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Chapter 1

String amplitudes

In this thesis we present the construction of superstring amplitudes in genus greater
than two. Our construction of the amplitudes has as starting point the conjectured
equation (2.15). For that reason, the purpose of this introductory chapter is to give
some intuitive justification to this equation. We sketch the construction of the string
theory in the perturbative approach. We start with the bosonic case and then analyze
its extensions to the supersymmetric theory. Following E. Verlinde and H. Verlinde,
we try to give some motivations of the splitting in holomorphic and antiholomorphic
part of the measure appearing in the integral (2.15). Moreover, we point out some
unclear and not yet solved issues in the derivation of such expression. These open
questions (and the considerations of Chapter 5.5.3) provide some criticisms about the
general (conjectured) form of the superstrings vacuum-to-vacuum amplitudes and make
necessary some deeper investigations about equation (2.15). In the next chapter we
will give more details to the construction of the string perturbation theory and we will
review the approach of D’Hoker and Phong, their result in genus two and their attempt
to extend the result to arbitrary genus, being the starting point of our analysis.

1.1 Fermionic string path integral and chiral factorization

In this section we reassume the first attempts to correctly define the path integral
in superstring theory. These studies and those of D’Hoker and Phong lead to the
conjectured splitted form (2.15) for the superstring vacuum-to-vacuum amplitudes. We
will follow the exposition of [VV2].

The first triumph in the perturbative theory was reached for the bosonic string.
The cornerstone was the result of Belavin and Knizhnik [BK,BK2]. In these papers the
authors consider the g-loop amplitudes of closed bosonic strings in the critical dimen-
sions. They show that the integration measure is a measure on the moduli space M̄g

of Riemann surfaces of genus g. Moreover, they proved that for g > 1 this measure is
the squared of a holomorphic function without zeros onMg and having a second order
pole on degenerate surfaces. These properties determine the measure up to a constant
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multiple. The pole is strictly related to the presence of the tachyon in the spectrum of
the bosonic theory. In addition, the authors fix their results in a rigorous way showing
the connection of their computation with a deep theorem of Mumford in algebraic ge-
ometry [Mu2]. The central point is the observation that, strictly speaking, the measure
is not a function, but a section of a line bundle E over Mg where the objects appearing
in the explicit expression of the measure leave. Mumford showed that the line bundle
E is a trivial bundle and consequently the measure is well defined. In a physical lan-
guage this means that there are no gravitational anomalies and this is equivalent to the
cancellation of the conformal anomaly. Since the line bundle E is trivial there is just
a unique (up to a constant multiple) global section, holomorphic and everywhere non
zero on Mg and such section will have a second order pole at the infinity of Mg. This
remarkable result can be reassumed in the following:

Theorem 1.1.1. The integration measure in the case of the bosonic closed strings is the
squared modulus of the global holomorphic section of the bundle E = K ⊗ λ13, divided
by the natural metric on λ.

They conclude the paper with the important conjecture “any multiloop amplitude
(not only the vacuum one) in any conformal invariant string theory (such as D = 26
bosonic, D = 10 supersymmetric and heterotic strings) may be deduced from purely
algebraic objects (functions or sections of some holomorphic bundles) on moduli spaces
Mg of Riemann surfaces”.

In [MYu1] Manin, using holomorphic geometry, showed that the partition function
for the bosonic string can be expressed in term of classical theta functions. This is
an important result because the behavior of the theta constants under the action of
the modular group is well known. This observation simplify the study of the modular
properties of the amplitudes. Moreover, he proposed a similar expression for the super-
string theory. That expression should be considered conjectural until an analogue of
the Belavin - Knizhnik theorem is proved for fermionic string. Analogous results were
find in [Moo, BKMP, Mo3, GP] where the bosoinic amplitudes was written in terms of
classical theta functions up to genus four.

The extension of the Belavin and Knizhnik theorem to the supersymmetric case is
at the moment an open problem. There are a lot of different approaches to construct
the superstring amplitudes starting from the path integral. Superstring perturbation
theory starts off with the sum over fermionic surfaces, given by the integral over D mass-
less superfield Xµ coupled to two dimensional supergravity. Actually, in the covariant
fermionic string one studies [Ma2] the dynamics of the string coordinates together with
their world sheet spinor partners ψµ. One can work in local complex coordinates on
the 2d world surface. The spinors ψµ in the fermionic string can be combined with the
coordinates Xµ to form d functions Xµ(z, z̄, θ, θ̄) on 2d super space. Intuitively a super
space is a space with anti commuting partners θ and θ̄ for the complex coordinates z and
z̄. In this way the action defining the theory is just the one of a collection of free super
fields for the case of string in a flat background and, more generally, one can consider
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the propagation of string in a background geometry described by a general non linear 2d
QFT. The condition that the background be a solution to the classical string theory is
that the corresponding non linear model was super conformally invariant (conformally
invariant for the bosonic case).

Like in the bosonic case, one fixes a gauge and reduces the functional integral to an
integral over the moduli space sMg of super Riemann surfaces [BdVH, H, Pol]. Never-
theless, in this procedure there are a lot of subtle points we will briefly reassume here.
Moreover, the holomorphic factorization for the final expression of the measure appear-
ing in the integral is not obvious. This splitting seems to depend on some properties of
the super Riemann surfaces and on the choice of local coordinates. In addition, one has
to take into account the global properties of the moduli space of the super Riemann sur-
faces. Many different approaches to menage these problems has been developed. A super
Riemann surface (SRS) is an extension of the ordinary Riemann surface in which also
anti commuting variables appear. A SRS is locally described by a complex coordinate z
together with a complex anti commuting coordinate θ. The local coordinate neighbor-
hoods are patched together by so called super conformal transition functions. These are
defined as analytic coordinate changes (z, θ) → (z′, θ′), satisfying the super conformal
condition Dz′ = θ′Dθ′, where D = ∂θ+θ∂z is the super derivative. The general solution
to this condition is z′ = f(z) + θ(∂f)ε(z), θ′ = (∂f)1/2(θ+ ε(z) + 1/2θε∂ε(z)), with f(z)
and ε(z) arbitrary commuting and anti commuting analytic functions respectively. The
super moduli space sMg of genus g super Riemann surfaces is, for g ≥ 2, a complex
super manifold of dimension (3g − 3, 2g − 2). We will denote with mi the 3g − 3 com-
muting coordinates and with m̂a the 2g−2 anti commuting super moduli. The presence
of the odd super moduli of a super Riemann surface Σ represents the main difference
between Σ and an ordinary Riemann surfaces with spin structure. Actually, in the ab-
sence of odd super moduli there exists a super conformal coordinate system on Σ for
which all the transition functions are of the form zα = fαβzβ and θα = (∂fαβ)1/2θβ.
In this way, the transition functions for the commuting variable z define an ordinary
Riemann surface Σord and those of θ are the transition functions of a spinor bundle
over Σord with spin structure ∆ determined by the choice of the square roots. There
are 22g non equivalent spin structures corresponding to the 22g possible Z2 boundary
conditions, θ periodic or anti periodic, around the 2g primitive homology cycles of a
genus g surfaces. Thus, the bosonic manifold underling the sMg is the spin moduli
space Mspin

g which is a 22g-fold covering of the moduli space Mg of ordinary Riemann
surfaces. A super Riemann surface with vanishing odd super moduli is called split.
Not all the super Riemann surfaces are split. Locally the odd super moduli m̂a may
be considered to lie in a vector bundle over the space parametrized by the even super
moduli mi. It is an open question whether this is true globally, i.e. whether sMg for
g ≥ 2 can be described globally as a vector bundle over Mspin

g . If so, we would be able
to chose a coordinate covering sMg with patching functions of the form m̃i = f i(m)
and ˜̂ma = fab (m)m̂b and in this case the super moduli space sMg itself would be a split
super manifold. If this is not the case, one will need transition functions of the general
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form m̃i = f i(m) + giab(m)m̂am̂b + · · · and ˜̂ma = fab (m)m̂b + gabcd(m)m̂bm̂cm̂d + · · · .
Consequently, the nilpotent part of the mi transition functions obstructs the existence
of a (unique) projection of sMg onto Mspin

g .
As in the bosonic case, the string measure on sMg is given by the product of the

matter partition function, i.e. that of the string super field Xµ, times the ghost parti-
tion function. The action for the super fields Xµ is S[Xµ] = c

∫
DXµD̄Xµ, where c is

a suitable constant. This action leads to the equation of motion D̄DXµ with general
solution Xµ(z, z̄, θ, θ̄) = Xµ(z, θ) + X̄µ(z̄, θ̄) and Xµ(z, θ) = xµ(z) + θψµ(z). The com-
muting string coordinates xµ(z) are chiral scalar fields and their two dimensional super
partners ψµ(z) are Majorana-Weyl fermions. We observe that the above decomposition
of the chiral scalar super field Xµ(z, θ) into component fields should be read as a local
statement, i.e. within each coordinate neighborhood on the surface and only for split
super Riemann surfaces it is possibly to globally decompose super conformal super fields
into components. As in the bosonic case one should add to the action the part of the
ghosts. The Faddeev-Popov ghosts are given by two super fields B(z, θ) and C(z, θ)
and their action is S[B,C] = c

∫
BD̄−1C.

The construction of the vacuum amplitude for the fermionic string and the related
measure on the super moduli space of super Riemann surfaces was carry on by numerous
authors and with several methods: studying the properties of the differential operators
appearing in the path integral or using the Selberg trace formula, see for example
[BMFS,BSc,BSh,Ma2]. Following [VV2,Ma2], starting from the Polyakov path integral,
one finds that the g-loop partition function of the fermionic string is:

Ag =
∫
sMg

∏
i

d2mi
∏
a

d2m̂aZfs(m, m̄, m̂, ¯̂m), (1.1)

where Zfs = ZX |ZBC |2 with the matter part given by ZX =
∫

[dXµ] exp(−S[Xµ])
and the ghost part ZBC =

∫
[dBdC] exp(−S[B,C])

∏
a δ(< µ̂a, B >)

∏
i < µi, B > and

{µi, µ̂a} is a basis of super Beltrami differentials representing the coordinate vector fields
{∂/∂mi, ∂/∂m̂a} on sMg. The above functional integrals are evaluated by expanding
the fields in an orthonormal basis of eigen modes of the corresponding laplacians. The
formula (1.1) is the staring point for the construction of the superstring loop amplitudes.
In [VV2] the authors suggest that the expression (1.1), actually can be factorized into
a holomorphic times an anti holomorphic half density on the super moduli space. This
factorization would reflect the structure of the superstring Hilbert space built up by
means of creation operators, which are obtained as the coefficients in the mode expansion
of the super fields Xµ. This set of operators can be divided into a left moving sector
and a right moving sector and the only interaction between the sectors is given by the
zero mode pµ and qµ that are equal for the left and right part. This reflects the fact
that the string has only one centre of mass. The consistent construction of the Hilbert
space was invented by Gliozzi, Scherk and Olive [GSO], who make use of the decoupling
in left and right sector, by allowing the two chiralities of the world sheet fermions ψµ(z)
and ψµ(z̄), to be independent either in the Neveu-Schwarz or in the Ramond sector,
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and further to project in both the left and the right sector on even fermion parity,
(−1)FL = (−1)FR = 1. Hence, the superstring Hilbert space has the structure:

Hss =
⊕
pµ

[
HNS,+p ⊕HR,+p

]
⊗
[
HNS,+p ⊕HR,+p

]
, (1.2)

where + indicates the projection on even fermion number. In the fermionic string theory
the left and right fermions have the same boundary conditions and the even fermion
parity projection is non chiral, (−1)FL+FR = 1, so the fermionic Hilbert space has the
form:

Hfs =
⊕
pµ

[
HNSp ⊗HNSp

]+
⊕
[
HRp ⊗HRp

]+
. (1.3)

The different choices of NS or R fermion boundary conditions are in one to one cor-
respondence with the spin structures on the surface Σ. Hence, the fact that for the
fermionic string the left and the right fermions have the same boundary conditions
implies that in its path integral formulation we have to sum over fermionic surfaces
with the same spin structures for the holomorphic and anti holomorphic world sheet
spinors. For the superstring, instead, the independent boundary conditions of the two
fermions chiralities means that we must allow for different spin structures for the left
and right fermions, and sum over each independently. This summation procedures will
automatically imply the GSO projection leading to the two types of II theories, see the
discussion in [SW]. However, a difficulty with the prescription for the superstrings is
that a non split super Riemann surface can only be defined if it is non chiral, i.e. θ

and θ̄ have the same spin structure. Thus, the chiral decoupling of the two dimensional
fermions in the superstring theory implies that its amplitudes can not simply be written
as integrals over the super moduli space of super Riemann surfaces. In order to obtain
a definition of the sueprerstring measure, in [VV2,VV3] a procedure to isolate the con-
tributions of the left and right movers to the fermionic string integrand was proposed.
The structure of Hfs suggests that its partition function on a g-loop surface can be
written as an integral over a set of loop momenta pµi , and moreover, that the integrand
for fixed momenta factorizes into a holomorphic and anti holomorphic function of the
super moduli. They was able to show that Zfs(m, m̄, m̂, ¯̂m) =

∫
dpµi |Wp(m, m̂)|2, with

i = 1, · · · , g. In particular the superstring vacuum amplitude has the following form:

Ass =
∫
Mg

dmdm̄

∫
pµi Zp(m)Z̄p(m̄), Zp(m) =

∑
α

∫
dm̂aW∆

p (m, m̂), (1.4)

where W∆ is the chirally projected fermionic string partition function, defined before
and δ labels the spinor structure. Furthermore, the authors was able to explicitly
perform the integral over the odd super moduli and summing over all spin structures.
This is an important point. Actually, a crucial feature of superstring loop amplitudes is
their space time supersymmetry. For example, it can prevent the presence of massless
tadpoles. In the NSR formulation space time supersymmetry arises after performing
the GSO projection on even world sheet fermion parity, which in the path integral
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is implemented by summing over all the spin structures. However, because the spin
structure is an intrinsic part of the geometry of a super Riemann surface, this sum
can only be performed after integrating over the odd super moduli. This means that
whereas on sMg space time supersymmetry is a symmetry relating the contribution of
different super Riemann surfaces, and therefore difficult to analyze, after reducing the
integrand to Mg it is realized as a symmetry on each individual Riemann surface.

The first step to perform the integral over the odd moduli m̂a is to isolate their
dependence of the string integrand. To this aim one has to know the difference between
the integrand on a super Riemann surface Σm̂ and the one on the split surface Σ0

obtained from Σm̂ by setting all odd moduli to zero. This difference can be computed
performing a redefinition of the fields in the functional integral on Σ0, in such a way
that the new fields satisfy the boundary conditions of Σm̂. Let (z, θ) and (z̃, θ̃) be
the local complex super coordinates on Σ0 and Σm̂ respectively. These two coordinate
systems are related to each other by a so called quasi-superconformal transformation.
Such coordinate transformation can be read as the operation switching on the odd
supermoduli and by means of it one can relate the fields defined on Σ0 with the ones
defined on Σm̂. This implies that the anti commuting super moduli are contained just
in the two dimensional gravitino filed χ̂. Choosing suitable coordinate on sMg one
can expand the gravitino as χ̂(z, z̄) =

∑2g−2
a=1 m̂aχa(z, z̄), where the 2g − 2 differentials

χa(z, z̄) are all independent of the odd supermoduli. We will see, in the next chapter,
that the necessity to make a choice of coordinates can be the origin of some troubles in
the procedure and make rise to some doubts on the general approach in the computation
of the string partition function. In this way one integrates out the odd moduli. An
analog result on the holomorphic factorization was reached by Sonoda in [So] where the
measure in the supermoduli space is given by Z(z, z̄, θ, θ̄) = 1

det ImMαβ
|F (z, θ)|2. Here,

Mαβ is the so called superperiod matrix and F (z, θ) depends holomorphically on z and
θ. However, in that paper it is not solved the essential problem of taking the left or right
moving part of det ImMαβ. In a slightly different way D’Hoker and Pong in [DP9,DP10]
obtained the same results for the chiral factorization. They made large use of the notion
of superspace and defined the functional integrals as superdeterminants. We do not enter
here in the details of such a procedure because we will analyze it in the next chapter
to explain the starting point of our construction of superstring partition functions. For
similar computations and discussion see also [B1,B2].

In [VV2] the important issue of the dependence of the string integrand on the choice
of the basis of gravitino fields is taken into account. More details on such global questions
can be find in [AMS, ARS]. This is an important point since there are many possible
choices for the gravitino χa and none of them seems to be preferred over the others. It
turns out that under the variation χa → χa + ∆χa the integrand changes with a total
derivative. Thus, the total amplitude is independent of the choice of the gravitino slice,
or in other terms the integral over the super moduli is uniquely defined, if this total
derivative does not contribute to the integral. This is not a trivial problem, since sMg

has a complicated topology and, in addition, it has a boundary. The string integrand
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is in general singular on the boundary of the super moduli space that describe the
degenerate Riemann surfaces. Therefore, the value of the total integral of the string
measure is very sensitive to variations of the choice of gravitino fields near the boundary.
Moreover, an important, and not yet solved, issue is whether or not there exists some,
preferred globally defined, basis of gravitino fields, which can be used to obtain a unique
integrand onMspin

g . This question is closely related to the problem of whether sMg is
a split supermanifold or not. The problem of constructing an analytically varying basis
of gravitino fields, globally defined modulo linear transformations, is exactly the same
as trying to find a split analytic coordinates of sMg. The specification “analytically”
is essential because any supermanifold allows a non analytic globally split coordinate
covering. If the supermoduli space sMg for general genus g turns out to be not split
there is no unique integrand over the moduli space Mg: it is only defined up to total
derivative. These points make the construction of the superstring amplitudes a highly
non trivial problem. To overcome these problems one has to consider the complicated
structure of the supermoduli space and use geometric globally defined tools to have a
deeper knowledge of such space.

Nevertheless the aforementioned problems, for the genus two case D’Hoker and
Phong [DP1,DP2,DP3,DP4] were able to write explicitly the vacuum to vacuum ampli-
tude in term of theta constants. Their construction and analysis was the starting point
for our construction of the superstring measure for g ≤ 5. For these reasons we review
in some details the D’Hoker and Phong strategy in the next chapter.





Chapter 2

Perturbative formulation of

string theory

In this chapter we, first, review in some details the construction of the partition function
in the bosonic case. Actually, this is the starting point for the generalization to the
supersymmetric theory. We exploit the complex geometric construction recalling the
approach and the theorem of Belavin and Knizhnik, the result of Beilinson and Manin
and their connection with the Mumford theorem. Then, we will generalize the bosonic
theory with the supersymmetric one. To build the supersymmetric lagrangian one
introduces the gravitino, the superpartner of the metric, and the Majorana spinors, the
super partner of the coordinate fields. We will introduce the partition function and
we recall how the functional integration is performed. As anticipate in the previous
chapter, in this procedure there are some ambiguities leading to a dependence of the
result on the specific choice of the basis for the gravitino. D’Hoker and Phong proposed
a strategy to solve these problems and to define correctly the superstring amplitudes.
We reassume their strategy and we indicate some aspects of this approach that hardly
generalize to arbitrary genus greater than two.

2.1 The bosonic history

To understand the strategy underling the construction of vacuum-to-vacuum superstring
amplitudes in the NRS formalism, we think it is a good choice to start with the main
rigorous results for the bosonic case. For simplicity we will work only with closed strings.

In flat Minkowski space the Polyakov action on a Riemann surface Σg of genus g
and with metric h is

Ig(X,h) =
1

4πα′

∫
Σg

d2z
√
h hab∂aX · ∂bX,

X : Σg ↪→ RD.

It formally selects the weight measure for the path integral formulation of the bosonic
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partition function

Zgbos =
∫

[Dhab][DX] exp(−I(X,h)), (2.1)

where the functional sums are performed over all possible metrics over Σg and over all
maps X : Σg ↪→ RD. The whole partition function obviously involves a sum over all
genera. When the path integral is well defined, one can extend it to compute amplitudes
involving vertex operators for example momenta Kµ

i of mass −m2
i = Ki ·Ki〈

N∏
i=1

Vi(Ki)

〉
=
∫

[Dhmn][DX] exp(−I(X,h))
N∏
i=1

Vi(Ki),

where, for example,

V−1(K) =
∫
d2z
√
h eiK·X , for the Tachyon,

V0(K) =
∫
d2z
√
h ∂aX · ∂aXeiK·X , for the Graviton.

To define the path integral the main idea is to make use of the very large symmetry
group of the classical theory that is the semidirect product G = Weyl(Σg) n Diff(Σg) of
the group of Weyl transformations times the group of diffeomorphisms of the Riemann
surface Σg. If M is the set of all possible Riemannian metrics over Σg, then the moduli
space for conformal classes of Riemann surfaces isMg = M/G. It is a finite dimensional
complex manifold with holomorphic dimension

dimCMg =


0 if g = 0
1 if g = 1
3g − 3 if g ≥ 2.

At infinitesimal level, diffeomorphisms can be thought as locally generated by vector
fields v and scalar fields ω:

Diff(Σg) : δhab = ∇avb +∇bva;
Weyl(Σg) : δhab = 2ωhab.

One expects to be able to reduce the path integral to a finite dimensional integral over
Mg. Indeed, the functional summation over the X fields can be easily performed being
the action a quadratic functional of X. The Gaussian integration is then expressed in
terms of the determinant of the Laplacian associated to the given metric hab over Σg,
and which can be computed, for example, by means of a zeta function regularization.
However, in computing the determinant one have to be careful about the existence of
zero modes which must dropped out. Such regularization breaks the conformal invari-
ance making the procedure anomalous so that the machinery fails to work. However, the
anomaly disappears when the target space dimension is D = 26 and the path integral
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is hopefully well defined. This is a well known result which can be obtained in many
ways and we will not review it here. We will rather look at the approach evidencing
the complex geometry underling the Riemann surfaces in place of the spectral proper-
ties of the related Laplacian. This is indeed the approach introduced by Belavin and
Knizhnik [BK], Beilinson and Manin [BM] and adopted by d’Hoker and Phong [DP7]
in order to finally solve the problem of computing two loop superstring amplitudes.

2.1.1 Path integral and complex geometry

Let us now collect here some technical points which permits to reexpress the path
integral formula in terms of some geometric data, suitable for obtaining the subsequent
main theorems, see [DP7].

We have to evaluate the path integral (2.1) where the measure is defined by the
metrics

‖δh‖2 =
∫

Σg

√
dethhabhcdδhacδhbdd2ζ,

‖δX‖2 =
∫

Σg

√
dethδX · δXd2ζ.

To sum over inequivalent metric configurations we need to specify some coordinates over
the moduli space. This means that we need to distinguish between symmetry transfor-
mations (diffeomorphisms and conformal transformations) and genuine transformations.
A particular interesting choice is given by introducing isothermal coordinates, which
are such that ds2 = 2hzz̄dzdz̄. Recall that to a given metric it is associated a complex
structure J b

a = h
1
2 εach

ac, so that isothermal coordinates are determined by solving the
Beltrami’s equations

J b
a

∂z

∂ζb
= i

∂z

∂ζa
.

Deformations of the complex structure are parameterized with Beltrami differentials
µ z
iz̄ , i = 1, 2, . . . , 3g − 3 so that

δhz̄z̄ =
3g−3∑
i=1

tihzz̄µ
z

iz̄ , (2.2)

for certain complex parameters ti. It follows that two deformations µ, µ̃ are equivalent
in Mg if µ̃ z

z̄ − µ z
z̄ = ∂z̄v

z for some vector field vz. It then results that the tangent
moduli space is

TMg = {Beltrami differentials µ z
iz̄ }/{Range of ∂z̄ over vector fields }

The cotangent bundle is parameterized by quadratic differentials Φzz which are non
singularly paired to Beltrami differentials by

〈µ|Φ〉 =
∫
d2µ z

z̄ Φzz.
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It is not difficult to see from this that the quadratic differentials are orthogonal to the
G-transformations in the following sense. Let be (ω, v) a generator of an infinitesimal
symmetry transformation: if the metric is h = 2e2φdzdz̄, then

δ(ω,v)h = 2e2φ∂̄v(dz̄)2 + 2e2φ∂v̄(dz)2 + 2[2ωe2φ + ∂(e2φv) + ∂̄(e2φv̄)]dzdz̄.

Note that the squared norm of this variation is

‖δ(ω,v)h‖2 =
∫

Σg

2e2φ(2ω + e−2φ∂(e2φv) + e−2φ∂̄(e2φv̄))2d2ζ +
∫

Σg

2e2φ(∂v̄)(∂̄v)d2ζ,

from which one easily computes the Jacobian of the transformation. It then follows that
the metric deformations orthogonal to δ(ω,v)h are the ones of the form

δ⊥h = Φzz + Φ̄z̄z̄

where Φ are the holomorphic quadratic differentials (∂̄Φ = 0).
The space of holomorphic quadratic differentials is a particular case of the space V n of
holomorphic n-differentials, holomorphic covariant tensors of rank n, for n positive, end
contravariant of rank −n for negative n. V n is naturally provided with the hermitian
product

〈τ, τ ′〉n =
∫

Σg

(e2φ)1−nτ̄ τ ′d2ζ.

Moreover, on V n it acts the n-Laplacian

∆nτ = −1
2
e2(n−1)φ∂(e−2nφ∂τ).

A choice of a basis µi, i = 1, . . . , 3g − 3, of Beltrami differentials, so that the metric,
according to (2.2), takes the form h = 2e2φ|dz +

∑
i t
iµidz̄|2, determine a dual basis

Φj of V 2 such that 〈Φj , µi〉 = δij . Then, the matrix Gij = 〈Φi,Φj〉2 is invertible with
inverse Gij and

µi =
1
2
e−2φGijΦ̄j .

Then we finally get
‖δ⊥h‖2 = Gijδt

iδt̄j ,

and we are able to compute the Jacobian transformation

[Dhab] = det∆−1[Dω][Dv]|det〈µi|Φj〉|2detGij(1/2)3g−3dt1∧. . .∧dt3g−3∧dt̄1∧. . .∧dt̄3g−3.

Dropping the gauge volume given by integration over ω and v, and performing the
Gaussian integral1 in X, we obtain the desired expression for the bosonic partition
function

ZgBOS =
∫
d3g−3t d3g−3t̄

|det〈µi|Φj〉|2

det〈Φi|Φj〉
det ∆−1

(
det ∆0∫
hzz̄d2ζ

)−D
2

. (2.3)

1Which gives (det′∆0/
R √

hd2ζ)−
D
2 , where the prime means that zero modes do not contribute to

the determinant, but contribute to the volume factor.
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It is also possible to give a gauge invariant formulation, adding ghosts b = bzzdz
2,

c = czdz−1, Igh = 1
2π

∫
d2z(bzz∂z̄cz + b̄z̄z̄∂z c̄

z̄) which satisfy

∫
[D(bb̄cc̄)]e−Igh

∣∣∣∣∣
3g−3∏
i=1

〈µi|b〉

∣∣∣∣∣
2

= det(∂̄†2∂̄2)
| det〈µi|Φj〉|2

det〈Φi|Φj〉

and then

ZgBOS =
∫

[D(bb̄cc̄X)]
3g−3∏
i=1

|〈µi|b〉|2e−(Ig+Igh). (2.4)

The expression (2.3) is generically anomalous, presenting two kinds of anomalies. The
first one is crucial for defining the theory and is the conformal anomaly, which breaks
invariance of ZgBOS under Weyl transformations. By means of Heat-Kernel methods one
can show that2, if Φ(n) ∈ V n,

δω log
det ∆n

det〈Φ(n)
i |Φ

(n)
j 〉 det〈Φ(1−n)

i |Φ(1−n)
j 〉

= −6n2 − 6n+ 1
6π

∫
Σg

d2z
√
hRω,

where R is the worldsheet scalar curvature. Using this in δωZBOS we see that the
conformal anomaly vanish if D = 26. Thus, conformal invariance constraints the theory
to work with a 26 dimensional space (at least in the case when the target space is the
flat Minkowski space).
The second anomaly is the so called Holomorphic anomaly. The Beltrami equation says
that the operator ∂z̄ depends holomorphically on the moduli: ∂z̄ → ∂z̄ − µ z

z̄ ∂z. Now,
expression (2.4) makes evident that ZgBOS should be expected to behave as the square
modulus of an holomorphic function. An obstacle for this to happen comes from the
Belavin-Knizhkin theorem:

δµ̄δµ log
det(∂̄†n∂̄n)

det〈Φ(n)
i |Φ

(n)
j 〉det〈Φ(1−n)

i |Φ(1−n)
j 〉

= −6n2 − 6n+ 1
6π

∫
Σ
d2z∇z̄µ∇zµ̄ω.

