as R2, according to Example 6.4.1, the appropriate level of disclosure
for the terms offered by R. It replies with the new resource requested and the new associ-
ated disclosure policy Library(Type = “4”)[1, 2] ← φ(t1, t4) where φ(t1, t4) ≡ t1 ∧ t4.
If C accept to access the offered level of disclosure over the resource R, it replies with the
disclosure policies associated to the involved terms. If it refuses it can try to offer even less
terms or give up with the negotiation. Figure 6.4 shows the modification occurred within
the negotiation tree according to the use of the rebate formula ρ(t1, t4).

/* L is the set of the level of disclosure, w is the level of

disclosure threshold function, s is the term evaluation function, o
is the last level of disclosure used, if not provided 0 = 0 */

Data: L = {R0, . . . , Rv}, w, s, o, ρ(τ1, . . . , τk)
Result: l = level associated to ρ(τ1, . . . , τk)
begin

val =
k

∑
i=0

w(τi);

for (i = o; Ri ∈ L; i++) do
if val ≥ s(Ri) then

l = i;
break;

return l;

Algorithm 5: Identifies the disclosure level appropriate for the terms offered
by the counter-party

6.4.3 Enlarge the resource level

The second tool provided allows the user to re-negotiate the resource argument of
a previous negotiation to try to access a level of disclosure Rm upon the resource R
which expresses more information then the level of disclosure Rl . Such is obtained

6.4. LANGUAGE EXTENSIONS 76

using the so called extend formulae. An extend is an expression of the form ξ(<
Rl , h(t) >, τ1, . . . , τk) , where R is the initial resource previously negotiated and
each τi is a term referring to the corresponding disclosure policy exchanged by the
other peer. Let be R ← φ(t1, . . . , tu) with φ(t1, . . . , tu) ≡ t1 ∧ . . . ∧ tu the disclosure
policy for the resource R, with u ≤ k. ∀i, 1 ≤ i ≤ k, ∃j such that τi = tj. Each τi
is a term not included within a rebate formula used in a previous negotiation for
the resource R. The meaning of such expression is that the peer sending the extend
formula extends the set of terms offered for the resource R in such a way to be able
to obtain access to a disclosure level m, m > l

Negotiation history According to [106], it is possible to suspend and resume an
ongoing negotiation. Exploiting the savepoint technique presented in [105], it is
possible for a peer to expand the resource obtained by means of a previous negoti-
ation. In [13], it is described that at the end of a negotiation the peer providing the
resource will release a Trust Ticket which is a ticket attesting the successful ending
of the negotiation for the resource R with level of disclosure l, as mentioned before.
Slightly altering the meaning of Trust Ticket, we associate with it the negotiation
tree obtained by the negotiation of the required resource level R. Such negotiation
tree has to been saved by the controller which, at the end of the negotiation, will re-
lease it. The new version of the definition of Trust Ticket (shown in Definition 6.4.6
contains the (level of) resource the Controller released during the negotiation just
successfully ended and the hash value of the negotiation tree created.

Definition 6.4.6 (Trust Ticket). Formally, a trust ticket is a tuple of he form

< Rl , h(t) >

where Rl is the level of the resource R argument of the just successfully terminated negoti-
ation and h(t) [105] is the Merkle hash tree [69] of the associated negotiation tree.

Intuitively, it identifies the negotiation by means of the identification of the re-
source, its level of disclosure and the negotiation tree that facilitated the release of
Rl .

Level expansion Let < Rl , h(t) > be the Trust Ticket as described in [13] and in
Definition 6.4.6, where t is the negotiation tree for the negotiation occurred between
the owner of the Trust Ticket and the emitter to allow the owner to access the level l
of the resource R. h(t) is the hash value of the negotiation tree t. h is a hash function
defined as follow:

h : T→N (6.3)

Where T is the set of possible negotiation trees. By means of extend formulae, a
Requester resumes the successfully terminated negotiation for Rl trying to obtain
access to a level of disclosure m, likely with m ≤ l.

Such process is called level expansion and it exploits the tool functions defined
for the level negotiation.

6.4. LANGUAGE EXTENSIONS 77

The difference between level negotiation and level expansion is that the first is
used to reduce the amount of terms used in the negotiation in order to be able to
access at least a lesser but acceptable subset of the resource according to the terms
owned by the requester. With the level expansion we authorize a peer to access
a greater level of the previously negotiated resource without the need to begin a
completely new negotiation but exploiting the work done before. An example of
usage of the extend formulae is shown in Example 6.4.4

Example 6.4.4. With respect to Example 6.4.3, let < R2, h(t) > be the Trust Ticket
released after the successfully terminated negotiation between the Controller (C) and the
Requester (R), where R2 = Library(Type = “4”)[1, 2] Now, R wants to access more
information contained in R and resume the negotiation with C sending it the expand
formula ξ(< R2, h(t) >, t3). Resuming the negotiation tree t previously used, C dis-
covers that it negotiated with R for the level of disclosure R2. With the extend formula
ξ(< R2, h(t) >, t3), R offers the term t3 which was not used in the past negotiation. C
decides that w(t1, t2, t3) > s(R1), which means that the terms t1, t2 and t3 are enough to
satisfy the disclosure level R1 = Library(Type = “4”)[1, 2, 3]. After that, C replies to R
with the disclosure policy offered by R:

Library(Type = “4”)[1, 2, 3]← φ(t1, t2, t3) ≡ t1 ∧ t2 ∧ t3

Figure 6.5 shows the modification made to the negotiation tree t with the use of the extend
formula ξ(< R2, h(t) >, t3).

6.4. LANGUAGE EXTENSIONS 78

<?xml version="1.0" encoding="utf-8"?>

<Library Type="4" Id="4"

Guid="3a4b70ff-150a-4266-997d-1278abce8758"

MajorVersion="0" MinorVersion="1">

<Name>Default Library of Attack Patterns</Name>

<Description />

<Date>29-02-2008 12:41</Date>

<AttackTreeList>

<AttackTree Id="13" IsMacro="0">

<Name>Apache B.O. Attack</Name>

<Description />

<Expertise />

<Resource />

<AttackEvaluation Plausibility="-1"

Severity="-1" />

<Composition>

<LogicPort Id="159">

<Name>AND</Name>

<Goal>Remote Shell with Root rights</Goal>

<Children>

<VulnNode Id="160">

<Name>Vulnerability</Name>

<Description />

<Vulnerabilities>

<IdVuln>34</IdVuln>

</Vulnerabilities>

</VulnNode>

<Assertion Id="161">

<Name>AssertComp</Name>

<Plausibility>1</Plausibility>

<Description />

<Components>

<IdComponent>1</IdComponent>

</Components>

</Assertion>

</Children>

</LogicPort>

</Composition>

</AttackTree>

</AttackTreeList>

</Library>

Figure 6.1: An example of XML document describing a simple attack tree

6.4. LANGUAGE EXTENSIONS 79

Figure 6.2: An example of attack tree

6.4. LANGUAGE EXTENSIONS 80

<Component Id="77" FailureRate="0">

<Name>Combustion chamber (CCH)</Name>

<SecurityManager />

<ClassC />

<Description>

It transforms the chemical energy of gas

into kinetic energy of the exhaust gas

that is then delivered to the turbine

</Description>

<Brand />

<Model />

<Version />

<IdComponentType>5</IdComponentType>

<Vulnerabilities />

<Roles />

<SecurityPolicies />

<ServiceList>

<LowLevelService Id="51" Threshold="100"

StateActive="0">

<Name>Combustion CCH_C</Name>

<SecurityManager />

<Description>

Combustion of the air-gas mix

</Description>

<Type />

<Roles />

<SecurityPolicies />

<DocumentList />

</LowLevelService>

</ServiceList>

<DocumentList />

</Component>

Figure 6.3: An example of XML document describing a system component

6.4. LANGUAGE EXTENSIONS 81

(a) (b)

Figure 6.4: The negotiation tree before (a) and after the use of the rebate formula
(b)

(a) (b)

Figure 6.5: The negotiation tree of the saved negotiation (a) and the same expanded
(b)

Chapter 7

TN for spectrum sharing in
cognitive radion networks

7.1 Scenario introduction

The second application scenario in which we applied the techniques previously
presented is the cognitive radio management.

In the current approach for fixed spectrum management, the radio frequency
spectrum is divided in separate bands which are allocated to specific wireless ser-
vices or licensed to providers of wireless services. Wireless services may include
wireless communications, positioning or navigation systems like GPS, broadcast
services like TV or other technologies like radar or RFID. The shortcoming of the
fixed spectrum management approach as described in [109], is the risk of poor spec-
trum utilization because some spectrum bands may be underused most of the time
while other bands may be overused or congested. Spectrum utilization has become
a critical issues in recent years because of the needs to provide broadband wireless
connectivity to an increasing number of users and to activate new wireless services.
An alternative approach is called Dynamic Spectrum Access (DSA), where the allo-
cation of spectrum bands can change in time or space. If a specific spectrum bands
is not used, it can be dynamically reallocated to another user for a specific amount
of time or in a specific geographical area.

In the fixed spectrum management approach, wireless equipments (e.g. com-
munication terminals) are designed and implemented to use predefined spectrum
bands. In the DSA approach, the radio terminals and the radio network infras-
tructures can transmit and receive in a wide range of spectrum bands and change
dynamically their transmission parameters depending on the environment, opera-
tional context and needs of the users. Cognitive radio (CR) is an enabler for DSA as
it provides the capabilities to implement a flexible use of the radio frequency (RF)
spectrum.

In the DSA approach, communication systems based on cognitive radio nodes
and terminals could effectively “share” the available spectrum resources and change

7.1. SCENARIO INTRODUCTION 83

dynamically the allocation of the spectrum bands for the various communication
services. This is a radical change from the fixed spectrum management approach as
cognitive radio nodes would not be limited to use specific spectrum bands but they
could access all the available spectrum resources within the constraints defined by
spectrum regulators. A major consequence of DSA and spectrum “sharing” is the
need to define suitable access policies, which describe the rules for sharing spec-
trum resources. Spectrum sharing policies are particularly important for the ap-
plication of DSA in the public safety domain where communication systems must
satisfy severe requirements in terms of resilience, security and performance.

New applications like mobile video-surveillance, mobile biometric identifica-
tion and remote emergency health have increased the need for broadband wireless
communications in the public safety domain. Higher data throughput requires a
wider allocation of spectrum to public safety, but this may not be possible in the
current spectrum regulation framework. Innovative approaches like DSA has been
investigated as a potential solution to provide broadband wireless connectivity in
[11] but only if it satisfies specific requirements including reliances, security and
the prioritization of “shared” spectrum resources.

As a motivating scenario related to public safety, consider the organizations
participating to the resolution of an emergency crisis. They may include heteroge-
neous entities such as police, fire fighters, emergency medical services, volunteers
organization, border security guards and military forces. Such entities usually have
different priorities regarding resources’ access and may interact in complex ways
depending on the operational context. There is little or no coordination among
different groups of actors and – typically – a sudden, unexpected appearance of a
new group on the crisis scenario may impose an on-the-fly rearrangement of the
assigned resources.

Clearly, this context requires a security mechanism for regulating access to sen-
sitive resources (e.g. spectrum bands). The deployment of DSA may have a large
number of operating dimensions including frequencies, waveforms, power levels,
and so forth. There is the need to define an access control framework, which al-
lows to benefit of the DSA features while ensuring the conformance to regulatory
policies and rules of conduct among Public Safety organizations.

Mainstream approaches to access control do not seem to be suited for a complex
environment like the one sketched above. In fact, resources’ access to requesting
entities is enforced by a centralized authority, given an a-priori fixed set of rules
describing what are the resources and under what conditions they can be accessed.
Requesting entities are usually identified through a standard login-password on-
line mechanism. Other more sophisticated off-line authentication mechanisms re-
quire the presence of heavyweight, centralized and rather inflexible infrastructures,
like PKIs.

7.2. A BRIEF OVERVIEW OF SPECTRUM MANAGEMENT IN COGNITIVE
RADIO NETWORK 84

7.2 A brief overview of spectrum management in Cognitive
radio network

The design and deployment of Cognitive Radio and DSA has been investigated in
a number of papers and research studies starting from the seminal work of John
Mitola in [53]. A survey is presented in [4] by Akuldiz ed al., where the authors de-
scribe the various cognitive radio techniques and architectures to implement DSA
and Cognitive radio networks. The paper presents the various classifications of
spectrum sharing techniques including the one based on access behavior, where
spectrum sharing can be cooperative or non-cooperative. In the cooperative ap-
proach, the cognitive radio nodes consider the effect of their own communication
on other nodes and they cooperate to minimize the level of interference and to op-
timize spectrum utilization. In the non-cooperative or selfish approach only a node
is considered. In this paper, we will consider only the cooperative approach.

The application of cognitive radio and DSA to the Public Safety domain is in-
vestigated in the SDR Forum Technical Report [96]. The document describes the
benefits and the related challenges of the deployment of these new technologies. A
major challenge is to ensure that DSA can provide the same level of security and
reliability of conventional communication systems. The definition of requirements
for the application of cognitive radio in emergency network is provided in [82],
which also describes a protocol for the exchange of control message for the use
of the radio resources. In [112], the authors presented a framework for the use of
cognitive radio in the public safety domain. The paper presented a workflow for
the dynamic allocation of the spectrum and a protocol for exchanging spectrum re-
sources among the actors involved in the scenario. In [11], the authors describe the
technical and psychological challenges for resources management and spectrum
sharing across different public safety organizations. The paper highlights the im-
portance of creating control mechanisms and a trust framework to overcome the
challenges and improve the efficiency of spectrum utilization. The paper does not
identify of describe a specific trust or policy framework but identifies the benefits
of adopting such framework.

The cooperative approach for spectrum sharing requires the definition of a pol-
icy language to regulate the sharing of the resources among the cognitive radio
nodes. A policy framework for DSA has been defined in the DARPA XG program.
The neXt Generation program (XG) is a technology development project sponsored
by the US DARPA’s Strategic Technology Office, with the goals to develop both
the enabling technologies and system concepts to dynamically redistribute allo-
cated spectrum. XG uses a declarative policy engine that supports spectrum shar-
ing while ensuring that radios will adhere to regulatory policies and it is able to
adapt to changes in policies, applications, and radio technology. The policy engine
is based on a declarative language called Cognitive Radio Language (CoRaL) for
expressing spectrum sharing policies (see [39]). In CoRal, policy rules such as al-
low (permissive), disallow (restrictive) are logical axioms that express under which

7.2. A BRIEF OVERVIEW OF SPECTRUM MANAGEMENT IN COGNITIVE
RADIO NETWORK 85

conditions these predicates hold. The policy rules may consider the radios capa-
bility, current state, location, time, and spectral environment for allowing a trans-
mission. The design of a Policy Reasoner based on CoRaL language is presented
in [38]. The paper describes the demonstration of the XG technology, CoRaL lan-
guage and the Policy Reasoner in a testing scenario where CoRaL policies are used
to change how XG radios access spectrum resources, based on the location of the
radio, its operational mode and the sensed signal strengths. Reference [98] from
SDR Forum is one of the first documents, which identifies and describes a mod-
eling language to negotiate and control the network resources in the public safety
domain. The modeling language is called MetaLanguage for Mobility (MLM) and
it is used to describe the functions, resource and roles of the elements and actors
participating in the operational scenarios related to the Public Safety domain. The
reference presents a specific scenario for spectrum sharing. MLM is based on OWL
ontology language and the use cases are described using UML. The language does
not have security elements to define various levels of authority or trust among the
actors as the sharing of network resources can be based on a pre-defined agreement
among organizations.