Note however that, exactly as for the conformal anomaly, the holomorphic anomaly
vanishes if D = 26. This fortunate coincidence (if this is the case) permits to eliminate
both anomalies simultaneously. The importance to cancel the holomorphic anomaly for
bosonic strings is not an evident fact as, however it is an advantageous fact because
as it permits to reexpress the partition function in terms of global objects, as it has
been shown in the remarkable paper of Belavin and Knizhkin [BK], and in a work of
Beilinson and Manin [BM] and Manin [MYu1,MYu2].
A starting point is a theorem of Mumford [Mu2] which was able to proof that the linear
bundle U = K ⊗ λ−13 is a holomorphically trivial bundle over Mg. Here K is the
canonical bundle overMg, that is the highest wedge power of the cotangent bundle. A
local basis is Φ1 ∧ . . . ∧ Φ3g−3. Similarly, λ is the Hodge bundle over Mg, the highest

2To be more precise, a diverging additive term depending only on the worldsheet volume appears,

but it is innocuous and can be adsorbed in a constant counterterm in the bosonic string action.
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wedge power of the holomorphic cotangent bundle, which is generated by the Abelian
differentials ω1 ∧ . . . ∧ ωg. As a consequence, U admits an essentially unique global
holomorphic section ψg, the Mumford section. Expressed in terms of a local basis the
Mumford theorem says that it exists a unique holomorphic function overMg such that

ψg = F
Φ1 ∧ . . . ∧ Φ3g−3

(ω1 ∧ . . . ∧ ωg)13

is a global section of U . Moreover, ψg is nonvanishing everywhere, and meromorphic at
infinity with an order two pole.
The Belavin-Knizhkin theorem implies that the bosonic partition function, apart from
a constant, is given by the square modulus of the Mumford section:

ZBOS = cg

∫
|F |2(−i)gΦ1 ∧ . . . ∧ Φ3g−3 ∧ Φ̄1 ∧ . . . ∧ Φ̄3g−3|det

∫
Σg

ω̄I ∧ ωJ |−13. (2.5)

The Mumford theorem has been proved by Beilinson and Manin [BM] in a strongest
form which permits to be more explicit. Moreover, Manin [MYu1,MYu2] has been able
to provide explicit expressions in terms of theta functions. Recall that a canonical basis
AI , BI , I = 1, 2, . . . , g for the homology of Σg, AI ∩AJ = BI ∩BJ = 0, AI ∩BJ = δIJ ,
one can associate a canonical basis ωI for the Abelian differentials by∫

AI

ωJ = δIJ .

Then
ΩIJ :=

∫
BI

ωJ

define the period matrix which is an element of the Siegel upper half-plane Hg, that
is symmetric with imaginary part positive definite. The column of Ω define an integer
lattice TΩ and an associated Jacobian variety JΩ = Cg/TΩ. Conversely, from Ω one can
recover the starting Riemann surface. Inserting into the algebraic geometric expression
(2.5) one finds:

ZgBOS = cg

∫
|
∏
I≤J

dΩIJ |2 det(ImΩ)−13|Φ(Ω)|−2,

Φ = 1/F . The partition function ZgBOS is independent from the choice of the canonical
basis3. Two different canonical basis differ by a symplectic transformation(

A′I
B′J

)
= M

(
AI
BJ

)
,

M =

(
U T

V Z

)
∈ Sp(2g,Z).

3The local expression for the global section depend on such a choice, but not the global section itself.
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Correspondingly the period matrix transform as

Ω −→ (UΩ + T )(V Ω + Z)−1.

It then follows that necessarily Φ is a modular form of weight 12− g

Φ(Ω) −→ Φ(Ω)(det(V Ω + Z))12−g.

For example, at genus g = 2, Φ(Ω) has weight ten. A theorem due to Igusa states
that at genus two, modular forms realize a polynomial ring with four generators ψi, of
weights i = 4, 6, 10, 12. Thus we must have

Φ(Ω) = αψ4ψ6 + βψ10.

On the other hand, the partition function must satisfy the clustering condition, that is if
we pinch the surface Σ2 separating it into the union of two tori Σg=2 → Σ1(Ω1)∪Σ1(Ω2),
with complex parameters Ω1 and Ω2, then the partition function factorizes as Z2 =
Z1Z1. This selects α = 0 so that

Φ(Ω) = ψ10 =
∏
δ even

θ[δ](0,Ω)

and
ZgBOS = c2

∫
|
∏
I≤J

dΩIJ |2
∏
δ even

|θ[δ](0,Ω)|−2(det ImΩ)−13.

Here θ[δ](z,Ω), z ∈ Cg (the covering space of the Jacobian variety J), Ω ∈ Hg, are the
theta function with characteristic4 [δ] = [ab ] ≡ a+ Ωb, a, b ∈ Zg defined by

θ[δ](z,Ω) = eiπb·(z+
a
2

)+iπ
4
b·Ωbθ(z + a+ Ωb,Ω), θ(z,Ω) =

∑
m∈Zg

e2iπm·z+iπm·Ωm.

2.1.2 Conclusion

What we have learned from the bosonic history is that, passing through the algebraic-
geometric description, one is led to a global description of the amplitudes measure. This
provides a rigorous and almost well defined expression, the only impediment being rep-
resented by the divergence due to the pole at infinity of the section. This can be indeed
imputed to the presence of the tachyon in the bosonic spectrum.
By means of the GSO projection the tachyon disappears from the spectrum of super-
symmetric strings so that we could expect that a similar treatment extended to the
supersymmetric case should lead to a completely well defined expression for the parti-
tion function. Unfortunately supersymmetry makes all things much more difficult and
actually an analogue global description is not yet available. We will see now why this
happens and a possible strategy proposed by D’Hoker and Phong and worked out at
genus two [DP1], [DP2], [DP3], [DP4].

4In the second member a, b ar thought as row vectors and in the last as column vectors.
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2.2 Supersymmetric strings

We can try to generalize directly the bosonic realization to the supersymmetric case. On
the Riemann surface Σg there are 22g possible spin structures. For any choice among
them, one can define spinor fields over the surface. To the metric hab one can then
define its superpartner χαa , the gravitino. The coordinate fields xµ have as superpartners
Majorana spinors ψµ. For any fixed spin structure one can then define the superstring
action

Ig,δ =
1

4πα′

∫
Σg

d2z
√
h[

1
2
hαβ∂αx

µ∂βxµ −
i

2
ψµγαDαψµ −

1
2
ψµγaγαχa∂αxµ

+
1
8
ψµγaγbχa(χbψµ)] + λX (Σg),

where X is the Euler characteristic. Here we reserved Greek indices for tangent direc-
tions and Latin indices for flat direction. In particular the metric is related to a zweibein
eaα via the usual relation gαβ = eaαe

b
βδab. The gamma matrices satisfy {γa, γb} = −2δab.

The covariant derivative is Dαψµ = ∂α − i
2ωαγ

1γ2, ω being the spin connection. The
spinor fields behave as half-integer powers of differentials so that we can write

ψ = ψ+dz
1
2 , ψ̄ = ψ−dz̄

1
2 , χ = χ+

z̄ dz̄dz
− 1

2 , χ̄ = χ−z dzdz̄
− 1

2 .

The symmetries of the action are thus extended to supersymmetries by adding to dif-
feomorphisms Diff(Σg)

δve
a
α = vβ∂βe

a
α + eaβ∂αv

β,

δvχa = vβ∂βχa + χbe
α
a∂αv

b,

δvx
µ = vα∂αx

µ,

δvψ
µ = vα∂αψ

µ,

and Weyl transformations Weyl(Σg)

δωe
a
α = ωeaα,

δωχa =
ω

2
χa,

δωx
µ = 0,

δωψ
µ = −ω

2
ψµ,

the supersymmetry transformations Susy(Σg)

δεe
a
α = iεγaχα,

δεχa = 2Daε,

δεx
µ = εψµ,

δεψ
µ = − i

2
(γβε)(∂βxµ −

1
2
χβψ

µ),
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and super-Weyl transformations SW(Σg)

δλe
a
α = 0,

δλχa = γaλ,

δλx
µ = 0,

δλψ
µ = 0.

Here ε and λ are spinors and all spinor index, which we have omitted everywhere, are
contracted in an obvious way along the NW − SE convention.
One has thus to compute the partition function (for fixed spin structure δ)

Zgδ =
∫

[Dhαβ][Dχa][Dxµ][Dψµ] exp(−Ig,δ). (2.6)

The measure is the one inherited by the bosonic metric plus the metric for spinor
deformations

‖δψ‖2 =
∫

Σg

δψ̄µδψµ
√
hd2ζ, ‖δχa‖2 =

∫
Σg

δχ̄aδχbh
ab
√
hd2ζ.

Moreover, it is convenient to introduce a norm in the space of supersymmetry deforma-
tions

‖ε‖2 =
∫

Σg

ε̄ε
√
hd2ζ.

Again, we can use the huge symmetry group to reduce the path integral to a finite
dimensional integration. The moduli space to be considered is now

SMg = ({hαβ} × {χa})/(Diff(Σg)×Weyl(Σg)× Susy(Σg)× SW(Σg)). (2.7)

To better understand it one can study its tangent bundle (the super Teichmüller space).
Locally it splits into the usual bosonic Teichmüller space plus a novel part described by
the gravitinos deformations. Under symmetry transformations gravitinos deform as

δ(v,ω,ε,λ)χa =
ω

2
χa + γaλ+ vβ∂βχa + χβe

α
a∂αv

β + 2Daε.

Genuine deformations δ⊥χa are then defined by the spinor deformations orthogonal to
symmetry deformations. Let us define the operator P 1

2
sending 1

2 spinors to 3
2 spinors,

defined by
[P 1

2
ε]a := 2Daε+ γaγ

βDβε.

Its adjoint P †1
2

, acting on 3
2 spinors, is defined by

〈P †1
2

δχ, ε〉 = 〈δχ, P 1
2
ε〉,

where the scalar products are the ones associated to the metrics defined above. It re-
sults that {δ⊥χ} = KerP †1

2

. Moreover KerP †1
2

= V
3
2 , the holomorphic 3

2 -differentials.



18 2. Perturbative formulation of string theory

Indeed, it happens that V 2 ⊕ V
3
2 can be seen as a superspace, so that the true defor-

mations of gravitinos are measured by the superpartners of the quadratic differentials.
An application of the Riemann-Roch theorem shows that the super moduli space is a
complex super manifold of dimension5 (3g − 3|2g − 2). We will not investigate this
further, all details can be found in the lecture notes of D’Hoker and Phong [DP7], see
also Nelson [GN1,GN2] for a deeper analysis of super moduli spaces. We only mention
that, correspondingly, the Beltrami differential will be extended to super-Beltrami dif-
ferentials whose odd components Θa,u, similarly to the even ones, will parameterize the
gravitino deformations so that, in local coordinates (ti, θu) ∈ C(3g−3|2g−2),

Θa,u =
∂χa
∂θu

+
1
2
γaγ

b∂χb
∂θu

,

and the orthogonal deformations are

δ⊥χa = Γvw〈Πw,Θu〉Πv
aθ
u.

Here {Πu
a}

2g−2
u=1 is a basis of V

3
2 , and Γvw is the inverse matrix of Γvw = 〈Πv,Πw〉.

Proceeding as for the bosonic case one finally arrive to the expression

Zgδ =
∫

[Dxµ][Dψµ]dµtdµθ det ∆−1
|det〈Φi, µj〉|2

det〈Φi,Φj〉
det ∆− 1

2

| det〈Πu,Θv〉|2

det〈Πu,Πv〉
e−Ig,δ , (2.8)

where dµt = dt3g−3dt̄3g−3 and dµθ = dθ2g−2dθ̄2g−2. Note that we have yet integrated
out the symmetry group degrees of freedom. Again, this can be verified computing the
Weyl variation. One obtains that in this case anomalies disappear if D = 10. Using the
symmetry transformations, we can project the gravitinos on the V

3
2 part so that

χa =
2g−2∑
u=1

ζuΠu
a,

where ζu are fermionic coordinates, which we will use in place of the θu (this give not
any nontrivial contribution to the Jacobian). In particular this imply γaχa = 0 so that
the action takes the simpler form6

Ig,δ =
∫

Σg

d2z
√
h[

1
2
hαβ∂αx

µ∂βxµ −
i

2
ψµγαDαψµ + ψµχα∂αxµ −

1
4
ψµχaψµχa].

We can now first integrate over the xµ configurations. This gives∫
[Dxµ]e−Iδ =

(
det ∆0∫
hzz̄d2ζ

)−D
2

e
i
2

R √
hψµγαDαψµd2ze−

1
2

P
u,v ζuζvK

uv

,

Kuv =
∫
d2zd2z′

√
h(z, z̄)h(z′, z̄′)ψµΠu,a(z)ψµΠv,b(z′)Σa,b(z, z′),

Σa,b(z, z′) =
∂2

∂za∂z′b
∆−1

0 −
1
2
habδ(z, z′).

5We mention here only the case of genus g ≥ 2.
6We also set 4πα′ = 1 for simplicity, and omitted the topological term.
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Integration over ζu then gives the Pfaffian of K, and, finally, integration over ψµ gives

Zgδ =
∫
dµt det ∆−1

|det〈Φi, µj〉|2

det〈Φi,Φj〉
det ∆− 1

2

|det〈Πu,Θv〉|2

det〈Πu,Πv〉

(
det ∆0∫
hzz̄d2ζ

)−5

·(det′(γaDa))5

∫
[Dψµ0 ] < PfaffK >ψ′ , (2.9)

where a prime indicates that zero modes are dropped, ψµ0 are zero modes of γaDa and
< PfaffK >ψ′ indicates expectation value.

2.2.1 An unfortunate history

Expression (2.9) is conformally invariant and apparently gives the desired result. How-
ever, here is where the problems start. A first problem is to realize a chiral splitting.
This is a first point where the absence of holomorphic anomaly should be very helpful.
Indeed, the obtained expression is only for fixed spin structure δ. To define the full
super string theory model one need to sum up over all spin structures taking account
of the GSO projection in order to eliminate the tachyon. But GSO projection acts
separately on the chiral modes so that the splitting becomes essential.
But even before to solve this problem, one must recognize that (2.9) is ambiguous.
One expects for the partition function to be independent from the choice of the parametriza-
tion of the moduli, that is from the choice of the super Beltrami differentials. Any change
should eventually add to the integral some boundary terms which should vanish. But
this is not what happen: the boundary terms do not generically vanish.
The ambiguity was first noted by Verlinde and Verlinde [VV1]. In [MM], Moore and
Morozov analyzed the problem on the light of some consistency conditions superstring
theories should satisfy: modular invariance, vanishing of the cosmological constant, and
nonrenormalization theorems. In particular, they have computed the difference between
type II and heterotic partition functions for genus two surfaces, showing that they differ
by a positive term, so that they seem to be not simultaneously consistent. The phys-
ical origin of the ambiguity has been further investigated in [ARS], se also Morozov
and Perelomov [MP]. Here they computed the g = 2 heterotic partition function by
choosing an explicit basis for the super Beltrami differentials, represented by δ-functions
supported on fixed points zu (u = 1, 2). It then results an explicit dependence on the
points in the sense that changing the points gives rise to a shift of the integrand by a
differential term which does not vanish on the boundary. The boundary of the moduli
space contains two disjoint tori with two marked points pu. There, it is shown that the
ambiguity disappears if one choose zu in such the way that zu = pu on the boundary.
A decisive analysis of the ambiguities can be found in [AMS], where global issues are
considered. They found that the superstring measure is a total derivative so that all
problems are related to the boundary conditions. Many peculiarities of the ambiguities
are put in light but the analysis do not provide a prescription able to eliminate them.
We will demand to the cited literature all details and will not discuss it here further.
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2.2.2 The D’Hoker and Phong strategy

A proposal for solving the ambiguity problem comes from D’Hoker and Phong [DP7].
The main idea is that the problems have origin in a wrong choice for the slice parametriza-
tion, that is the choice of the metric to select the bosonic component of the slice is not
a good one. Suppose that a slice is selected by a choice (hαβ, χα). After a supersym-
metric transformation one obtains a new coordinatization (h̃αβ, χ̃α). If the metric were
a good selection for the bosonic components, then the projector φ : (hαβ, χα) 7→ hαβ
would be supersymmetry preserving in the sense that the supersymmetry transformation
would induce a diffeomorphism (eventually composed with a conformal transformation)
hαβ 7→ h̃αβ. But this results not to be the case and in general hαβ and h̃αβ are not
related by a bosonic symmetry.
Their main idea is to substitute the metric with the period matrix associated to the
Riemann surface to be considered. As we said, the choice of a canonical basis for
holomorphic differentials, associated to a given symplectic basis {AI , BJ} of H1(Σg,Z)
defines a g × g period matrix Ω = {ΩIJ} ∈ Mg(C). It can be shown that the period
matrix lies in the Siegel upperhalf space

Ω ∈ Hg := {τ ∈Mg(C) : τ = tτ, Imτ > 0}. (2.10)

The important fact is that Torelli’s theorem stating that Σg is completely characterized
by its period matrix.
After introducing a suitable superdifferential description of super-Riemann surfaces,
D’Hoker and Phong introduce the concept of super holomorphic differentials ω̂I = ωI0 +
θωI1, θ being an odd variable, which are associated to a symplectic basis by∮

AI

dzdθω̂J = δIJ ,

and define the super period matrix

Ω̂IJ =
∮
BI

dzdθω̂J .

Indeed, they showed that

Ω̂IJ = ΩIJ −
i

8π

∫
dzd2z′ωI0(z)χ+

z̄ Sδ(z, z
′)χ+

z̄′ωJ0(z′),

where Sδ is the Szegö kernel, the unique solution of the equation

∂z̄Sδ(z, z′) +
1

8π
χ+
z̄

∫
d2wχ+

w̄∂z∂w lnE(z, w)Sδ(w, z′) = 2πδ(z, z′),

and E(z, w) is the prime form. Ω̂ is indeed supersymmetric and does not suffer the
defects of the metric. In a long series of remarkable papers, they have been able to
prove that the super period matrix prescription provides a well defined result for the
amplitudes. Most of calculation are explicitly developed for the genus two case, but
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they argued that in principle they should work at any g. For g = 2, in particular,
slice independence has been verified as well as the nonrenormalization theorems. After
integrating over the odd moduli, a nice expression for the g = 2 whole vacuum amplitude
was found to be

Z2 =
∫
M2

(det Im Ω)−5
∑
δδ′

cδδ′dµ[δ](Ω) ∧ dµ[δ′](Ω), (2.11)

where cδδ′ are phases realizing the right GSO projection and

dµ[δ](Ω) =
θ4[δ](0,Ω)Ξ6[δ](Ω)

16π6ψ10(Ω)

∏
I≤J

dΩIJ , (2.12)

Ξ6[δ](Ω) :=
∑

1≤i<j≤3

〈νi|νj〉
∏

k=4,5,6

θ4[νi + νj + νk](0,Ω) , (2.13)

where each even spin structure7 δ is written as a sum of three distinct odd spin structures
δ = ν1 + ν2 + ν3 and ν4, ν5, ν6 denote the remaining three distinct odd spin structures,
and

〈κ|λ〉 := eπi(aκ·bλ−bκ·aλ), κ = [aκbκ ], λ = [aλbλ ].

Finally, ψ10 is the Igusa form

ψ10 =
∏
δ even

θ[δ](0,Ω). (2.14)

D’Hoker and Phong claimed that after integrating over odd moduli:

Zg =
∫
Mg

(det ImΩ)−5
∑
∆∆′

c∆∆′dµ[∆](Ω) ∧ dµ[∆′](Ω) (2.15)

with

dµ[∆](Ω) = dµBOS(Ω)Ξ8(∆),

∆ =

[
a

b

]
, a, b ∈ Zg2,

and Ξ8[∆](Ω) are equivariant modular forms8 (the symplectic group acts on the char-
acteristics ∆ also). In [DP5] a detailed analysis of the g = 2 results led D’Hoker and
Phong to make an ansatz for the measure at genus 3. The genus three bosonic measure
is

dµ(3)
B =

c3

Ψ9(Ω)

∏
I≤J

dΩIJ

7In what follow we will indicate spin structures of any genus with ∆, just for the case g = 2 we will

use, as D’Hoker and Phong, δ.
8Will be much more detailed in the next sections.
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where Ψ2
9(Ω) is a Siegel modular form of weight 18 for Sp(6,Z). By analogy with the

g = 2 case, D’Hoker and Phong [DP5] proposed that the genus three chiral superstring
measure is of the form

dµ[∆] =
θ[∆]4(0,Ω)Ξ6[∆](Ω)

8π4Ψ9(Ω)

∏
I≤J

dΩIJ ,

and they gave three constraints on the functions Ξ6[∆(3)](τ (3)). Note that they assume
Ξ8[∆](Ω) ≡ θ[∆]4(0,Ω)Ξ6[∆](Ω). However, they did not succeed in finding functions
which satisfy all their constraints [DP6].
The failure in finding such a solution is not simply due to the formidable problem of
searching it in a very big space of modular forms without making use of a systematic
procedure, but mainly on the fact that it does not exist, as we will prove in Section
4.4.5 and in Section 4.4.7 where the representation theory of group is employed (see
also [CDG1] Section 4.4 or [DvG] Section 8.3). In particular, as was also remarked by
Morozov, the main obstacle in finding a solution was the too strong and prejudicious
imposition for the measure to be proportional to the fourth power of θ[∆](0,Ω). After
eliminating this condition and adapting the D’Hoker and Phong constraints to the most
general ansatz, led us to determine the existence of a unique solution at genus three and
at genus four and to find a solution, even though not unique, for the genus five case.
This will be the main argument of the rest of this thesis.

2.3 The general ansatz

Our starting point consists in assuming the validity of (2.11) to be true. This is a crucial
point so that some criticisms have been to be considered. Before discussing such points,
let us finish to expose our approach. As discussed by Morozov [Mo1] there are two
strategies to deal with superstring measures. The first one is the more direct one, that
is by direct integration of odd moduli after holomorphic factorization. The second one
is to use general considerations to deduce a reasonable guess for the measure and then
to use its properties to determine its final form. We will follow this second approach.
We will assume the problem of computing the bosonic measure as resolved and well
known. We have seen that the bosonic partition function density is

|dµ(g)
BOS |

2(det ImΩ)−13 = |
∏
I≤J

dΩIJ |2 det(ImΩ)−13|Φ(Ω)|−2.

Invariance under modular transformations requires precise modular properties for dµBOS .
This structure is very strongly supported by global issues in algebraic and complex ge-
ometry. For super symmetric strings one instead obtains the much more less supported
expression (2.11). If the Belavin-Knizhnik and Manin-Mumford arguments really play
a crucial role in superstring theory too, then, looking again at modular properties, it
is natural to expect for the superstring measure at fixed chirality to be related to the
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bosonic measure (Mumford form) by the relation

dµ(g)[∆(g)] = Ξ(g)
8 [∆(g)](Ω)dµ(g)

BOS , (2.16)

so that all dependence on the spin structure, that is the characteristic ∆, is codified
in the factor Ξ8[∆](Ω). Let as look at the known examples. We specify the genus by
an apex (g), for example ∆(1) means a g = 1 characteristic. At genus one the chiral
measure is

dµ[∆(1)] = c(1)θ[∆(1)]4(Ω(1))η12(Ω(1)) dµ(1)
B , (2.17)

dµ
(1)
BOS =

1
(2π)12η24(Ω(1))

dΩ(1). (2.18)

Then Ξ8[∆(1)](Ω(1)) = θ[∆(1)]4(Ω(1))η12(Ω(1)) is a modular form of weight 8 on a certain
subgroup of SL(2,Z) and η(Ω) is the Dedekind function, see Section 5.10.1.
For genus two D’Hoker and Phong obtained

dµ[∆(2)] = c(2)θ[∆(2)]4(Ω(2))Ξ6[Ω(2)](Ω(2)) dµ(2)
BOS , (2.19)

dµ
(2)
BOS =

c2

Ψ10(Ω(2))

∏
i≤j

dΩij , (2.20)

where Ξ6 has been defined in the previous section and

Ξ8[∆(1)](Ω(1)) = θ[∆(2)]4(Ω(2))Ξ6[∆(2)](Ω(2)) (2.21)

is indeed a modular form of weight 8 on a suitable subgroup of Sp(4,Z). It also has the
right behavior at the boundary of the moduli space. For example, in the limit where
the genus two Riemann surface Σ2 splits as the union of two elliptic curves Σ1[Ω(1)

1 ] and
Σ1[Ω(1)

2 ] with moduli given by Ω(1)
1 = Ω(2)

11 and Ω(1)
2 = Ω(2)

22 , then the measure separates
as the product of the genus one measures. Such limiting behavior, which we will call the
clustering property, is a fundamental property to be satisfied by the right superstring
measures.
Following the declared strategy we are now ready to state a general guess for the super-
symmetric invariant measure at any genera, t.i. for the functions Ξ8[∆(g)](Ω(g)). This
consists in three points:

i. The functions Ξ8[∆(g)] are holomorphic on the Siegel upper halfplane Hg.

ii. Under the action of the symplectic group Sp(2g,Z) on Hg, they should transform
as follows:

Ξ8[M ·∆(g)](M · Ω) = det(CΩ +D)8Ξ8[∆(g)](Ω), (2.22)

for all M ∈ Sp(2g,Z). Here the affine action of M on the characteristic ∆(g) is
given by(
A B

C D

)
·[ab ] := [cd],

(
tc
td

)
=

(
D −C
−B A

)(
ta
tb

)
+

(
(CtD)0

(AtB)0

)
mod 2

(2.23)
where N0 = (N11, . . . , Ngg) is the diagonal of the matrix N .
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iii. The restriction of these functions to ‘reducible’ period matrices is a product of the
corresponding functions in lower genus. More precisely, let

Dk,g−k :=

{
Ωk,g−k :=

(
Ωk 0
0 Ωg−k

)
∈ Hg : Ωk ∈ Hk, Ωg−k ∈ Hg−k

}
∼= Hk×Hg−k.

Then we require that for all k, 0 < k < g,

Ξ8[a1...ak ak+1...ag
b1...bk bk+1...bg

](Ωk,g−k) = Ξ8[a1...ak
b1...bk

](Ωk)Ξ8[ak+1...ag
bk+1...bg

](Ωg−k)

for all even characteristics ∆(g) = [a1...ag
b1...bg

] and all Ωk,g−k ∈ Dk,g−k.

Note that our guess coincide with the one of D’Hoker and Phong apart from the
fact that we do not require the functions Ξ8[M · ∆(g)] to factorize as the products of
θ[∆(3)]4(Ω(3)) times some equivariant modular form of weight 6. This is exactly what
will permit us to make success in finding a solution at genus 3, 4 and 5. These solutions
are unique for genus three and four.
A direct tackling of this constraints is quite formidable and can explain the failure of
D’Hoker and Phong in finding a solution (or recognizing that their ansatz was to strong).
For this reasons we will take advantage of the theory of induced representations: we
will build up representations of the modular group on the space of forms starting from
the representations given by a suitable subspace left invariant by a certain subgroup of
the entire modular group. This way to proceed resemble the method used by Wigner
to classify the irreducible representations of the Poincaré group induced from the rep-
resentations of the little group.
It is clear that this program requires an adequate exposition of the mathematical tools
necessary to reach the target. We will provide all the necessary mathematical back-
ground in the next section. Before to do it, let us stop for a moment to expose the
promised criticisms to formula (2.15).

2.3.1 Criticism to the main formula

To obtain the result (2.15) one has to integrate over the odd coordinates of the moduli
space. This is the super moduli space of super Riemann surfaces. To this aim one needs
a “splitting” of the super-Riemann surface Σ̂. For example, at g = 2 and for even spin
structures this should be done as follows:

� find a basis for super Abelian differentials ω1, ω2, with only even part;

� take periods Ω̂ and the Jacobian variety J = C2/Ω̂;

� take for Σ the Riemann surface having J as Jacobian;

then Σ̂ −→ Σ is a fibration and the point inM2 define the splitting of the super moduli
space. For g > 2 the situation is quite complicated, and it is hard to argue that a similar
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splitting should work in this case.9 Generically, it happens that odd differentials do not
exist. However, some odd differential may exist for special complex structures. In this
case the Jacobian variety is no more well defined and this procedure breaks down. But
let us assume that there were not odd differentials, so that J = Cg/Ω̂ is well defined.
But there is not any particular reason to believe for it to be the Jacobian variety of
ordinary Riemann surface Σg: its periods can differ from those of an ordinary Riemann
surface by terms that are bilinear in fermionic moduli.
To make this more clear, let us recall that the ordinary period matrix Ω is a point
in Hg (see Section 2.4 for some definitions). On this space it acts the modular group
Γg := Sp(2g,Z). Following [vG1], let us define Ag := Γg\Hg. Torelli’s theorem than
ensures that the natural holomorphic map j :Mg → Ag is injective. If J0

g ⊂ Hg is the
set of all period matrices of genus g Riemann surfaces, the Jacobian locus is its closure
Jg in Hg. It can be shown that Jg − J0

g ⊂ Hg consists of block diagonal matrix whose
diagonal blocks are period matrices of lower dimensional Riemann surfaces. As we have
seen, in string theory these select the degenerate limits which play an important role
in computing the amplitudes (clustering property). Therefore, we are really interested
in considering the Jacobi locus Jg or better its image jg in Ag. It results that Jg is a
(3g− 3)-dimensional complex subvariety of Hg. The Schottky problem is related to the
question of what points of Hg are in Jg. In Table 2.1 we report the dimensions of these
manifolds for inreasing g. From this it follows that the Schottky problem is trivial up to

g dimHg dimMg

0 0 0
1 1 1
2 3 3
3 6 6
4 10 9
g g(g + 1)/2 3g − 3

Table 2.1: Dimensions of Hg and Mg.

genus three. To ensure the validity of (2.11) at genus 3 we then should worry only about
the existence of odd differentials. To higher genera the situation complicates because
the codimension of Jg in Hg increases quadratically with g, so that we cannot expect,
without some strong motivation, for the super period matrix Ω̂ to lie in Jg. Thus, even
though we will see that the ansatz provide a solution for the g = 3, 4 cases, a much
deeper investigation must be devoted to understand (2.11) or improve.

9This observations was pointed out to us by Ed. Witten to which we are very grateful for his

explanations.
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2.4 Moduli space and Schottky problem

We conclude this chapter with a brief summary on some topics about the moduli space
of Riemann surfaces, for some more details see [vG1].

Let C be a Riemann surface of genus g and consider the homology group H1(C,Z) ∼=
Z2g. A symplectic basis ofH1(C,Z) is a basis {α1, · · · , αg, β1, · · · , βg} satisfying (αi, αj) =
(βi, βj) = 0 and (αi, βj) = δij . Let H0(C,ΩC) be the g-dimensional complex vector
space of holomorphic one forms on C. Given a path γ ∈ C and an ω ∈ H0(C,ΩC) one
can compute the integral

∫
γ ω and, if γ is a closed path, the integral depends only on

the homology class of γ. It can be shown that given a symplectic basis for H1(C,Z)
then there is a unique basis {ω1, · · · , ωg} of H0(C,ΩC) such that

∫
αi
ωj = δij . We now

use the βj to define a complex g× g matrix, the period matrix of C, τ = (τij) ∈Mg(C)
with τij :=

∫
βi
ωj , where ωi is an element of the basis of H0(C,ΩC) determined from

the symplectic basis. Torelli’s theorem asserts that one can recover the Riemann sur-
face from its period matrix. The Schottky problem basically asks for equations which
determine the period matrices of Riemann surfaces among all g × g matrices. Period
matrices have two properties: they are symmetric and Im(τ), the imaginary part of τ ,
which is a symmetric, real, g × g matrix, defines a positive definite quadratic form on
Rg: tx(Im τ)x > 0, for all x ∈ Rg; briefly one writes Im(τ) > 0. This leads to the
definition of the Siegel upper half plane Hg := {τ ∈Mg(C) : tτ = τ, Im(τ) > 0}. Thus
if τ is the period matrix of a Riemann surface, then τ ∈ Hg. One can show that Hg is
a complex manifold of dimension 1

2g(g + 1).
To define the period matrix of a Riemann surface we had to choose a symplectic

basis and two such basis are related by an element of the symplectic group Γg. The
symplectic group acts on Hg and the period matrix of Riemann surfaces are a Γg-orbit
in Hg. Thus one can study the images of period matrices under the quotient map
π : Hg → Ag := Γg\Hg. The moduli space Mg of Riemann surfaces is a variety whose
points correspond to isomorphism classes of Riemann surfaces. Then we have a well
defined holomorphic map: j : Mg → Ag, [X] 7→ Γgτ , where τ is a period matrix of
X. This map is injective from Torelli’s theorem. The Schottky problem can now be
reformulated as the problem of finding equations for the image of j.

Let J0
g ⊂ Hg be the set of period matrices of Riemann surfaces. Its image in Ag is

j(Mg) = Image(J0
g → Ag = Γg\Hg). We have the diagram:

J0
g

� � i // Hg

π

��
Mg

j // Ag := Γg\Hg

where i is the immersion map of J0
g in Hg and J(Mg) = π(i(J0

g )). The subvariety J0
g and

j(Mg) are not closed and one defines the Jacobi locus Jg as the closure of J0
g in Hg. A

τ ∈ Hg will be called decomposable if τ lies in the Γg-orbit of matrices in diagonal block
form. The set Jg − J0

g in Hg consists of decomposable matrices, the diagonal blocks
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being period matrices of Riemann surfaces of lower genus. From Teichmüller theory
one knows that the subset Jg is actually an irreducible subvariety of Hg of dimension
3g − 3, for g > 1 and for g = 1 one has H1 = J1 = J0

1 . The Table 5.1 shows that the
Schottky problem is trivial for g ≤ 3. This shows why for g ≤ 3, as expected, the forms
Ξ(g)

8 [0(g)] are defined on the whole Hg.





Chapter 3

Mathematical background

In order to describe the construction of the string amplitudes from an axiomatic point
of view we need to develop some mathematical tools. In this section we will introduce
the symplectic group and modular forms, the theta functions and their transformation
properties under the action of the symplectic group.

3.1 The symplectic group

The symplectic group Sp(2g, F ) of degree 2g over a field F is the group of 2g × 2g
matrices with entries in F satisfying:

MEtM = E, (3.1)

with E =
(

0 Ig
−Ig 0

)
the canonical symplectic form and Ig the g-dimensional identity

matrix. Note that the symplectic form has determinant +1, its inverse is E−1 = tE =
−E and that a symplectic matrix M is always invertible and its inverse is M−1 =
E−1tME. Also the product of two symplectic matrices is symplectic: suppose M =
M1M2, with M1 and M2 symplectic thus MEtM = M1M2E

tM2
tM1 = M1E

tM1 = E.
This shows that Sp(2g, F ) with matrix multiplication is a group. Directly from the
definition, it follows that the determinant of a symplectic matrix is ±1, but it turns out
that this determinant is always positive. To see this one uses the identity1 Pf(tMEM) =
det(M) Pf(E), since tMEM = E and Pf(E) 6= 0 it follows that det(M) = 1. Thus,
the symplectic group is a subgroup of the special linear group SL(2g, F ). For a block
matrix M =

(
A B
C D

)
the condition to be symplectic is equivalent to the conditions

AtB = BtA

CtD = DtC

AtD −BtC = I.

1Let A = (aij) be a 2n×2n skew-symmetric matrix, the Pfaffian of A, Pf(A), is defined as: Pf(A) =
1

2nn!

P
σ∈S2n

sgn(σ)
Qn
i=1 aσ(21−1),σ(2i), where S2n is the symmetric group and sgn(σ) is the signature

of the permutation σ.
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More abstractly, the symplectic group can be defined as the group of linear transforma-
tions of a 2n−dimensional vector space over a field F which preserve a nondegenerate,
skew-symmetric, bilinear form.

When the symplectic matrices take value in Z we will write Γg := Sp(2g,Z). Even
though Z is not a field Γg is a group and we define its congruence subgroup of level n
as

Γg(n) := {M ∈ Γg : M ≡ I mod n}. (3.2)

These are normal subgroups of Γg. A subgroup H of a group G is normal if it is
invariant under conjugation, i.e. ghg−1 ∈ H for any g ∈ G and h ∈ H. If M ∈ Γg
and N ∈ Γg(n) we have that MNM−1 is again in Γg(n) because the matrix elements
outside the diagonal are k×0 mod n

detM that is again 0 mod n for all k ∈ Z and the matrix
elements on the diagonal are det(M)×1 mod b+k×0 mod n

det(M) , for a certain k ∈ Z, and this is
again 1 mod n, thus Γg(n) is a normal subgroup of Γg.

The case n = 2 is of particular interest for the applications to string theory:

Γg(2) = ker(Γg := Sp(2g,Z) −→ Sp(2g) := Sp(2g,F2)), (3.3)

where F2 is the field with two elements. The reduction mod two map, as proved by Igusa,
is surjective, so that we have Sp(2g) ∼= Γg/Γg(2). This group is clearly finite and its order
is [J]: | Sp(2g)| = 22g−1(22g−1)| Sp(2g−2)| = 22g−1(22g−1)22g−3(22g−2−1) · · · 2(22−1).

3.2 The action of Sp(2g) on the theta characteristics

In order to construct string amplitudes we will use certain special functions called theta
functions with characteristic. There is a natural action of the symplectic group on
such theta functions. This can be used to construct a special class of functions called
modular forms. Before introducing theta functions and modular forms we define here
theta characteristics and study the action of the symplectic group on them.

The finite field F2g
2 has 22g elements called period characteristics and the group Γg

naturally acts linearly on them through its quotient Sp(2g) = Γg/Γg(2), the action
being simply given by the matrix product on the column vectors of F2g

2 . A theta g-

characteristic, or simply a theta characteristic, is a 2 × g array
[
a1 ··· ag
b1 ··· bg

]
, with bi,

ai ∈ F2. We can define a (non linear) action of the symplectic group on the theta
characteristics. Following the abstract definition of Section 3.1, the group Sp(2g) fixes
a nondegenerate skew-symmetric form E on the F2-vector space V = F2g

2 . Choosing a
symplectic basis for V , which is a basis e1, · · · , e2g of V such that E(e1, ej) = 0 unless
|i− j| = g and then E(ei, ej) = 1, we obtain:

E : V × V −→ F2, E(v, w) := v1wg+1 + · · ·+ vgw2g + vg+1w1 + · · ·+ 22gwg, (3.4)

where v, w ∈ F2g
2 . More compactly, we can write E((v′, v′′), (w′, w′′)) = tv′w′′ + tv′′w′

and occasionally we will write v = (v
′
v′′), where v′, v′′ are then considered as row vectors.
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Let us consider the quadratic form q on the vector space V whose associated bilinear
form is E. This is the map:

q : V −→ F2, q(v + w) = q(v) + q(w) + E(v, w). (3.5)

It is not hard to verify that for each choice of ai and bi ∈ F2 the function

q(v) = v1vg+1 + v2vg+2 + · · ·+ vgv2g + a1v1 + · · ·+ agvg + b1vg+1 + · · ·+ bgv2g (3.6)

satisfies q(v + w) = q(v) + q(w) + E(v, w) and that any quadratic form associated to
E is of this form. With the compact notations, we can write q(v) = tv′v′′ + av′ + bv′′,
with row vectors a = (a1, · · · , ag) and b = (b1, · · · , bg). We are now able to give the
precise definition of theta characteristics. The theta characteristic ∆q associated to the
quadratic form q is defined as:

∆q :=
[
a1 a2 ... ag
b1 b2 ... bg

]
= [ab ]. (3.7)

To introduce the notion of parity of a theta characteristic we define e(∆q) := (−1)
Pg
i=1 aibi ∈

{1,−1} and we say that ∆q is even if e(∆q) = +1 and odd elsewhere.
One can verify that:

e(∆q)2g =
∑
v∈V

(−1)q(v). (3.8)

It follows that q(v) has 2g−1(2g + 1) zeroes in V if ∆q is even and has 2g−1(2g − 1)
zeroes if ∆q is odd. To show this consider an even characteristic ∆q, from (3.8) we
obtain 2g = z − p, where z is the number of v for which q(v) is 0 (mod 2) and p is the
number of v for which q(v) is 1 (mod 2). Hence, we obtain the two equations:

2g = z − p
22g = z + p,

solving this system one obtains the number of zeroes for q(v) for an even ∆q. The case
∆q odd is similar but the first equation of the system becomes −2g = z − p.

For any genus g there are 22g theta characteristics of which 2g−1(2g + 1) are even
and 2g−1(2g − 1) odd. This can be shown as follows ( [RF], Chapter 1, Theorem 1). In
genus one there are three even characteristics: [00], [10], [01] and one odd [11]. If one borders
an even (odd) (g− 1)-characteristic on the right by an even 1-characteristic, one gets a
even (odd) g-characteristic. Instead, bordering an even (odd) (g − 1)-characteristic by
[11] gives an odd (even) g-characteristic. Thus, if ei and oi are the cardinals of the even
and odd i-characteristics respectively, then:

eg = 3eg−1 + og−1 (3.9)

og = 3og−1 + eg−1.

Adding the two equations, considering that e1 + o1 = 22, and by induction one obtains:

eg + og = 22(eg−1 + og−1) = 22g, (3.10)
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this prove that in genus g there are exactly 22g characteristics. Subtracting the two
equations (3.9) and again by induction we obtain:

eg − og = 2(eg−1 − og−1) = 2g. (3.11)

Solving (3.10) and (3.11) for eg and og we obtain:

eg = 2g−1(2g + 1)

og = 2g−1(2g − 1).

The group Sp(2g) acts naturally on the characteristics by:

(g · q)(v) := q(g−1v), (g ∈ Sp(2g), v ∈ V ). (3.12)

This action is transitive on both the set of even and odd characteristics which are the
two orbits of the action.

3.3 Modular forms

We recall here that the Siegel upper half space Hg is the space of complex g × g sym-
metric matrices with positive imaginary part. We can see Hg as a higher dimensional
generalization of the half upper complex plane (i.e. the set of complex numbers with
positive imaginary part):

Hg := {τ ∈Mg(C) : tτ = τ, Im(τ) > 0}. (3.13)

A Siegel modular form of genus g, weight k and level n is a holomorphic function on
the Siegel upper half space such that:

f : Hg −→ C, f(M · τ) = det(Cτ +D)kf(τ) ∀M ∈ Γg(n), (3.14)

plus, for g = 1, the requirement that f is holomorphic at ∞. The action of Γg on the
Siegel upper half space is given by

M · τ := (Aτ +B)(Cτ +D)−1, M :=

(
A B

C D

)
∈ Sp(2g,Z), τ ∈ Hg. (3.15)

The set of all Siegel modular forms of genus g, weight k and level n form a finite
dimensional complex vector space denoted Mk(Γg(n)). For the applications to string
theory we are mainly interested to the case n = 2. The finite group Sp(2g) has a
representation

ρ ≡ ρk : Sp(2g) −→ GL(Mk(Γg(2)))

on this vector space defined by

(ρ(g−1)f)(τ) := det(Cτ +D)−kf(M · τ), (3.16)

where M ∈ Γg is any representative of the equivalence class of g ∈ Sp(2g) and f ∈
Mk(Γg(2)) (note that det(Cτ + D)−kf(M · τ) = f(τ) for M ∈ Γg(2), thus the action
of M ∈ Γg factors over Γg/Γg(2) = Sp(2g)). The equality ρ(gh) = ρ(g)ρ(h) for g, h ∈
Sp(2g) follows from (MN) · τ = M · (N · τ) and γ(MN, τ) = γ(M,N · τ)γ(N, τ) where
γ(M, τ) := det(Cτ +D). This shows that ρ effectively defines a group representation.
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3.3.1 Theta constants with characteristic

A powerful tool to determine modular forms on Γg(2) is provided by theta constants
with characteristic. Let ∆ = [ab ] be an even characteristic, then one defines a function,
called theta constant, on the Siegel space Hg by

θ[ab ](τ) :=
∑
m∈Zg

eπi((m+a/2)τ t(m+a/2)+(m+a/2)tb) (3.17)

so m is a row vector and
∑
aibi ≡ 0 mod 2. Then, for all M ∈ Sp(2g,Z), one has ( [I1],

V.1, Corollary):

θ[M ·∆](M · τ) = κ(M)e2πiφ∆(M) det(Cτ +D)1/2θ[∆](τ), (3.18)

with:

φ∆(M) =
g∑

k,l=1

−1
8

(
(tDB)klakal − 2(tBC)klakbl + (tCA)klbkbl

)
+

1
4((tD)klak − (tC)klbk)(AtB)ll,

and κ(M) a constant independent on the characteristic. Here the action of M ∈
Sp(2g,Z) on the characteristic ∆ is given by (2.23). The formula (3.18) is called trans-
formation formula. This formula is explicit except for the constant κ(M). See [RF] for
the expression of κ(M) or, in case of squared theta constants, see [I1]. Note that

θ[∆](M−1 · τ) = θ[M−1M ·∆](M−1 · τ) = cM−1,∆,τθ[M ·∆](τ) (3.19)

where cM−1,∆,τ collects the non-relevant part. Thus the action of M basically maps
θ[∆] to θ[M ·∆].

The action of Γg on the theta characteristics defined in (2.23) corresponds to its
action on the quadratic forms on V defined in Section 3.2. To show this we have to
proof explicitly that

(M · q∆)(v) = qM ·∆(v). (3.20)

From the definition of the action of Sp(2g) on the quadratic forms (M · q∆)(v) =
q∆(M−1v) then we must verify the relation q∆(M−1v) = qM ·∆(v). From the definition of
Γg we have MEtM = E and taking the inverse of both sides we obtain M−1 = −EtME,
so:

M−1v =

(
tD −tB
−tC tA

)(
v′

v′′

)
=

(
tDv′ − tBv′′

−tCv′ + tAv′′

)
. (3.21)

Using q∆(v) = q[ab ]((v
′
v′′)) = tv′v′′ + av′ + bv′′, we get

q∆(M−1v) = t( tDv′− tBv′′)(− tCv′+ tAv′′)+a( tDv′− tBv′′)+b(− tCv′+ tAv′′). (3.22)

The non-linear part is

tv′(−D tC)v′ + tv′(D tA)v′′ + tv′′(B tC)v′ − tv′′(B tA)v′′. (3.23)
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As M is symplectic, D tC is symmetric, hence only the terms (D tC)ii(v′i)
2 survives

mod 2. But (v′i)
2 ≡ v′i mod 2 and thus tv′(−D tC)v′ ≡ (D tC)0v

′ mod 2. Similarly,
v′′(B tA)v′′ ≡ (B tA)0v

′′ mod 2. Next, B tC ≡ I + A tD mod 2 so that tv′(D tA)v′′ +
tv′′(B tC)v′ ≡ tv′v′′ mod 2. Thus, we find that

q∆(M−1v) = tv′v′′ + (a tD − b tC + (D tC)0)v′ + (−a tB + b tA+ (B tA)0)v′′ (3.24)

so q∆(M−1v) = qM ·∆(v), as desired. This clarifies the definition of the action given in
(2.23).

3.4 The subgroup O+(2g) of Sp(2g)

The stabilizer subgroup of the (even) characteristic [0] := [0...00...0] is the subgroup Γg(1, 2),
a special case of a series of subgroups of Γg:

Γg(n, 2n) := {M ∈ Γg(n) : diagA tB ≡ diagC tD ≡ 0 mod 2n }. (3.25)

In case n is even Γg(n, 2n) is a normal subgroup of Γg ≡ Γg(1). We call O+(2g) the
image of Γg(1, 2) in Sp(2g)

O+(2g) := Γg(1, 2)/Γg(2) (⊂ Sp(2g)). (3.26)

As Sp(2g) acts transitively on the even theta characteristics, there is a natural bijection

Sp(2g)/O+(2g) −→ {∆ : ∆ even }, hO+(2g) 7−→ h · [0], (3.27)

for h ∈ Sp(2g). In particular, [Sp(2g) : O+(2g)] = 2g−1(2g +1). One has O+(2) ∼= Z/2Z
and O+(4) is isomorphic to the subgroup of the symmetric group S6

∼= Sp(4) consisting
of all permutations σ such that σ({1, 2, 3}) ⊂ {1, 2, 3} or σ({1, 2, 3}) = {4, 5, 6}. Thus
S3 × S3 is a subgroup of index two in O+(4) and |O+(4)| = (3!) · (3!) · 2 = 72. One
has O+(6) ∼= S8, the symmetric group of order 8! and O+(8) is the quotient of the
subgroup of elements of2 W (E8) with determinant +1 in the standard 8-dimensional
representation, by its center, generated by −I.

3.5 Theta constants and the Heisenberg group

In this section we will study the relation between modular forms and theta constants.
We will see that the modular group acts on the theta constant projectively instead
of linearly. Recognizing the action of a finite Heisenberg group will help us to obtain
modular forms from suitable polynomials in theta constants.

The theta constants are almost modular forms of weight 1/2 on Γg(4, 8); due to the
presence of the constant κ(M) we used the expression “almost modular”. This can be
shown by using the “transformation formula”

θ[∆](M · τ) = θ[MM−1∆](M · τ) = κ(M)e2πiΦ∆(M) det(Cτ +D)1/2θ[M−1∆](τ).
2The Weyl group of E8.
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The exponential phase takes the value 1 if Φ∆(M) is an integer. As M ∈ Sp(2g,Z),
also M−1 ∈ Sp(2g,Z), thus M satisfies also tBD − tDB = 0 and tAC − tCA = 0,
that mean that tDB and tCA are symmetric matrices. Hence, the integers akal, bkbl
in atDBta + bCAtb are multiplied by an even integer if k 6= l, so that they do not
contribute to the exponential if tDB and tCA are 0 mod 4. For k = l we have∑

k(a
2
k(
tDB)kk + b2k(

tCA)kk), but note that a2
k ≡ ak mod 2. For a g × g matrix M , let

diag(M) be the column vector (M11,M22, . . . ,Mgg) of diagonal entries. Then, the last
term is adiag(tDB) + bdiag(tCA) which does not contribute to the phase if its value is
0 mod 8. These two requests are precisely the conditions defining the subgroup Γg(4, 8).
Note that if M ∈ Γg(4, 8) the term 2(tBC)klakbl is a multiple of eight so that it does not
contribute to the phase and the same hold true for the second term in Φ∆(M) because
AtB is 0 mod 8. Moreover M−1∆ = ∆ for all M ∈ Γg(2) (or in some its subgroup).
Just the constant κ(M) survives.

To determine the modular forms of even weight on Γg(2) it is convenient to define
the 2g (second order) theta constants:

Θ[σ](τ) := θ[σ0 ](2τ), [σ] = [σ1 σ2 . . . σg], σi ∈ {0, 1}, τ ∈ Hg.

These theta constants, being evaluated in 2τ , are almost modular forms of weight 1/2
on Γg(2, 4):

Θ[σ](M · τ) = θ[σ0 ]
(

2
Aτ +B

Cτ +D

)
= θ[σ0 ](M̃ · 2τ),

with M̃ =
(
A 2B
C
2
D

)
and similar considerations as the previous ones lead to the right con-

clusion. As we shall see, the invariants of degree 4k of the quotient group Γg(2)/Γg(2, 4) ∼=
F2g

2 in the ring of polynomials in the Θ[σ]’s are modular forms of weight 2k on Γg(2).
However, the quotient group Γg(2)/Γg(4, 2) doesn’t act linearly on the Θ[σ](τ). Us-
ing the action ρ defined in (3.16) we obtain that ρ(g−1

N )ρ(g−1
M ) 6= ρ(g(MN)−1) for the

presence in the exponential of the phases Φ∆(M) + Φ∆(N) which are not equal to
Φ∆(NM). Here gM , gN stand for the equivalence classes in Γg(2)/Γg(2, 4) of the ma-
trices M, N ∈ Γg(2) respectively. Thus, a term depending on the characteristic ∆
remains. Moreover, κ(M)κ(N) 6= κ(MN), but we will see how to get rid of this term.
The previous considerations lead to take into account a central extension of the quotient
group Γg(2)/Γg(2, 4), the Heisenberg group.

The finite Heisenberg group (cf. also [CvG])is defined as Hg = µ4 × Fg2 × Fg2, where
µ4 = {z ∈ C : z4 = 1} is the multiplicative group of fourth roots of unity. The group
composition law is (s, x, u)(t, y, v) = (st(−1)uy, x+y, u+v), with uy = u1y1 + · · ·+ugyg
for u = (u1, · · ·ug), y = (y1, · · · yg) ∈ Fg2. The center of Hg is the multiplicative group µ4

and the quotients Hg/µ4 are isomorphic to Z2g
2 . Let us consider the ring of polynomials

in 2g variables Xσ, where [σ] = [σ1 σ2 · · · σg], σi ∈ {0, 1}. On this space we can define
the (Schrödinger) representation of the Hesienberg group

(s, x, u)Xσ := s(−1)(x+σ)uXσ+x,
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and this action is extended to polynomials in Xσ’s in an obvious way. Directly from
this definition, it follows that a polynomial in the Xσ is invariant under the center µ4 of
the Heisenberg group if and only if its degree is a multiple of four, so the Hg invariant
polynomials result to be modular forms of even weight. We will denote the subring of
these invariants in the ring of polynomials in Xσ as C[· · · , Xσ, · · · ]Hg . The action of Hg

on the ring of polynomials C[· · · , Xσ, · · · ] induces an action on the ring of the (second
order) theta constants C[· · · ,Θ[σ], · · · ] under the map Xσ 7→ Θ[σ]. The subspace of
M2k(Γg(2)) of the Heisenberg invariants is denoted by M θ

2k(Γg(2)) ⊂M2k(Γg(2)), where
M θ

2k(Γg(2)) := C[· · · ,Θ, · · · ]Hg2k .
Using the two generators (1, x, 0) and (1, 0, u) of the Heisenberg group it is not hard

to construct a basis for the space of the invariants. We fixed 1 as element of the center
because the latter acts trivially on polynomials of degree four. First, each monomial in
an Heisenberg invariant polynomial P is a product

∏4n
i=1Xσi which must be invariant

under the action of (1, 0, u). This means (1, 0, u)
∏4n
i=1Xσi = (−)(

P
i σi)u

∏4n
i=1Xσi , which

is invariant for all u if
∑
σi = 0. Next, P must be invariant also for the elements of

the form (1, x, 0), which means that all monomials in P of the type
∏4n
i=1Xσi+x, for

any x ∈ Fg2, must have the same coefficient in P . Thus a basis for the subring of the
Heisenberg invariants is provided by polynomials of the form

∑
x

∏4n
i=1Xσi+x, where∑

σ = 0.

3.5.1 Transvections

The group Sp(2g) is generated by transvections tv, for v ∈ V , which are analogous to
reflections in orthogonal groups ( [J], § 6.9). They are defined as:

tv : V −→ V, tv(w) := w + E(w, v)v.

It is straightforward to verify that tv ∈ Sp(2g). In fact the same formula works also
for Z in place of Z2 and then defines elements in Sp(2g,Z). As gtvg−1 = tg(v) for
g ∈ Sp(2g,F2) and v ∈ V , the non-trivial transvections form a conjugacy class. It is
not hard to prove that tv is an involution, i.e. t2v = 1.