The shortcoming of the previous papers is that the presented policy languages
are not specifically designed for describing operational contexts where users have
different priorities and capabilities, when deploying spectrum resources. Public
Safety operational scenarios are characterized by many organizations with differ-
ent levels of authority and priority in the access to the available resources in the
scenario (i.e. energy, water or communications). Generally military organizations
have the highest authority, then police and volunteers organizations. The priority
depends on the operational scenario, as well. A suitable policy language should
have– among other things – the capability of describing the different levels of pri-
ority in using the spectrum resources on the basis of the type of operational orga-
nization and the type of operational scenario.

One of the first papers to address the challenge of defining a DSA model in a
context with multiple organizations with various levels of authority is [40]. The pa-
per presents a multi-organizational policy management system for DSM based on
the fine-grained control of delegation of authority between communities of users.
The contribution is identified as an extension of the XG policy engine but with
a clear focus on the management of different levels of authority. Reference [63]
addresses the management of DSA in a holistic manner. The paper describes a
meta-policy framework that includes the definition of the hierarchal structures of
the organizations involved in DSA scenarios. However, the issue of defining and
enforcing access policies to network resources – given the above mentioned hierar-
chies – is not addressed.

7.3. INTRODUCING TRUST-X IN COGNITIVE RADIO NETWORKS 86

7.3 Introducing Trust-X in Cognitive radio networks

The previously described scenario requires a flexible access control mechanism.
The Trust-X framework and in particular theX -RNL language – described in Chap-
ter 3 – address such requirements.

Example 7.3.1. As an example, consider the following negotiation:

1. A fireman (F) asks to access a credential containing the positions of the gas pipes
(GasBluePrint) which belongs to the LondonGasSociety (LGS).

2. LGS replies with the disclosure policy GasBluePrint ← ID(Country = UK) ∧
FiremanID ∧ FireBrigateID.

3. All the required credentials are available but the credentials FiremanID and BrigateID
are considered sensitive credentials. Hence, they are protected by disclosure policies
too. Therefore, F sends the disclosure policies FiremanID ← ID(Country = UK)
and FireBrigateID ← ID(Country = UK).

4. LGS owns a credential attesting its identity and is freely available. It sends it to F .

5. F , upon the verification of the validity of the credential received, sends the required
credentials ID, FiremanID and FireBrigateID to LGS .

6. Finally, F is able to access the credential GasBluePrint disclosed by LGS .

The messages exchanged are shown in Figure 7.1.

Figure 7.1: An example of trust negotiation

7.3. INTRODUCING TRUST-X IN COGNITIVE RADIO NETWORKS 87

7.3.1 The Spectrum Management Language

The trust negotiation language presented do not suffices for expressing all the com-
plex setup procedures required by parties communicating over a CR networks. To-
wards this end, we extend our negotiation language illustrating how to include a
spectrum management language largely inspired by the CoRal language [39] into
our framework.

Definition 7.3.1 (Condition term). A condition term CT is an expression of the form
Condition(PredList) where Condition denotes a condition type, such as Time, Location,
DeviceCapability and NodeIdentity, and PredList is the same list of attribute conditions
presented in Definition 3.4.1.

Note that the possible attributes in the PredList of a condition term depends on
the type of condition represented.

Examples of condition terms are:

• Location(Latitude=“51.30 N”, Longitude=“0.30 W”) and

• Time(localtime≥10:00, localTime≤17:00).

A frequency list is an ordered list of frequencies, such as {3847MHz, 3990MHz,
4375MHz}.

A spectrum management policy is an expression of the form f reqList ← CT1 ∧
CT2 . . . ∧ TCv where f reqList is a frequency list and CTi are condition terms.

Moreover, we classify the spectrum management policies in two categories: per-
missive policies and restrictive policies.

In each instant, the frequencies used by a terminal are determined as follows:

1. Identify all the allowed frequencies, which entails the identification of the
permissive policies whose right side is true;

2. Identify all the prohibited frequencies, which entails the identification of the
restrictive policies whose right side is true;

3. Finally, a terminal is allowed to transmit on the difference between allowed
frequencies and prohibited frequencies.

Example 7.3.2. For example, consider the following permissive policy:

{5132MHz, 231.2250MHz} ← Location(City = London) ∧ Time(hour ≥ 08)

and the following restrictive policy:

{5132MHz} ← Time(hour ≥ 22)

Applying such policies at the 11:00PM, a terminal located in London will be allowed to
transmit on the frequency of 231.2250MHz.

The spectrum management policy language described above is an example. It
is possible to extend the language to achieve the same expressive power of [39, 38]
but is behind the objective of the current work.

7.4. MOTIVATING SCENARIO 88

7.4 Motivating scenario

We now apply the negotiation language presented above in a very well known cri-
sis scenario: the London Underground bombing of July 2005 and the subsequently
deployed resolution efforts [45].

We have chosen this specific operational scenario because it illustrates the sig-
nificant challenges in resolving an emergency crisis in a urban environment where
a large number of users (i.e. public safety organizations and civil population) were
present and communication resources were overused.

Urban environment scenarios are usually characterized by the need for fast re-
action time by the first time responders and consequently heavy reliance on com-
munications to cooperate the recovery efforts. In this specific case, the existing
communication resources were particularly strained because of the high volume of
traffic due to panic conditions and the degradation of some network infrastructures
due to the bombing.

A major challenge was that the traffic demand exceeded the capacity of the
network and access control mechanisms were used to deny access to some users,
including first time responders, who did not have priority access.

The aftermaths of the three explosions on the trains of the London Underground
posed particularly harsh conditions to the first responders. Bombs exploded on
underground trains having varying distances to nearest stations. Power lines were
cut off. Responders had to walk to the bombing scenes through tunnels. Once po-
lice and fire responders went into the tunnels, their radios lost connectivity to the
above-ground infrastructure. The only means for responders to communicate back
to their respective command centers and any above ground personnel was to walk
to the nearest station and position themselves at the entrance to the Underground
system. It took 15 minutes to walk from the scene to the entrance. Though respon-
ders had adequate authority to communicate on their own networks, individual
radios were not capable of exploiting peer-to-peer capabilities to provide network
extension to connect isolated nodes to the network [97].

The agencies that responded to the emergency included the Metropolitan Po-
lice, the British Transport Police, the London Fire Brigade and the London Ambu-
lance. Clearly, the poor management of communication channels resulted in a lack
of coordination – and hence a degraded service – among different groups and even
within single groups.

7.5 Negotiating Resources in a Critical Environment

It is well understood that in crisis scenarios DSA would provide more effective
communication means through its improved spectrum (and, more in general, net-
work resources) utilization. We argue that in order to fully exploit the potential
of DSA in critical scenarios is necessary to clearly define suitable access policies
to sensitive resources and – consequently – provide mechanisms for their enforce-

7.5. NEGOTIATING RESOURCES IN A CRITICAL ENVIRONMENT 89

ment. Towards this end, we now show how effective resource disclosure policies
related to the London Underground bombing scenario can be expressed using the
Trust-X framework.

7.5.1 Roles identification and Role Hierarchy

First of all, in order to be able to achieve a coordinated and adaptive spectrum
frequency management, we need to define different roles in which the users operate
and a hierarchy among them.

With respect to the scenario described in the previous section, we define the
following roles:

1. Government

2. Military, such as the UK Army;

3. Public safety, such as the metropolitan Police and the London Fire Brigade;

4. Paramedic, such as the London Ambulance.

In the analyzed scenario there are few roles, hence is possible to define a simple
hierarchy among these roles. Such hierarchy defines that, for example, a cognitive
radio used by an intelligence officer, a user belonging to the Military role, must
have a priority higher than a doctor or a user belonging to the Paramedic group.

7.5.2 Cognitive Radio Authentication

Once defined a role hierarchy, we present how a radios arrived on the incident
area can authenticate themselves with the existing ones to properly operate in the
Incident Area Network (IAN). We assume that the different entities participating in
the crisis response are joined into separate groups, at least one for each role defined
above, which denote different deployment modes of the available communication
resources, e.g. bandwidth.

In order to communicate in a given spectrum band, a newly arrived cognitive
radio joins the appropriate group. The group joining process is carried on by the
newly arrived radio and an IAN coordinator through a trust negotiation. If the
trust negotiation ends successfully, the newly arrived radio receives a group mem-
bership credential. We remind that a credential is a digital document attesting some
properties (stated as tuples of pairs (Attribute, Value)) about the owner. We also re-
mind that the disclosure of each credential is controlled by a disclosure policy, as
described in Chapter 3 and in Section 7.3.1.

The group membership credential contains different information. In particular,
it contains the spectrum management policies, which greatly differ depending on
the role of the owner.

7.5. NEGOTIATING RESOURCES IN A CRITICAL ENVIRONMENT 90

The disclosure policy 7.1 shows the requirements associated with the credential
containing the configuration parameters to access the IAN at “King’s Cross-Russell
Square”.

IAN(Location = “King′sCross− RussellSquare”)←
Military(Country = “UK”)∨
(ID(Country = “UK”)∧
PoliceID(A f f iliation = “LondonPoliceDepartment”))
∨ FireDepartment()∨
(Paramedic() ∧ DoctorSpecialization())

(7.1)

We will now present two possible scenarios which differentiate on the type of
actor which wants to communicate on the network.

Let’s assume the first cognitive radio belongs to a policeman replying to the
initial requesting call. His radio will reply to the disclosure policy 7.1 requiring
some other credential in order to disclose the credential attesting its membership
in the London City Police Department.

PoliceID()← (ID(Country = “UK”)∧
GovernmentAuthorization(Country = “UK”))∨
Military(Country = “UK”)

(7.2)

The coordinator of the IAN has the appropriate government authorization and
it has an ID released from the United Kingdom. The ID can be freely disclosed,
therefore it has no disclosure policy associated. On the other side, the access to the
government authorization credential is restricted to some other property related to
UK nationality.

GovernmentAuthorization← ID(Country = “UK”); (7.3)

Hence, the negotiation terminates successfully, allowing the policeman to com-
municate in the IAN with the spectrum management policies of the Public Safety
role.

Let us suppose that the next cognitive radio arriving on the incident area be-
longs to a paramedic. As in the previous example, his radio will try to obtain the
credential required to configure itself appropriately in order to be able to commu-
nicate with the other devices in the network. The disclosure policy is still 7.1. This
time, the cognitive radio will try to access as a paramedic, allowing the disclosure
of the appropriate credentials against the satisfaction of the corresponding disclo-
sure policies, namely 7.4 and 7.5.

Paramedic()←
PublicHealthServiceAuthorization(Country = “UK”)
∧ GovernmentAuthorization(Country = “UK”)

(7.4)

7.5. NEGOTIATING RESOURCES IN A CRITICAL ENVIRONMENT 91

DoctorSpecialization()← ID(Country = “UK”) (7.5)

Again, the paramedic successfully joins the IAN, receiving the group member-
ship credential with the appropriate spectrum management policies for the role
Paramedic.

7.5.3 Adaptive Spectrum Frequencies Management

Radio frequency spectrum management can be based on centralized or distributed
architecture. In the centralized architecture, a central authority has the task to al-
locate the spectrum resources to the nodes of the cognitive radio networks. In
a distributed architecture, the various nodes must negotiate the allocation of the
spectrum frequencies on the basis of defined policies. A centralized architecture is
usually preferred in public safety, but it may not be possible in operational scenar-
ios where the communication infrastructure is degraded or destroyed or a central
authority is missing. This is often the case in the initial phases of the resolution of
an emergency crisis. For these reasons, we are going to describe the case of a dis-
tributed architecture where a central authority is missing. In what follows, we will
present, through an example, two protocols for the management of the spectrum
band, with respect to the role hierarchy introduced in Section 7.5.1 and enforced by
means of the authentication procedure described in Section 7.5.2. We will assume
the absence of a central authority.

Higher Role Enters and Leaves

The first example we present is about the arrival of a cognitive radio belonging to
a high-level role, for example a military radio.

The military entity requires radio communication with high quality of service
and resilience of the communications. As a consequence, the military radio must
negotiate, through a well defined protocol, the necessary spectrum resources with
other nodes in the network. Suppose the roles are ordered and that each role Ri is
assigned to a number ri. r1 > r2 means that r1 has a higher priority then r2 and
with rn the maximum value. The proposed protocol is the following:

When a user has to renegotiate the spectrum band allocated, it is forced to leave
or accept a lower quality of spectrum band. The decision about how the bandwidth
cut-off from each user in a given role rj is demanded to the policies defined in the
radio, by means of the group membership credentials. A reasonable requirement
is that the objective is to retrieve enough spectrum band to let the new higher role
radio to properly operate within the network. The modifications of the spectrum
band used by each radio are performed creating additional restrictive rules.

A related example is about how to handle the spectrum band associated with a
radio leaving the IAN. Different strategies are possible and we propose to reassign
the bandwidth among the existing groups by means of the following procedure: A
leaving radio notifies its role to the other radios. If no other radio is operating in

7.6. EXPERIMENTAL RESULTS 92

Data: ui, the user who joint the group; ri, the role assigned to ui
begin

if not enough bandwidth for ri requirements then
for j ∈ [rn, rn−1, . . . , ri+1] do

for uk ∈ rj do
notify uk to re-negotiate the level;
if enough bandwidth for ri requirements then

return

Algorithm 6: Protocol for finding enough spectrum band for a given user ui
of role ri

the same role, no answer is received. In such a case, the leaving radio notifies the
other radios of the IAN which initiate a negotiation to gain more spectrum band, as
stated in their initial role configuration, with respect to the requirements of higher
roles. The procedure followed by the remaining radio is presented by Algorithm 7.

Data: ui, the leaving radio the group; ri, the role assigned to ui, Fi, the
spectrum frequencies currently assigned to the role ri

begin
for j ∈ [ri+1, ri+2, . . . , rn−1, rn] do

Fj := spectrum frequencies currently assigned to role rj;
carFj := number of frequencies in Fj;
de f Fj := default spectrum frequencies required by role rj;
carDe f j := number of frequencies in de f Fj;
if carFj < carDe f j then

extract from Fi n frequencies, where n is the minimum between
(carFj − carDe f j) and the number of frequencies in Fi;
assign the n frequencies chosen to Fj;
remove the n frequencies chosen from Fi;
if Fi is empty then

return

Algorithm 7: Protocol for distribute the spectrum band released by leaving of
the radio ui, last representative of role ri

7.6 Experimental Results

We performed some experiment to evaluate the approach proposed in the current
scenario. Namely, we extended and adapted the Trust-X prototype, presented in
Appendix B, to provides the features described before and to better fit the scenario.

7.6. EXPERIMENTAL RESULTS 93

To run our experiments we used a network of two computers with the following
configurations:

• Linux, kernel 2.6.30, CPU 2.20GHz

• Macbook, OS 10.6, CPU 2.53GHz

In order to have a more realistic feedback from our experiments, we run them twice
on two different lightweight DBMSs, namely SQLite and MySQL. Such DBMSs are
deployed for the storage of credentials and disclosure policies.

First of all, we evaluated the time required by a new device to authenticate itself
in the IAN with respect to the number of credentials that have to be exchanged.

Figure 7.2 shows how Trust-X performances are linear to the number of cre-
dentials. More precisely, its performance depends on the structure of the disclosure
policies exchanged. The simpler negotiation, which involved the exchange of two
credentials, represented by a negotiation of the form A← B, it required in average
226 milliseconds, with a lower bound of 188 milliseconds. On the other hand, to
negotiate and exchange 50 credentials Trust-X required 3859 milliseconds.