Let us now determine how tranvections act on the characteristics. Let v ∈ V and
let q be a quadratic form with associated bilinear form E and characteristic ∆q. As tv
is an involution, q(v + w) = q(v) + q(w) + E(v, w) for all v, w ∈ V and q(av) = aq(v)
for a ∈ F2, we have

(tv · q)(w) = q(tv(w)) = q(w + E(v, w)v) = q(w) + E(v, w)q(v) + E(v, w)2.

Hence we get the simple rule:

(tv · q)(−) =

{
q(−) if q(v) = 1,

q(−) + E(v,−) if q(v) = 0,
so t

(v
′
v′′ )
· q[ab ] = q

[a+v′′
b+v′ ]

in case q[ab ]((v
′
v′′)) = 0.
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Using the transvections we obtain the action of Sp(2g) on the Heisenberg invariants
in a simple manner and a computer can be used to perform all computations (see the
Appendix B of [DvG] for an exhaustive discussion about transvections and also [CvG]).

3.5.2 Dimension of the space of Heisenberg invariants

We will show that the functions we need to construct superstrings amplitudes belong
to the subspace of the Heisenberg invariants given by the vector space C[· · · , Xσ, · · · ]n
of homogeneous polynomials of degree n = 16 in the Xσ’s. Here we show that the
dimensions of these spaces are given by the formula:

dim(C[ . . . , Xσ, . . .]4n)Hg = 2−2g

((
2g + 4n− 1

4n

)
+ (22g − 1)

(
2g−1 + 2n− 1

2n

))
.

(3.28)
We list in Table 3.1 such dimensions for the lowest values of genus g and degree 4n.

g / degree 4 8 12 16

1 2 3 4 5
2 5 15 35 69
3 15 135 870 3993
4 51 2244 69615 1180396

Table 3.1: Dimension of some space of Heisenberg invariants.

To prove the formula we will employ the theory of finite group representations.
For fixed g let ρn be the representation of the Heienberg group on the vector space of
homogeneous polynomials in Xσ’s, as introduced before:

ρn : Hg → GL(C[· · · , Xσ, · · · ]n]). (3.29)

Clearly, the Heisenberg invariants are the space of the trivial subrepresentation of ρn.
Thus its dimension is

dim C[· · · , Xσ · · · ]
Hg
n = 〈ρn, 1Hg〉Hg , (3.30)

i.e. the multiplicity of the trivial representation 1Hg of Hg in ρn. The scalar product
of the characters is given by 〈ρn, 1Hg〉Hg = 1

|Hg |
∑

h∈Hg Tr(ρn(h)), where tr is the trace
and |Hg| is the number of elements of the group Hg. Consider the element (1, x, u) ∈ Hg.
If xu = 0, but (x, u) 6= (0, 0) then (1, x, u) has order two in Hg and the eigenvalues of
(t, x, u) on C[. . . , Xσ, . . .]1 are t and −t, each with multiplicity 2g−1 for all t ∈ µ4.

If α1, . . . , αN , N = 2g are the eigenvalues of (t, x, u) on C[. . . , Xσ, . . .]1, the eigen-
values on C[. . . , Xσ, . . .]n are the αm1

1 αm2
2 . . . αmNN with

∑
mi = n. As the trace is the
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sum of the eigenvalues, we get with a variable X:

∑
n

Tr(ρn(t, x, u))Xn =
N∏
i=1

(1− αiX)−1.

So if (x, u) 6= (0, 0) we have∑
n

Tr(ρn(t, x, u))Xn = (1− i2aX2)−2g−1
=
∑
m

(−1)am
(

2g−1 +m− 1
m

)
X2m,

and in case (x, u) = (0, 0) the trace is just∑
n

Tr(ρn(t, 0, 0))Xn =
∑
n

tn(dim C[ . . . , Xσ, . . .]n)Xn =
∑
n

tn
(

2g + n− 1
n

)
Xn.

Thus, we obtain the anticipated formula:

dim(C[ . . . , Xσ, . . .]4n)Hg = 2−2g

((
2g + 4n− 1

4n

)
+ (22g − 1)

(
2g−1 + 2n− 1

2n

))
,

note that non-trivial invariants have degree multiple of 4.

3.5.3 The ring of modular forms

Let us call M θ
2k(Γg(2)) the spaces of the Heisenberg invariants of degree 4k (and weight

2k) in the second order theta functions. These are the images under the surjective maps

C[. . . , Xσ, . . .]
Hg
4k −→ M θ

2k(Γg(2)) := C[. . . ,Θ[σ], . . .]Hg4k , Xσ 7−→ Θ[σ] (3.31)

of the Heisenberg invariant polynomials of degree 4k. These maps define a surjective
C-algebra homomorphism

C[. . . , Xσ, . . .]Hg −→ M θ(Γg(2)) := ⊕kM θ
2k(Γg(2)), (3.32)

whose kernel is the ideal of algebraic relations between the Θ[σ]’s. This means that a
polynomial F (· · · , Xσ, · · · ) maps to zero if and only if F (· · · ,Θ[σ](τ), · · · ) = 0 for all
τ ∈ Hg. For g = 1, 2 there are no polynomials vanishing on the image. In case g = 3
there is a homogeneous polynomial F16, of degree sixteen in eight variables, vanishing
on the image [vGvdG], so that M θ(Γg(2)) = C[· · · , Xσ, · · · ]Hg/(F16). For g ≥ 4 there
are many algebraic relations between the Θ[σ]’s, but a complete description of these
relations is not known. The graded ring of modular forms of even weight on Γg(2) is
the normalization of the ring3 of the Θ[σ]’s (cf. [SM1] Thm 2, [R1], [R2]):

⊕∞k=0M2k(Γg(2)) = (C[. . . ,Θ[σ], . . .]Hg)Nor.

3An Abelian ring A is normal if it does not contains nontrivial nilpotents and is integrally closed

w.r.t. its quotient ring Q[A]. In other words, any polynomial equation whose coefficients are fractions

in Q[A] has solutions in A. A non normal ring can be normalized by takeing its closure in Q[A], see [L].
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In case g = 1, 2 there are no relations and the rings of invariants are already normal.
In case g = 3, there is one relation given by F16(. . . ,Θ[σ], . . .) = 0, and it has been
shown by Runge ( [R1], [R2]) that the quotient of the ring of invariants by the ideal
generated by this relation is again normal. This implies that any modular form of weight
2k can be written as a homogeneous polynomial of degree 4k in the Θ[σ]’s if g ≤ 3, and

M θ
2k(Γg(2)) = M2k(Γg(2)) for g = 1, 2, 3.

This polynomial is unique for g ≤ 2. For g = 3 it is unique if its degree is less than 15,
otherwise it is unique up to the addition of F16G4k−16, where G4k−16 is any homogeneous
polynomial of degree 4k − 16 in the Θ[σ]’s.

For g > 3 there will always be non-trivial relations and if g > 4 the ring C[. . . ,Θ[σ], . . .]Hg ’s
is not normal, (cf. [OSM], Theorem 6, but note that our Hg is slightly different from
their one). In case the ring is not normal, there are also quotients G4k+d/Hd of homoge-
neous polynomials in the Θ[σ]’s, of degree 4k+ d and d respectively, which are modular
forms of weight 4k (but which cannot be written as a polynomial in the Θ[σ]’s). These
observations will play a crucial role in proving the uniqueness of superstring amplitudes.
Actually, in genus two and three the proof of uniqueness is based on the result that ev-
ery modular forms of weight 8 are polynomial in the theta constants, see section 4.3.2
and 4.4.7. For the case g = 4 we will be able to prove the uniqueness in a weakened
form, that is by assuming the polynomiality for the superstring measures 4.5.3, in [GS]
the general case is considerated.

3.6 Turning back to the classical theta constants with char-

acteristic

To describe the spaces of modular forms M θ
2k(Γg(2)) it is convenient to use also the

classical theta functions with arbitrary characteristics θ[∆]. Recall that by this we mean
that the argument is τ and not 2τ as in the relation defining the Θ[σ]. In particular, we
are interested in decomposing these spaces into irreducible representations for the group
Sp(2g) and we want to describe their subspaces of O+-invariants as well as O+-anti-
invariants. These will play a crucial role in the construction of superstring measures.

3.6.1 The quadratic relations between the θ[∆]’s and the Θ[σ]’s

A classical formula for theta functions shows that any product of two Θ[σ]’s is a linear
combination of the θ[∆]2. Note that there are 2g functions Θ[σ] and thus there are
(2g + 1)2g/2 = 2g−1(2g + 1) products Θ[σ]Θ[σ′]. This is also the number of even
characteristics, and the products Θ[σ]Θ[σ′] span the same space (of modular forms of
weight 1) as the θ[∆]2’s, which has dimension 2g−1(2g+1) (see [vG2] Lemma (2.7), [RF]).

As the degree of an Hg-invariant homogeneous polynomial in the Θ[σ] is a multiple
of four, say 4k, it can be written as a homogeneous polynomial of degree 2k in the
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θ[∆]2’s. Thus for g ≤ 3, any element in M2k(Γg(2)) is a homogeneous polynomial of
degree 2k in the θ[∆]2’s.

The θ[∆]2 are the better known functions and their transformation under Γg(1)
is easy to understand, but the Θ[σ] have the advantage that they are algebraically
independent for g ≤ 2 and there is a unique relation of degree 16 for g = 3. In contrast,
there are many quadratic relations between the θ[∆]2’s, for example Jacobi’s relation in
g = 1. The classical formula used here is (cf. [I1] IV.1):

θ[ab ]
2 =

∑
σ

(−1)σbΘ[σ]Θ[σ + a] (3.33)

where we sum over the 2g vectors σ ∈ Fg2 and [ab ] is an even characteristic, so a tb = 0 (∈
F2). These formulae are easily inverted to give:

Θ[σ]Θ[σ + a] = 1
2g

∑
b

(−1)σbθ[ab ]
2.

It is easy to see that the θ[∆]2 span one-dimensional subrepresentations of Hg. Indeed,
using the classical formula we find

(s, x, u)θ[ab ]
2 = s2(−1)ua+xbθ[ab ]

2.

This implies that the θ[ab ]
4 are Heisenberg invariants and thus are in M2(Γg(2)). More

generally, we have:

2k∏
i

θ[aibi ]
2 ∈ M2k(Γg(2)) iff

∑
ai =

∑
bi = 0 (∈ F2).

For example in case g = 1 one has

θ[00]2 = Θ[0]2 + Θ[1]2, θ[01]2 = Θ[0]2 −Θ[1]2, θ[10]2 = 2Θ[0]Θ[1],

or, equivalently,

Θ[0]2 = (θ[00]2 + θ[01]2)/2, Θ[1]2 = (θ[00]2 − θ[01]2)/2, Θ[0]Θ[1] = θ[10]2/2.

Note that upon substituting the first three relations in Jacobi’s relation θ[00]4 = θ[01]4 +
θ[10]4 we obtain a trivial identity in the Θ[σ]’s.

3.7 Modular group and representations

Using the classical formula we find that θ[0]4 = (
∑

σ Θ[σ]2)2, and it is clear that this
functions is Heisenberg invariant and thus defines a modular form of weight 2 on Γg(2).
For g ∈ O+(2g) we have g · [0] = [0] and the explicit transformation formula for theta
constants shows that θ[0]4 transforms by a non-trivial character which we denote by ε:

ρ(g)θ[0]4 = ε(g)θ[0]4, ε : O+(2g) −→ {±1}. (3.34)

For g ≥ 3, this homomorphism is the only non-trivial one dimensional representation of
O+(2g) and its kernel is a simple group.
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3.7.1 Thomae formula and the case g = 2

The case g = 2 is quite simple and it is interesting to expand some details. For g = 2
there are 16 characteristics, six odd and ten even. The odd characteristics are:

ν1 =

[
0 1
0 1

]
ν2 =

[
1 0
1 0

]
ν3 =

[
0 1
1 1

]

ν4 =

[
1 0
1 1

]
ν5 =

[
1 1
0 1

]
ν6 =

[
1 1
1 0

]
.

The even ones are:

δ1 =

[
0 0
0 0

]
δ2 =

[
0 0
0 1

]
δ3 =

[
0 0
1 0

]

δ4 =

[
0 0
1 1

]
δ5 =

[
0 1
0 0

]
δ6 =

[
0 1
1 0

]

δ7 =

[
1 0
0 0

]
δ8 =

[
1 0
0 1

]
δ9 =

[
1 1
0 0

]

δ10 =

[
1 1
1 1

]

Note that each even characteristic can be written in two different ways as sum (mod 2)
of three odd characteristics and in the sums none odd characteristic is repeated [RF].
For example δ1 = ν1 + ν4 + ν6 = ν2 + ν3 + ν5. Each set of three odd characteristics
that summed gives an even characteristic is called a triad. We report all the triads in
Table 3.2. The Thomae formula [Mu,F] allows to express the fourth power of the theta

Triads [δ]

146 235 [ 0 0
0 0 ]

126 345 [ 0 0
0 1 ]

125 346 [ 0 0
1 0 ]

145 236 [ 0 0
1 1 ]

124 356 [ 0 1
0 0 ]

156 234 [ 0 1
1 0 ]

123 456 [ 1 0
0 0 ]

134 256 [ 1 0
0 1 ]

136 245 [ 1 1
0 0 ]

135 246 [ 1 1
1 1 ]

Table 3.2: The two triads of odd characteristics giving the same even characteristic.
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constants in term of the six branch points of the genus two Riemann surface on which
they are defined

θ4[δ] = c εS,T
∏

i,j∈S i<j
(ui − uj)

∏
k,l∈T k<l

(uk − ul) =: εS,TPS,T , (3.35)

where the ui’s are the six branch points, S and T contain the indices of the two triad
of the odd characteristics giving the even characteristic of the theta constant. For
example, for δ4, from Table 3.2, we have S = {1, 4, 5} and T = {2, 3, 6}, εS,T is a sign
depending on the triads and c is a constant independent from the characteristic. Using
the many relations between the θ[δ]4’s one can determine the relative sign appearing in
the Thomae formula: if

∑
δ aδθ[δ]

4 = 0 it also holds
∑

δ aδεS,TPS,T = 0, with the same
aδ. For instance, considering the relation θ[δ1]4 − θ[δ4]4 − θ[δ6]4 − θ[δ7]4 = 0, which can
be obtained using the classical formula, we obtain the relative signs between this four
θ[δ]4’s. Using some other relations we fixe all the relative signs. We report these signs
in Table 3.3. For example, we have:

146 126 125 145 124 156 123 134 136 135
235 345 346 236 356 234 456 256 245 246

δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8 δ9 δ10

−1 1 1 −1 1 −1 1 −1 −1 −1

Table 3.3: Relative signs between the θ[δ]4’s for the thomae formula.

θ[δ4]4 = −c(u1 − u4)(u1 − u5)(u4 − u5)(u2 − u3)(u2 − u6)(u3 − u6), (3.36)

and

θ[0]4 = θ[δ1]4 = −c(u1 − u4)(u1 − u6)(u4 − u6)(u2 − u3)(u2 − u5)(u3 − u5). (3.37)

From the expression of θ[0]4 obtained with the Thomae formula we conclude that ε is
the product of the sign character on the subgroup S3 × S3 of O+(4) and ε(g) = 1 if
g = (15)(24)(36), where we identify O+(4) with a subgroup of S6 as in Section 3.4.

3.7.2 The space of O+-(anti)-invariants

For applications to superstring measures, we will be particularly interested in the sub-
space of O+(2g)-anti-invariants of weight 6

M6(Γg(2))ε := {f ∈M6(Γg(2)) : ρ(g)f = ε(g)f ∀g ∈ O+(2g) }

and the space of O+-invariants of weight 8

M8(Γg(2))O
+

:= {f ∈M8(Γg(2)) : ρ(g)f = f ∀g ∈ O+(2g) }.
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It should be noted that Sp(2g) permutes the θ[∆]4k ∈ M2k(Γg(2)), up to sign if k
is odd. This fact is particular evident in genus two using the Thomae formula and
the identification Sp(4) ∼= S6. Thus it is not hard to write down some invariants or
anti-invariants, but the problem is to find all of them.

3.7.3 The dimensions of the O+-(anti)-invariants

To find all O+-(anti)-invariants we have to know the dimensions of this space. In
this section we apply the representation theory of finite groups to Sp(2g) in order to
decompose its representations into irreducibles ones. Once the decomposition of an
Sp(2g)-representation into irreducibles is known, it is easy to find the dimension of the
O+-(anti)-invariants. The dimension of the O+-invariants in V is the multiplicity of
the trivial representation 1 of O+ in the O+-representation ResSp

O+(V ) (the restriction
of the representation from Sp(2g) to O+(2g)):

dimV O+
= 〈ResSp

O+(V ), 1 〉O+ = 〈V, IndSp
O+(1) 〉Sp

where the second equality is Frobenius reciprocity, see Section 3.8. According to Frame
[Fr2] one has:

IndSp
O+(1) = 1 + σθ, dimσθ = 2g−1(2g + 1)− 1 = (2g − 1)(2g + 2)/2,

where 1 is the trivial representation and σθ is an irreducible representation of Sp(2g).
Note that dim IndSp

O+(1) = [Sp(2g) : O+(2g)] = 2g−1(2g + 1). Thus if the multiplicity of
1 and σθ in V is n1 and nθ respectively, then dimV O+

= n1 + nθ.
Similarly, the dimension of the O+-anti-invariants in V is the multiplicity of the

representation ε of O+ in the O+-representation ResSp
O+(V ):

dimV ε = 〈ResSp
O+(V ), ε 〉O+ = 〈V, IndSp

O+(ε) 〉Sp.

According to Frame [Fr2], the induced representation has two irreducible components:

IndSp
O+(ε) = ρθ ⊕ ρr,

{
dim ρθ = (2g + 1)(2g−1 + 1)/3,
dim ρr = (2g + 1)(2g − 1)/3.

Thus if the multiplicity of ρθ and ρr in V are nθ and nr respectively, then dimV ε =
nθ + nr.

3.7.4 The Sp(2g)-representation on M θ
2 (Γg(2)) and on Sym2(M θ

2 (Γg(2)))

The representation ρ2 of Sp(2g) on the subspace M θ
2 (Γg(2)) ⊂M2(Γg(2)) was shown to

be irreducible and isomorphic to ρθ by van Geemen in [vG2].
Frame has shown that the Sp(2g)-representation Sym2(M θ

2 (Γg(2))) decomposes into
irreducible representations as follows:

Sym2(ρθ) = 1 + σθ + σc, dimσc = 2g−2(2g + 1)(2g − 1)(2g + 2), (3.38)
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and σθ as in 3.7.3. The functions θ[∆]8 are in M θ
4 (Γg(2)). They are permuted (without

signs) by Sp(2g) and span the subrepresentation 1 + σθ. The trivial subrepresentation
in Sym2(M θ

2 (Γg(2))) is then spanned by the invariant
∑

∆ θ[∆]8. It is easy to verify
that the dimension of the image of Sym2(M θ

2 (Γg(2))) is larger than 2g−1(2g + 1) =
dim(1 + σθ) for g ≥ 2. As the multiplication map is Sp(2g)-equivariant it follows that
Sym2(M θ

2 (Γg(2))) ⊂ M θ
4 (Γg(2)) (so if f1, . . . , fN is a basis of M θ

2 (Γg(2)) then the fifj
are linearly independent).

3.7.5 Decomposing representations of Sp(2g)

Given a representation of a finite group on a complex vector space, one could determine
the value of the character of the representation on each conjugacy class and then use
the table of irreducible characters of the group to find the decomposition of the rep-
resentation. However, it is very time consuming to compute these character values in
our examples. Thus we take another approach, which has the additional advantage of
identifying explicitly certain subrepresentations.

There is one conjugacy class of Sp(2g) which has only 22g − 1 elements, the class of
the transvections tv with v ∈ F2g

2 − {0}, see 3.5.1. If ρ : Sp(2g)→ GL(V ) is a complex
representation of Sp(2g), the operator

C = Cρ :=
∑
v 6=0

ρ(tv) (∈ GL(V ))

obviously satisfies ρ(g)Cρ(g)−1 = C for all g ∈ Sp(2g). If V = ⊕V ni
i is the decomposi-

tion of V into irreducible representations Vi, Vi 6∼= Vj if i 6= j, then, by Schur’s lemma,
C must be scalar multiplication by a λi ∈ C on Vi. In particular, the eigenvalues of C
are the λi with multiplicity ni = dimVi (but it can happen that λi = λj for i 6= j).

To find λi we consider the trace of C on Vi: as the tv, v 6= 0, are the elements of one
conjugacy class,

Tr(C|Vi) = (22g − 1)Tr(ρi(tv)) = (22g − 1)χi(tv)

where tv is now one specific (but arbitrary) transvection and χi is the character of the
irreducible representation ρi. On the other hand,

Tr(C|Vi) = (dimVi)λi, hence λi =
(22g − 1)χi(tv)

dimVi
. (3.39)

Note that ker(C − λI) will be the direct sum of the V ni
i with λi = λ, so we do not only

get information on the multiplicities of the irreducible constituents of ρ but also on the
corresponding subspaces of V .

3.8 Restricted and induced representations

In this section we introduce restricted and induced representations and we will see as
they characters are connected by the Frobenius reciprocity [Sa]. Let G be a group
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and H a subgroup. Suppose ρ is a matrix representation of G, then one can obtain a
representation of H by the operation of restriction. The restriction of ρ to H, ResGH(ρ),
is given by:

ResGH(ρ(h)) := ρ(h), (3.40)

for all h ∈ H. The restriction, actually, is a representation of H. Although ρ may be
an irreducible representation of G, ResGH(ρ(h)) can be reducible. We can also consider
the inverse operation. The process of moving from a representation of the subgroup H

to a representation of the whole G is called induction. Fix a transversal {t1, · · · , tk} for
the left cosets of H, i.e. H = {t1H, · · · , tkH} is a complete set of disjoint left cosets
for H in G, so G = t1H ] · · · ] tkH and ] denotes disjoint union, ti ∈ G. Let σ be a
representation of H, then the induced representation IndGH(σ) from H to G assigns to
each g ∈ G the block matrix:

IndGH(σ(g)) := σ(t−1
i gtj) =

σ(t−1
1 gt1) · · · σ(t−1

1 gtk)
...

. . .
...

σ(t−1
k gt1) · · · σ(t−1

k gtk),

 (3.41)

and σ(g) is the zero matrix if g 6∈ H. It can be proved that IndGH(σ) is a representation
of G.

Of particular interest is the induced representation of the identity 1 and it is strictly
related to the coset representation. Suppose, as before, that H = {t1H, · · · , tkH} is
a complete set of disjoint left cosets for H in G. The group G acts on the set H by
g(giH) := (ggi)H, for all g ∈ G. The set H can be turned, as every set on which a
group G acts, in a G-module as follows. Let CH denote the vector space generated by
H over C, that is H consists of all the formal linear combinations a1g1H + · · ·+ akgkH,
ai ∈ C. Vector addition and scalar multiplication are defined as follows:

(a1g1H + · · ·+ akgkH) + (b1g1H + · · ·+ bkgkH) = (a1 + b1)g1H + · · ·+ (ak + bk)gkH

c(a1g1H + · · ·+) = (ca1)g1H + · · ·+ (cak)gkH,

for a1, · · · , ak, b1, · · · , bk, c ∈ C and g1, · · · , gk ∈ C. The action of G on H can be extend
to an action on CH by linearity:

g(a1g1H + · · ·+ akgkH) = a1(gg1H) + · · ·+ ak(ggkH), (3.42)

for all g ∈ G. In this way CH becomes a G-module of dimension |H| = k. More
generally, given a set S on which a group G acts, then the associated module CS is
called the permutation representation associated with S and the elements of S form a
basis for CS called the standard basis. Note that if H = G then the coset representation
reduces to the trivial representation. We have the following

Proposition 3.8.1. Let H be a subgroup of G which has transversal {t1 · · · tk} with
cosets H = t1H, · · · tkH. Then the matrices of IndGH(1) are identical with those of G
acting on the basis H for the coset module CH.
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Proof. Let the matrices for the representations ρ and σ of IndGH(1) and CH be X = (xij)
and Y = (yij) respectively. The matrix elements of both matrices are only zeros and
ones. Moreover, for any g ∈ G xij(g) = 1 if and only if t−1

i gtj ∈ H. But t−1
i gtj ∈ H if

and only if gtjH = tiH and this happens if and only if zij(g) = 1.

We will now prove the reciprocity law of Frobenius, which relates inner products
of restricted and induced characters. Before we need a formula for the character of an
induced representation. Let G, H and ti as in the preceding proposition. Consider a
representation ρ of H with character ψ. The transversal ti give rise to the representation
IndGH(ρ) with character χ. We recall that the character of a representation is χ(g) =
Trρ(g) and given another representation σ with character ψ one can define an inner
product of χ and ψ as 〈χ, ψ〉 := 1

|G|
∑

g∈G χ(g)ψ(g), where the bar stands for complex

conjugation. Note that ψ(g) = ψ(g−1). We have ψ(t−1
i gti) = ψ(h−1t−1

i gtih) for any
h ∈ H, so:

χ(IndGH(ρ(g))) =
∑
i

ψ(t−1
i gti) =

1
|H|

∑
i

∑
h∈H

ψ(h−1t−1
i gtih), (3.43)

but as h runs over H and ti run over the transversal, the product tih runs over all the
elements of G exactly once. Thus:

χ(IndGH(ρ(g))) =
1
|H|

∑
x∈G

ψ(x−1gx). (3.44)

We can now prove the Frobenius reciprocity. To simplify the notation we use ψ(IndGH(ρ))
to indicate the character of the induced representation of ρ if its character is ψ and
analogously for the character of the restrict representation we use χ(ResGH(σ)) if σ has
character χ.

Theorem 3.8.1 (Frobenius Reciprocity). Let G a group and H a subgroup, ρ a repre-
sentation of H with character ψ and σ a representation of G with character χ. Then

〈ψ(IndGH(ρ)), χ(σ)〉 = 〈ψ(ρ), χ(ResGH(σ))〉, (3.45)

where the left inner product is calculated in G and the right one in H.

Proof. We have the following identities:

〈ψ(IndGH(ρ)), χ(σ)〉 =
1
|G|

∑
g∈G

ψ(IndGH(ρ))χ(g−1) =
1

|G||H|
∑
x∈G

∑
g∈G

ψ(x−1gx)χ(g−1)

=
1

|G||H|
∑
x∈G

∑
y∈G

ψ(y)χ(xy−1x−1) =
1

|G||H|
∑
x∈G

∑
y∈G

ψ(y)χ(y−1)

=
1
|H|

∑
y∈G

ψ(y)χ(y−1) =
1
|H|

∑
y∈H

ψ(y)χ(y−1)

= 〈ψ(ρ), χ(ResGH(σ))〉.
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The second identity follows from equation (3.44), in the third we posed y = x−1gx, the
fourth follows from the constancy of χ on the equivalent classes of G, the fifth because
x is constant in the sum and the sixth because ψ is zero outside H.

These are some of the ingredients we will use to construct string amplitudes for
g ≤ 5, to prove their uniqueness for g ≤ 3 and in a weaker form for g = 4. The explicit
construction will clarify the various steps and for g ≤ 2 we will obtain the known results.





Chapter 4

Existence and uniqueness of the

forms Ξ8[∆]

We are now ready to work out a solution for the constraints and show its uniqueness,
at least for genus g ≤ 3. For genus four the uniqueness will be proved in a weakened
form that is by restricting to polynomial expressions. We will analyze the equations
genus by genus. In Section 4.1 we make some remarks on the three constraints and
we compare them with the ones given by D’Hoker and Phong. The last remark allows
us to simplify the problem to construct the functions Ξ8[∆]. Actually, employing the
action of the modular group on the theta constants, we can construct just one, instead
of 2g−1(2g + 1), of such functions and then obtain the others by the action of the group.
The genus five case will be analyzed in the next chapter.

4.1 Some remarks on the constraints

In this section we revise the three constraints of Section 2.3 for the functions Ξ8[∆]
using the mathematical tools introduced in Chapter 3 and we compare them with those
of D’Hoker and Phong (DHP) in [DP6] for the functions Ξ6[∆].

� Remark on condition (ii). The only essential difference is in the constraint (ii),
the transformation request. Note that the products θ[∆]4(τ)Ξ6[∆](τ), with Ξ6[∆]
as in the DHP constraint (ii) and τ ∈ H3, transform in the same way as our Ξ8[∆]
apart from a factor ε(M,∆)4+4. However, ε(M,∆)8 = 1, so that this difference is
only apparent. Conversely, if we require for each Ξ8[∆] to factorize in the product
of θ[∆]4 and another function, the latter would satisfy constraint (ii) of [DP6].
But there is not a priory any reason to assume such a factorization: our form for
the transformation constraint is weaker than the one imposed in [DP6] because
is just a request on the weight of the “modular forms” and it does not impose a
factorized form as a product of a function of weight six times a theta constant at
the fourth power. Moreover, it is equivalent to assert that the Ξ8[∆] are modular
forms of genus g and weight 8 on Γg(2).
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� Remark on condition (iii). DHP impose the factorization condition for an arbi-
trary separating degeneration. The point is that any such degeneration can be
obtained from the one in condition (iii) by a symplectic transformation, so that
we have to consider the functions Ξ8[∆](N · τk,g−k) for all N ∈ Sp(2g,Z). By
constraint (ii), this amounts to considering the function Ξ8[N−1 ·∆](τk,g−k) (up
to an easy factor) which is indeed determined by constraint (iii).

� Oversimplification of the problem. In order to search for a solution of the con-
straints, we will now show that equation (2.22) can be used to restrict the problem
to a single value of the characteristic, for which we choose ∆ = [00] with [00] = [0...00...0].
In particular, we will see that the problem reduces itself to restrict the constraints
to simpler ones for the function Ξ8[00]. Solving the problem for Ξ8[00] will permit
us to define functions Ξ8[∆(g)], for all even characteristics [∆(g)], which satisfy the
constraints from section 2.3.
If we take M to be in the stabilizer of the null characteristic, then condition (ii)
is equivalent to require for Ξ8[00] to be a modular form on Γg(1, 2) of weight 8. We
know that the group Sp(2g,Z) acts transitively on the even characteristics. This
means that for any even characteristic [∆(g)] there exists at least an M ∈ Sp(2g,Z)
such that M · [00] = [∆(g)] mod 2. Then we define

Ξ8[∆(g)](τ) := γ(M,M−1 · τ)8Ξ8[00](M−1 · τ), (4.1)

with γ(M, τ) := det(Cτ + D). The definition of Ξ8[∆(g)] does not depend on
the choice of M and also satisfies the transformation constraint, we postpone
the verification of this fact to the next subsection, see aslo [CDG1]. Thus, the
functions Ξ8[∆(g)], defined by equation (4.1),‘ verify all the constraints if Ξ8[00]
satisfies the following reduced constraints.

(ii0) The function Ξ8[00] is a modular form Ξ8 of weight 8 on Γg(1, 2).

(iii0)(1) For all k, 0 < k < g, and all τk,g−k ∈ ∆k,g−k we have

Ξ8[00](τk,g−k) = Ξ8[00](τk)Ξ8[00](τg−k)

(iii0)(2) If ∆(g) = [ab...cd...] with ac = 1 then Ξ8[∆(g)](τ1,g−1) = 0.

(iii0)(1,2) is obviously a consequence of (iii). For (iii0)(1), let us consider the
characteristic

∆(g) = [a1...ag
b1...bg

], ∆(k) := [a1...ak
b1...bk

], ∆(g−k) := [ak+1...ag
bk+1...bg

].

and assume that ∆(k) is even, so that also ∆(g−k) is even. By transitivity, there
are two symplectic matrices M1 ∈ Sp(2k,Z) and M2 ∈ Sp(2(g − k),Z) such
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that M1 · [00] = [∆(k)] and M2 · [00] = [∆(g−k)]. We compose such matrices in a
block diagonal form so defining a matrix M ∈ Sp(2g,Z) which has the properties:
M · (∆k,g−k) = ∆k,g−k and ∆(g) = M · [00]. As M and τk,g−k are made up of k× k
and (g − k)× (g − k) blocks we get

γ(M,M−1 · τk,g−k) = γ(M1,M
−1
1 · τk)γ(M2,M

−1
2 · τg−k), ∆(g) = M · [00].

It follows thatM−1·τk,g−k ∈ ∆k,g−k is a matrix with blocksM−1
1 ·τk andM−1

2 ·τg−k.
Thus, from the constraint (iii0)(1) get

Ξ8[00](M−1 · τk,g−k) = Ξ8[00](M−1
1 · τk)Ξ8[00](M−1

2 · τg−k),

and then we finally have

Ξ8[∆(g)](τk,g−k) = γ(M,M−1 · τ)8Ξ8[00](M−1 · τk,g−k)

= γ(M1,M
−1
1 · τk)8γ(M2,M

−1
2 · τg−k)8Ξ8[00](M−1

1 · τk)Ξ8[00](M−1
2 · τg−k)

= Ξ8[∆(k)](τk)Ξ8[∆(g−k)](τg−k),

so for such ∆(g) the functions Ξ8[∆(g)] satisfy (iii).

Independence of Ξ8[∆(g)] on the choice of M

We verify here that the definition of Ξ8[∆(g)] does not depend on the choice of M : if
also N · [00] = [∆(g)] mod 2, then N−1M fixes [00] so N−1M ∈ Γg(1, 2). To verify that

γ(M,M−1 · τ)8Ξ8[00](M−1 · τ) ?= γ(N,N−1 · τ)8Ξ8[00](N−1 · τ)

we let τ = Mτ ′, so we must verify that

γ(M, τ ′)8Ξ8[00](τ ′) ?= γ(N,N−1M · τ ′)8Ξ8[00](N−1M · τ ′).

As N−1M ∈ Γg(1, 2) and γ satisfies the cocycle condition, we get

γ(N,N−1M · τ ′)8Ξ8[00](N−1M · τ ′) = γ(N,N−1M · τ ′)8γ(N−1M, τ ′)8Ξ8[00](τ ′)

= γ(M, τ ′)8Ξ8[00](τ ′),

which verifies the desired identity. Finally we show that the functions Ξ8[∆(g)] satisfy
constraint (ii) of section 2.3. So with M,∆(g) as above, we must verify that for all
N ∈ Sp(2g,Z) we have

Ξ8[N ·∆](N · τ) ?= γ(N, τ)8Ξ8[∆](τ).
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As N ·∆ = NM · [00], we have:

Ξ8[N ·∆](N · τ) = γ(NM, (NM)−1N · τ)8Ξ8[00]((NM)−1N · τ)

= γ(NM,M−1 · τ)8Ξ8[00](M−1τ)

= γ(N, τ)8γ(M,M−1 · τ)8Ξ8[00](M−1 · τ)

= γ(N, τ)8Ξ8[∆](τ),

where we used the cocycle relation. Thus the second constraint is verified if Ξ8[00] satisfies
the constraint (ii0) and if the Ξ8[∆(g)] are defined as in equation 4.1.

4.2 The case g = 1

In genus one there are three even characteristics and one odd. Clearly, the even ones
are [00], [01] and [10] and the odd one is [11], as follows from the definitions given in Section
3.2. Using the classical theta formula (3.33), we can find the relations between the
classical and the second order theta constants. Moreover, there are no algebraic relations
between the Θ[σ]’s. The dimension formula (3.28) and the fact that M θ

2k(Γ1(2)) =
M2k(Γ1(2)) show that dimM2k(Γ1(2)) = k + 1. A basis of M2(Γ1(2)) is given by the
Heisenberg invariants Θ[0]4 + Θ[1]4 and (Θ[0]Θ[1])2 and a basis of M2k(Γ1(2) is given
by homogeneous polynomials of degree k in these invariants:

(Θ[0]4 + Θ[1]4)k, (Θ[0]Θ[1])2(Θ[0]4 + Θ[1]4)k−1, . . . , (Θ[0]Θ[1])2k.

In genus one the group Sp(2,Z) is isomorphic to the special linear group SL(2,Z) and
its standard generators are S =

(
0 1
−1 0

)
and T = ( 1 1

0 1 ). The classical transformation
theory of theta functions gives:

ρ2(S) :


θ[00]4 7−→ −θ[00]4

θ[01]4 7−→ −θ[10]4

θ[10]4 7−→ −θ[01]4
, ρ2(T ) :


θ[00]4 7−→ θ[01]4

θ[01]4 7−→ θ[00]4

θ[10]4 7−→ −θ[10]4
.

In the computation of the matrices of the ρ2(g)’s w.r.t. the basis of M2(Γ1(2)) (θ[00] and
θ[01], for example) one has to apply the Jacobi relation θ[00]4 = θ[10]4 + θ[01]4. As follows
from section 3.7.4 and from the table of characters of S3 reported in Table 4.1, M2(Γ1(2))
is the unique irreducible two dimensional representation of the symmetric group S3 that
can be identified with the representation ρθ = ρ[21], hence M2k(Γ1(2)) ' Symk(ρ[21]).
The group O+(2) is the group of order two generated by the image of S ∈ SL(2,Z) in
Sp(2).

We now study to the decomposition of M6(Γ1(2)) because some functions we will
extensively use in the construction of superstring measures belong to this space. The
representation on M6(Γ1(2)) = Sym3(M2(Γ1(2))) can be decomposed in irreducible
representations of S3 as:

M6(Γ1(2)) ∼= ρ[3] ⊕ ρ[2,1] ⊕ ρ[13],
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S3 C1,1,1 C2,1 C3

ρ[13] 1 1 1
ρ[3] 1 −1 1
ρ[2,1] 2 0 −1

Table 4.1: Table of the characters of the group S3.

where ρ[13] is the sign representation of S3 and ρ[3] is the trivial representation. One
obtains this decomposition using the techniques we will expose for the more enlightening
case g = 2, see section 4.3.1.

It is easy to verify that the three irreducible representations are generated by:

ρ[3] = 〈Θ[0]12 − 33Θ[0]8Θ[1]4 − 33Θ[0]4Θ[1]8 + Θ[1]12〉,

ρ[13] = 〈 η12 〉,

ρ[2,1] = {(a+ b)θ[00]12 + aθ[01]12 + bθ[10]12 : a, b ∈ C},

where we used a classical formula for the Dedekind η function: η3 = θ[00]θ[01]θ[10], so

η12 = θ[00]4θ[01]4θ[10]4

= (Θ[0]2 + Θ[1]2)2(Θ[0]2 −Θ[1]2)2(2Θ[0]Θ[1])2.

The two dimensional subspace of O+(2)-anti-invariants, see section 3.7.3, is:

M6(Γg(2))ε = 〈η12, f21 := 2θ[00]12 + θ[01]12 + θ[10]12 〉,

the function f21 lies in the two-dimensional ρ[21] irreducible subrepresentation1. We list
here some other modular forms that can be expressed in terms of f21 and η12 that we
will use later.

θ12[00] = 1
3f21 + η12,

θ[00]4(θ[00]8 + θ[01]8 + θ[10]8) = 2
3f21,

θ[00]12 + θ[01]12 + θ[10]12 = 2
3f21 − η12,

θ[00]4θ[01]8 + θ[00]4θ[10]8 = 1
3f21 − η12.

In genus one it is well known that the modular forms Ξ8[∆] are given by Ξ8[∆] =
θ[∆]4η12. The function Ξ8[00] = θ[00]4η12 is a modular form of weight eight on Γ1(1, 2).

1From this we choose the “strange” name f21.
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4.3 The case g = 2

At genus two there are ten even characteristics which correspond to ten theta constants.
From the Table 3.1 we know that the ring of the Heisenberg invariants of degree four
is a five dimensional space. It is generated by the fourth power of the theta constants,
as can be shown using the classical formula (and a computer to make the computations
faster). A useful basis for this space, obtained as explained in section 3.5, is provided
by the following five homogeneous polynomials p0, · · · , p4 of degree four in the Θ[σ]’s:

C[. . . ,Θ[σ], . . .]H2 = C[p0, . . . , p4] (4.2)

where the pi are defined by

p0 = Θ[00]4 + Θ[01]4 + Θ[10]4 + Θ[11]4, p1 = 2(Θ[00]2Θ[01]2 + Θ[10]2Θ[11]2),

p2 = 2(Θ[00]2Θ[10]2 + Θ[01]2Θ[11]2), p3 = 2(Θ[00]2Θ[11]2 + Θ[01]2Θ[10]2),

p4 = 4Θ[00]Θ[01]Θ[10]Θ[11].
(4.3)

By means of the classical formula we can expand the ten θ[δ]4 on this basis. We
summarize the result in Table 4.2, for example:

θ[δ7]4 = 2p2 + 2p4. (4.4)

The advantage of the selected basis is that it defines a map P3 → P4, (Θ[00](τ) :

δ θ4[δ] p0 p1 p2 p3 p4

δ1 θ4 [ 0 0
0 0 ] 1 1 1 1 0

δ2 θ4 [ 0 0
0 1 ] 1 −1 1 −1 0

δ3 θ4 [ 0 0
1 0 ] 1 1 −1 −1 0

δ4 θ4 [ 0 0
1 1 ] 1 −1 −1 1 0

δ5 θ4 [ 0 1
0 0 ] 0 2 0 0 2

δ6 θ4 [ 0 1
1 0 ] 0 2 0 0 −2

δ7 θ4 [ 1 0
0 0 ] 0 0 2 0 2

δ8 θ4 [ 1 0
0 1 ] 0 0 2 0 −2

δ9 θ4 [ 1 1
0 0 ] 0 0 0 2 2

δ10 θ4 [ 1 1
1 1 ] 0 0 0 2 −2

Table 4.2: Expansion of θ4[δ] on the basis of pi

Θ[01](τ) : Θ[10](τ) : Θ[11](τ)) → (p0 : p1 : p2 : p3 : p4) and the image of P3 results
to be defined by a quartic polynomial f4 in 5 variables, the Igusa quartic, so that
I4 = f4(p0, p1, p2, p3, p4) is identically zero. Its explicit expression is

I4 = p4
4 + p2

4p
2
0 − p2

4p
2
1 − p2

4p
2
2 − p2

4p
2
3 + p2

1p
2
2 + p2

1p
2
3 + p2

2p
2
3 − 2p0p1p2p3. (4.5)
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Expressing the pi in term of the four second order theta constant one verifies that
this polynomial vanishes. We can also write I4 using the ten classical theta constants
obtaining:

I4 =
1

192

(∑
δ

θ8[δ]

)2

− 4
∑
δ

θ16[δ]

 . (4.6)

It thus provides a relation of order 16 in the classical θ[δ]. From this we see that, as a
graded ring,

⊕∞k=0M2k(Γ2(2)) ∼= C[y0, . . . , y4]/(f4(y0, . . . , y4)), (4.7)

and for k ≤ 3 there are not constraints, so that the dimensions are dimM2(Γ2(2)) = 5,
dimM4(Γ2(2)) =

(
5+1

2

)
= 15, dimM6(Γ2(2)) =

(
5+2

3

)
= 35, dimM8(Γ2(2)) =

(
5+3

4

)
−

1 = 69.

4.3.1 The Sp(4)-representations on the M2k(Γ2(2))

We will now study the representations of the symplectic group on the space of modular
forms. We use the isomorphism Sp(4) ∼= S6 and the irreducible representations will
be labeled by partitions of 6. Table 4.3 collects the characters of the group S6. In the
second column are given the partitions of 6 and in the first one the names we have chosen
for the corresponding representations. The symmetric group S6 has eleven conjugacy

S6 Partition C1 C2 C3 C2,2 C4 C3,2 C5 C2,2,2 C3,3 C4,2 C6

id1 [6] 1 1 1 1 1 1 1 1 1 1 1
alt1 [16] 1 −1 1 1 −1 −1 1 −1 1 1 −1
st5 [23] 5 −1 −1 1 1 −1 0 3 2 −1 0
sta5 [32] 5 1 −1 1 −1 1 0 −3 2 −1 0
rep5 [5 1] 5 3 2 1 1 0 0 −1 −1 −1 −1
repa5 [2 14] 5 −3 2 1 −1 0 0 1 −1 −1 1

n9 [4 2] 9 3 0 1 −1 0 −1 3 0 1 0
na9 [22 12] 9 −3 0 1 1 0 −1 −3 0 1 0
sw10 [3 13] 10 −2 1 −2 0 1 0 2 1 0 −1
swa10 [4 12] 10 2 1 −2 0 −1 0 −2 1 0 1

s16 [3 2 1] 16 0 −2 0 0 0 1 0 −2 0 0

Table 4.3: Characters of the conjugacy classes of the eleven irreducible representations of S6.

classes so that it has eleven irreducible representations. For example, the class C3,2

consists of the product of a two-cycle and a three-cycle, and the character of the first
ten dimensional representation, sw10 or [3 13] in standard notation, for this class is 1.

To find the correspondence among the symplectic group and the symmetric group we
can relate the transformations of the theta constants under the action of the generators



56 4. Existence and uniqueness of the forms Ξ8[∆]

of Sp(4), given by the transformation formula for the theta constants (3.18), to the
transformations of the same functions obtained by the action of S6 on the branch points
appearing in the Thomae formula. The generators of Sp(4) are:

Mi =

(
I Bi
0 I

)
, B1 =

(
1 0
0 0

)
, B2 =

(
0 0
0 1

)
, B3 =

(
0 1
1 0

)
;

S =

(
0 I

−I 0

)
; Σ =

(
σ 0
0 −σ

)
, σ =

(
0 1
−1 0

)
;

T =

(
τ+ 0
0 τ−

)
, τ+ =

(
1 1
0 1

)
, τ− =

(
1 0
−1 1

)
.

(4.8)
The phase factor ε(δ,M), satisfying ε8(δ,M) = 1, depends both on the characteristic
δ and on the matrix M generating the transformation2. For the even characteristics
δ =

[
a
b

]
the fourth powers of ε are given by:

ε4(δ,Mi) = eπi
taBia i = 1, 2, (4.9)

ε4(δ,M3) = ε4(δ, S) = ε4(δ,Σ) = ε4(δ, T ) = 1. (4.10)

In Table 4.4 we report the relationship between the generators of the modular group
and S6.

M1 M2 M3 S Σ T

(1 3) (2 4) (1 3)(2 4)(5 6) (3 5)(4 6) (1 2)(3 4)(5 6) (1 3)(2 6)(4 5)

Table 4.4: Relationship between the generators of the modular group and S6.

We now need to identify the representation M2(Γ2(2)). We know from the result of
van Geemen in section 3.7.4 that this five dimensional representation is ρθ which is
irreducible. The characters table of S6 shows that there are four five dimensional ir-
reducible representations. To find which one is supported by the θ[δ]4’s we study the
action of the permutation (12), that belongs to the conjugacy class C2, on the basis
θ[δi], i = 1, · · · , 2 of M2(Γ2(2)) (alternatively one can study the action of one generator
of Sp(4), for example M1, obtaining the same result). The matrix associated to this
permutation is:

M1 2 =


1 0 0 0 0
−1 −1 0 0 0
0 0 −1 −1 0
0 0 0 1 0
−1 0 0 1 −1

 . (4.11)

2In ε there are both the contributes of κ(M) and of Φ∆(M) of (3.18)
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The trace of this matrix is −1 and this is exactly the character of the representation
spanned by the θ[δ]4’s. Thus ρθ = ρ[23], i.e. the representation is the st5. More in
general, using the theory of representations of S6 we find:

M2(Γ2(2)) ∼= ρ[23],

M4(Γ2(2)) ∼= Sym2(ρ[23]) = 1 + ρ[42] + ρ[23],

M6(Γ2(2)) ∼= Sym3(ρ[23]) = 1 + 2ρ[23] + ρ[214] + ρ[42] + ρ[313],

M8(Γ2(2)) ∼= Sym4(ρ[23]) − 1 = 1 + 3ρ[23] + 3ρ[42] + ρ[313] + ρ[321].

From these decompositions we can conclude that ρr = ρ[214] and σθ = ρ[42] (from the
next discussion or cf. [CD1] one can also deduce that ρθ+ρr is the representation on the
θ[δ]12, which is IndSp

O+(ε) and 1 + σθ is the permutation representation on the 10 even
θ[δ]8, hence its trace must be ≥ 0 on each conjugacy class). The computation of the
symmetric powers of a representation can be done using a computer (for example with
Magma or Mathematica), but also by hand. We expose the details for the computation
of Sym3(ρ[23]), the others being similar. To establish the characters of the represen-
tations on Sym3(M2(Γ2(2))) we proceed as follows. If Tr(ρVθ(g)) =

∑
i λi, where to

shorten the notations we posed Vθ ≡M2(Γ2(2)), then for g ∈ S6:

Tr(ρVθ(g2)) =
∑
i

λ2
i , Tr(ρVθ(g3)) =

∑
i

λ3
i , Tr(ρS

3Vθ(g)) =
∑

1≤i≤j≤k≤5

λiλjλk,

(4.12)

(Tr(ρVθ))3 =
∑
i

λ3
i + 3

∑
i 6=j

λ2
iλj + 6

∑
1≤i<j<k≤5

λiλjλk. (4.13)

Using the previous relations we finally obtain

Tr(ρS
3Vθ(g)) =

1
6

(Tr(ρVθ(g)))3 +
1
2

Tr(ρVθ(g))Tr(ρVθ(g2)) +
1
3

Tr(ρVθ(g3)). (4.14)

To apply this formula we have to know in which conjugacy class are g2 and g3. For
example, for the element g = (12) its square is in the class of the identity, C1, and its
cube in the same class of g, C2. Hence, we obtain that the character of the representation
of g = (12) on Sym3 Vθ = Sym3(M2(Γ2(2))) is -3. In the same way we can compute the
characters χ of the other ten conjugacy classes:

χ(ρVθ) = {35,−3, 2, 3, 1, 0, 0, 13, 5,−1, 1} (4.15)

The representation on Sym3 Vθ will be a direct sum of the irreducible representations of
S6: Sym3 Vθ = ⊕imiρi. Using the orthogonality of the characters we can compute the
mi as mi = 〈χSym3 Vθ

, χi〉. The inner product between characters is given by 〈χ, ψ〉 =
1
|S6|
∑

g∈S6
χ(g)ψ(g) = tχTψ, where T is the matrix

T =
1
|S6|

diag{|C1|, · · · , |C6|} =
1

720
diag{1, 15, 40, 45, 90, 120, 144, 15, 40, 90, 120}.

(4.16)
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On the diagonal there are the numbers of elements in each of the eleven conjugacy
classes of S6. Then, we get the complete decomposition

Sym3(st5) = id1 + n9 + repa5 + 2st5 + sw10, (4.17)

which expresses exactly the desired result.
In the next subsection, in order to solve the constraints, we will construct the basis for
the space of modular forms of weight eight in which there is the representations 1 and
σθ, as well the space of modular form of weight 6 in which there is the representation
ρθ. Here we conclude our analysis by looking at which representation is supported by
some particular vector spaces. We will focus on the space Sym3(M2(Γ2(2))), clarifying
the origin of the functions Ξ6 introduced by D’Hoker and Phong, and on some other
spaces generated by polynomial of degree 12 in the theta constants.

Let us consider the matrix representation of S6 in the space Sym3 Vθ and define the
matrix N2 ∈ Mat(35,Z) as the sum of the 15 matrices representing the elements in the
conjugacy class C2. If N(σ) is the matrix representing any element σ ∈ S6, clearly we
have N(σ)N2N(σ)−1 = N2, as N(σ) just changes the order of the addends in the sum.
The eigenvalues of this matrix are

N2 diag = diag{15,−9, · · · ,−9︸ ︷︷ ︸
5 times

, 5, · · · , 5︸ ︷︷ ︸
9 times

,−3 · · · ,−3︸ ︷︷ ︸
20 times

}. (4.18)

and its trace is −45. From Schur lemma, the matrix N2 acts as a multiple of the identity
over each subspace Vi supporting an irreducible representation, i.e. N2|Vi = λ

(2)
i Id |Vi

and from (3.39):

λ
(2)
i =

15Trρi(1 2)
dim(Vi)

, (4.19)

where we chosen g = (1 2) as two cocycle of S6. We can deduce many interesting infor-
mations from this computation, even though this matrix is not enough to decompose the
whole space Sym3 Vθ: indeed, from (4.19) we deduce that the eigenvalue 15 corresponds
to the representation id1 of dimension one, the eigenvalue −9 to representation repa5 of
dimension five and the eigenvalue −5 to the representation n9 of dimension nine. But
for the last twenty eigenvalues we are not able to distinguish the spaces with the same
eigenvalue (st5 and sw10). To recognize univocally all the subspace of Sym3 Vθ we then
consider also the conjugacy class C2,2,2 of the product of three 2-ciclyes. This class
has 15 elements. As before we compute the matrix N2,2,2 ∈ Mat(35,Z), which for the
Schur lemma acts as a multiple of identity on each subspace supporting an irreducible
representation, and whose eignevalues are:

N2,2,2 diag = diag{15, 9, · · · 9︸ ︷︷ ︸
10 times

, 5, · · · , 5︸ ︷︷ ︸
9 times

, 3 · · · , 3︸ ︷︷ ︸
15 times

}. (4.20)

In this case we find that the representation st5 of dimension five has eigenvalue 9, the
representation repa5 of dimension five has eigenvalue 3 and the representation sw10 of
dimension ten has eigenvalue 3. We collect all these informations in the Table 4.5.
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λ
(2)
i λ

(2,2,2)
i dim(Vi)

id1 15 15 1
st5 -3 9 5

repa5 -9 3 5
n9 5 5 9

sw10 -3 3 10

Table 4.5: Eigenvalues and dimensions of the eigenspaces appearing in the decomposition of
Sym3 Vθ.

Note that for each representation there is a different (ordered) couple of eigenvalues.
Let W be a (modular invariant) space generated by some degree twelve polynomials in
theta constants. Expanding all the polynomials generating W on a basis of Sym3 Vθ
we obtains the coefficient matrix MW with 35 rows and n columns, with n = dimW .
Thus, if W coincides with one of the Vi we get

t(NC − λCi Id)MW = 0, (4.21)

where NC stands for N2 or N2,2,2 and λCi the corresponding eigenvalue3.
The eigenvalue 15 with multiplicity one shows the presence of a subspace VI of dimension
one invariant under the action of S6, i.e. there is an invariant cubic polynomial in pi
which we will call ψ6. To find it, we can compute the kernel of the matrix tN − 15 Id35

(which is evidently one dimensional). We get

Ψ6 = p3
0 − 9p0(p2

1 + p2
2 + p2

3 − 4p2
4) + 54p1p2p3. (4.22)

Using the classical formula we see that this polynomial coincides, up a multiplicative
constant, with the modular form of weight six appearing in [DP4]. Let us now consider
the space VΞ = 〈· · · ,Ξ6[δ], · · · 〉 of the forms introduced by D’Hoker and Phong in [DP4]
to define the superstring measures in genus two. We find

t(N2 − (−3) Id)MVΞ
= 0, (4.23)

t(N2,2,2 − 9 Id)MVΞ
= 0, (4.24)

which shows that VΞ supports the representation st5. The five dimensional subspace
VS = 〈θ4[δ]

∑
δ′ θ

8[δ′]〉 provides the second representation st5:

t(N2,2,2 − 9 Id)MS = 0, VS 6= VΞ. (4.25)

align Next, there is the space Vf supporting the representation repa5, which is given by
combinations of the functions Ξ6[δ] and the derivatives of the Igusa quartic w.r.t. the

3The transpose appears because NC transforms the basis of Sym3 Vtheta and MW is the matrix of

the coefficients.
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θ[δ]4, Vf = 〈· · · , 2Ξ6[δ]− ∂I4
∂θ[δ]4

· · · 〉:

t(N2 − (−9) Id)MVf = 0. (4.26)

To find an expression for the representation spaces n9 and sw10 we proceed as follows.
Let us consider a space W (a priori it can be also reducible), compute the matrix MW

and define the product∏
i,j

t(N2 − λ(2)
i Id35)t(N2,2,2 − λ(2,2,2)

j Id35). (4.27)

The kernel of each factor is the space in which NC = N2 or N2,2,2 has eigenvalue λCi . If
a vector does not belong to any representation for which the λi appears in the product,
its image will be different from the null vector. If in the product (4.27) we omit a
particular representation, say the k-th one, then the expression∏

i,j

t(N2 − λi Id35)t(N2,2,2 − λj Id35)MW (4.28)

is non vanishing if and only if the representation k belong to W . This follows from the
fact that on a suitable basis the expression (4.27) assumes the diagonal form

diag{0, · · · , 0, µk, · · · , µk, 0, · · · , 0}, (4.29)

µk =
∏
i

(λ(2)
k − λ

(2)
i )

∏
j

(λ(2,2,2)
k − λ(2,2,2)

j ), (4.30)

giving zero when multiplied by a vector belonging to any representation different from
Vk. The multiplicity of µk is, clearly, equal to nk dim(Vk), where Sym3 = ⊕kV nk

k and
the nk are computed as the coefficients appearing in the decomposition (4.17). The
subspace Wk giving the representation k will be generated by the image of the product∏
i,j

t(N2−λi Id35)t(N2,2,2−λj Id35) acting on a basis of the whole Sym3 Vθ and one can
extract a basis from it. Thus we can decompose the space Sym3 Vθ as:

S3Vθ = VI ⊕ VΞ ⊕ Vf ⊕ VS ⊕ V9 ⊕ V10, (4.31)

where the spaces V9 and V10 are suitable spaces of dimension nine and ten respectively
and constructed as explained before. Applying the previous approach to some space of
polynomials of degree twelve in theta constants we obtain the results reported in Table
4.6.