Figure 7.2: Time required to authenticate with respect to the number of credentials
involved

According to the presented results, the negotiation illustrated in Section 7.5.2
required in average 265 milliseconds.

In another group of simulations, we evaluated the performance of the negotia-
tion protocol in different environments characterized by various sizes of the pop-
ulation of CR nodes and various levels of mobility. With the term mobility, we
mean the rate of topological changes of the CR network, for example, the number
of CR nodes leaving or entering the scenario in a specific time. This is an impor-
tant parameter on which evaluate the performance of a CR network. Public Safety
operational scenarios may be characterized by an high degree of mobility as new

7.6. EXPERIMENTAL RESULTS 94

public safety organizations appear or disappear from the context, radio links are
degraded by natural or man-made obstacles or because one or more CR nodes suf-
fer from technical failure of power exhaustion.

Because operational requirements impose specific timing constraints on the al-
location of spectrum resources, the negotiation protocol should not introduce large
delays in presence of an elevated mobility of the CR network. Because of this rea-
son, we evaluated the negotiation protocol again different populations of CR nodes,
with sizes ranging from 100 to 500 nodes. Figure 7.3 shows that the time required
is linear with the cardinality of the CR nodes in the network. The overall time used
by the negotiation protocol is still limited to few seconds even for networks of large
size (500 nodes). Such values are comparable to the timing constraints defined by
public safety operational requirements as in [89].

In the simulation we also introduced the delay of the communication of the
information itself. The lines in Figure 7.3 show different levels of mobility. Be-
cause the divergence of the lines is small in comparison to the overall time, another
graph was created to highlight the time difference for various levels of mobility
from the best case of a complete static CR network. In Figure 7.4 the line on the
X axis represents the static case, while the other curves represents increasing levels
of mobility. From the graph, we can see that even for high levels of mobility (50
CR nodes per second) the difference from the static case is only of few hundreds
milliseconds. This means that the negotiation protocol described in this paper is
minimally influenced by the level of mobility of the CR network. For large sizes of
the CR network, all lines are converging to the same value, as the percentage of the
CR nodes moving in or out the network is small when compared to the overall size
of the CR network. We can conclude that the rate of mobility of the nodes does not
heavily influence the performances of the negotiations.

Figure 7.3: Stability of the approach with respect of interferences

7.6. EXPERIMENTAL RESULTS 95

Figure 7.4: Stability of the approach with respect to mobility

Chapter 8

TN in On-line Social Network

8.1 A brief introduction to OSN access control

In our last application scenario, we applied the trust negotiation techniques previ-
ously presented extending an on-line social network access control mechanisms.

Similarly to other networks, an OSN SN can be represented as a labeled graph,
where each node denotes a user in the network, whereas edges represent the ex-
isting relationships between users, and their trust levels. Edge direction denotes
which node specified the relationship and the node for which the relationship has
been specified, whereas the label associated with each edge denotes the type of the
relationship. Figure 8.1 shows an example of OSN graph.

The number and type of supported relationships depend on the specific OSN
and its purposes; our only assumption is that there exists at least one relationship
type. We also assume that, if RT denotes the set of supported relationship types,
given two nodes A, B ∈ SN, there may exist at most |RT| edges from A to B (from
B to A, respectively), all labeled with distinct relationship types. We can now for-
mally define OSNs as follows.

Definition 8.1.1 (OSN). [28] An OSN SN is a tuple (VSN , ESN , RTSN , φSN), where
RTSN is the set of supported relationship types, VSN and ESN ⊆ VSN × VSN × RTSN
are, respectively, the nodes and edges of a directed labeled graph (VSN , ESN , RTSN , φSN),
whereas φSN : ESN → [0, 1] is a function assigning to each edge ESN a trust level t, which
is a rational number in the range [0, 1].

An edge e = vv′ ∈ ESN expresses that node v has established a relationship of a
given type rte ∈ RTSN with node v′.

In this chapter, we assume that OSN resources are protected according to the
model presented in [28]. According to this model, access control requirements of
OSN users are expressed in terms of access rules specified by resource owners. Ac-
cess rules denote authorized members in terms of the type, maximum depth and
minimum trust level of the relationships they must have with other network nodes.
Such constraints are expressed as a set of access conditions (v, rt, dmax, tmin), where

8.1. A BRIEF INTRODUCTION TO OSN ACCESS CONTROL 97

(colleagueOf, 0.3)

(colleagueOf, 0.8)

(friendOf, 0.4)

(colleagueOf, 0.5)

(colleagueOf, 0.3)

(friendOf, 0.4)

(friendOf, 0.4)

(colleagueOf, 0.3)

(colleagueOf, 0.7)
(colleagueOf, 0.6)

(friendOf, 0.2)

(friendOf, 0.8)

A

C

B

E

D

F

Figure 8.1: An example of OSN labeled graph

v is the node with which the requesting node must have a relationship of type rt,
whereas dmax and tmin are, respectively, the maximum depth and the minimum
trust level that the relationship must have. If v = ∗ and/or rt = ∗, v corresponds
to any node in the OSN and/or rt corresponds to any supported relationship type.
Whereas if dmax = ∗ and/or tmin = ∗, there is no constraint concerning the depth
and/or trust level, respectively.

Example 8.1.1. Referring to the OSN in Figure 8.1, suppose that Alice (A) holds a resource
r that she wants to share only with her colleagues or the colleagues of their colleagues
no matter of their trust level. She can encode such requirement by the following access
condition (A, colleagueO f , 2, ∗). Moreover, if a resource is protected by the following
access rule {(A, f riendO f , 1, 1)}, it means that it can be accessed only by A more trusted
direct friends.

In [28], access control is client-based, according to which the requester must pro-
vide the resource owner with a proof of being authorized to access the requested
resource. As access rules constraint relationships, the proof has to show the exis-
tence of a path in the network satisfying the constraints on depth and trust level
imposed by the rule. In order to generate valid proofs, it is assumed that a “rela-
tionship certificate” is associated with each relationship, containing information on
the relationship (i.e., users involved, trust, depth, type), which is signed by both
the involved users. A relationship certificate can be seen as a proof that between
the involved users there exists a direct relationship of a certain type and with a cer-
tain trust level. Proofs of indirect relationships can therefore be generated through

8.2. EXTENSION OF THE ACCESS CONTROL RULE DEFINITION LANGUAGE98

a set of certificates confirming the existence of a path of a specified type between
them. Certificates are managed by a trusted authority CS which is in charge of path
retrieval and delivering to a resource requester.

More details can be found in [28], here we just briefly recall the access control
protocol, which is graphically depicted in Figure 8.21, taken from [28], since it is
required in the following of the paper. The explanation of the protocol is provided
in Figure 8.3.

R O

CS

3.EPKCS
(ESKR

(AC(AR), N))

1.EPKO
(ESKR

(rid))

4.EPKR
(ESKCS

(CP, N))

2.EPKR
(ESKO

({(AR1, N1), . . . , (ARn, Nn)}))

5.EPKO
(ESKR

(rid,π, ESKCS
(CP, N)))

6.EPKR
(ESKO

(rsc))

Figure 8.2: Access control protocol. R is the node requesting a resource with iden-
tifier rid, O is the node owning the resource, whereas CS is the certificate server.

8.2 Extension of the access control rule definition language

In order to introduce trust negotiations in the framework presented in [28], we
need to first extend the language to specify access rules adapting – when required
– the definitions of Chapter 3. More precisely, we aim at extending the access rule
language in order to allow the inclusion of resources – or credentials – as conditions
in access rules.

Borrowing the definitions of resource conditions from Chapter 3, we are able to
extend the definition of access rules given in [28] (cfr. Section 8.1) to support both
resource and access conditions.

Definition 8.2.1 (Access rule). An access rule AR is a tuple (rid, AC) where rid is the
identifier of resource rsc, whereas AC is a set of access and resource conditions. Such set
AC expresses the requirements a node must satisfy in order to be allowed to access resource
rsc.

1In the figure, Ek(d) denotes the encryption of d with key k.

8.3. DYNAMIC RELATIONSHIPS AND TRUST LEVEL ADJUSTMENT 99

Resources associated with an access rule ar with AC(ar) = ∅ are always acces-
sible. Such resources are fundamental for the successful execution of trust negotia-
tions.

Definition 8.2.2 (Deliverable resource). We define a resource rsc identified by an iden-
tifier rid as deliverable resource – DELIV for short – if and only if, for each access rule
ar with rid(ar) = rid, AC(ar) = ∅.

With the introduction of resource conditions, we need to modify the protocol
described in Figure 8.3. More precisely, if the access rule AR exchanged in Step 2
contains a resource condition rc, the current access control procedure must tem-
porarily pause in order to perform the disclosure of the resource rn(rc). This is
achieved by extending the protocol in such a way that it takes advantages of the
features described in Chapter 3. The procedure is described in Figure 8.4.

Example 8.2.1. Suppose that Bob (B) asks to Alice (A) resource rsc, with identifier rid. A
defined for rsc the following access rule:

(rid, {(rsc′, {(att1,=, 5), (att2,<, 3)}), (rsc′′,∅)})
stating that, for the disclosure of rsc it is required that the requester provides a copy of

the resource rsc′, having attribute attr1 equal to 5 and attribute attr2 less then 3, and a
copy of the resource rsc′′.

Also suppose that B owns resource rsc′, with identifier rid′ and that the corresponding
access rule is:

(rid′, {(B, f riendO f , 4, 2)})
stating that, for the disclosure of rsc′ B requires the existence of a path between him and

the requester, labeled with the relationship friendOf with maximum depth 4 and having
trust value greater then or equal to 2. Moreover, the access rule defined by B for resource
rsc′′ is:

(rid′′, {(rsc′′′,∅)})
For simplicity, suppose that resource rsc′′′ is deliverable.
Therefore, if A is able to proof the path required by the above access rule, then B will

release rsc′. After having verified the validity of resource rsc′, finally, A will release the
resource rsc to B.

The negotiation tree built during the trust negotiation is presented in Figure 8.6.

8.3 Dynamic relationships and trust level adjustment

In a realistic setting, the outcome of a negotiation between two nodes in an OSN
may influence the trust level occurring between them. This may occur in a rather

8.3. DYNAMIC RELATIONSHIPS AND TRUST LEVEL ADJUSTMENT 100

natural way: namely, in the case the negotiation is successful, the trust level in-
creases, while, in the opposite case, the trust level is bound to decrease. Our aim in
this section is to show how to extend the model described in Section 8.1 in such a
way that negotiation outcomes influence trust levels of the participants in such ne-
gotiations. This is achieved by adding some private relationships to the OSN graph,
whose trust level is adjusted on the basis of the negotiations performed so far. Such
relationships can then be exploited to speed up subsequent access requests.

8.3.1 Trust computation

Since the trust relationship between two nodes is asymmetric, the trust level of
the first node towards the second and the trust level of the second node towards
the first are adjusted in an independent way, by the corresponding nodes. The
value of the updated trust level depends on – apart from the positive outcome of a
negotiation, of course – the relevance of the resources involved in the negotiation.
How a node measures the relevance of its own resources is a far from trivial matter
that would deserve a more in-depth investigation than the one presented here. In
the following, we limit the presentation on what is strictly needed in the context of
the present work.

Definition 8.3.1 (Relevance of a resource). Given a resource r of a node n protected by
an access rule ar, the relevance relar(r) of resource r given access rule ar is a numeric value
computed by aggregating the relevances of the access conditions contained in the access rule
ar. The aggregation function used for this purpose can be chosen from {sum, max, min}.

With respect to a resource protected by a set of access rules, our approach is
quite similar: suppose a resource r is protected by a set AR of access rules and that
with each access rule ari ∈ AR there is associated a corresponding relevance value
relari(r). Thus, the relevance relAR(r) of resource r with respect to the access rules
set AR is given by aggregating the relevances relari(r) using as aggregating function
a function in {sum, avg, max}, analogously to what has been done for computing
resource’s relevance with respect to a single access rule.

In the case that a resource r is not protected by any access rule, the relevance of
r is decided by the resource owner by simply assigning it a (possibly normalized)
numeric value.

Taking advantage of the concept of relevance of a resource, it is possible to mod-
ify the relationships of a user, and the trust levels associated to such relationships,
with respect to the resources granted and accessed. Note that such relationships
are local to the user, which means they are unknown to the CS.

If a negotiation for a resource r between two users A and B successfully ends,
then each user update her/his trust level relative to the other user. Such update de-
pends both on the relevance of the negotiated resource and the previously existing
trust level.

8.3. DYNAMIC RELATIONSHIPS AND TRUST LEVEL ADJUSTMENT 101

Namely, we propose to update the trust level according to the following equa-
tion:

φ(e) = φ′(e) + Relevance(r) · (1− φ′(e))

where φ is the function described in Definition 8.1.1, e is a the edge representing the
relationship whose trust level has to be updated. We denote the value of the func-
tion previous to the update with φ′. Similarly, if the negotiation fails to successfully
end then the trust level is updated to reflect such failure lowering the trust level
associated with the relationship. Algorithm 8 presents the procedure to update the
trust level of the relationships of the OSN interacting users. Note that, according to
our OSN model (cfr. Definition 8.1.1) the trust level of a relationship between two
users may depend on the type of the relation (for instance, I can trust a user more as
my friend than as my colleague). Therefore, once two nodes end a negotiation for
the first time, two dynamic edges are created between the two, of type disclosedTo and
receivedFrom, respectively to which the dynamic computed trust level is assigned.

The variations of the trust levels (a variation for each user) depend – apart
from the negotiation outcome – on the current trust levels of the negotiating users,
in such a way that the higher the trust levels, the lesser the variations. In other
words, if the users trust each other with an high degree, it will take a negotiation
involving highly relevant resources to significantly modify the corresponding trust
levels.

Data: (VSN , ESN , RTSN , φSN), the social network graph; rtO, rtR ∈ RTSN , the
relationship type for dynamic edges, respectively for the resource
owner and for the requester

Input: R requester id, O owner id, out ∈ {−1, 1} result of the negotiation, r
the resource requested by R

begin
if the edge e = (O, R, rt) does not exist in ESN then

Create eO = (O, R, rt);
ESN = ESN ∪ {eO};

Update φSN such that
φSN(eO) = φ′SN(eO) + (out · Relevance(r) · (1− φ′SN(eO)));
if the edge eR = (R, O, rt) does not exist in ESN then

Create eR = (R, O, rt);
ESN = ESN ∪ {eR};

Update φSN such that
φSN(eR) = φ′SN(eR) + (out · Relevance(r) · (1− φ′SN(eR)));

Algorithm 8: Updating of the social network graph’s edges and the associated
trust levels

We show our approach through the following example.

8.3. DYNAMIC RELATIONSHIPS AND TRUST LEVEL ADJUSTMENT 102

Example 8.3.1. Consider the scenario described in Example 8.2.1 and let us suppose Alice
(A) and Bob (B) never interacted before and that the access control procedure ends success-
fully. Let us also suppose that the resource r has relevance 0.5 for A and 0.3 for B.