4.3.2 Construction of Ξ8 at genus 2

We are now able to construct the superstring measure at g = 2 and prove its uniqueness.
We recall, that dimM8(Γ2(2))O

+
= n1 + nθ, with n1, nθ the multiplicity of 1 and

σθ = ρ[42] in M8(Γ2(2)) respectively, see section 3.7.3. From the decomposition given
there we get

dimM8(Γ2(2))O
+

= 1 + 3 = 4.
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Space Dimension Representations

〈∂δiI4〉 10 st5 ⊕ repa5

〈Ξ6[δ][δi]〉 5 st5

〈θ12[δi]〉 10 st5 ⊕ repa5

〈θ4[δi]
∑

δ′ θ
8[δ′]〉 5 st5

〈θ4[δi]θ8[δj ]〉 34 2st5 ⊕ repa5 ⊕ n9 ⊕ sw10

〈θ12[δi], ∂δjI4〉 15 st5 ⊕ st5 ⊕ repa5

〈θ12[δi],Ξ6[δ]〉 15 st5 ⊕ repa5

〈θ12[δi], θ4[δj ]
∑

δ′ θ
8[δ′]〉 15 st5 ⊕ repa5

〈θ12[δi], θ4[δj ]
∑

δ′ θ
8[δ′], ∂δkI4〉 15 st5 ⊕ repa5

〈θ4[δi]θ4[δj ]θ4[δk]〉δi,δj ,δk pari 35 S3Vθ

〈θ4[δi]θ4[δj ]θ4[δk]〉δi+δj+δk pari 35 S3Vθ

〈θ4[δi]θ4[δj ]θ4[δk]〉δi+δj+δk dispari 20 st5 ⊕ repa5 ⊕ sw10

Table 4.6: Decomposition of some vectorial spaces. We intend: ∂δi
≡ ∂

∂θ[δi]4
.

The subspace M8(Γ2(2))O
+

contains the Sp(4)-invariant
∑

δ θ[δ]
16 ∈M8(Γ2(2)) as well

as the three dimensional subspace spanned by

F
(2)
1 := θ[00

00]16, F
(2)
2 := θ[00

00]4
∑
δ

θ[δ]12, F
(2)
3 := θ[00

00]8
∑
δ

θ[δ]8.

The apex indicates the genus and when it is clear from the context we will omit it. Using
the classical theta formula, one easily sees that these four functions are linearly indepen-
dent and thus are a basis of M8(Γ2(2))O

+
. The function Ξ8[0(2)](τ2), to satisfy the third

constraint, should restrict to Ξ8[0(1)](τ1)Ξ8[0(1)](τ2) with Ξ8[0(1)](τ1) = (θ[00]4η12)(τ1) on
H1×H1 ⊂ H2. This function is a multiple of θ[00]4(τ1). The restrictions of the Fi are also
multiples of θ[00]4(τ1), but the restriction of

∑
θ[δ]16 is not. Hence Ξ8[0(2)] should be

linear combination of the three Fi only. We try to determine ai ∈ C such that
∑

i aiFi
factors in this way for such period matrices. Note that

θ[abcd](τ1,1) = θ[ac ](τ1)θ[bd](τ
′
1),

where τ1,1 = diag(τ1, τ
′
1) and τ1, τ

′
1 ∈ H1. In particular, θ[abcd](τ1,1) = 0 if ac = 1. As

θ[00
00](τ1,1) produces θ[00]4(τ1)θ[00]4(τ ′1), it remains to find ai such that

(
θ[00]4η12

)
(τ1)

(
θ[00]4η12

)
(τ ′1) = (a1F1 + a2F2 + a3F3)(τ1,1).
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Using the results from section 4.2, the restrictions of the Fi are

θ[00
00]16(τ1,1) = θ[00]16(τ1)θ[00]16(τ ′1)

= θ[00]4(τ1)(1
3f21 + η12)(τ1)θ[00]4(τ ′1)(1

3f21 + η12)(τ ′1),

(
θ[00

00]4
∑

δ θ[δ]
12)(τ1,1

)
= θ[00]4(τ1)(θ[00]12 + θ[01]12 + θ[10]12)(τ1)θ[00]4(τ ′1)(θ[00]12 + θ[01]12 + θ[10]12)(τ ′1)

= θ[00]4(τ1)(2
3f21 − η12)(τ1)θ[00]4(τ ′1)(2

3f21 − η12)(τ ′1),

(
θ[00

00]8
∑

δ θ[δ]
8
)

(τ1,1) =
(
θ[00]8(θ[00]8 + θ[01]8 + θ[10]8

)
(τ1)

(
θ[00]8(θ[00]8 + θ[01]8 + θ[10]8)

)
(τ ′1)

= θ[00]4(τ1)2
3f21(τ1)θ[00]4(τ ′1)2

3f21(τ ′1).

Next we require for the term f21(τ1) to disappear from the linear combination (
∑
aiFi)(τ1,1),

so that we must have(
a1(1

3f21 + η12) + 2a2(2
3f21 − η12) + 2a3

2
3f21

)
(τ ′1) = 0

for all τ ′1 ∈ H1. This gives two linear equations for the ai which have a unique solution,
up to scalar multiple:

a1 + 4a2 + 4a3 = 0, a1 − 2a2 = 0, hence (a1, a2, a3) = λ(−4,−2, 3).

A computation shows that (−4F1− 2F2 + 3F3)(τ1,1) = 6θ[00]4(τ1)η12(τ1)θ[00]4(τ ′1)η12(τ ′1).
Thus we conclude that

Ξ8[00
00] := θ[00

00]4
(
−4θ[00

00]12 − 2
∑
δ

θ[δ]12 + 3θ[00
00]4

∑
δ

θ[δ]8
)
/6

satisfies the constraints. Because we use a basis for the O+-invariants and the equations
for the ai’s have an unique solution we conclude that the the Ξ8[00

00] is the unique modular
form on Γ2(1, 2) satisfying the constraints.

As θ[00
00]4Ξ6[00

00] satisfies the same constraints (with Ξ6[00
00] the modular form deter-

mined by D’Hoker and Phong in [DP1], [DP4]) we obtain from uniqueness that

Ξ6[00
00] =

(
−4θ[00

00]12 − 2
∑
δ

θ[δ]12 + 3θ[00
00]4

∑
δ

θ[δ]8
)
/6.

Another formula for this function is:

Ξ6[00
00] = −(θ[00

11]θ[01
00]θ[10

01])4 − (θ[00
01]θ[01

10]θ[11
00])4 − (θ[00

10]θ[10
00]θ[11

11])4,

which is the one found by D’Hoker and Phong in [DP4]. To check the equality between
the two expressions for Ξ6[00

00] one can use the classical theta formula.
We observe that the five dimensional space generated by the Ξ6[δ] is exactly the

same as the one generated by the derivative of the Igusa quartic w.r.t. to the five pi
(cf. [CD1], Theorem 1, for details).
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4.4 The case g = 3

In this case the decomposition of Sp(6)-representation on M2k(Γg(2)) in irreducible
representations is longer than in genus two. So, for sake of clarity, we first construct
a modular form Ξ8 satisfying the three constraints, then we will treat the algebraic
proprieties of the representation on the space of modular forms and finally we will prove
the uniqueness of Ξ8.

4.4.1 Modular forms

In case g = 3, the 8 Θ[σ]’s define a holomorphic map

H3 −→ P7, τ 7−→ (Θ[000](τ) : . . . : Θ[111](τ)). (4.32)

The closure of the image of this map is a 6-dimensional variety which is defined by a
homogeneous polynomial4 in eight variables of degree 16, as anticipated in section 3.5.3.
In particular the holomorphic function τ → F16(· · · ,Θ[δ], · · · ) is identically zero on H3.
It is interesting to review the details of the construction of F16 (see [vGvdG]), as we
will use an analogous strategy to obtain a certain function, G[∆], we will use to define
the superstring measures. For all τ ∈ H3, the following relation holds:

r1−r2 = r3, with r1 =
∏

a,b∈F2

θ[000
0ab](τ), r2 =

∏
a,b∈F2

θ[000
1ab](τ), r3 =

∏
a,b∈F2

θ[100
0ab](τ).

(4.33)
From these we deduce that 2r1r2 = r2

1 + r2
2 − r2

3, and thus

r4
1 + r4

2 + r4
3 − 2(r2

1r
2
2 + r2

1r
2
3 + r2

2r
2
3) (4.34)

is zero, as function of τ , on H3. Let F16 be the homogeneous polynomial, of degree 16
in the Θ[σ]’s, obtained (using the classical theta formula (3.33)) from this polynomial
(of degree 8) in the θ[∆]2. In [vGvdG] it has been shown that F16 is not zero as a
polynomial in the eight Θ[σ]. Thus the polynomial F16 defines the image of H3 → P7.
The same polynomial can be written using the classical theta functions. A computer
computation, using once again the classical formula, shows that F16 coincides, up to a
scalar multiple, with the degree 16 polynomial in the Θ[σ] obtained from

8
∑
∆

θ[∆]16 −
(∑

∆

θ[∆]8
)2

(4.35)

by the classical theta formulas.
The polynomial F16 provides the only relation of degree 16 between the theta constants
and the quotient ring is normal [R1,R2] so we get

M2k(Γ3(2)) = M θ
2k(Γ3(2)) = (C[. . . ,Θ[σ], . . .]4k)H3 (4.36)

4We use the notation F16 as in [vGvdG]. In the next chapter we will call J(g) the forms J(g) =

2g
P

∆(g) θ[∆
(g)]16 − (

P
∆(g) θ[∆

(g)]8)2, that in genus three reduces exactly to F16 and we will reserve

the notation F
(g)
16 for the function F

(g)
16 =

P
∆(g) θ[∆

(g)]16.
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where

(C[. . . ,Θ[σ], . . .]4k)H3 =

 (C[. . . , Xσ, . . .]4k)H3 k ≤ 3,

(C[. . . , Xσ, . . .]4k)H3/F16(C[. . . , Xσ, . . .]4k−16)H3 , k ≥ 4.
(4.37)

4.4.2 The functions F
(3)
i

As in the genus two case, we want to find a modular form Ξ8[000
000] of weight 8 on Γ3(2)

which restricts to the ’diagonal’ ∆1,2 as:

Ξ8[000
000](τ1,2) = Ξ8[00](τ1)Ξ8[00

00](τ2) =
(
θ[00]4η12

)
(τ1)

(
θ[00

00]4Ξ6[00
00]
)

(τ2) (4.38)

where τ1,2 ∈ H3 is the block diagonal matrix with entries τ1 ∈ H1 and τ2 ∈ H2. Obvious
generalizations of the functions F (2)

i which we considered in section 4.3.2 are

F
(3)
1 := θ[000

000]16, F
(3)
2 := θ[000

000]4
∑
∆

θ[∆]12, F
(3)
3 := θ[000

000]8
∑
∆

θ[∆]8, (4.39)

where the sum is over the 36 even characteristics ∆ in genus three. The functions Fi are
modular forms of weight 8 on Γ3(1, 2), see [CDG1]. We also have the Sp(6)-invariant∑

∆ θ[∆]16. However, there is no linear combination of these functions which has the
desired restriction. Therefore we need another modular form G[000

000] of weight 8 on
Γ3(1, 2). To this end we need the notion of isotropic and Lagrangian subspaces.

4.4.3 Isotropic subspaces

In this section we introduce isotropic subspaces of a space V ∼= F2g
2 for arbitrary g in a

quite general approach, as we will use the same notions to tackle the genus four case.
A subspace W ⊂ V is isotropic if E(w,w′) = 0 for all w,w′ ∈W . Given a basis e1, . . . , ek
of W it is not hard to see that one can extend it to a symplectic basis e1, . . . e2g of V
(so E(ei, ej) = 0 unless |i − j| = g and then E(ei, ej) = 1). In particular, the group
Sp(2g,Z) acts transitively on the isotropic subspaces of V of a given dimension. The
number of k-dimensional isotropic subspaces of V ∼= F2g

2 is given by

Niso(g, k) =
(22g − 1)(22g−1 − 2)(22g−4 − 4) . . . (22g−(k−1) − 2k−1)

]GL(k,F2)

=
(22g − 1)(22g−1 − 2)(22g−2 − 4) . . . (22g−(k−1) − 2k−1)

(2k − 1)(2k − 2) . . . (2k − 2k−1)

=
(22g − 1)(22g−2 − 1)(22g−4 − 1)(22g−6 − 1) . . . (22(g−k)+2 − 1)

(2k − 1)(2k−1 − 1) . . . (2− 1)
,(4.40)

where in the numerator we count the ordered k-tuples of independent elements v1, . . . , vk ∈
V with E(vi, vj) = 0 for all i, j: for v1 we can take any element in V − {0}, for v2
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we can take any element in 〈v1〉⊥ ∼= F2g−1
2 except 0, v1, so v2 ∈ 〈v1〉⊥ − 〈v1〉, next

v3 ∈ 〈v1, v2〉⊥ − 〈v1, v2〉 and so on.
Let W1, . . . ,WN be the k-dimensional isotropic subspaces contained in an even quadric
Q ⊂ V defined by q = 0, where q is a quadratic form on V . Let σ ∈ Sp(2g,Z) be
a symplectic transformation. Then σ(W1), . . . , σ(WN ) are the k-dimensional isotropic
subspaces in the even quadric σ(Q) ⊂ V defined by σ · q = 0, with (σ · q)(σv) = q(v).
In particular, all even quadrics in V contains the same number of isotropic subspaces
of a given dimension. An even quadric contains a maximal isotropic subspace L: this
is an isotropic subspace not contained in any higher dimensional nontrivial isotropic
subspace. By trivial we mean the space containing the 0 only or the whole V . It follows
that maximal isotropic subspaces are half dimensional (t.i. g dimensional) subspaces.
For example, L0 = {(v1...vg

0 ... 0 ) : vi ∈ F2} is contained in the even quadric Q corresponding
to the characteristic [0...00...0]. Instead, odd quadrics do not contain maximal isotropic sub-
spaces: if L ⊂ Q were such a subspace, then, by transitivity, σ(L) = L0 for a suitable
σ ∈ Sp(2g,Z). If σ(Q) corresponds to the characteristic [ab ] then L0 ⊂ σ(Q) implies
a1 = . . . = ag = 0, hence the characteristic must be even. A maximally isotropic sub-
space, L, is called a Lagrangian. For example, if g = 3, a subspace L of V ∼= F6

2 is
Lagrangian if L ⊂ V , E(v, w) = 0 for all v, w ∈ L and dimL = 3. The eight elements
(abc000) ∈ V with a, b, c ∈ F2 form a Lagrangian subspace L0 in V . Instead, the higher di-
mensional isotropic subspaces contained in an odd quadric are (g− 1)-dimensional. For
example, W0 = {(v1...vg−10

0 ... 0 0) : vi ∈ F2} is contained in the odd quadric with characteristic
[0...01
0...01].

It is easy to count the number of even quadrics which contain a fixed k-dimensional
isotropic subspace: we may assume that the subspace has basis e1, . . . , ek so that the
characteristic of an even quadric containing it is[

0 . . . 0 ak+1 . . . ag
b1 . . . bk bk+1 . . . bg

]
with

g∑
i=k+1

ak+ibk+i = 0,

and the number of such even quadrics is

NQ(k) = 2k · 2g−k−1(2g−k + 1). (4.41)

Viceversa, to find the number of k-dimensional isotropic subspaces in an even quadric,
we can count the pairs (W,Q) of isotropic subspaces W contained in arbitrary even
quadrics Q in two ways: first as the product of the number of W with the number of
even Q containing a fixed W and second as the product of the number of even quadrics
with the number of k-dimensional isotropic subspaces in an even quadric. For example,
let us consider maximal isotropic subspaces. Then g = k and the total number of copies
(W,Q) is in this case

N = Niso(g, g)NQ(g) = [(2g + 1)(2g−1 + 1) . . . (2 + 1)]2g.

On the other side we know that maximally isotropic spaces are contained in even
quadrics only, which are in one-to-one correspondence with the set of even character-
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istics, which are Ne = 2g−1(2g + 1). Thus, we conclude that the number of maximally
isotropic subspaces contained in a given (even) quadric Q is

NQ
iso(g) = Niso(g, g)NQ(g)/Ne = 2[(2g−1 + 1) . . . (2 + 1)]. (4.42)

For example, the number of pairs (W,Q) of a maximally isotropic subspace in an even
quadric in F6

2 is 135·23, and thus the number of such subspaces in a fixedQ is 135·23/36 =
30. The general idea to count the number of k-dimensional isotropic subspaces in an
even quadric is graphically pictured in Figure 4.1: it is clear that in the first way we
count the couples by columns, and in the second way by rows. For small g we list some

Q

W

Figure 4.1: Counting of the couple (QW )

of these dimensions in the table on the left below, in the table on the right we list the
number of k-dimensional isotropic subspaces contained in an even quadric.

g \ dimension 1 2 3 4

1 3
2 15 15
3 63 315 135
4 255 5355 11475 2295

g \dimension 1 2 3 4

1 2
2 9 6
3 35 105 30
4 135 1575 2025 270

4.4.4 The modular forms G[∆]

For each even characteristic ∆ in g = 3 we define a modular form G[∆] of weight 8 on
Γ3(2). First, let us recall some facts and notations about characteristics and quadrics
introduced in section 3.2, specializing to the case g = 3. An even characteristic ∆
corresponds to a quadratic form

q∆ : V = F6
2 −→ F2
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which satisfies q∆(v +w) = q∆(v) + q∆(w) +E(v, w), where E(v, w) :=
∑3

i=1(viw3+i +
v3+iwi). If ∆ = [abcdef ] then

q∆(v) = v1v4 + v2v5 + v3v6 + av1 + bv2 + cv3 + dv4 + ev5 + fv6,

with v = (v1, . . . , v6) ∈ V . We will also write v = (v1v2v3
v4v5v6

). Let Q∆ = {v ∈ V : q∆(v) =
0} be the corresponding quadric in V .

Let L be a Lagrangian subspace of V . For such a subspace L we define a modular
form on a subgroup of Sp(6,Z):

PL :=
∏
Q⊃L

θ[∆Q]2

here the product is over all even quadrics which contain L (there are eight such quadrics
for each L, as explained in the previous Section) and ∆Q is the even characteristic
corresponding to Q. In case L = L0 with

L0 := {(v1, . . . , v6) ∈ V : v4 = v5 = v6 = 0 },

we have
PL0 = (2r1r2)2 =

∏
a,b,c∈F2

θ[000
abc ]

2

with r1, r2 as in section 4.4.1. The action of Sp(6,Z) on V = Z6/2Z6 permutes the
Lagrangian subspaces L, and the subgroup Γ3(2) acts trivially on V . Similarly, the PL
are permuted by the action of Sp(6,Z), see [CDG1], and as Γ3(2) fixes all L’s, the PL
are modular forms on Γ3(2) of weight 8.
For an even characteristic ∆, the quadric Q∆ contains 30 Lagrangian subspaces. The
sum of the 30 PL’s, with L a Lagrangian subspace of Q∆, is a modular form G[∆] of
weight 8 on Γ3(2):

G[∆] :=
∑
L⊂Q∆

PL =
∑
L⊂Q∆

∏
Q′⊃L

θ[∆Q′ ]2.

Note that θ[∆]2 is one of the factors in each of the 30 products. As the PL are permuted
by the action of Sp(6,Z), also the G[∆] are permuted:

G[M ·∆](M · τ) = det(Cτ +D)8G[∆](τ).

Since Γ3(1, 2) fixes the characteristic [000
000], the function G[000

000] is a modular form on
Γ3(1, 2).

4.4.5 The restriction

Now, we can tackle the problem of finding a linear combination of the functions Fi,
i = 1, 2, 3 and G[000

000], in order to satisfy the third constraint:(
θ[00]4η12

)
(τ1)

(
θ[00

00]4Ξ6[00
00]
)

(τ2) =
(
b1F1 + b2F2 + b3F3 + b4G[000

000]
)

(τ1,2).
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It is easy to see that the theta constants satisfy

θ[abcdef ](τ1,2) = θ[ad](τ1)θ[bcef ](τ2),

so that, in particular, θ[abcdef ] 7→ 0 when ad = 1. As [abcdef ] must be even, this happen
for [bcef ] odd, thus 6 of the 36 even theta constants map to zero. The other 30 = 3 · 10
are uniquely decomposed in the product of two even theta constants for g = 1 (3) and
g = 2 (10) respectively. Using the results from 4.2, the functions Fi(τ1,2) are easily made
explicit, and the function G[000

000](τ1,2) has been determined in [CDG1]. The restrictions
to ∆1,2

∼= H1 ×H2 are:

(θ[000
000]16)(τ1,2) = θ[00]16(τ1)θ[00

00]16(τ2) =
(
θ[00]4(1

3f21 + η12)
)

(τ1)θ[00
00]16(τ2),

θ[000
000]4(

∑
∆ θ[∆]12)(τ1,2) =

(
θ[00]4(θ[00]12 + θ[01]12 + θ[10]12)

)
(τ1)

(
θ[00

00]4(
∑

δ θ[δ]
12)
)

(τ2)

=
(
θ[00]4(2

3f21 − η12)
)

(τ1)
(
θ[00

00]4
∑

δ θ[δ]
12
)

(τ2),

(θ[000
000]8

∑
∆θ[∆]8)(τ1,2) =

(
θ[00]8(θ[00]8 + θ[01]8 + θ[10]8)

)
(τ1)

(
θ[00

00]8(
∑

δ θ[δ]
8)
)

(τ2)

=
(
θ[00]4 2

3f21

)
(τ1)

(
θ[00

00]8(
∑

δ θ[δ]
8)
)
(τ2),

G[000
000](τ1,2) =

(
θ[00]4(1

3f21 − η12)
)
(τ1)

(
θ[00

00]4(1
3θ[

00
00]12 + 2

3

∑
δ θ[δ]

12 − 1
2θ[

00
00]4

∑
δ θ[δ]

8)
)
(τ2).

In putting these expression in (b1F1 +b2F2 +b3F3)+b4G[000
000], we note that the common

function θ[000
000]4 in front of the Fi gives the function θ[00]4(τ1)θ[00

00]4(τ2). In particular, the
restriction has then a factor θ[00]4θ[00

00]4. In order for this restriction to be a multiple of
θ[00]4η12, the terms containing f21 must disappear. This leads to the equation

b1θ[00
00]12+2b2

∑
δ

θ[δ]12+2b3θ[00
00]4(

∑
δ

θ[δ]8)+b4(1
3θ[

00
00]12+2

3

∑
δ

θ[δ]12−1
2θ[

00
00]4
∑
δ

θ[δ]8) = 0.

It has a unique solution (up to scalar multiples):

(b1, b2, b3, b4) = µ(4, 4,−3,−12) (µ ∈ C).

Setting µ = 1 and using the formula for Ξ6[00
00] given in section 4.3.2 we get(

4F1 + 4F2 − 3F3 − 12G[000
000]
)

(τ1,2) =(
θ[00]4η12

)
(τ1)

(
θ[00

00]4(8θ[00
00]12 + 4

∑
δ θ[δ]

12 − 6θ[00
00]4

∑
δ θ[δ]

8)
)

(τ2) =

12
(
θ[00]4η12

)
(τ1)

(
θ[00

00]4Ξ6[00
00]
)

(τ2).
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Hence the modular form Ξ8[000
000], of weight 8 on Γ3(1, 2) defined by

Ξ8[000
000] :=

(
4F1 + 4F2 − 3F3 − 12G[000

000]
)
/12

satisfies all the constraints except maybe (iii0)(2). We have to check this last constraint
separately. Let M ∈ Sp(6,Z) be such that M · [000

000] = [abcdef ] with a = d = 1. As
G[000

000](τ) = θ2[000
000](τ)G[[000

000](τ) for a holomorphic function G[[000
000], G[abcdef ](M · τ) is the

product of θ2[abcdef ](τ) and a holomorphic function, hence G[abcdef ](M · τ1,2) = 0 because
θ2[abcdef ](τ1,2) = θ2[11](τ1)θ2[bcef ](τ2) = 0.

We conclude that Ξ8[000
000], defined as above, solves the problem.

Next, using the representation theory of finite group, we will show that, up to a
constant, it is the only modular form of weight 8 on Γ3(1, 2) which satisfies all con-
straints. As a by product, this implies that the desired functions Ξ6[∆] proposed by
D’Hoker and Phong in [DP6] indeed do not exist because G[000

000] is not the product of
θ[000

000]4 with a modular form of weight 6. As noticed by Morozov, it has been in part
the convincement that the factorization of the term θ[000

000]4 was necessary to grant the
vanishing of the cosmological constant to stop for a long time the success in finding
higher loop candidates for the superstring measure. Instead, we will see that Ξ8[000

000]
implies the vanishing of the cosmological constant.

4.4.6 Representations of Sp(6)

To prove uniqueness of the form Ξ8, we need to come back to the study of the repre-
sentations of Sp(6) on the space of modular forms.

Weight 2

From section 3.7.4 we know that M2((Γ3(2)), a fifteen dimensional vector space, is
an irreducible Sp(6)-representation, denoted by ρθ. As Sp(6) has a unique irreducible
representation of dimension 15, denoted by 15a in [Fr1] and in Table 4.7, it follows that
ρθ ∼= 15a. In the spirit of the genus two case, this space of Heisenberg invariants has
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Irrep./Class

1a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7a 7 3 -1 3 1 4 2 0 1 -1 -2 2 0 1 2 -5 -1 -3 1 -1 -2 1 -1 -2 0 -1 0 -1 1 0
27a 27 7 3 3 1 9 3 1 0 0 0 0 0 0 2 15 3 5 1 1 3 0 0 1 0 -1 -1 -1 -1 -1
21a 21 1 -3 5 -1 6 0 -2 0 0 3 3 -1 0 1 9 -3 3 -1 -1 0 0 0 2 -1 1 0 1 1 0
35a 35 -5 3 7 -1 5 -3 1 2 0 -1 3 1 -1 0 -5 3 -1 -1 1 1 -2 0 -1 0 0 -1 -1 1 0
105a 105 5 1 5 -1 15 1 -1 -3 1 -3 1 -1 0 0 -35 1 -5 -1 1 1 1 1 -1 0 0 1 1 -1 0
189a 189 -11 -3 9 1 9 -3 1 0 0 0 0 0 0 -1 21 -3 1 1 -1 -3 0 0 1 1 -1 1 1 -1 0
21b 21 5 5 1 1 6 2 2 0 2 3 -1 1 0 1 -11 -3 -3 -3 -1 -2 -2 0 0 -1 1 0 1 -1 0
35b 35 7 11 -1 1 5 -1 1 2 2 -1 -1 -1 -1 0 15 3 1 5 -1 3 0 0 -1 0 0 1 3 1 0
189b 189 13 -3 -3 1 9 -3 1 0 0 0 0 0 0 -1 -51 -3 1 1 1 -3 0 0 1 -1 -1 1 -3 1 0
189c 189 1 21 -3 -1 9 3 1 0 0 0 0 0 0 -1 -39 -3 -1 -5 -1 3 0 0 1 1 -1 -1 1 1 0
15a 15 3 7 -1 1 0 -2 0 3 1 -3 1 -1 0 0 -5 -1 1 -3 1 -2 1 -1 0 0 0 -2 3 -1 1
105b 105 9 -7 -3 1 0 -4 0 3 -1 6 2 0 0 0 25 1 -3 -3 -1 4 1 1 0 0 0 0 -3 -1 0
105c 105 -3 17 -3 -1 0 2 0 3 -1 6 2 0 0 0 5 -7 -1 3 1 2 -1 -1 0 0 0 2 1 -1 0
315a 315 3 -21 -5 -1 0 0 0 0 0 -9 3 1 0 0 -45 3 3 3 -1 0 0 0 0 0 0 0 3 -1 0
405a 405 -3 -27 -3 1 0 0 0 0 0 0 0 0 0 0 45 -3 -3 -3 1 0 0 0 0 0 0 0 5 1 -1
168a 168 8 8 0 0 6 2 2 -3 -1 6 2 0 0 -2 40 8 0 0 0 -2 1 -1 0 0 1 0 0 0 0
56a 56 8 -8 0 0 11 1 -1 2 -2 2 -2 0 -1 1 -24 0 -4 4 0 -3 0 0 1 1 1 -1 0 0 0
120a 120 8 -8 0 0 15 1 -1 0 -2 -6 -2 0 0 0 40 0 4 -4 0 1 -2 0 -1 0 0 1 0 0 1
210a 210 2 2 -2 -2 15 -1 -1 0 2 3 -1 1 0 0 50 -6 2 2 0 -1 2 0 -1 0 0 -1 -2 0 0
280a 280 -8 -8 0 0 10 -2 -2 1 1 10 -2 0 1 0 -40 8 0 0 0 2 -1 -1 0 0 0 0 0 0 0
336a 336 -16 16 0 0 6 -2 2 0 -2 -6 -2 0 0 1 -16 0 0 0 0 2 2 0 0 -1 1 0 0 0 0
216a 216 8 24 0 0 -9 -3 -1 0 0 0 0 0 0 1 -24 0 4 -4 0 -3 0 0 -1 1 1 1 0 0 -1
512a 512 0 0 0 0 -16 0 0 -4 0 8 0 0 -1 2 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1
378a 378 2 -6 6 2 -9 3 -1 0 0 0 0 0 0 -2 -30 -6 2 2 0 3 0 0 -1 0 1 -1 -2 0 0
84a 84 4 20 4 0 -6 2 -2 3 -1 3 -1 1 0 -1 4 4 0 0 0 -2 1 1 0 -1 -1 0 4 0 0
420a 420 -12 4 -4 0 0 4 0 3 1 -3 1 -1 0 0 20 4 0 0 0 -4 -1 1 0 0 0 0 -4 0 0
280b 280 8 24 0 0 -5 -3 -1 -2 0 -8 0 0 1 0 40 0 -4 4 0 1 -2 0 1 0 0 -1 0 0 0
210b 210 10 -14 6 -2 -15 1 1 3 1 -6 -2 0 0 0 10 2 -2 -2 0 1 1 -1 1 0 0 1 -2 0 0
70a 70 6 -10 2 -2 -5 -1 3 1 -1 7 -1 -1 1 0 -10 -2 2 2 0 -1 -1 1 -1 0 0 -1 2 0 0

Table 4.7: Table of characters of Sp(6). In the bold column there are the characters of the class
of the transvections.

basis

P0 = Θ[000]4 + Θ[001]4 + Θ[010]4 + Θ[011]4 + Θ[100]4 + Θ[101]4 + Θ[110]4 + Θ[111]4

P1 = 2(Θ[000]2Θ[001]2 + Θ[010]2Θ[011]2 + Θ[100]2Θ[101]2 + Θ[110]2Θ[111]2)

P2 = 2(Θ[000]2Θ[010]2 + Θ[001]2Θ[011]2 + Θ[100]2Θ[110]2 + Θ[101]2Θ[111]2)

P3 = 2(Θ[000]2Θ[011]2 + Θ[001]2Θ[010]2 + Θ[100]2Θ[111]2 + Θ[101]2Θ[110]2)

P4 = 2(Θ[000]2Θ[100]2 + Θ[001]2Θ[101]2 + Θ[010]2Θ[110]2 + Θ[011]2Θ[111]2)

P5 = 2(Θ[000]2Θ[101]2 + Θ[001]2Θ[100]2 + Θ[010]2Θ[111]2 + Θ[011]2Θ[110]2)

P6 = 2(Θ[000]2Θ[110]2 + Θ[001]2Θ[111]2 + Θ[010]2Θ[100]2 + Θ[011]2Θ[101]2)

P7 = 2(Θ[000]2Θ[111]2 + Θ[001]2Θ[110]2 + Θ[010]2Θ[101]2 + Θ[100]2Θ[011]2)

P8 = 4(Θ[000]Θ[001]Θ[010]Θ[011] + Θ[100]Θ[101]Θ[110]Θ[111])

P9 = 4(Θ[000]Θ[001]Θ[100]Θ[101] + Θ[010]Θ[011]Θ[110]Θ[111])

P10 = 4(Θ[000]Θ[001]Θ[110]Θ[111] + Θ[010]Θ[011]Θ[100]Θ[101])

P11 = 4(Θ[000]Θ[010]Θ[100]Θ[110] + Θ[001]Θ[011]Θ[101]Θ[111])

P12 = 4(Θ[000]Θ[010]Θ[101]Θ[111] + Θ[001]Θ[011]Θ[100]Θ[110])

P13 = 4(Θ[000]Θ[011]Θ[100]Θ[111] + Θ[001]Θ[010]Θ[101]Θ[110])

P14 = 4(Θ[000]Θ[011]Θ[101]Θ[110] + Θ[001]Θ[010]Θ[100]Θ[111]).
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This has been constructed following sec. 3.5: let us fix four elements σ1, . . . , σ4 ∈ Z3
2

which sum up to 0. Then an invariant element is

P{σ1,...,σ4} =
∑
x∈Z3

Θ[σ1 + x]Θ[σ2 + x]Θ[σ3 + x]Θ[σ4 + x].

Looking at all possible quadruples of numbers σi we easily recover the above basis.
Using the classical formula one shows that this space is also spanned by the 36 θ[∆]4’s
with ∆ even.

Weight 4

From section 3.7.4 we know that Sym2(M2(Γ3(2))) ⊂ M4(Γ3(2)) and as an Sp(6)-
representation we have, with an analogous computation as in section 4.3.1:

Sym2(M2(Γ3(2))) := Sym2(15a) = 1 + 35b + 84a.

The invariant subspace is spanned by
∑

∆ θ[∆]8 and the subrepresentation 1 + 35b is
spanned by the 36 θ[∆]8’s which are permuted by Sp(6).

We recall the relation, introduced in Section 4.4.1, which holds for all τ ∈ H3:

r1−r2 = r3, with r1 =
∏

a,b∈F2

θ[000
0ab](τ), r2 =

∏
a,b∈F2

θ[000
1ab](τ), r3 =

∏
a,b∈F2

θ[100
0ab](τ).

From this we deduce that 2r1r2 = r2
1 +r2

2−r2
3. Thus r1r2, a product of 8 distinct θ[∆]’s,

is a linear combination of three products of four theta squares. The sum of the four
characteristics in each product is zero, hence

r1r2 =
∏

a,b,c∈F2

θ[000
abc ] ∈M4(Γ3(2)).

Using a computer and the classical theta formula, we verified that under the action of
Sp(6) on r1r2 one obtains 135 functions which are a basis of M4(Γ3(2)) and which are
permuted (without signs) by Sp(6).

Let P ⊂ Sp(6) be the stabilizer of r1r2, it consists of the matrices with blocks
A, . . . ,D with C = 0. There are no non-trivial homomorphisms P → GL1(C) = C∗,
because these factor over SL(3,Z2) (with P as before, one maps the matrix first to A)
and this is a simple group (of order 168). Thus any g ∈ P acts as the identity on r1r2.
Acting with the whole group Sp(6) we generate the induced representation of the 1P,
by Proposition 3.8.1. We can then identify the representation of Sp(6) on M4(Γ3(2))
with IndSp

P (1P ), this representation is (cf. [Fr1], p. 113)

M4(Γ3(2)) ∼= IndSp
P (1P ) ∼= 1 + 35b + 84a + 15a ∼= Sym2(M2(Γ3(2))) + 15a.

In particular, there is a unique complementary 15-dimensional subspace which is Sp(6)-
invariant. Necessarily, the representation on this subspace must be 15a ∼= ρθ. We
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can realize an isomorphism of representations, by using some geometry of quadrics, as
follows.

Let L ⊂ F6
2 be a Lagrangian subspace: L ∼= F3

2 and E(v, w) = 0 for all v, w ∈ L.
Then we know that there are NQ(3) = 8 even quadrics Q such that L ⊂ Q. When
L = L0 = {(v, v′) ∈ Z3 × Z3 : v′ = 0}, the 8 even quadrics containing L0 have the same
characteristics as the eight theta constants in r1r2 so that we can write

r1r2 =
∏
Q⊃L0

θ[∆Q],

the product being on the quadrics containing L0. Acting with the modular group Sp(6)
will generate Niso(3, 3) = 135 elements of the orbit which are naturally identified, by
construction, with the elements in the orbit of r1r2, so that each one of them can be
written as

PL = ±
∏
Q⊃L

θ[∆Q],

for a unique Lagrangian subspace L, where the sign is determined by the condition that
it must be +1 if L = L0 and that PL = ρ(g)PL0 for some g ∈ Sp(6), with ρ defining a
representation.
We can exploit this description for the basis of M4(Γ3(2)) to write down the (unique)
O+-anti-invariant. Recall that O+ is the stabilizer of the even characteristic [0] and
let us call Q0 the corresponding even quadric. An even (also called split) quadric Q in
F6

2 contains NQ
iso(3) = 30 Lagrangian subspaces. It is easy to see that the intersection

of two distinct Lagrangian subspaces in the same quadric cannot have codimension
smaller then g + 2. For g = 3 this means that the intersection between two distinct
Lagrangian subspaces must have dimension 0 or 1. We say that L,L′ ⊂ Q are in the
same ruling if L ∩ L′ is 1-dimensional. As fixing a point in Q one can easily count
15 Lagrangian subspaces containing it, we see that there are two rulings, each one
containing 15 Lagrangian subspaces. Let us define P [0] to be the sum of the 15 PL’s
from one ruling minus the sum of the 15 PL’s from the other ruling of Q0. Then
P [0] transforms with the representation ε of O+. Indeed, the action of Sp(6) preserves
intersection so that a given elements h ∈ Sp(6) or acts separately on each rule and then
as the identity on P [0], or mix the rules acting as −1 on P [0] so that P [0] supports a
1-dimensional non-trivial representation of O+. But we have said in section 3.7 that ε
is the unique non-trivial representation.
Thus the subrepresentation of M4(Γ3(2)) generated by P [0] is contained in IndSp

O+(ε) and
thus it must be ρθ = 15a, ρr = 21b or their direct sum. As only 15a is a component of
the representation on M4(Γ3(2)), we conclude that the subrepresentation generated by
P [0] is isomorphic to 15a and thus is complementary to Sym2(M2(Γ3(2))).

The Sp(6)-representation on M6(Γ3(2))

Starting from the basis of the polynomials Pj , it is easy to check by means of a computer
that the 680 products PiPjPk, 0 ≤ i ≤ j ≤ k ≤ 14 are linearly independent in the 870-
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dimensional vector space (C[. . . ,Θ[σ], . . .]8)Hg . The spanned subspace is

Sym3(M2(Γ3(2))) := 〈PiPjPk : Pi, Pj , Pk ∈M2(Γ3(2)) 〉.

The identification M2(Γ3(2)) ∼= 15a, as Sp(6,F2)-representation, implies

Sym3(M2(Γ3(2))) ∼= 2 · 15a + 21b + 35b + 84a + 105c + 189c + 216a.

To decompose all of V := M6(Γ3(2)) we use operator C = CV as in section 3.7.5. The
eigenvalues λ of C on V and their multiplicities mλ are easily computed by means of a
computer, giving

(λ,mλ) : (63, 1), (27, 35), (3, 378), (−7, 216), (−13, 189), (−21, 30), (−33, 21).

(63, 1) corresponds to the one-dimensional trivial representation. We would now recog-
nize Sym3(M2(Γ3(2))) in M6(Γ3(2)). From the character table of Sp(6) in [Fr1], p.114–
115 or in Table 4.7 (where tv is in the 16th conjugacy class labeled 1−526), we see that
the irreducible representations ρ of dimension dλ such that Cρ has eigenvalue λ in the
cases (λ, dλ) = (−13, 189), (−33, 21) are unique. Then, the irreducible representations
189c and 21b occur in M6(Γ3(2)), with multiplicity one. The irreducible representa-
tions ρ for which Cρ has eigenvalue λ = 27 are 21a and 35b. C has a 35-dimensional
eigenspace with λ = 27, so that the representation 35b occurs with multiplicity one in
M6(Γ3(2)). Also the irreducible representations for which Cρ has eigenvalue -7 are two:
56a and 216a. As before, for dimensional reasons, we can conclude that the represen-
tation 216a occurs with multiplicity one in M6(Γ3(2)). The irreducible representations
ρ for which Cρ has eigenvalue λ = 3 are 105c, 84a, 420a, 210b, then giving rise to two
possible decompositions of the 378-dimensional eigenspace with λ = 3: 2 ·105c+ 2 ·84a
or 210b + 2 · 84a. As 105c is an irreducible component of Sym3(15a), it must appear
in M6(Γ3(2)), and then 2 · 105c + 2 · 84a is the right decomposition. The case when
Cρ has eigenvalue λ = −21 correspond to the representations: 105a and 15a. As there
is no more space for a 105 dimensional representation, the only possibility is that the
30-dimensional eigenspace of C with λ = −21 coincides with the representation 2 · 15a.
We then conclude

M6(Γ3(2)) = Sym3(15a) + 1 + 84a + 105c.

Asyzygous sextets

In the complement of Sym3(15a) in M6(Γ3(2)), let us consider the subrepresentation
space 105c. This is exactly the same space which has been studied by D’Hoker and
Phong in [DP6], as we will see in a moment. Following [DP6], let us consider sets
S = {∆1, . . . ,∆6} of six totally asyzygous (even) characteristics, which means that
∆i+∆j+∆k is odd for distinct i, j, k. An example of such a sextet of even characteristics
is

S0 := { [110
110], [110

111], [111
110], [101

101], [101
111], [111

101] }.
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These are of the form [1ab1cd] where [abcd] runs over the six odd theta characteristics in genus
2. From the fact that the sum of any three odd characteristics in genus two is even, it
follows that the sum of any three of these six characteristics for g = 3 is indeed odd.
There are 336 asyzygous sextets, on which Sp(6) acts transitively. The sum of the six
characteristics each of these sextets is zero (in F2), hence to a sextet S we can associate
a modular form FS of weight 6 on Γ3(2):

FS :=
∏
∆∈S

θ[∆]2 (∈M6(Γ3(2))).

Each FS corresponds to a Heisenberg invariant which can be expressed as an homo-
geneous polynomial of degree 12 in the Θ[σ]’s by means of the classical theta for-
mula (3.33). A computer computation shows that the 336 functions FS span a 105-
dimensional vector space

Was := 〈 FS : S totally asyzygous sextet 〉 (⊂M6(Γ3(2))).

One can verify indeed that Was has intersection {0} with Sym3(M2(Γ3(2))) and that
C reduces itself as multiplication by 3 on Was, so that Was

∼= 105c, which is what we
intended to prove.
In [DP6] it has been shown that Was does not contain functions which transform as θ[0]4

under O+(6). This is clear in terms of our analysis, since such a function would generate
a subrepresentation of IndSp

O+(ε) = 15a ⊕ 21b, then contradicting the identification
Was

∼= 105c.

The Sp(6)-representation on M8(Γ3(2))

The space of modular forms of weight 8 on Γ3(2) is:

C[. . . , Xσ, . . .]
Hg
16
∼= M8(Γ3(2))⊕ 〈F16〉,

where F16 is a homogeneous polynomial of degree 16 in theXσ such that F16(. . . ,Θ[σ](τ), . . .) =
0 for all τ ∈ H3, see [vGvdG], [CDG1], and § 4.4.1:

F16 = 8
∑
∆

θ[∆]16 −
(∑

∆

θ[∆]8
)2
, θ[ab ]

2 =
∑
σ

(−1)σbXσXσ+a

so we substitute Xσ rather than Θ[σ] in the classical theta formula. In particular,

dimM8(Γ3(2)) = 3993− 1 = 3992.

The image Sym4(M2(Γ3(2)))0 of Sym4(M2(Γ3(2))) in this 3992-dimensional vector space
is spanned by the products PiPjPkPl, for a basis Pi ∈ C[. . . , Xσ, . . .]

Hg
4 , 1 ≤ i ≤ 15,

with 27 independent relations, and includes F16. Thus, its dimension is

dim Sym4(M2(Γ3(2)))0 =
(

15 + 4− 1
4

)
− 27− 1 = 3032.
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Starting from the identificationM2(Γ3(2)) = 15a, a computation with Sp(6)-representations
shows that

Sym4(M2(Γ3(2))) ∼= 2 · 1 + 2 · 15a + 27a + 35a + 4 · 35b + 4 · 84a + 105c+
+168a + 189c + 2 · 216 + 3 · 280b + 336a + 420a.

The 1 + 27-dimensional kernel of the map Sym4(M2(Γ3(2)))→ Sym4(M2(Γ3(2)))0 is an
Sp(6)-representation, thus it must be 1 + 27a.
We then have to identify the complement W in the decomposition

M8(Γ3(2)) ∼= Sym4(M2(Γ3(2)))0 ⊕ W, dimW = 960.

By computing the operator C from section 3.7.5 on C[. . . , Xσ, . . .]
Hg
16 . we get the pairs

given by the eigenvalues λ and their multiplicity mλ which result to be

(λ,mλ) : (3, 1050), (9, 840), (15, 168), (27, 140), (63, 2),
(−3, 672), (−7, 648), (−9, 35), (−13, 378), (−21, 60).

Thus, we see that 27a cannot be a subrepresentation of C[. . . , Xσ, . . .]
Hg
16 because the

eigenvalue λ of C on 27a would have been 35, which is not an eigenvalue of C.
For the remaining eigenvalues we see that:

� the eigenvalue 63 corresponds to the subspace of invariants;

� the eigenvalues λ = 9, −3, −7, −13 occur only on the irreducible representations
280b, 336a, 216a, 189c respectively, hence 3 ·280b + 2 ·336a + 3 ·216a + 2 ·189c
is a summand of M8(Γ3(2)), and W has a summand 189c + 216a + 336a;

� the eigenvalue 3 occurs only on 84a, 105c, 210b and 420a. Now, 4 · 84a + 105c +
420a is a summand of Sym4(M2(Γ3(2)))0, so that there remains a subrepresen-
tation of dimension 1050 − 861 = 189 in W with the same eigenvalue. Thus
84a + 105c is a summand of W ;

� the eigenvalue 15 occurs only on 105b, 168a and 210a. The eigenspace of C for
this eigenvalue has dimension 168 so that 168a is a summand of M8(Γ3(2)) which
lies in Sym4(15a);

� the eigenvalue 27 occurs only on 21a and 35b. 4·35b is a summand of Sym4(M2(Γ3(2)))0

and the dimension of this eigenspace of C is 140. Thus, none of these two repre-
sentations occurs in W ;

� the lowest dimensional representation where the eigenvalue −9 occurs is 35a. As
the eigenspace for λ = −9 has dimension 35, we conclude that 35a is a summand
of M8(Γ3(2)), which lies in Sym4(15a);

� the eigenvalue −21 occurs only on 15a and 105a. The eigenspace of C for this
eigenvalue has dimension 60, then 4 · 15a is a summand of M8(Γ3(2)) and the
summand 2 · 15a is contained in W .
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These considerations lead us to the conclusion that

W = 2 · 15a + 84a + 105c + 189c + 216a + 336a.

4.4.7 The uniqueness of Ξ8[0(3)]

In section 4.4.5 we have determined a modular form Ξ8[000
000] which satisfies the three

reduced constraints of section 4.1.
Such constraints imply that Ξ8[0(3)] is a modular form on Γ3(2) of weight 8 and should
be O+-invariant (equivalently, it is a modular form on Γ3(1, 2)), so it must lie in
M8(Γ3(2))O

+
. As we explained in section 3.7.3, the only Sp(6)-representations which

have O+(6)-invariants are 1 and σθ = 35b. Hence, the decomposition of M8(Γ3(2))
obtained in section 4.4.6 implies that

dimM8(Γ3(2))O
+

= 1 + 4 = 5.

The subspace M8(Γ3(2))O
+

contains the Sp(6)-invariant
∑

∆ θ[∆]16 ∈M8(Γ3(2)) as well
as the three dimensional subspace

θ[000
000]4M6(Γ3(2))ε := {θ[000

000]4f : f ∈M6(Γ3(2))ε },

since both θ[000
000]4 and such f are O+-anti-invariant. A basis of this space is furnished5,

for example, by the three functions F (3)
i , with i = 1, 2, 3, of section 4.4.2. Also we defined

the functions G[∆] that are modular forms of weight 8 on Γ3(2) and we proved [CDG1]
that G[0] ∈M8(Γ3(2))O

+
.

Using the classical theta formulas, one can check that these functions span the O+-
invariants

M8(Γ4(2))O
+

= θ[000
000]4M6(Γ4(2))ε ⊕ 〈

∑
∆

θ[∆]16, G[0] 〉.

Moreover, the modular form Ξ8[0(0)] should restrict to (θ[00]4η12)(τ1)(θ[00
00]4Ξ6[00

00])(τ2) on
H1 × H2 ⊂ H3. Note that this restriction is a multiple of θ[00](τ1). Differently from
the other four functions, the restriction of

∑
θ[∆]16 to the diagonal is not a multiple

of θ[00](τ1). Thus Ξ8[0(3)] should be linear combination of just these four functions.
The explicit computations done in Section 4.4.5 showed that there is a unique linear
combination satisfying the restriction constraint. This verifies the uniqueness of Ξ8[0(3)].
As we said, as a corollary this implies the non existence of the form Ξ6[0(3)] proposed
by D’Hoker and Phong. It is however interesting to look better at this fact as it gives
some new interesting information. The modular form Ξ6[0(3)] should live in M6(Γg(2))ε.
Now, the only Sp(6)-representations with O+-anti-invariants are ρθ = 15a and ρr = 21b,
which contain a unique such anti-invariant (cf. 3.7.3). Thus, from the decomposition of
M6(Γ3(2)) given in 4.4.6, it follows that dimM6(Γ3(2))ε = 3. One can verify that the

5It is clear that a basis for the space M6(Γ3(2))ε of O+(6)-anti-invariants is given by θ[000
000]12,

θ[000
000]4

P
∆ θ[∆]12 and θ[000

000]8
P

∆ θ[∆]8.
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following functions are a basis

M6(Γg(2))ε = 〈 θ[000
000]12,

∑
∆

θ[∆]12, θ[000
000]4

∑
∆

θ[∆]8 〉.

The function Ξ6[0(3)] should restrict to Ξ6[0(1)](τ1)Ξ6[0(2)](τ2) for (τ1, τ2) ∈ H1 ×H2 ⊂
H3, with Ξ6[0(1)](τ1) = η12(τ1).

The linear combination aθ[000
000]12 + b

∑
∆ θ[∆]12 + cθ[000

000]4(
∑

∆ θ[∆]8) restricts, using
the results from 5.10.1 and the restriction of section 4.4.5 (without the common factor
θ[000

000]4), to a function of the form η12(τ1)g(τ2) iff

aθ[00
00]12 + 2b

∑
δ

θ[δ]12 + 2cθ[00
00]4

∑
δ

θ[δ]8 = 0

on H2. However, it follows from the results in Table 4.6 that the ten even θ[δ]12’s span
a ten dimensional space which does not contains θ[00

00]4
∑

δ θ[δ]
8. Hence we must have

a = b = c = 0, which proves that there is no function Ξ6[0(3)] satisfying the three
constraints imposed in [DP6].

4.5 The case g = 4

Finally, we will consider here the case of genus four, where we will again be able to find
a suitable modular form Ξ8 satisfying the four constraints of section 2.3. Thus, this
function turn out to be a good candidate for the superstring measure. We will prove
the uniqueness in a weaker form w.r.t. the previous cases (cf. § 4.5.3), in [OPSY] the
general case is considered. The construction procedure is the same as in the previous
cases: we search functions that are O+-invariant and then look for a linear combination
satisfying the factorization constraint. However, in this case we make use of a further
assumption: we require for the forms Ξ8[∆] to be polynomials in the theta constants.
This new assumption is motivated by the non normality of the ring of modular forms
in genus four, thus it could contain modular forms that are not polynomial in theta
constants. The uniqueness (in this sense) will follow, as before, from the fact we use
a basis for the space of (polynomial) modular forms on Γ4(1, 2), but is then restricted
to the polynomial subspace. The factorization constraints which must be imposed to
the forms Ξ8 when the period matrix τ4 ∈ H4 becomes reducible, are Ξ8[0(4)](τk,4−k) =

Ξ8[0(k)](τk)Ξ8[0(4−k)](τ4−k), with τk,4−k :=
(
τk 0
0 τ4−k

)
∈ H4. As in genus three, first we

construct the forms Ξ8, then we tackle the problem of the uniqueness.

4.5.1 The modular forms F
(4)
i , G

(4)
1 [0(4)] and G

(4)
2 [0(4)]

It is easy to write down some of the O+-invariants in genus four as extensions of the
functions defined in genus two and three. An obvious generalization of the functions Fi
introduced in sections 4.3.2and 4.4.2 is:

F
(4)
1 := θ[0000

0000]16, F
(4)
2 := θ[0000

0000]4
∑
∆

θ[∆]12, F
(4)
3 := θ[0000

0000]8
∑
∆

θ[∆]8,
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where the sum is over the 136 even characteristics ∆ in genus four. These functions are
modular forms of weight 8 on Γ4(1, 2). When clear from the contest we omit the apex
indicating the genus. The restriction of these forms to H1 ×H3 and H2 ×H2 are

F
(4)
1 (τ2,2) = θ[00

00]16(τ2)θ[00
00]16(τ ′2)

= F
(2)
1 (τ2)F (2)

1 (τ ′2),

F
(4)
2 (τ2,2) =

(
θ[00

00]4
∑

δ θ[δ]
12
)

(τ2)
(
θ[00

00]4
∑

δ θ[δ]
12
)

(τ ′2)

= F
(2)
2 (τ2)F (2)

2 (τ ′2),

F
(4)
3 (τ2,2) = θ[00

00]8(τ2)θ[00
00]8(τ ′2)

(∑
δ θ[δ]

8
)

(τ2)
(∑

δ θ[δ]
8
)

(τ ′2)

= F
(2)
3 (τ2)F (2)

3 (τ ′2),

whereas the restrictions to H1 ×H3 are

F
(4)
1 (τ1,3) =

(
θ[00]4(1

3f21 + η12)
)

(τ1)F (3)
1 , (τ3)

F
(4)
2 (τ1,3) =

(
θ[00]4(2

3f21 − η12)
)

(τ1)F (3)
2 (τ3),

F
(4)
3 (τ1,3) =

(
θ[00]4 2

3f21

)
(τ1)F (3)

3 (τ3).