After the successful ending of the access control procedure two new edges are added to
the OSN graph. The first one, from A to B, labeled with the relationship type disclosedTo
and the second one, from B to A, labeled with the relationship type receivedFrom. The
trust level associated with e = (A, B, disclosedTo) is computed as follows:

φ(e) = φ′(e) + (Rel(r) · (1− φ′(e)) = 0 + (0.5 · 1) = 0.5

On other hand, the trust level associated with e′ = (B, A, receivedFrom) is computed as
follows:

φ(e′) = φ′(e′) + (Rel(r) · (1− φ′(e′)) = 0 + (0.3 · 1) = 0.3

Consider, instead, a subsequent scenario in which B requests a resource r′ to A. Let
us suppose that such resource has relevance 0.3 for both users and that the access control
protocol fails. In such a case, the trust level associated with the edges e and e′ previously
introduced is modified as follows:

φ(e) = φ′(e)− (Rel(r′) · (1− φ′(e)) = 0.5− (0.3 · 0.5) = 0.35

φ(e′) = φ′(e′) + (Rel(r′) · (1− φ′(e′)) = 0.3− (0.3 · 0.7) = 0.09

8.3.2 Practical usage of dynamic relationships

The considered access control model does not limit the number of access rules that
may be associated with a given resource, and this may result in an increase of the
time required to process an access request. In this section, we show how it is pos-
sible to take advantage of the relationships introduced as a result of a negotiation
to speed up subsequent access requests. This is achieved by creating alternative
access rules, which exploit the relationship disclosedTo as a shortcut in the access
control procedure.

Let us explain how this works by means of an example.

Example 8.3.2. Suppose that Bob (B) wants to access the resource rsc which belongs to
Alice (A). Also suppose that the access rule defined by Alice is:

(rid, {(A, friendOf, 3, 0.6), (rid′, {(a = 5)})})
where rid is the resource identifier of rsc, and rid′ is the identifier of resource rsc′. Note

that the resource condition (rid′, {(a = 5)}) indicates that, to be satisfied, the resource rsc
must have an attribute name a whose value is 5.

Such access rule states that, if there exists a path between Alice and Bob, labeled by the
friendOf relationship, with maximum depth 3 and with a trust level greater than or equal
to 0.6 and if Bob releases to Alice resource rsc′, then he can access rsc.

8.3. DYNAMIC RELATIONSHIPS AND TRUST LEVEL ADJUSTMENT 103

Let us suppose that Bob accesses resource rsc, thus satisfying the access rule. Because
of this, a relationship of type disclosedTo between Alice and Bob with trust level 0.7 is
created. Also suppose Alice defined the following access rule for rsc:

(rid, {(A, disclosedTo, 1, 0.5)})

After some time, Bob requires again to access resource rsc. After the request from Bob,
Alice verifies the existence of the relationship of type disclosedTo with Bob, having a trust
level greater than 0.5. Thus, Alice grants access to the resource rsc to Bob without contact-
ing CS and without negotiating for rsc′.

Clearly an important issue when dealing with the introduced dynamic relation-
ships concerns their lifespan. To avoid misuse of the access rules exploiting such
relationships, we associate with each dynamic relationship a time limit after which
the relationship is removed from the OSN’s graph. Such time limit is user-defined,
but it directly depends on the trust level of the relationship, in such a way that the
expiration of the relationship is obtained as

expe = tl · φSN(e)

where e is an edge with rt(e) equal to disclosedTo or receivedFrom, φSN is the function
which associates the trust level with each edge, and tl is the time limit defined
by the user v(e) (see Section 8.1). Note that such time limit is renewed after each
interaction between the users which modify the trust level associated with the edge.

Example 8.3.3. Consider, again, the scenario presented in Example 8.3.2. Supposing
the time limit tl defined by Alice is 10 days, the relationship identified by the edge e =
(A, B, disclosedTo) expires after 10 · φSN(e) = 7 days.

Another way to use dynamic relationships is to improve the probability that
a user can access a required resource. Consider a user B who requires to access
a resource rsc. If B has requested the same resource to another user A, in a near
past, then she/he would try to request the same resource from the same user A
to improve the chances to get it. Hence, the relationship receivedFrom acts as a
reminder of past interactions with the users of the OSN. Moreover, considering
that a resource can, and probably will, be owned by more than a single user in the
OSN, requesting such resource from a trusted user would further slightly improve
the chances of a successful interaction.

A natural consideration which came out from the presented usage of the re-
lationship types deliveredTo and receivedFrom is that relationships of such types are,
somehow, too general. Indeed, a relationship which refers directly to the negotiated
resource would be more significative. However, choosing to keep a fine-grained
history of all the transactions between users of the OSN would result in an explo-
sion of private relationships; consider, for example, the number of distinct resource
disclosures which took place between two Facebook’s users. To address such issue,
we propose that the users specify in their preferences a set of relationship types

8.4. COMPLEXITY ANALYSIS 104

which keep track of the access to specific key resources, such as rare or high value
ones, or those more frequently accessed. In such a way, it is possible to customize
the number of relationships that are inserted in the OSN graph as an outcome of
trust negotiations.

8.4 Complexity analysis

We now discuss the complexity of the proposed access control protocol.
As explained in [28], Step 4 (see Figure 8.3) represents the most expensive task

of the protocol. More precisely, during such step, given an access rule ar, CS dis-
covers the shortest certificate paths referring to the set of access conditions AC(ar)
received by the requester node. This is achieved by exploring the OSN’s graph.
Such operation requires either O(VSN + ESN) or Θ(VSN + ESN) time complexity,
depending on the used search technique, for each ac ∈ AC(ar). However, it is
possible to reduce the size of the graph which has to be explored taking advantage
of the constraints on the relationship type and depth specified in the access condi-
tions. Hence, in the general case, the time complexity required to evaluate an access
condition ac is O(∑rt∈RT(ac)(VSNrt + ESNrt)), where RT(ac) is the set of relationship
types specified in the access condition ac and VSNrt , ESNrt are, respectively, the sets
of nodes and edges of the OSN’s graph with relationship type rt. Finally, since an
access rule consists of one or more access conditions, evaluating an access rule ar
requires O(∑ac∈AC(ar) ∑rt∈RT(ac)(VSNrt + ESNrt)). We refer to [28] for a more detailed
discussion about the results here reported.

To analyze the time complexity of the Trust-X framework we need to analyze
the interactions between the negotiating users in each phase composing the nego-
tiation.

During the introductory phase a fixed number of messages are exchanged, de-
pending on which features of the Trust-X framework are used, therefore the time
complexity is constant.

The subsequent phase, the policy evaluation phase, is the most time consum-
ing one, because it is the one in which the policies which compose the negotiation
tree are exchanged. The number of messages exchanged is therefore linear with
respect to the height of the tree while the size of the message exchanged in each
turn i is linear to the number of nodes of the tree at deep i. Hence, given an OSN
(VSN , ESN , RTSN , φSN), the execution of the policy evaluation phase between two
nodes A, B ∈ VSN requires O(|RA|+ |RB|) messages, where |Ru| is the number of
resources owned by node u ∈ VSN .

The credential exchange phase is where the required resources are actually ex-
changed. As mentioned in Chapter 3.6, the resources which have to be exchanged
in order to successfully end the negotiation are the nodes of the selected valid view.
Such valid view is a subtree of the negotiation tree constructed during the policy
evaluation phase. Hence, the height of the valid view is at most the height of the
negotiation tree. Thus, we can state that the credential exchange phase requires at

8.5. EXPERIMENTAL RESULTS 105

most O (|RA|+ |RB|) messages.
Globally, a trust negotiation executed between two nodes A and B of an OSN

requires at most 2 ·O (|RA|+ |RB|).
Considering the composition of the two frameworks, it is possible to state that

the overall time complexity to evaluate an access rule ar is given by the maximum
between the time complexity to evaluate the same access rule purged of resource
conditions, and the maximum time complexity to negotiate, in parallel, the previ-
ously mentioned resource conditions. Such computational parallelism is ascribable
to the fact that the negotiation for each resource condition is independent from the
others. Similarly, the proof computed by CS is independent from the negotiations,
therefore they can be simultaneously computed.

8.5 Experimental Results

The evaluation of the proposed approach has been preliminary done performing
several experiments using a Trust-X prototype described in Appendix B. The in-
tegration with the access control mechanism described in [28] is currently under
development. To run our experiments we used the the same experiment environ-
ment described in Chapter 7.6. In a social network scenario, the crucial point is the
capability of the system to scale. Therefore, we performed a series of tests in order
to evaluate the scalability of our prototype with respect to the number of parallel
negotiations. To be able to compare the results, we performed a crescent number
of parallel negotiations. Each trust negotiation involves the same resources and,
therefore, the same access rules. The results are presented in Figure 8.7.

8.5. EXPERIMENTAL RESULTS 106

1. R submits to O an access request for resource rsc, with identifier rid.

2. If the resource is public, access is granted. Otherwise, O returns to R the set
of access rules AR = {AR1, . . . , ARn} regulating the access to rsc. With each
access rule ARi ∈ AR, i ∈ [1, n], a distinct nonce value Ni is associated as a
session identifier.

3. R chooses from AR an access rule ar and sends CS the nonce value N associ-
ated with ar and the corresponding condition set AC(AR). More precisely,
since the certificate server CS has only to discover the shortest certificate
paths referring to the relationships denoted by AC(AR), whereas the re-
questor is in charge of trust computation, for each ac ∈ AC(AR), R sends
CS a modified version of the corresponding set AC(AR) of access conditions
(denoted AC(AR)), where the tmin component of each ac ∈ AC(AR) is set to
NULL.

4. CS returns R the set CP of shortest certificate paths, if any, related to the re-
lationship constraints expressed by the access conditions in AC(AR), along
with the nonce N associated with AR; otherwise, CS returns a failure mes-
sage. In the latter case, R goes back to step 3 and chooses another access
rule, until CS returns the set CP , if any, or all the access rules have been
processed.

5. Based on the certificate paths in CP , R tries to generate a proof π of the
existence of a path satisfying ar.

If a proof is not obtained, R goes back to Step 3 and chooses another access
rule; otherwise, he/she sends O a message, which contains the resource
identifier, the proof π, and the certificate paths obtained from CS. CP and
N are kept encrypted with the private key of CS in order to grant their au-
thenticity.

6. O sends R the requested resource in case the proof π is valid and the nonce
value N corresponds to the correct session identifier. Before granting access
to the resource, O can locally check whether the set of assertions used in
the proof are actually derived from the received certificate paths in CP , by
performing the same steps done by the requestor for proof generation.

Figure 8.3: Description of the access control protocol depicted in Figure 8.2

8.5. EXPERIMENTAL RESULTS 107

3.0 R chooses from AR an access rule ar.

3.1 For each resource condition rc ∈ ar, R starts a trust negotiation procedure
according to the protocol described in Figure 8.5.

3.2 If one of the trust negotiations does not terminate successfully then R re-
turns to Step 3.0.

3.3 R sends CS the nonce value N associated with ar and the corresponding
condition set AC(ar).

Figure 8.4: Modification to the access control protocol in Figure 2 to support trust
negotiations

Let O be the resource owner, R be the resource requester and rc be the resource
condition requested by R.

1. O initiates a negotiation tree rooted with rn(rc).

2. O sends R all the access rules ar, where rn(ar) = rn(rc) and add all the
access rules to the negotiation tree as leaves of the root. More precisely,
each rule is added as an AND-node

3. If there exists a subtree of the negotiation tree consisting only of AND-
nodesa and with leaves only labeled as DELIV then go to Step 6 else, for
each access rule ar received, R sends O the access rule corresponding to the
resources in ar. Moreover, R adds the rules to a local copy of the negotiation
tree.

4. If there exists a subtree of the negotiation tree consisting only of AND-nodes
and with leaves only labeled as DELIV, then go to Step 6 else, for each
access rule ar received, O sends to R the access rule corresponding to the
resources in ar and it updates the negotiation tree adding the rules sent.

5. Go to Step 3

6. The party which found a subtree of the negotiation tree with leaves labeled
as DELIV communicates the counterpart to switch to the credential ex-
change phase using the identified subtree as valid view.

7. The parties iteratively send to the counterpart the resources, one level at
a time, beginning from the max level, and according to the owner of the
resources.

aA node n is defined AND-node if it is part of a multi-edge (see Definition 3.6.1 in Chapter 3.6).

Figure 8.5: Trust negotiation protocol

8.5. EXPERIMENTAL RESULTS 108

rsc

rsc' rsc''

B
friend
Of

rsc'''

Figure 8.6: Negotiation tree for Example 4.1

Figure 8.7: Scalability of the prototype with respect to the number of simultaneous
trust negotiations

Chapter 9

Conclusions and future work

In this thesis we formalized an highly expressive resource negotiation language,
able to support the specification of a large variety of conditions applying to single
peers or groups of peers. Such language have been shown to be very flexible and
to be easily adapted to different application scenarios.

We have also proposed a novel peer group joining protocol based on negotia-
tions. Furthermore, we have presented an event-based resource availability check-
ing protocol.

We implemented the resource negotiation language and the corresponding pro-
tocols in the JXTA P2P platform, thus providing a resource negotiation-based Mem-
bership Service. We have therefore extended the current monitoring mechanisms
supported by JXTA with event handling capabilities, that enable the execution of
specific actions when a specific event is detected.

In order to support the detection of such events we have introduced special
peers, and proposed a simple approach to elect and manage them. Clearly, the ex-
istence of such peers in charge of controlling the validity of the strong formulae
can raise some security problems. Peers may abuse of their power to validate for-
mulae which are false, or not provide the functionalities they committed to. Such
type of security threats can be controlled by means of techniques well known in the
distributed system community and we are currently developing a fully distributed
membership service taking advantage of technologies such as DHTs.

Further, we notice that the current approach still suffers of some potential prob-
lems that are typical of trust negotiations: malicious peers may purposely run ne-
gotiations to gather other peers’ credentials, declaring to qualify for policies when
they actually do not or share fake credentials/policies. These issues are partly ad-
dressed by the new stringent controls and verification protocols introduced with
the Group Manager. Techniques such as those proposed in [50, 64] could be lever-
aged to further reduce the risks of misuse, and are object of our future work.

In this thesis we have also presented a multi-session dependable approach to
trust negotiations. The proposed framework supports voluntary and unpredicted
interruptions, enabling the negotiating parties to complete the negotiation despite

110

temporary unavailability of resources. In designing the protocols, we have care-
fully considered all possible issues related to validity, temporary loss of data, and
extended unavailability of one of the two negotiators.

To this extent, we further introduced protocols for mobile negotiations. Using
the enhanced version of Trust-X , a peer is able to suspend an ongoing negotiation
and resume it with another (authenticated) peer. Negotiation portions and inter-
mediate states can be safely and privately be passed among peers, to guarantee the
stability needed to continue suspended negotiations.

The proposed procedures and protocols for suspension and recovery of multi-
session, mobile trust negotiations do not impose a large overhead in terms of ex-
changed messages among peers and computations at the peers. The overall com-
putational overhead is linear in the size of the exchanged policies and credentials,
while the communication overhead, expressed as the number of exchanged mes-
sages, is (a fairly low) constant. Such linear dependency holds for messages’ sizes
as well. We remark that the most critical of such quantities is the number of ex-
changed messages because the network is often a bottleneck (especially in the case
of mobile clients). Nevertheless, our solution requires a fixed number of messages,
whose sizes linearly depends from the size of the negotiation tree built until the
suspension.

The proposed framework is effective in managing complex, real-world nego-
tiations involving long chains of mutual requests, possibly among more than two
parties. We remark that the protocols presented in this work can be applied to any
trust negotiation system that adopts a multi phase negotiation protocol. It is part
of our future work to investigate how to migrate the membership service protocol
any general trust negotiation infrastructure.

Using the techniques proposed in this thesis to the critical infrastructure en-
vironment shown us as the X -RNL language here described satisfies the require-
ments presented in Chapter 6.2.1 for critical infrastructure information sharing sys-
tems. In fact, such negotiation language enables to express exchange policies and
constraints, introducing formal mechanisms allowing to assign different level of
trust to the actors of the sharing network, on the basis of the required informa-
tion. Moreover it allows to model the concept of partial information sharing, i.e.
the possibility to release only portions of a target information, on the basis of the
identity and of the properties of the requesting actor.

By adopting such language it is possible, to create a distributed network of
peers layered and clustered according to different kinds of characteristics. They
can freely and securely exchange information about critical infrastructure preserv-
ing at the same time the strong constraints related to the confidentiality of such
information. Figure 9.1 shows for example the case described in Chapter 6.2.1: the
peers are organized into country clusters; they can negotiate and exchange directly
some information with members of the same or different cluster, and indirectly by
leaving the negotiation tasks to the government peers.

The present work leaves obviously opened some questions which are typical
and not definitively solved in the information sharing world:

111

Figure 9.1: High level Information Exchange Network schema

(i) The owner of a released information loses any control over the released copy,
i.e. she/he cannot force the actor which receives the information to apply the
same distribution criteria on such information while requested to distribute
it by a third actor.

(ii) The system is, at the moment, prone to data-mining analysis attacks. In fact
by using such techniques, could be possible for a malicious actor, to use in-
formation obtained legally in order to guess information for which he has not
any access right.

The first problem could be solved for example by implementing some reputation
mechanism, while for the second, some statistical disclosure control and privacy pre-
serving data-mining mechanisms can be identified and applied. We plan for the
future, to address such issues. Moreover, we plan to implement a fully working
peer-to-peer prototype of the presented architecture, in order to conduct an exten-
sive on filed working test.

Moreover, we presented an approach for managing accesses in cognitive radio
networks, when deployed in scenarios having conflicting requirements like a) se-
curity needs and b) high flexibility in managing dynamic reconfigurations. The
proposed solution builds on the concept of trust negotiation, a well-known and ac-
cepted approach in the access control research area. We have defined a negotiation
language for managing access control in a cognitive radio network and we applied
it to a real-world critical scenario. Finally, we reported promising experimental
results, showing the effectiveness of our approach.

With respect to our last application scenario, we have presented an extension
of the framework introduced in [28], aimed at the integration of trust negotiations
with an access control mechanism for resources in OSNs. This has been achieved
by properly extending the language for expressing access control policies and in-

112

tegrating the relevant features of the Trust-X framework. Moreover, a feedback
mechanism that takes into account the outcome of a trust negotiation between two
nodes to dynamically set their trust level has been presented. Finally, several ex-
periments have been carried out in order to show the feasibility of our approach.
Further extensions we plan to work on are related to the automatic setting of the
lifetime of dynamic relationships, the automatic identification of key resources and
to the development of methods to compute the relevance of a resource.

Appendix A

Cryptographic protocols

In the following chapter we will summarize some well-known cryptographic pro-
tocols used all along the thesis.

A.1 Pedersen commitment protocol

A commitment protocol is a method that allows a party, referred to as the prover,
to commit to a value to another party, referred to as the verifier, while keeping
it hidden and preserving the prover’s ability to reveal the committed value later.
First introduced in [83], the Pedersen Commitment scheme is an unconditionally
hiding and computationally binding commitment scheme which is based on the in-
tractability of the discrete logarithm problem. We describe how it works as follows.

Setup A trusted third party T chooses a finite cyclic group G of large prime order
p so that the computational Diffie-Hellman problem is hard in G. In what follows
we assume G is multiplicative. T chooses two generators g and h of G such that it is
hard to find the discrete logarithm of h with respect to g, i.e., an integer α such that
h = gα. Note that T may or may not know the number α. T publishes (G, p, g, h) as
the system’s parameters.

Commit The domain of committed values is the finite field Fp of p elements,
which can be implemented as the set of integers Fp = {0, 1, . . . , p?1}. For a party U
to commit a value m ∈ Fp, U randomly chooses r ∈ Fp and computes the commit-
ment as

c = gmhr ∈ G (A.1)

Open U shows the values m and r to open a commitment c. The verifier checks
whether c = gmhr.

A.2. SHAMIR’S SECRET SHARING SCHEME 114

A.2 Shamir’s Secret Sharing Scheme

Secret sharing refers to methods for distributing a secret amongst a group of partic-
ipants, each of which is allocated a share of the secret. An example of secret shar-
ing, which we adopt in Chapter 5 and Section B.12.1 the (k, n) threshold scheme
by Shamir [95]. Such a scheme splits a secret S into n partial secrets so that k, with
k < n, partial secrets are required to reconstruct S. The scheme works as follows.

• (k-1) random coefficients {a1, . . . , ak−1} are chosen.

• A polynomial f (x) = ao + a1x + a2x2 + . . . + ak−1xk−1, with a0 = S, is gener-
ated.

• Based on f (x), n shares are constructed. Each share is of the form (i, f (i))
where i is the input to the polynomial and f (i) the output. Given any subset
k of these pairs, the coefficients of the polynomial can be evaluated using
interpolation. The secret, that is, a0 = S can thus be determined.

A.3 Damgård-Fujisaki commitment scheme and auxiliary pro-
tocols

Here we describe another set of commitment protocols we used in our approach:
the protocols by Damgård and Fujisaki [35]. The basic steps of the protocols are the
following:

Setup On input s (the security parameter) the outputs are:

a) an RSA modulus n = pq, such that p = 2p′ + 1 and q = 2q′ + 1 , where p, p′,
q, q′ are primes;

b) a random h ∈ QRn, where QRn denotes the set of quadratic residues modulo
n;

c) a random g ∈ 〈h〉, where 〈h〉 denotes the group generated by h. Thus the
public parameters generated by the setup phase are n, g, h.

Commit To commit an m ∈ Z, the prover randomly chooses r ∈ Z and computes

commit(m, r) = gmhr mod n = c (A.2)

Open To open a commitment c, the prover reveals m and r to the verifier which
checks whether

c = gmhr mod n (A.3)

A.4. FIAT-SHAMIR HEURISTICS 115

A.3.1 Proofs of knowledge

In many applications, such as in the trust negotiation protocol described in Chap-
ter 5, revealing the committed value is not always required. Instead, it is sufficient
that the prover proves to the verifier that it knows the committed value. Several
such protocols, referred to as proofs of knowledge have been proposed. In our ap-
proach, we specifically need the following two proofs of knowledge:

1. a committed value is equal to a given value: given public parameters n, g, h of the
Damgård-Fujisaki commitment scheme, a commitment c and an integer m′,
the prover proves the knowledge of m and r such that c = gmhr and m = m′.
Following the usual notation, we denote the protocol with:

PK{(m, r) : c = gmhr ∧m = m′} (A.4)

We detail a well-known realization of such protocol as from [35]:

i) The prover randomly chooses integers y ∈ [0, . . . , TC2s), t ∈ [0, . . . , 2B+2s),
where T is an arbitrarily large integer constant, C is an integer super-
polinomially greater than s but smaller than the order of 〈h〉 and B is
an integer is an integer polynomially greater than s. The prover sends
d = gyht and y to the verifier.

ii) The verifier chooses a random integer e ∈ [0, . . . , C) and sends it to the
prover.

iii) The prover sends to the verifier v = t + er. The verifier computes u =
y + em′ checks whether guhv = dce

2. a committed value lies in a given interval: given public parameters n, g, h of
the Damgård-Fujisaki commitment scheme, a commitment c and integers m′

and m′′, the prover proves the knowledge of m and r such that c = gmhr and
m′ ≤ m ≤ m′′. Following the usual notation, we denote the protocol with:

PK{(m, r) : c = gmhr ∧m′ ≤ m ≤ m′′} (A.5)

A well-known example of such a protocol is found in [22].

A.4 Fiat-Shamir heuristics

In a non-interactive version of the above proofs of knowledge, the prover, instead
of receiving a random challenge from the verifier (step ii) in the above protocol,
generates by itself such random value by taking the output of a cryptographic hash
function H [43]. The non-interactive version of the above protocol is:

i) The prover randomly chooses integers y ∈ [0, . . . , TC2k), s ∈ [0, . . . , 2B+2k),
where T is an arbitrarily large integer constant, C is an integer superpolino-
mially greater than k but smaller than the order of 〈h〉 and B is an integer is an
integer polynomially greater than k. The prover sends d = gyhs, H(d) (where
H is a cryptographic hash function), v = s + H(d)r and y to the verifier.

A.4. FIAT-SHAMIR HEURISTICS 116

iii) The verifier computes u = y + H(d)m′ checks whether guhv = dce.

If we assume the (widely accepted) random oracle hypothesis, the modified pro-
tocol is a zero-knowledge proof of knowledge, that is, the prover proves to the
verified the knowledge of the secret without leaking any information to the veri-
fier [22].

We adopt the commitment scheme by Damgård-Fujisaki because it fits trust ne-
gotiation requirements. First, it imposes fewer constraints on the input than other
schemes: it accepts as valid input an arbitrary integer (and not only a group mem-
ber, as in the case of the Pedersen commitment scheme [83]); second it has efficient
knowledge proofs that a committed value is equal to a given value and that a com-
mitted value lies in a given interval. This last property is used in our approach to
test whether a committed value is less than a given value.

Appendix B

Implementation

Aim of this appendix chapter is to provide an overview of the architectural design
of the Trust-X framework described in the previous Chapters.

B.1 Prototype evolution

The original Trust-X prototype has been implemented by the University of Mi-
lano. It as been initially presented in [13]. During the recent years it has been
extended in order to support trust negotiation recovery [105], it has been converted
into a web-service[101] and eventually extended to support resource negotiations
between peers’ groups [104]. In order to support such features and to ease the in-
tegration of future extensions, the code of Trust-X prototype has been thoroughly
re-factorized and in large parts completely rewritten. This work documents the cur-
rent architectural layout of the Trust-X prototype, as resulted from the refactoring
and rewriting steps.

B.2 Architecture Overview

The Trust-X prototype has been implemented using Java 1.6 [77]. It supports
the trust negotiation language presented in [105] and the following evolutions de-
scribed in the previous chapters and in [102, 106, 104, 25, 24, 8].

The source code has been organized in several packages according to the func-
tionalities provided. Such packages are the following:

• communicationLayer, it provides a defined set of methods used by the upper
layers to communicate with the other peers;

• database, it provides a standard interface for the database used in the differ-
ent installations;

• parser, it provides a parser for the XML documents exchanged during the
trust negotiation;

B.2. ARCHITECTURE OVERVIEW 118

• trustx, it provides the classes required for the execution of a Trust-X negoti-
ation. It also contains the packages of the different phases and the packages
for some other features:

– gui, it provides a simple graphical user interface to configure and exe-
cute a client peer of a Trust-X trust negotiation;

– introductoryPhase, it provides the interface and the required classes to
execute the introductory phase;

– policyEvaluation, it contains interfaces and classes required to per-
form the policy evaluation phase;

– credentialExchange, it provides the features required by the credential
exchange phase;

– treemanager, it contains the classes for the management of the negotia-
tion tree;

– groupmanager, it contains the classes required to collaboratively verify
the availability of the peers of the group and of the resources they stated
to provided to the group.

– commitmend, such package contains the interfaces and some implemen-
tations of the commitments required by the long running trust negotia-
tions.

Figure B.1: The high level class diagram of the Trust-X framework

The parser package contains the classes required for parsing, validating and
creating the documents used in the trust negotiation and is therefore. It validates
both X -TNL and X -RNL languages by means of a set of XML schemas.

To provide an easier way to create a trust negotiation, we implemented a Graph-
ical User Interface (GUI) which provides a simple interface for the configuration
and the the execution of a client peer for the Trust-X . Figure B.2, B.3 and B.4 show
respectively, the main window, how to configure the database connection and the
communication layer which will be used.

B.2. ARCHITECTURE OVERVIEW 119

Figure B.2: The main window

Figure B.3: The dialog to configure the connection with the database

B.3. COMMUNICATION LAYER 120

B.2.1 Example of execution

An example on how to execute the Trust-X framework is provided by two targets
within the ant config file (build.xml), contained in the source distribution. Such
targets are testServer and testClient.

The results of the execution of such targets is show in Figure B.5.

B.3 Communication Layer

The communication layer is contained in the communicationLayer package. Such
package contains the interface CommunicationLayer which every real communica-
tion layer has to provide.

Such interface is handled by the CommunicationLayerManager, which is in charge
for returning the actual implementation of the configuration obtained as parameter
of the static method getCommunicationLayer().

The interface CommunicationLayer provides a core set of methods, necessary to
allow the interactions of the parties involved in the trust negotiation. Such inter-
face, shown in Figure B.6, provides the following methods:

So far, there are three classes implementing the CommunicationLayer interface:

1. CommunicationLayerOverJXTA, a communication channel exploiting the JXTA
network,

2. CommunicationLayerOverIPv4, a communication channel which uses TCP/IP
socket, and

3. CommunicationLayerOverIPv4SSL, a communication layer which uses a socket
connection protected with the SSL protocol.

B.4 Database

Besides the communication layer, an abstract class regarding the database used
by parties has been written. This has been achieved by means of the interface
Database. Such interface provides the methods required to retrieve the credentials
and the policies used in a Trust-X negotiation.

In order to support a new DBMS, it is required to extend the Configuration

class to handle the connection URI required by the DBMS.
By means of the method getDatabaseInstance(), the class Configuration

will create an object of a class, which depends on the DBMS, implementing the
Database interface.

The Database interface, shown in Figure B.8, provides the method required to
search and retrieve the resources present in the database and to retrieve the associ-
ated policies.

B.4. DATABASE 121

Figure B.4: The dialog to configure the communication layer

Figure B.5: Example of execution of the Trust-X framework

B.4. DATABASE 122

1public i n t e r f a c e CommunicationLayer {
2public Configurat ion getConf igurat ion () ;
3public void open () throws UnknownHostException ,
4IOException ;
5public void c l o s e () throws IOException ;
6public Message readMessage () throws IOException ;
7public void writeMessage (Message msg)
8throws IOException ;
9

10}

Figure B.6: The interface CommunicationLayer

Figure B.7: The class diagram of the package communicationLayer

1public i n t e r f a c e Database{
2public void se tConf igura t ion (Configurat ion conf)
3throws Inval idConf igurat ionExcept ion ;
4public Configurat ion getConf igurat ion () ;
5public void connect () throws NullPointerException ,
6IOException ;
7public i n t searchResource (S t r i n g s t r)
8throws ResourceNotFoundException ,
9IOException , C e r t i f i c a t e E x c e p t i o n ;
10public OurDocument getResource (i n t c id)
11throws ResourceNotFoundException ,
12IOException , C e r t i f i c a t e E x c e p t i o n ;
13public OurDocument searchAndGetResource (S t r i n g s t r)
14throws ResourceNotFoundException ,
15IOException , C e r t i f i c a t e E x c e p t i o n ;
16public OurDocument readPol icy (i n t c id)
17throws IOException , C e r t i f i c a t e E x c e p t i o n ;
18public OurDocument searchAndReadPolicy (S t r i n g resource)
19throws ResourceNotFoundException ,
20IOException , C e r t i f i c a t e E x c e p t i o n ;
21}

Figure B.8: The interface Database

B.5. INTRODUCTORY PHASE 123

Figure B.9: The class diagram for the database package

If the negotiation is performed not by two peers but by a peer and a group,
the Group Manager, described in Section B.10.1, needs to access a modified version
of the Database interface. Such interface is called DatabaseGroup, shown in Fig-
ure B.10, and is obtained by calling the method getDatabaseGroupInstance() of
the Configuration class. The methods provided by the DatabaseGroup interface
in addiction to the ones provide by the Database interface have been introduced to
perform searches of resources and policies among the ones belonging to the group.

The supported DBMS supported up to now are the following:

• Oracle[79],

• MySQL[78],

• PostgreSQL[84] and

• SQLite[99].

B.5 Introductory Phase

The introductory phase is the first phase of the trust negotiation provided by Trust-
X . Such phase is in charge of performing the tasks required to synchronize the
peers involved in the negotiation and, according to the implementation used in the
current deployment, perform optional tasks such as find an agreement upon the
resource to be negotiated, recover a previously suspended (both voluntarily and
accidentally) negotiation and so on. The interface IntroductoryPhase provides a
common set of methods to be used by the peer involved in the negotiation but each
class implementing the IntroductoryPhase interface may provide more advanced
methods.

The classes implementing such interface are the following:

B.5. INTRODUCTORY PHASE 124

1public i n t e r f a c e DatabaseGroup {
2public void se tConf igura t ion (Configurat ion conf)
3throws Inval idConf igurat ionExcept ion ;
4public Configurat ion getConf igurat ion () ;
5public void connect () throws Inval idConf igurat ionExcept ion ,
6IOException ;
7public OurDocument searchAndReadPolicy (S t r i n g resource)
8throws ResourceNotFoundException ,
9IOException ,
10C e r t i f i c a t e E x c e p t i o n ;
11public OurDocument readPol icy (i n t c id)
12throws IOException ,
13C e r t i f i c a t e E x c e p t i o n ;
14public OurDocument searchAndReadGroupPolicy (S t r i n g resource ,
15i n t q u a n t i f i c a t i o n)
16throws ResourceNotFoundException ,
17IOException ,
18C e r t i f i c a t e E x c e p t i o n ;
19public i n t addPeer (S t r i n g u r i) throws IOException ;
20public i n t [] searchResources (S t r i n g s t r , i n t q u a n t i f i e d)
21throws ResourceNotFoundException ,
22IOException , C e r t i f i c a t e E x c e p t i o n ;
23public i n t searchResource (S t r i n g s t r) throws
24ResourceNotFoundException ,
25IOException , C e r t i f i c a t e E x c e p t i o n ;
26public OurDocument getResource (i n t r es)
27throws C e r t i f i c a t e E x c e p t i o n , IOException ;
28public i n t getOwnerResource (i n t r es)
29throws IOException , C e r t i f i c a t e E x c e p t i o n ;
30public i n t addResource (S t r i n g uri , OurDocument res ,
31OurDocument pol icy , boolean necessary) throws IOException ;
32public void addStrongRequest (i n t peerId , i n t r es I d)
33throws IOException ;
34public void addStrongRequest (i n t peerId , i n t resId , i n t time)
35throws IOException ;
36public boolean t e s t S t r o n g R e q u e s t V a l i d i t y (i n t peerId , i n t r es I d)
37throws IOException ;
38public DatabasePostcondit ions removePeer (S t r i n g u r i)
39throws IOException ;
40public DatabasePostcondit ions removeResource (
41S t r i n g uri , S t r i n g resource) throws IOException ;
42public i n t getPeersNumber () throws IOException ;
43}

Figure B.10: The interface DatabaseGroup

B.6. POLICY EVALUATION PHASE 125

• DummyIntroductoryPhase, a simple implementation created for debug pur-
poses.

• RebateIntroductoryPhase, such class implements the rebate formulae dur-
ing the introductory phase, as described in [24, 25] and in Section 6.1.

• RecoveryIntroductoryPhase, this class implements the resume / recovery
phases described in [106] and in Chapter 5. It will be better described in
Section B.12.

• StandardIntroductoryPhase, this class implements all the above features.
This implementation is the one which should be used in a real deployment of
the Trust-X framework.

B.6 Policy Evaluation Phase

The policy evaluation phase occurs when each peer involved in the negotiation
sends disclosure policies to the other peer upon the request of a resource. It termi-
nates when the peers find a deliv subtree within the current negotiation tree (see
Section B.8 and [13]).

The methods required by such phase are provided by means of the interface
PolicyEvaluation, as show in Figure B.11.

1public i n t e r f a c e Pol i cyEvaluat ion {
2public void evaluateTree (Tree t r e e) throws IOException ;
3public boolean searchAnotherValidView () throws IOException ;
4public Lis t<Tree> getLastValidViews () ;
5public boolean proposeValidViewC (boolean b) throws IOException ;
6public boolean proposeValidViewS (boolean b) throws IOException ;
7}

Figure B.11: The interface PolicyEvaluation

A negotiation can be performed between two single peers and between a peer
and a group of peers. This fact required the creation of two distinct classes imple-
menting the interface PolicyEvaluation.

A trust negotiation is normally a symmetric process, which means that both
involved parties perform the same operations in order to execute the trust negoti-
ation. The introduction of the possibility to perform a negotiation between a peer
and a group of peers removes this symmetry. Therefore, the method required for
a P2P negotiation has been implemented in the class PolicyEvaluationImpl. On
the other side, for the SP2G negotiation three classes have been implemented. the
first is the class PolicyEvaluationGroup, an abstract class providing the methods
used by both the Group Manager and the extern peer. Both the class executed
by the GroupManager, called PolicyEvaluationGroupManager, and the class for

B.7. CREDENTIAL EXCHANGE PHASE 126

the entering peer, called PolicyEvaluationGroupPeer, extend the abstract class
PolicyEvaluationGroup.

B.7 Credential Exchange Phase

In the credential exchange phase the peers involved in the trust negotiation actually
exchange the credentials and resources named in the valid view (see Section B.9).

The method required for the execution of the credential exchange phase is pro-
vided by the interface CredentialExchange.

1public i n t e r f a c e CredentialExchange {
2public boolean exchange (Tree validView)
3throws IOException ;
4}

Figure B.12: The interface CredentialExchange

Similarly to the policy evaluation phase, the operations really performed by
a credential exchange phase lightly differ with respect of the type of negotiation
performed. Again, it has been implemented a class for the negotiation P2P, called
CredentialExchangeImpl, and three classes for the negotiation SP2G.

The classes for the negotiation SP2G follow the same structure presented for the
policy evaluation phase. The abstract class CredentialExchangeGroup implements
the common methods and two classes extends such class in order to perform the
operation specifically required by each parties.
Therefore, the trustx.credentialExchange package contains two classes:

• CredentialExchangeGroupManager and

• CredentialExchangeGroupPeer.

B.8 Negotiation Tree

The classes and interfaces contained in the trustx.tree package are the core of
the trust negotiation performed by the Trust-X framework. They implement the
negotiation tree, which is the data structure containing credentials and (representa-
tion of) resources, and it is dynamically built by peers during the exchange of their
disclosure policies.

A Trust-X negotiation tree is implemented by the class Tree, which extends the
class TreeManager. The class TreeManager defines the interface used by the classes
implementing the different negotiation phases and provides a set of methods com-
mon to each implementation of the negotiation tree. The class Tree provides an
efficient implementation of the data structures required by the negotiation tree.

The negotiation tree evolves according to the policies exchanged by the parties.
The terms which compose in the policies are represented within the negotiation

B.9. VALID VIEW 127

tree by the class Node. Such class models the characteristic of a possible term as
described in [42, 106, 104]. In case of extensions at the policy language, unless the
modifications involve the structure of the policy, the class Node is the one which
must be modified in order to implement the required features.

Moreover, the class TreeManager provides the methods required to save the
negotiation tree to a stable storage and to later load the same negotiation tree from
the stable storage.

B.9 Valid View

A valid view, as described in [13] and in Chapter 3, is a subtree of the negotiation
tree in which every nodes are marked as deliverable1. The class TreeManager is
able to identify if within the negotiation tree there is at least a subtree with such
property. With the method getValidView() a user is able to obtain all the subtrees
of the negotiation tree which are definable as valid view. With such list, a user
may choose one of the available valid view and, instantiating an object of the class
ValidViewManager can operate on the subtree as it were a trust sequence2.

B.10 Groups

As anticipated, the Trust-X framework has been extended in order to be able to
handle trust negotiation between a peer and a group of peers (see Chapter 4). To
obtain such type of negotiation and the advanced features introduced in the lan-
guage X -RNL, such as weak and strong formulae and quantifiers, some way to
handle the state of the group are needed. The package trustx.groupmanager pro-
vides the interfaces and the classes required to handle the state of the group and
the consistency of the strong formulae.

B.10.1 Group Manager

The manager of the group is the peer that created the group. The class GroupManager
provides the methods required by the group manager in order to have an updated
view of the group and to handle the consistency of the formulae marked as strong.
We recall that a strong formula is required to be valid along the whole time period
a peer is member of a group. The object of the class GroupManager must be instan-
tiated by the group manager when it creates the group protected with the Trust-X
framework and must be kept for the whole duration of the existence of the group.

1We recall that a node is marked as deliverable if its disclosure policy is satisfied, i.e. if and only
if it has no disclosure policy associated or there exist a set of terms in its disclosure policy marked as
deliverable such that the whole disclosure policy holds, see Chapter 3.

2A trust sequence is the serialization of the nodes contained in a valid view, refer to Chapter 3.6.3

B.11. TRUSTXMEMBERSHIPSERVICE 128

B.10.2 Group Agent

The group agent is a thread that will remain in each peer of the group to com-
municate with the group manager in order to collaboratively determinate the state
of the group. More precisely, at the end of the trust negotiation required in or-
der to join the group, if the negotiation ends successfully, an object of the class
ConnectionToGroup will be instantiated. Through the method provided by such
class the agent will be able to communicate with the group manger in order to send
it the modification of the state of the group the peer detects. This include even the
modification caused by the peer itself such as when a peer revoke the availability
of a resource provided or when it decides to leave the group.

The class ConnectionToGroup provides another important feature. Such feature
is the hearthbeat. The heartbeat is a ping sent by the group manager to each peer
within the group. This ping is required in order to verify the liveness of each peer
because each peer may crash or became unavailable. If such unavailability is pro-
tracted for more then an user define period, the group manager will mark the peer
as definitively unavailable and will operate to remove the peer and its resources
from the group pool.

B.11 TrustXMembershipService

To experiment the proposed solution, the JXTA framework has been extended by
means of the creation of a new MembershipService which exploits the Trust-X
framework.

To perform the two side authentication required by Trust-X , we also created
an authentication service, implemented by means of the class TrustXAuthService.
Such authentication service provides the server side of the Trust-X negotiation and
is therefore associated with the group it is mandated to protect. To achieve that,
such class implements the interface Service, which is required to create core JXTA
services, and the interface Runnable in order to be able to execute the authentication
service as a separate thread. Moreover, it provides the services required by the
GroupManager described in Section B.10.1.

1public i n t e r f a c e MembershipService {
2public Authent icator apply (Authent i ca t ionCredent ia l ac) throws
3PeerGroupExeception , ProtocolNotSupportedException ;
4public Credent ia l j o i n (Authent icator auth) throws
5PeerGroupException ;
6public res ign () throws PeerGroupException ;
7}

Figure B.13: The interface MembershipService

The class TrustXMembershipService implements the interface MembershipService.
Such interface defines the methods required by a MembershipService compliant

B.11. TRUSTXMEMBERSHIPSERVICE 129

to the JXTA architecture. Therefore, the implementing class provides the apply

method. Such method, upon the examination that the AuthenticationCredential
received as parameter requires the execution of a join process which exploits Trust-
X , returns an object implementing the interface Authenticator. In the specific
case, the object is an instance of the class TrustXAuthenticator, described in what
follows.

Another method required by the interface MembershipService is the method
join, which if the joining process ends successfully, returns an object of the class
TrustXCredential, which contains the GroupAgent described in Section B.10.2.
Finally, the method resign is used to leave the group.

The class TrustXAuthenticator implements the interface Auhenticator. An
instance of such class is obtained by the invocation of the method apply of the
class TrustXMembershipService. The TrustXAuthenticator is the class which im-
plements the client side of a Trust-X negotiation. In order to perform such task,
upon its creation, the instance must be instructed with the correct information such
as the location of the database and the communication layer to use for the negotia-
tion. Moreover, it implements all the methods required by the implemented inter-
face Authenticator, which follow the behavior defined by the JXTA architecture.

1public c l a s s TrustXAuthent icator {
2public void setTrustXDatabase (S t r i n g dbUrl) throws
3NullPointerException , Inval idConf igurat ionExcept ion ;
4public void useJXTAConnection () throws PeerGroupException ;
5public void useIPV4Connection (S t r i n g conn) ;
6. . .
7}

Figure B.14: The methods of the class TrustXAuthenticator

All the classes described above can be found in the package
net.jxta.impl.membership.trustx

B.11.1 Integration in the JXTAShell

The MembershipService described in the previous part of the current section, has
been made available to the user by means of commands of the JXTA shell. The
following commands have been introduced:

• trustx.newpgrp, such command operates similarly to the original command
newprgp. It creates a new peergroup using the TrustXMembershipService de-
scribed above as MembershipService.

• trustx.join, such command let a peer join a peergroup created with the
trustx.newpgrp command.

• trustx.authsvc, this command start and stop the TrustXAuthService for the
current peergroup.

B.12. MULTISESSIONS 130

• trustx.login, which execute the authentication of the current peer in the
joined peergroup. It has as side effect the execution of the GroupAgent within
the current peer.

B.12 Multisessions

The features described in Chapter 5 have also been implemented in the Trust-X
prototype.

As introduced in Section B.5, a specific implementation of the IntroductoryPhase
interface has been developed to provide the prototype the ability to identify a sus-
pended negotiation which requires to be recovered. Moreover, such implementa-
tion of the IntroductoryPhase interface, called RecoveryIntroductoryPhase, al-
lows the negotiating parties to perform the steps of the resume phase for both client
and server.

Beside the introductory phase, the classes PolicyEvaluationPhaseImpl and
CredentialExchangePhaseImpl have been extended in two new classes:

• PolicyEvaluationWithMultisession and

• CredentialExchangeWithMultisession

Such classes provide support to the suspension protocols described in Chapter 5.3.

B.12.1 Secret Sharing

Both the class PolicyEvaluationPhaseWithMultisession and the class
CredentialExchangeWithMultisession take advantage of the content of the pack-
age trustx.splitting and in particular of the interface Splitter which provides
the method required to create and reconstruct the serialization of the state of the
negotiation.

1public i n t e r f a c e S p l i t t e r {
2public Spl i tParameters generateParameters (long k , long n) ;
3public Lis t<Share> s p l i t (Tree t , Sp l i tParameters parameters) ;
4public Tree merge (L i s t<Share> shares)
5throws TooFewSharesException ;
6}

Figure B.15: The interface Splitter

As a proof of concept a class implementing such interface is provided. Namely,
the class ShamirSplitter provides the SSS (Shamir Secret Sharing) protocol, de-
scribed in Appendix A.2.

B.12. MULTISESSIONS 131

B.12.2 Commitment schemas

The RecoveryIntroductoryPhase takes advantage of the content of the package
trustx.commitment to restore the state of the negotiation. The classes contained in
such package are especially when the multi-session protocol is configured to save
negotiation snapshot single-side.

The package provides the Commitment interface, shown in Figure B.16, in which
are defined two methods to both commit and decommit the negotiation tree.

1public i n t e r f a c e Commitment {
2public Tree commit (Tree t) ;
3public Tree decommit (Tree commitedTree) ;
4}

Figure B.16: The interface Commitment

Again as a proof of concept, the package trustx.introductory.commitment

provides two implementations of the Commitment interface. The first implement-
ing class is calledPedersenCommitment and it provides the commitment schema
defined in [83]. The second class, called CommitmentWithEllipticCurves, takes
advantages of the jPBC library [36] to implement the commitment scheme defined
in [46].

Bibliography

[1] Proceedings of the Network and Distributed System Security Symposium, NDSS
2001, San Diego, California, USA (2001), The Internet Society.

[2] ADAMS, C., AND LLOYD, S. Understanding PKI: Concepts, Standards, and De-
ployment Considerations, 2nd ed. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2002.

[3] AHO, A. V., HOPCROFT, J. E., AND ULLMAN, J. D. The Design and Analysis
of Computer Algorithms. Addison-Wesley, 1974.

[4] AKYILDIZ, I. F., LEE, W.-Y., VURAN, M. C., AND MOHANTY, S. Next gen-
eration/dynamic spectrum access/cognitive radio wireless networks: A sur-
vey. COMPUTER NETWORKS JOURNAL (ELSEVIER 50 (2006), 2127–2159.

[5] ALBERTS, C., AND DOROFEE, A. Managing Information Security Risks: The
OCTAVE (SM) Approach. Addison-Wesley Professional, July 2002.

[6] ASHPOLE, B., EHRIG, M., EUZENAT, J., AND STUCKENSCHMIDT, H., Eds. In-
tegrating Ontologies ’05, Proceedings of the K-CAP 2005 Workshop on Integrating
Ontologies, Banff, Canada, October 2, 2005 (2005), vol. 156 of CEUR Workshop
Proceedings, CEUR-WS.org.

[7] BACKES, M., CAMENISCH, J., AND SOMMER, D. Anonymous yet account-
able access control. In WPES (2005), V. Atluri, S. D. C. di Vimercati, and
R. Dingledine, Eds., ACM, pp. 40–46.

[8] BALDINI, G., BRAGHIN, S., NAI FOVINO, I., AND TROMBETTA, A. Adaptive
and distributed access control in cognitive radio networks. In AINA (2010),
IEEE Computer Society, pp. 988–995.

[9] BARLOW, T., HESS, A., AND SEAMONS, K. E. Trust negotiation in electronic
markets. In Proceedings of the Eighth Research Symposium on Emerging Electronic
Markets (RSEEM 01) (September 2001).

[10] BECKER, M. Y., FOURNET, C., AND GORDON, A. D. Design and semantics
of a decentralized authorization language. In CSF (2007), IEEE Computer
Society, pp. 3–15.

BIBLIOGRAPHY 133

[11] BERNTHAL, B., AND JESUALE, N. Smart radios and collaborative public
safety communications. In 3rd IEEE Symposium on New Frontiers in Dynamic
Spectrum Access Networks (October 2008).

[12] BERTINO, E., FERRARI, E., AND SQUICCIARINI, A. C. Privacy-Preserving
Trust Negotiation. Proceedings of 4th Privacy Enhancing Technologies Workshop,
Toronto, CA (May 2004).

[13] BERTINO, E., FERRARI, E., AND SQUICCIARINI, A. C. Trust-X : A Peer-to-
Peer Framework for Trust Establishment. IEEE Trans. Knowl. Data Eng. 16, 7
(2004), 827–842.

[14] BERTINO, E., AND TAKAHASHI, K., Eds. Proceedings of the 4th Workshop
on Digital Identity Management, Alexandria, VA, USA, October 31, 2008 (2008),
ACM.

[15] BLAZE, M., FEIGENBAUM, J., AND KEROMYTIS, A. D. The role of trust
management in distributed systems security. In Secure Internet Programming
(1999), J. Vitek and C. D. Jensen, Eds., vol. 1603 of Lecture Notes in Computer
Science, Springer, pp. 185–210.

[16] BLAZE, M., FEIGENBAUM, J., AND LACY, J. Decentralized trust manage-
ment. In SP ’96: Proceedings of the 1996 IEEE Symposium on Security and Privacy
(Washington, DC, USA, 1996), IEEE Computer Society, p. 164.

[17] BLAZE, M., IOANNIDIS, J., AND KEROMYTIS, A. D. Trust management for
ipsec. In NDSS [1].

[18] BOHRING, H., AND AUER, S. Mapping xml to owl ontologies. In Leipziger
Informatik-Tage (2005), K. P. Jantke, K.-P. Fähnrich, and W. S. Wittig, Eds.,
vol. 72 of LNI, GI, pp. 147–156.

[19] BONATTI, P. A., COI, J. L. D., OLMEDILLA, D., AND SAURO, L. Policy-
driven negotiations and explanations: Exploiting logic-programming for
trust management, privacy & security. In ICLP (2008), M. G. de la Banda
and E. Pontelli, Eds., vol. 5366 of Lecture Notes in Computer Science, Springer,
pp. 779–784.

[20] BONATTI, P. A., COI, J. L. D., OLMEDILLA, D., AND SAURO, L. Rule-based
policy representations and reasoning. In REWERSE, F. Bry and J. Maluszyn-
ski, Eds., vol. 5500 of Lecture Notes in Computer Science. Springer, 2009,
pp. 201–232.

[21] BONATTI, P. A., COI, J. L. D., OLMEDILLA, D., AND SAURO, L. A rule-
based trust negotiation system. IEEE Trans. Knowl. Data Eng. 22, 11 (2010),
1507–1520.

BIBLIOGRAPHY 134

[22] BOUDOT, F. Efficient proofs that a committed number lies in an interval. In
EUROCRYPT (2000), pp. 431–444.

[23] BOWERS, K. D., BAUER, L., GARG, D., PFENNING, F., AND REITER, M. K.
Consumable credentials in linear-logic-based access-control systems. In
NDSS (2007), The Internet Society.

[24] BRAGHIN, S., NAI FOVINO, I., AND TROMBETTA, A. Advanced trust nego-
tiation in critical infrastructures. In International Conference on Infrastructure
Systems (November 2008).

[25] BRAGHIN, S., NAI FOVINO, I., AND TROMBETTA, A. Advanced trust negoti-
ations in critical infrastructures. International Journal of Critical Infrastructures
6, 3 (2010), 225–245.

[26] BRANDS, S. A. Rethinking Public Key Infrastructures and Digital Certificates:
Building in Privacy. MIT Press, Cambridge, MA, USA, 2000.

[27] CAMENISCH, J., AND HERREWEGHEN, E. V. Design and implementation of
the demix anonymous credential system. In ACM Conference on Computer and
Communications Security (2002), V. Atluri, Ed., ACM, pp. 21–30.

[28] CARMINATI, B., FERRARI, E., AND PEREGO, A. Enforcing access control in
web-based social networks. ACM Trans. Inf. Syst. Secur. 13, 1 (2009).

[29] CERI, S., GOTTLOB, G., AND TANCA, L. What you always wanted to know
about datalog (and never dared to ask). IEEE Trans. Knowl. Data Eng. 1, 1
(1989), 146–166.

[30] CHAUM, D. Showing credentials without identification transfeering sig-
natures between unconditionally unlinkable pseudonyms. In AUSCRYPT
(1990), J. Seberry and J. Pieprzyk, Eds., vol. 453 of Lecture Notes in Computer
Science, Springer, pp. 246–264.

[31] CHEN, R., AND YEAGER, B. Poblano - a distributed
trust model for peer-to-peer networks. Available on-line at:
http://www.JXTA.org/docs/trust.pdf.

[32] COI, J. L. D., OLMEDILLA, D., BONATTI, P. A., AND SAURO, L. Protune: A
framework for semantic web policies. In International Semantic Web Confer-
ence (Posters & Demos) (2008), C. Bizer and A. Joshi, Eds., vol. 401 of CEUR
Workshop Proceedings, CEUR-WS.org.

[33] COULOURIS, G. F., DILLIMORE, J., AND KINDBERG, T. Distributed Systems:
Concepts and Design, fourth ed. Addison-Wesley, 2005.

[34] COX, L. P., AND NOBLE, B. D. Samsara: honor among thieves in peer-to-
peer storage. In SOSP (2003), M. L. Scott and L. L. Peterson, Eds., ACM,
pp. 120–132.

BIBLIOGRAPHY 135

[35] DAMGÅRD, I., AND FUJISAKI, E. A statistically-hiding integer commitment
scheme based on groups with hidden order. In ASIACRYPT (2002), Y. Zheng,
Ed., vol. 2501 of Lecture Notes in Computer Science, Springer, pp. 125–142.

[36] DE CARO, A. jPBC: The Java Pairing Based Cryptography Library. Available
on-line at: http://gas.dia.unisa.it/projects/jpbc/.

[37] DEN BRABER, F., DIMITRAKOS, T., GRAN, B. A., LUND, M., STØLEN, K.,
AND AAGEDAL, J. The CORAS methodology: model-based risk assessment using
UML and UP. IGI Publishing, Hershey, PA, USA, 2003, pp. 332–357.

[38] DENKER, G., ELENIUS, D., SENANAYAKE, R., STEHR, M., AND WILKINS, D.
A policy engine for spectrum sharing. In 2nd IEEE International Symposium on
New Frontiers in Dynamic Spectrum Access Networks (April 2007), pp. 55 – 65.

[39] DENKER, G., ELENIUS, D., SENANAYAKE, R., STEHR, M.-O., AND WILKINS,
D. A Policy Engine For Spectrum Sharing. In Webb et al. [113].

[40] FEENEY, K., LEWIS, D., ARGYROUDIS, P., NOLAN, K., AND O’SULLIVAN,
D. Grouping Abstraction and Authority Control in Policy-based Spectrum
Management. In Proceedings of 2nd IEEE International Symposium on New Fron-
tiers in Dynamic Spectrum Access Networks (IEEE DySPAN’07) (Dublin, Ireland,
April 2007), IEEE, pp. 363–371.

[41] FERGUSON, N., AND SCHNEIER, B. Practical Cryptography. John Wiley &
Sons, 2003.

[42] FERRARI, E., SQUICCIARINI, A. C., AND BERTINO, E. X -tnl: An xml lan-
guage for trust negotiations. 4th IEEE Workshop on Policies for Distributed Sys-
tems and Networks, Como, Italy (June 2003).

[43] FIAT, A., AND SHAMIR, A. How to prove yourself: Practical solutions to
identification and signature problems. In CRYPTO (1986), A. M. Odlyzko,
Ed., vol. 263 of Lecture Notes in Computer Science, Springer, pp. 186–194.

[44] GARG, D., BAUER, L., BOWERS, K. D., PFENNING, F., AND REITER, M. K.
A linear logic of authorization and knowledge. In ESORICS (2006), D. Goll-
mann, J. Meier, and A. Sabelfeld, Eds., vol. 4189 of Lecture Notes in Computer
Science, Springer, pp. 297–312.

[45] GREATER LONDON AUTHORITY. Report of the 7 July Review Committee,
June 2006.

[46] GROTH, J. Homomorphic trapdoor commitments to group elements. Cryp-
tology ePrint Archive, Report 2009/007, 2009. http://eprint.iacr.org/.

[47] HAN, S. C., AND XIA, Y. Optimal leader election scheme for peer-to-peer
applications. In ICN (2007), IEEE Computer Society, p. 29.

http://gas.dia.unisa.it/projects/jpbc/
http://eprint.iacr.org/

BIBLIOGRAPHY 136

[48] HERZBERG, A., MASS, Y., MICHAELI, J., RAVID, Y., AND NAOR, D. Access
control meets public key infrastructure, or: Assigning roles to strangers. In
SP ’00: Proceedings of the 2000 IEEE Symposium on Security and Privacy (Wash-
ington, DC, USA, 2000), IEEE Computer Society, p. 2.

[49] HESS, A., JACOBSON, J., MILLS, H., WAMSLEY, R., SEAMONS, K. E., AND

SMITH, B. Advanced client/server authentication in tls. In NDSS (2002), The
Internet Society.

[50] HOLT, J. E., BRADSHAW, R. W., SEAMONS, K. E., AND ORMAN, H. K. Hid-
den credentials. In WPES (2003), S. Jajodia, P. Samarati, and P. F. Syverson,
Eds., ACM, pp. 1–8.

[51] HOUSELY, R., FORD, W., POLK, T., AND SOLO, D. Internet X.509 Public
Key Infrastructure Certificate and CRL Profile. IETF Request for Comments
RFC-2459, January 1999.

[52] HU, W., JIAN, N., QU, Y., AND WANG, Y. Gmo: A graph matching for
ontologies. In Ashpole et al. [6].

[53] III, J. M., AND JR, G. Q. M. Cognitive radio: making software radios more
personal. IEEE Personal Communication 6, 4 (1999), 13 – 18.

[54] JIAN, N., HU, W., CHENG, G., AND QU, Y. FalconAO: Aligning Ontologies
with Falcon. In Ashpole et al. [6].

[55] JOHNSTONE, S., SAGE, P., AND MILLIGAN, P. ixchange - a self-organising
super peer network model. In ISCC (2005), IEEE Computer Society, pp. 164–
169.

[56] KATZ, J., AND LINDELL, Y. Introduction to Modern Cryptography. Cryptogra-
phy and Network Security. Chapman & Hall/CRC, 2007.

[57] KAWULOK, L., ZIELINSKI, K., AND JAESCHKE, M. Trusted group member-
ship service for jxta. In International Conference on Computational Science (2004),
M. Bubak, G. D. van Albada, P. M. A. Sloot, and J. Dongarra, Eds., vol. 3038
of Lecture Notes in Computer Science, Springer, pp. 218–225.

[58] KRAWCZYK, H. Secret sharing made short. In CRYPTO (1993), D. R. Stinson,
Ed., vol. 773 of Lecture Notes in Computer Science, Springer, pp. 136–146.

[59] LEE, A. J. Towards Practical And Secure Decentralized Attribute-Based Authoriza-
tion Systems. PhD thesis, University of Illinois at Urbana-Champaign, 2008.

[60] LEE, A. J., AND WINSLETT, M. Open problems for usable and secure open
systems.

[61] LEE, A. J., WINSLETT, M., BASNEY, J., AND WELCH, V. The traust autho-
rization service. ACM Trans. Inf. Syst. Secur. 11, 1 (2008).

BIBLIOGRAPHY 137

[62] LEE, A. J., WINSLETT, M., AND PERANO, K. J. Trustbuilder2: A reconfig-
urable framework for trust negotiation. In Proceedings of the Third IFIP WG
11.11 International Conference on Trust Management (IFIPTM 2009) (June 2009).

[63] LEWIS, D., FEENEY, K., AND O’SULLIVAN, D. Integrating the Policy Dialec-
tic into Dynamic Spectrum Management. In Webb et al. [113].

[64] LI, J., AND LI, N. Oacerts: Oblivious attribute certificates. IEEE Trans. De-
pendable Sec. Comput. 3, 4 (2006), 340–352.

[65] LI, N., AND MITCHELL, J. C. Datalog with constraints: A foundation for
trust management languages. In PADL (2003), pp. 58–73.

[66] LYNCH, N. A. Distributed Algorithms. Morgan Kaufmann, 1996.

[67] MASERA, M., AND NAI FOVINO, I. Modelling information assets for security
risk assessment in industrial settings. In EICAR (2006).

[68] MCDERMOTT, J. P. Attack net penetration testing. In NSPW ’00: Proceedings
of the 2000 workshop on New security paradigms (New York, NY, USA, 2000),
ACM, pp. 15–21.

[69] MERKLE, R. C. A digital signature based on a conventional encryption func-
tion. In CRYPTO (1987), C. Pomerance, Ed., vol. 293 of Lecture Notes in Com-
puter Science, Springer, pp. 369–378.

[70] NAI FOVINO, I., AND MASERA, M. Emergent disservices in interdependent
systems and system-of-systems. In SMC (October 2006), IEEE, Ed.

[71] NAI FOVINO, I., AND MASERA, M. A service oriented approach to the as-
sessment of infrastructure security. In First Annual IFIP Working Group 11.10
International Federation for Information Processing (October 2006).

[72] NAI FOVINO, I., AND MASERA, M. Through the description of attacks: a
multidimensional view. In 25th International Conference on Computer Safety,
Reliability and Security (2006).

[73] NEJDL, W., OLMEDILLA, D., AND WINSLETT, M. Peertrust: Automated trust
negotiation for peers on the semantic web. In Secure Data Management (2004),
W. Jonker and M. Petkovic, Eds., vol. 3178 of Lecture Notes in Computer Science,
Springer, pp. 118–132.

[74] NEUMAN, C., YU, T., HARTMAN, S., AND RAEBURN, K. The Kerberos net-
work authentication service (V5). IETF Request for Comments RFC-4120,
July 2005.

[75] OAKS, S., GONG, L., AND TRAVERSAT, B. JXTA in a Nutshell. O’Reilly, 2002.

BIBLIOGRAPHY 138

[76] ONTOLOGY MATCHING COMMUNITY. Ontology Matching Repository.
Available on-line at: http://www.ontologymatching.org/.

[77] ORACLE. Java 1.6 Specification. Available on-line at: http://download.

oracle.com/javase/6/docs/.

[78] ORACLE. MySQL database version 5.1. Available on-line at: http://www.

mysql.com.

[79] ORACLE. Oracle database version 10gR2. Available on-line at http://www.
oracle.com.

[80] ORAM, A. Peer-To-Peer: Harnessing the Power of Disruptive Technologies.
O’Reilly, 2001.

[81] PACI, F., BAUER, D., BERTINO, E., BLOUGH, D. M., AND SQUICCIARINI,
A. C. Minimal credential disclosure in trust negotiations. In Bertino and
Takahashi [14], pp. 89–96.

[82] PAWEŁCZAK, P., PRASAD, R. V., XIA, L., AND NIEMEGEERS, I. G. M. M.
Cognitive radio emergency networks - requirements and design. In Proceed-
ings of First IEEE International Symposium on New Frontiers in Dynamic Spec-
trum Access Networks (2005), IEEE Computer Society, pp. 601–606.

[83] PEDERSEN, T. P. Non-interactive and information-theoretic secure verifiable
secret sharing. In CRYPTO (1991), J. Feigenbaum, Ed., vol. 576 of Lecture Notes
in Computer Science, Springer, pp. 129–140.

[84] POSTGRESQL GLOBAL DEVELOPMENT GROUP. PostgreSQL Database.
Available on-line at http://www.postgresql.org.

[85] QU, Y., HU, W., AND CHENG, G. Constructing virtual documents for ontol-
ogy matching. In WWW (2006), L. Carr, D. D. Roure, A. Iyengar, C. A. Goble,
and M. Dahlin, Eds., ACM, pp. 23–31.

[86] RAMAKRISHNA, V., EUSTICE, K., AND REIHER, P. L. Negotiating agree-
ments using policies in ubiquitous computing scenarios. In SOCA (2007),
IEEE Computer Society, pp. 180–190.

[87] RUOHOMAA, S., AND KUTVONEN, L. Trust management survey. In iTrust
(2005), pp. 77–92.

[88] SACHA, J., DOWLING, J., CUNNINGHAM, R., AND MEIER, R. Using aggrega-
tion for adaptive super-peer discovery on the gradient topology. In SelfMan
(2006), A. Keller and J.-P. Martin-Flatin, Eds., vol. 3996 of Lecture Notes in
Computer Science, Springer, pp. 73–86.

http://www.ontologymatching.org/
http://download.oracle.com/javase/6/docs/
http://download.oracle.com/javase/6/docs/
http://www.mysql.com
http://www.mysql.com
http://www.oracle.com
http://www.oracle.com
http://www.postgresql.org

BIBLIOGRAPHY 139

[89] SAFECOM. Public safety Statements of Requirements for communications
and interoperability volumes I and II. Tech. rep., U.S. Department of Home-
land Security’s Office for Interoperability and Compatibility, 2006.

[90] SCHNEIER, B. Modeling security threats. Dr. Dobb’s Journal (2001).

[91] SEAMONS, K. E., WINSLETT, M., AND YU, T. Limiting the disclosure of
access control policies during automated trust negotiation. In NDSS [1].

[92] SEAMONS, K. E., WINSLETT, M., YU, T., SMITH, B., CHILD, E., JACOBSON,
J., MILLS, H., AND YU, L. Requirements for policy languages for trust nego-
tiation. In POLICY (2002), pp. 68–79.

[93] SEAMONS, K. E., WINSLETT, M., YU, T., YU, L., AND JARVIS, R. Protecting
privacy during on-line trust negotiation. In Privacy Enhancing Technologies
(2002), R. Dingledine and P. F. Syverson, Eds., vol. 2482 of Lecture Notes in
Computer Science, Springer, pp. 129–143.

[94] SECURITY FOCUS. Bugtraq Home Page. Available on-line at http://

securityfocus.com.

[95] SHAMIR, A. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.

[96] SOFTWARE DEFINED RADIO FORUM. Software defined radio technology
for public safety formerly approved document. Tech. Rep. SDRF-06-P-0001-
V1.0.0, Software Defined Radio Forum, 2006. Formerly Approved Document.

[97] SOFTWARE DEFINED RADIO FORUM. Use Cases for Cognitive Applications
in Public Safety Communications Systems Volume 1: Review of the 7 July
Bombing of the London Underground. Tech. Rep. SDRF-07-P-0019-V1.0.0,
Software Defined Radio Forum, November 2007.

[98] SOFTWARE DEFINED RADIO FORUM. Use Cases for MLM Language in Mod-
ern Wireless Networks. Tech. Rep. SDRF-08-P-0009-V1.0.0, Software Defined
Radio Forum, January 2009.

[99] SQLITE COMMUNITY. SQLite Database version 3. Available on-line at: http:
//www.sqlite.org.

[100] SQUICCIARINI, A. C. Trust and Privacy-Preserving Methodologies in Distributed
Systems. PhD thesis, Università degli Studi di Milano, November 2005.

[101] SQUICCIARINI, A. C., BERTINO, E., FERRARI, E., PACI, F., AND THURAIS-
INGHAM, B. M. PP-Trust-X : A system for privacy preserving trust negotia-
tions. ACM Trans. Inf. Syst. Secur. 10, 3 (2007).

[102] SQUICCIARINI, A. C., BERTINO, E., TROMBETTA, A., AND BRAGHIN, S. A
Flexible and Secure Rule-Based Approach to Trust Negotiation. Submitted to
IEEE Transactions on Dependable and Secure Computing.

http://securityfocus.com
http://securityfocus.com
http://www.sqlite.org
http://www.sqlite.org

BIBLIOGRAPHY 140

[103] SQUICCIARINI, A. C., PACI, F., AND BERTINO, E. Trust establishment in the
formation of virtual organizations. In ICDE Workshops (2008), IEEE Computer
Society, pp. 454–461.

[104] SQUICCIARINI, A. C., PACI, F., BERTINO, E., TROMBETTA, A., AND

BRAGHIN, S. Group-based negotiations in p2p systems. IEEE Trans. Parallel
Distrib. Syst. 21, 10 (2010), 1473–1486.

[105] SQUICCIARINI, A. C., TROMBETTA, A., AND BERTINO, E. Supporting robust
and secure interactions in open domains through recovery of trust negotia-
tions. In ICDCS (2007), IEEE Computer Society, p. 57.

[106] SQUICCIARINI, A. C., TROMBETTA, A., BERTINO, E., AND BRAGHIN, S.
Identity-based long running negotiations. In Bertino and Takahashi [14],
pp. 97–106.

[107] STALLINGS, W. Cryptography and Network Security, second ed. Prentice Hall,
1998. ISBN 0-13-869017-0.

[108] STEFAFN, J., AND SCHUMACHER, M. Collaborative attack modeling. In Sym-
posium on Applied Computing (2002), pp. 253–259.

[109] STINE, J. A., AND PORTIGAL, D. L. Spectrum 101. an introduction to. Tech.
Rep. MTR 04W0000048, MITRE, 2004.

[110] SUN MICROSYSTEMS. JXTA Documentation. Available on-line at: https:

//jxta-docs.dev.java.net/.

[111] WANG, T., TSAI, K., AND LEE, Y. Crown: An efficient and stable distributed
resource lookup protocol. In Embedded and Ubiquitous Computing, L. T. Yang,
M. Guo, G. R. Gao, and N. K. Jha, Eds., vol. 3207 of Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 2004, pp. 211–222. 10.1007/978-3-540-
30121-9-103.

[112] WANG, W., GAO, W., BAI, X., PENG, T., CHUAI, G., AND WANG, W. A
framework of wireless emergency communications based on relaying and
cognitive radio. In In Proceedings of the IEEE 18th International Symposium on
Personal, Indoor and Mobile Radio Communications (PIMRC 2007) (2007), IEEE
Computer Society, pp. 1–5.

[113] WEBB, W., JONDRAL, F., MARSHALL, P., CAVE, M., LEHR, W., AND BUD-
DHIKOT, M., Eds. 2nd International Symposium on New Frontiers in Dynamic
Spectrum Access Networks (April 2007), IEEE Computer Society.

[114] WEEKS, S. Understanding trust management systems. In SP ’01: Proceedings
of the 2001 IEEE Symposium on Security and Privacy (Washington, DC, USA,
2001), IEEE Computer Society, p. 94.

https://jxta-docs.dev.java.net/
https://jxta-docs.dev.java.net/

BIBLIOGRAPHY 141

[115] WINSBOROUGH, W. H., AND JACOBS, J. Automated trust negotiation in
attribute-based access control. In DISCEX (2) (2003), IEEE Computer Soci-
ety, pp. 252–.

[116] WINSBOROUGH, W. H., AND LI, N. Towards practical automated trust ne-
gotiation. In POLICY (2002), IEEE Computer Society, pp. 92–103.

[117] WINSBOROUGH, W. H., AND LI, N. Safety in automated trust negotiation.
ACM Trans. Inf. Syst. Secur. 9, 3 (2006), 352–390.

[118] WORLD WIDE WEB CONSORTIUM. Extensible Markup Language (xml) 1.0,
1998. Available on-line at: http://www.w3.org/TR/REC-xml.

[119] WORLD WIDE WEB CONSORTIUM. OWL Web Ontology Language, 2004.
Available on-line at: http://www.w3.org/TR/owl-ref/.

[120] WORLD WIDE WEB CONSORTIUM. XML Schema Definition Language
(xsd) 1.1 Part 2: Datatypes. Available on-line at: http://www.w3.org/TR/

xmlschema11-2/.

[121] WORLD WIDE WEB CONSORTIUM. XSL Transformations, version 1.0. Avail-
able on-line at: http://www.w3.org/TR/xslt/.

[122] WORLD WIDE WEB CONSORTIUM. Gleaning resource descriptions from di-
alects of languages (grddl). Available on-line at http://www.w3.org/TR/

grddl/, September 2007.

[123] WORLD WIDE WEB CONSORTIUM. GRDDL Use Cases: Scenarios of extract-
ing RDF data from XML documents. Available on-line at http://www.w3.
org/TR/grddl-scenarios/, April 2007.

[124] XIONG, L., AND LIU, L. Peertrust: Supporting reputation-based trust for
peer-to-peer electronic communities. IEEE Trans. Knowl. Data Eng. 16, 7
(2004), 843–857.

[125] YEAGER, W., AND WILLIAMS, J. Secure peer-to-peer networking: The jxta
example. IT Professional 4 (2002), 53–57.

[126] YU, T. Automated Trust Establishment in Open Systems. PhD thesis, University
of Illinois at Urbana-Champaign, 2003.

[127] YU, T., AND WINSLETT, M. A unified scheme for resource protection in au-
tomated trust negotiation. In IEEE Symposium on Security and Privacy (2003),
IEEE Computer Society, pp. 110–122.

[128] ZERR, S., OLMEDILLA, D., COI, J. L. D., NEJDL, W., BONATTI, P. A., AND

SAURO, L. Policy based protection and personalized generation of web con-
tent. In LA-WEB/CLIHC (2009), E. Chávez, E. Furtado, and A. L. Morán, Eds.,
IEEE Computer Society, pp. 112–119.

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/xmlschema11-2/
http://www.w3.org/TR/xmlschema11-2/
http://www.w3.org/TR/xslt/
http://www.w3.org/TR/grddl/
http://www.w3.org/TR/grddl/
http://www.w3.org/TR/grddl-scenarios/
http://www.w3.org/TR/grddl-scenarios/

	Introduction
	State of the art
	The Trust-X policy definition language and trust negotiation architecture
	Introduction
	Resources
	Peers and Groups
	Policies
	Quantifications
	Verification techniques

	The subjects of the trust negotiation model
	Trust Negotiation architecture
	Introductory phase
	Policy evaluation phase
	Credential Exchange Phase

	Group-based Trust Negotiations
	Introduction
	Application Scenario
	Group Managers and Peer Members
	Group Managers
	Group Manager Election

	The Negotiation-based Join Process
	Peer Negotiation
	Event-Based Formulae Verification

	The Negotiation-based Membership Service Architecture
	Experimental results

	Mobile multi-session Trust Negotiations
	Introduction
	Credentials' similarity.
	OWL model extraction
	Credential categorization
	Application of the matching algorithm
	Credential substitution

	Negotiation tree switching
	Overview of the approach
	Negotiation, Suspension, and Nodes Commitment
	Tree Splitting and Sharing
	Tree Recovery
	Sharing the Trust Sequence

	Illustrative Example
	Security analysis
	Tree Sharing Protocol Analysis
	Formal Properties of the Multi-Session Protocol
	Protocols Resiliency To Malicious Or Colluding Parties

	Complexity Analysis
	Policy Exchange Phase Complexity
	Communication Complexity
	Credential Exchange Phase Complexity

	TN for information sharing in critical infrastructures
	Introduction to the application environment
	Information sharing in critical infrastructure environment
	Working example

	Knowledge Characterization
	Language extensions
	Resource level negotiation
	Shrink the resource level
	Enlarge the resource level

	TN for spectrum sharing in cognitive radion networks
	Scenario introduction
	A brief overview of spectrum management in Cognitive radio network
	Introducing Trust-X in Cognitive radio networks
	The Spectrum Management Language

	Motivating scenario
	Negotiating Resources in a Critical Environment
	Roles identification and Role Hierarchy
	Cognitive Radio Authentication
	Adaptive Spectrum Frequencies Management

	Experimental Results

	TN in On-line Social Network
	A brief introduction to OSN access control
	Extension of the access control rule definition language
	Dynamic relationships and trust level adjustment
	Trust computation
	Practical usage of dynamic relationships

	Complexity analysis
	Experimental Results

	Conclusions and future work
	Cryptographic protocols
	 Pedersen commitment protocol
	Shamir's Secret Sharing Scheme
	Damgård-Fujisaki commitment scheme and auxiliary protocols
	Proofs of knowledge

	Fiat-Shamir heuristics

	Implementation
	Prototype evolution
	Architecture Overview
	Example of execution

	Communication Layer
	Database
	Introductory Phase
	Policy Evaluation Phase
	Credential Exchange Phase
	Negotiation Tree
	Valid View
	Groups
	Group Manager
	Group Agent

	TrustXMembershipService
	Integration in the JXTAShell

	Multisessions
	Secret Sharing
	Commitment schemas