The modular form G(3) of section 4.4.4 can be generalized in two ways. The first one
is to stick to three dimensional isotropic subspaces W in F8

2. Given such a W , there are
3 · 8 = 24 even quadrics Q∆ such that W ⊂ Q∆. Let Q0 ⊂ F8

2 be the even quadric with
characteristic ∆0 = [0(4)]. We can use the octets of quadrics which contain Q0 to define
a modular form G1[0]:

G1[0000
0000] :=

∑
W⊂Q0

∏
w∈W

θ[∆0 + w]2,

where the sum is extended to all the 2025 three dimensional isotropic subspacesW ⊂ Q0,
and for each such subspace we take the product of the eight even θ[∆0 +w]2. As 0 ∈W ,
for any subspace W , the function G1[0] is a multiple of θ[∆0]2. The function G1[0] is a
modular form on Γ4(1, 2) of weight 8, as can be shown using the explicit transformation
theory of theta functions as in Section 3.5 for genus three or in the Appendices of [CDG1]
(or cf. [I2] or see [Gr], Proposition 13).
Using methods similar to those in Appendix C of [CDG1] for the case g = 3 we find the
restriction of G1[0] to H1 ×H3:

G1[0000
0000](τ1,3) = θ[00]16(τ1)G[000

000](τ3) +
(
θ[00]8(θ[01]8 + θ[10]8)

)
(τ1)

(
H[000

000] + 7G[000
000]
)

(τ3)

= θ[00]4(τ1)
(

1
3f21(τ1)(H[000

000] + 8G[000
000])(τ3)− η12(τ1)(H[000

000] + 6G[000
000])(τ3)

)
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where
H[000

000] :=
∑

W ′⊂Q0

∏
w∈W

θ[∆(3)
0 + w]4,

and f21 as in Section 4.2. The sum in H is over the 105 isotropic 2-dimensional subspaces
W ′ contained in Q0, where now Q0 ⊂ F3

2.
Similarly, the restriction of G1[0] to H2 ×H2 is

G1[0000
0000](τ2,2) = θ[00

00]4(τ2)g(τ2)F (2)
3 (τ ′2) + F

(2)
3 (τ2)θ[00

00]4(τ ′2)g(τ ′2)

+ 9θ[00
00]4(τ2)g(τ2)θ[00

00]4(τ ′2)g(τ ′2),

with F
(2)
3 as in section 4.3.2,

g(τ2) =
∑

W ′⊂Q0

∏
w∈W ′−{0}

θ[∆(2)
0 + w]4(τ2),

where the sum is over the 6 isotropic 2-dimensional subspaces W ′ of Q0 ⊂ F4
2, and we

take a product of only three terms (the factor θ[0(2)]4 for w = 0 is taken out in the
formula for G1[0](τ2,2)).
Another generalization of G makes use of Lagrangian subspaces L ∼= F4

2 of V = F8
2. For

each L there are 16 even quadrics Q∆ with L ⊂ Q∆. For an even characteristic ∆ we
define

G2[∆] =
∑
L⊂Q∆

∏
Q⊃L

θ[∆Q],

the sum being over the 270 Lagrangian subspaces L of V = F8
2 which are contained in

Q∆. Again, L ⊂ Q∆ implies that G2[∆] is a multiple of θ[∆]. The function G2[0] is also
modular form on Γ4(1, 2) of weight 8.
The restriction of G2[0] to H1 ×H3 is

G2[0000
0000](τ1,3) =

(
θ[00]8(θ[01]8 + θ[10]8)

)
(τ1)G[000

000](τ3)

=
(
θ[00]4(1

3f21 − η12)
)

(τ1)G[000
000](τ3),

whereas its to H2 ×H2 is as follows:

G2[0000
0000](τ2,2) = θ[00

00]4(τ2)θ[00
00]4(τ ′2)g(τ2)g(τ ′2),

with g as above.
Before considering the restriction to H1 × H3 of the form Ξ(4)

8 let us give a couple of
identities which we need to express the restrictions of the G(4)

i [0]’s as linear combinations
of the F (3)

i ’s and G(3)[∆] in genus three and the F (2)
i ’s in genus two:

H[000
000] = (2F (3)

1 + 8F (3)
2 − 3F (3)

3 )/6, θ[00
00]4g = (2F (2)

1 + 4F (2)
2 − 3F (2)

3 )/6. (4.43)

These identities can be verified using the classical theta formula (it is helpful to use a
computer as well).
Let us now consider a general linear combination of the 5 functions

Ξ8[0000
0000] = a1F

(4)
1 + . . .+ a4G2[0] + a5G1[0],
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and try first to impose the restriction to H1 ×H3:

Ξ8[0000
0000](τ1,3) = Ξ8[00](τ1)Ξ8[000

000](τ3) =
(
θ[00]4η12

)
(τ1)Ξ8[000

000](τ3). (4.44)

As function of τ1 ∈ H1, this restriction is a linear combination of Ξ8[0(1)] and θ[0(1)]4f21.
The second type terms however must disappear in the correct factorization so that
Ξ8[0000

0000](τ1,3) is a multiple of η12(τ1) iff

a1F1 + 2a2F2 + 2a3F3 + a4G[000
000] + a5(H[000

000] + 8G[000
000]) = 0.

Using the formula for H given in (4.43) we get:

(a1 +
1
3
a5)F1 + (2a2 +

4
3
a5)F2 + (2a3 −

1
2
a5)F3 + (a4 + 8a5)G[000

000] = 0.

As the four functions here are independent (cf. [DvG]), we get the solutions

(a1, a2, a3, a4, a5) = λ(−2,−4, 3/2,−48, 6), (λ ∈ C).

For such ai the linear combination a1θ[0(4)]4F1 + . . .+ a4G2[0] + a5G1[0] restricts to:

θ[00]4η12
(
a1F1 − a2F2 − a4G[000

000]− a5(H[000
000] + 6G[000

000])
)

which, using again the formula for H gives a genus three factor

(a1 −
1
3
a5)F1 − (a2 +

4
3
a5) +

1
2
a5F3 − (a4 + 6a5)G[000

000].

Setting λ = −2, so that (a1, . . . , a5) = (4, 8,−3, 96,−12), we get (cf. 4.4.5)

8F1 + 8F2 − 6F3 − 24G[000
000] = 24Ξ8[000

000].

Thus, the function

Ξ8[0000
0000] :=

(
4F1 + 8F2 − 3F3 + 96G2[0000

0000]− 12G1[0000
0000]

)
/24 (4.45)

satisfies correctly the constraint on the restriction to H1 ×H3.
However, having found the solution, we must check that it satisfies correctly the restric-
tion to H2 ×H2 also. It is useful to observe that:

24Ξ8[0000
0000](τ2,2) =

(
4F1 + 8F2 − 3F3 + 96G2 − 12G1

)
(τ2,2)

= θ[00
00]4(τ2)θ[00

00]4(τ ′2)h(τ2, τ
′
2),

with h a holomorphic function which we will not write down explicitly. Taking out
the factor θ[0(2)]4(τ2)θ[0(2)]4(τ ′2), which also occurs in Ξ8[0(2)](τ2)Ξ8[0(2)](τ ′2), simplifies
the computation. One finds, using the classical theta formula and a computer, that
h(τ2, τ

′
2) = Ξ6[0(2)](τ2)Ξ6[0(2)](τ ′2) and thus:

Ξ8[0000
0000](τ2,2) = Ξ8[00

00](τ2)Ξ8[00
00](τ ′2).

Therefore the modular form Ξ8[0(4)] on Γ4(1, 2) of weight 8, defined in (4.45), satisfies
all the factorization constraints in genus four. Using the representation theory of group
we will be also able to prove the uniqueness of this modular form.
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4.5.2 The Sp(8)-representation on M θ
2k(Γ4(2))

In case g = 4 we are no longer sure if M θ
2k(Γ4(2)), the space of modular forms of

weight of 2k which are (Heisenberg-invariant) polynomials in the Θ[σ]’s, is equal to all
of M2k(Γ4(2)) (cf. [OSM]).
The Sp(8)-representation on M θ

2 (Γ4(2)), which we denoted by ρθ in section 3.7.3, is the
unique 51-dimensional irreducible representation of Sp(8) (a table of the 81 irreducible
representations of Sp(8) can be easily generated with the computer algebra program
‘Magma’).
The complement of Sym2(M θ

2 (Γ4(2)) in M θ
4 (Γ4(2)) (of Sp(8)-representations) now has

codimension 918:

dimM θ
4 (Γ4(2)) − dim Sym2(M θ

2 (Γ4(2))) = 2244−
(

51 + 1
2

)
= 2244− 1326 = 918.

We computed the operator C from section 3.7.5 on M θ
4 (Γ4(2)). The resulting pairs of

its eigenvalues λ with multiplicity mλ are:

(λ,mλ) : (−25, 918), (39, 1190), (119, 135), (255, 1).

The last three eigenspaces of C correspond to the irreducible representations σc, σθ and
1 respectively and their direct sum is Sym2(ρθ), cf. 3.7.4. The character table shows
that there are only 10 irreducible representations of Sp(8) with dimension less then 918
and there is a unique irreducible representation with dimension 918. However, of these
eleven irreducible representations, the map C has eigenvalue λ = −25 only on the one
of dimension 918. Thus we conclude that M θ

4 (Γ4(2)) is the sum of just four irreducible
representations (like M θ

4 (Γ3(2)), cf. section 4.4.6). In principle, in this way, one could
decompose also the representations on the space of modular forms of weight six and
eight, as in the case of Sp(6), but the computation of the Casimir Cρ is very time and
memory consuming.

4.5.3 The uniqueness of Ξ8[0(4)]

Using the same methods as in section 4.4.7 for the case g = 3 and the observation in
section 4.3.2 for the case g = 2, we can show that the three constraints characterize
the form Ξ8[0(4)] up to an additive term λJ , where J = 0 defines the Jacobi locus J4

(the locus of period matrices of Riemann surfaces in H4) and λ ∈ C. In fact, J is a
modular form of weight 8 on Γ4, so it can be added to Ξ8[0(4)] without changing its
Γg(1, 2)-invariance. Moreover H1 ×H3 and H2 ×H2 are contained in the closure of the
Jacobi locus, so J is zero on these loci.
The key point is the determination of the dimension of M θ

8 (Γ4(2))O
+

, which could be
done by computer. M. Oura determined this dimension using the methods from [R1],
[R2]: dimM θ

8 (Γ4(2))O
+

= 7. We already know 7 independent functions in M θ
8 (Γ4(2))O

+
.

It follows that M8(Γ4(2))O
+

= M θ
8 (Γ4(2))O

+
and that

M8(Γ4(2))O
+

= 〈
∑
∆

θ[∆]16, (
∑
∆

θ[∆]8)2, F1, F2, F3, G1[0(4)], G2[0(4)] 〉.
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The modular form J vanishing on the Jacobi locus is

J = 16
∑

θ[∆]16 − (
∑

θ[∆]8)2

(cf. [I3]). Now the proof of the uniqueness of Ξ8[0(4)] in M θ
8 (Γg(2)) can be obtained

with arguments similar to those in sections 4.4.7 and 4.3.2.

4.6 The cosmological constant in g = 3, g = 4

Supersymmetry impose the same number of fermionic and bosonic states. This leads to
the non renormalization theorems [Ma1, Ma2, Mo4] which in particular require for the
zero points function, t.i. the cosmological constant, to vanishes identically. We will prove
that our solution for the chiral superstring measure gives a vanishing contribution to
the cosmological constant for both the case g = 3 and g = 4. Independent proofs of this
result in g = 4, which make use of different techniques, can be found in [Gr] or in [SM2].
The GSO projection for type II superstring gives for the phases in (2.15) the value
c∆,∆′ = 1 so that we will prove that

∑
∆ dµ[∆] = 0 or, equivalently, (

∑
∆ Ξ8[∆]) (Ω) = 0.

4.6.1 The case g = 3

The sum of the 36 functions6 Ξ8[∆] is invariant under Sp(6), hence it is a modular
form of weight 8 on Sp(6,Z). In the decomposition of M8(Γ3(2)), see section 4.4.6, the
representation 1 has multiplicity one, thus there is a unique, up to a scalar multiple,
Sp(6)-invariant on M8(Γ3(2)). This invariant is

∑
∆ θ[∆]16. Hence, the sum of the

functions Ξ8[∆] must be a scalar multiple of this invariant:(∑
∆

Ξ8[∆]
)

(τ) = µ
(∑

∆

θ[∆]16
)

(τ). (4.46)

Note that the function
∑

∆ Ξ8[∆], obtained from the Ξ8[0] of section 4.4.5 with the
transformation formula of the theta constants, is given by

−4
∑
∆

θ[∆]16 − 4
∑
∆

θ[∆]4
(∑

∆′

ε∆,∆′θ[∆′]12
)

+ 3
(∑

∆

θ[∆]8
)2

+ 12
∑
∆

G[∆],

where, again, the constants ε∆,∆′ = ±1 are determined by the transformation theory.
We will now show that µ = 0 by looking first at diagonal form period matrices τ =
diag(τ1, τ2, τ3) and then setting τ1, τ2, τ3 → i∞. On the theta constants this gives

θ[abcdef ] 7−→

{
1 if a = b = c = 0,
0 else,

hence
∑

∆ θ[∆]16 7→ 8 and
∑

∆ θ[∆]8 7→ 8. In the summand
∑

∆ θ[∆]4(
∑

∆′ ε∆,∆′θ[∆
′]12)

we thus only need to consider the terms with7 ∆ = [0b ], ∆′ = [0b′ ]. The terms with ∆ = [0b ]

6This is the number of the even characteristics in g = 3.
7Here we mean 0 = (0, 0, 0) and b = (b1, b2, b3)
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are summands of Ξ8[0b ](τ). Let M be the symplectic matrix

M =

(
I B

0 I

)
, B = diag(b1, b2, b3), so M · [0b′ ] = [ 0

b+b′ ].

In particular, M · [00] = [0b ] and thus Ξ8[0b ](τ) = Ξ8[00](M−1τ) (note that γ(M,M−1 · τ) =
1). From the definition of the theta constants as series in 3.3.1 it is obvious that

θ[0b′ ]
4(M−1 · τ) = θ[ 0

b+b′ ]
4(τ)

hence ε∆,∆′ = +1 if ∆ = [0b ], ∆′ = [0b′ ]. Thus we get∑
∆

θ[∆]4(
∑
∆′

ε∆,∆′θ[∆′]12) 7−→
∑
b

θ[0b ]
4(
∑
b′

ε[0b ],[
0
b′ ]
θ[0b′ ]

12) 7−→ 8 · 8 = 64.

Finally, each G[∆] is a sum of PL’s and each PL is a product of eight distinct theta
constants. Thus all PL’s map to zero except for PL0 :=

∏
d,e,f θ[

000
def ] which maps to 1.

Note that L0 = { (abc000) } and that L0 ⊂ Q∆ iff ∆ = [000
def ]. Thus exactly 8 of the G[∆]

map to one, and the others map to zero. The constant µ can now be determined

−4 · 8− 4 · 82 + 3 · 64 + 12 · 8 = µ · 8 =⇒ µ = 0,

hence the cosmological constant is zero.

4.6.2 The case g = 4

In this case we have not the full decomposition in irreducible of the space M8(Γ4(2)).
Nevertheless, we are able to determine, using a computer, that the dimension of the
space of Sp(8)-invariant in C[· · · , Xσ, · · · ]Hg ] is two. The space M8(Γ4(2)) is huge, so
one starts with finding invariants for the transvections which acts ’diagonally’ on the
Xσ to reduce the computation to a smaller space. These two invariants correspond
to the modular forms Ψ8 and Ψ2

4, with Ψ4k(τ) :=
∑

∆ θ[∆
(4)]8k(τ). The combination

J = 16Ψ8 − Ψ2
4 vanishes on the Jacobi locus, i.e. the space of the matrices τ ∈ Hg

that are, also, a period matrix of some Riemann surfaces. In genus four there are 136
even characteristics, thus we have to consider the sum of the 136 functions Ξ8[∆]. As∑

∆ Ξ8[∆(4)] is an Sp(8)-invariant of weight 8, there are constants λ, µ such that∑
∆

Ξ8[∆(4)] = λΨ8 + µΨ2
4 (4.47)

and it suffices to show that λ+16µ = 0. For this one can specialize τ to a diagonal matrix
τ = diag(τ1, . . . , τ4) and then let τj 7→ ∞ for j = 1, . . . , 4, similar to the computation
in genus three of the previous section.





Chapter 5

Genus five

In this chapter we construct the measure for the case g = 5. The genus five case
is more complicate due to the increasing dimensions of the O+-invariants and to the
lack of a complete decomposition of the space M8(Γ5(2)) in irreducible representations.
Moreover, due to the non normality of the ring of modular forms not all the modular
forms can be expressed as polynomial in the classical theta functions. In addition, some
relations, not known, among theta functions could exist. Nevertheless these difficulty,
we will construct the forms Ξ8[∆] satisfying the three constraints. To this aim first we
rewrite the measure for the lower genus cases using a different basis for the O+-invariants
as in the previous chapters [D] and then we extend the construction to genus five. In
this basis the theta functions will appear with greater power than before. In [OPSY]
another candidate for the superstring measure was proposed. The authors defined the
functions Ξ8[∆] using a different formalism: they exploit the notion of lattice theta
functions instead of the classical theta functions. In Section 5.7 we will review their
construction. Then we relate the two constructions expanding both the functions Ξ8

in Fourier series and we prove the substantial equivalence of the two formalism. This
result is the content of the Theorem 5.7.1. Actually, the two construction leads to the
same measure, provided we add to the three constraints the request of the vanishing of
the cosmological constant. Indeed, in genus five the three constraints alone no longer
characterize uniquely the measure, as stated in theorem 5.1.1.

5.1 Review of the construction

In Chapter 4 we have constructed a candidate for the three and four loop superstring
vacuum-to-vacuum amplitude. As explained, our procedure was inspired by the valuable
series of papers of D’Hoker and Phong in which they determined an expression for the
two loop superstring measure. In all these cases the measure is expressed in terms of
suitable polynomials in the theta constants. The latter are defined on the Siegel upper
half space Hg and not just on the subvariety Jg ⊆ Hg of period matrices of genus g
Riemann surfaces. This makes the superstring measure, for g ≤ 4, a function over the
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whole Hg. For the genus three case, this fact is not completely surprising because, for
g ≤ 3, Hg and Jg have the same dimension and Jg is an open set of Hg. In genus four,
instead, this is a remarkable fact, the dimension of the two varieties being no longer the
same, see Table 5.1. In [Gr] a candidate was proposed for the superstring measure for

g dim Hg dim Jg codimHg Jg

2 3 3 0
3 6 6 0
4 10 9 1
5 15 12 3
g 1

2g(g + 1) 3g − 3 1
2(g − 2)(g − 3)

Table 5.1: Dimensions of the varieties Hg and Jg.

any genus g. However, these are not a priori well defined for g ≥ 5 due to the presence
of roots. In [SM2], it was proved that for g = 5 this measure is well defined, at least on
Jg. From these facts it is quite natural to investigate if the measure for g = 5 could be
extended, using the classical theta constants, over all H5 and what happens for g > 5.
Recently in [OPSY] a candidate for the superstring measure for g = 5 was proposed
employing the notion of the lattice theta series. This formalism is almost equivalent to
the one of the classical theta constants. Actually, the spaces spanned by theta series
and the ones generated by the bases for the O+-invariants defined in Sections 5.3.1,
5.3.2 and 5.3.3 are the same [DGdC]. In genus five both formalisms lead to the same
solutions, providing we add to the constraints also the request of the vanishing of the
cosmological constant, as we will show in Section 5.10.5, see also [DGdC].

In the previous chapters we explained that the proposal for the g-loop superstring
measure rests on the ansatz (not yet proved) of D’Hoker and Phong [DP5] that the
genus g vacuum to vacuum amplitude takes the form of an integral over the moduli
space of genus g Riemann surfaces of a suitable differential form that splits into a
holomorphic and anti-holomorphic part. Moreover, the measure dµ[∆(g)] should satisfy
certain reasonable constraints. We proved that this characterises it uniquely for g ≤ 4.
In this chapter we prove that, assuming these features for the amplitude, the superstring
measure can be defined on the whole Hg for g ≤ 5, but for g = 5 the correct restriction
(see point 3 of theorem 5.1.1) holds true just on J4. This result is stated by the following:

Theorem 5.1.1. If the genus g vacuum to vacuum amplitude takes the general form:

A =
∫
Mg

(det Im τ)−5
∑
∆,∆̄

c∆,∆̄dµ[∆(g)](τ) ∧ dµ[∆̄(g)](τ), (5.1)

where the form dµ[∆(g)] can be written as:

dµ[∆(g)] = cgΞ
(g)
8 [∆(g)](τ (g))dµ(g)

B
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and the functions Ξ(g)
8 [∆(g)] satisfy the following ansätze:

1. they are holomorphic functions on Jg;

2. under the action of Γg = Sp(2g,Z) they should transform as Ξ(g)
8 [M · ∆(g)](M · τ) =

det(Cτ +D)8Ξ(g)
8 [∆(g)](τ), for all M ∈ Sp(2g,Z);

3. the restriction of these functions to ’reducible’ period matrices is a product of the
corresponding functions in lower genus;

then Ξ(g)
8 [∆(g)], and so dµ[∆(g)], are defined everywhere on Hg, they can be expressed

in terms of polynomials in square of theta constants and they are unique if g ≤ 4. For
g = 5, for every even characteristic ∆(5), at least one (actually many) forms Ξ(5)

8 [∆(5)]
exist, it is defined on H5, it can be written as a polynomial in the theta constants and
the restriction requested is satisfied just on J4. The three constraints do not characterize
it uniquely (at least on H5).

In the theorem the uniqueness for g = 4 must be understood as uniqueness up to
a multiple of J (4), that vanishes on the Jacobi locus1J4 (see below). In genus five,
instead, the uniqueness is completely lost. One can find many forms Ξ(5)

8 [0(5)] that
differ not just for something vanishing on the Jacobi locus. Actually, starting from a
form Ξ(5)

8 [0(5)] satisfying the three constraints and adding a multiple of J (5), one obtains
again a form satisfying the constraints. In genus five J (5) does not vanish on the Jacobi
locus, see [GS]. It is still an open problem whether, adding to the constraints the
request of the vanishing of the cosmological constant, the uniqueness of the measure is
guaranteed. However, the vanishing of the cosmological constant should be automatic
for a supersymmetric theory and not imposed by hand. At the moment it is not known
if could exist some function satisfying the three constraints and differing from a Ξ(5)

8

not just for a multiple of J (5). Moreover, nothing we can say if we consider also the non
normal part of the ring of genus five modular forms.

As usual, ∆(g) and ∆(g) denote two even genus g theta characteristics, c∆,∆̄ are
suitable constant phases depending on the details of the string model, dµ[∆(g)](τ)
(dµ[∆(g)](τ)) is a holomorphic (anti-holomorphic) form and dµ

(g)
B is the well defined

genus g bosonic measure. However, there is not an explicit form for dµ(g)
B in higher

genus. We observe that the transformation request for the form Ξ(g)
8 [∆(g)] is automatic

for the integral to make sense, but, as usual, we prefer to emphasize this property for
its crucial role in what follows.

For the genus two and three cases we have shown the uniqueness of the forms
Ξ(g)

8 [∆(g)] in Chapter 4 (see also [DvG]). Assuming that the measure is a polyno-
mial in the theta constants, we also show the uniqueness (up to a term proportional
to J (4)) for the genus four case and in [OPSY] the general case is considered (see Sec-
tion 5.5.2 below). In genus five the uniqueness can not be longer assured. Actually,

1Note that we indicate, as in literature, with J(g) the modular form J(g) = 2gF
(g)
16 −F

(g)
8 , see Section

5.3.4, and with Jg the Jacobi locus.
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in [OPSY] a candidate for the genus five superstring measure is proposed. The authors
make use of the notion of the lattice theta series. First, we will construct the functions
Ξ(5)

8 [∆(5)] using the classical theta functions then we introduce the formalism of the
the lattice theta functions and we compare the two solutions to the constraints. An
analysis of the different expressions for the chiral superstring measure can also be found
in [DbMS, MV2]. In Section 5.10.5 we will prove that the form Ξ(5)

8 [0(5)] defined using
the lattice theta series and the one defined in Section 5.5.3 are different on H5 and also
on J5, see [DGdC]. Actually, the difference is proportional to J (5). The supplementary
request of the vanishing of the cosmological constant makes equivalent the two forms.

From the result of Salvati Manni [SM2], we know that the square root appearing
in Grushevsky expression of the five loop measure (in the function G

(5)
5 [0(5)], built up

with five dimensional isotropic spaces) is well defined on the moduli space of curves J5.
Further investigations are needed to understand if, at least, on the locus of curves, it is
polynomial in the classical theta constants.

An indication that the three constraints cannot define the forms Ξ(g)
8 [∆(g)] defined

over the whole Hg and are sufficient to assure their uniqueness comes from the increasing
difference between the dimensions of Hg and Jg. The dimension of Hg is quadratic in
g, instead the dimension of Jg has a linear growth in g and their difference is quadratic
in g, see Table 5.1. Thus, it is not surprising that the constraints for the Ξ(g)

8 [∆(g)] are
not strong enough to characterize it uniquely.

5.2 The strategy

In this section we briefly recall the strategy we used in Chapter 4 to define the form
Ξ(g)

8 [∆(g)]. Inspired by the factorisation of the superstring chiral measure at lower genus,
a modification of the ansätze of D’Hoker and Phong was proposed for the superstring
measure. Accordingly, the measure should be written as dµ[∆(g)] = cgΞ

(g)
8 [∆(g)](τ (g))dµ(g)

B ,
where dµ(g)

B is the bosonic measure at genus g and Ξ(g)
8 [∆(g)] are suitable functions, g

is the genus of the Riemann surfaces considered and ∆(g) is an even characteristic at
genus g. The functions Ξ(g)

8 [∆(g)] are required to satisfy suitable regularity, transfor-
mation and factorisation constraints, as explained in Section 2.3. Here we emphasise
that the first constraint requires that the forms Ξ(g)

8 [∆(g)] are defined on the subvariety
Jg ⊂ Hg of period matrices of Riemann surfaces of genus g and not on the whole Siegel
upper half space. In fact, dim Hg = g(g+ 1)/2 and dim Jg = 3g− 3 so these two spaces
are the same just for g ≤ 3. Since we are interested in arbitrary genus, we write Jg
instead of Hg. Actually, for g ≤ 4 the superstring measure can be extended to the
Siegel upper half space, instead for g = 5 the forms constructed using the classical theta
constants, although well defined over the whole H5, have the correct factorization just
on the Jacobi locus J4, see Section 5.5.3.

In the previous chapter, it was pointed out that the Ξ(g)
8 [∆(g)] are modular forms

with respect to the normal subgroup Γg(2) of Sp(2g,Z). Furthermore we can restrict our
attention on a single function (see, [CDG1] Section 2.7) say Ξ(g)

8 [0(g)], where [0(g)] :=
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[0···00···0], which has to be a modular form of weight 8 on Γg(1, 2), where Γg(1, 2) is the
subgroup of Sp(2g,Z) which fixes the characteristic [0(g)]. Thus, the Ξ(g)

8 [∆(g)] are
obtained by employing the transitive action of Sp(2g,Z) on the even characteristics.
The action of M ∈ Sp(2g) := Sp(2g,F2) ∼= Γg/Γg(2) on a characteristic ∆(g) is given
by (2.23). As explained in Chapter 3 (cf. also [DvG]), the group Γg acts on the 22g

points of F2g
2 and on the characteristics through its quotient Sp(2g) ∼= Γg/Γg(2). We

defined the subgroup Γg(1, 2) of Γg ≡ Γg(1) as the stabiliser of [0(g)] and the image of
this subgroup in Sp(2g) was called O+(2g) := Γg(1, 2)/Γg(2) ⊂ Sp(2g).

The three requests, which the function Ξ(g)
8 [0(g)] should satisfy, imply that it must

belong to the subspace of O+-invariants of weight 8:

M8(Γg(2))O
+

:= {f ∈M8(Γg(2)) : ρ(h)f = f ∀h ∈ O+(2g) }.

Here Mk(Γg(2)) is the finite dimensional complex vector space of the Siegel modular
forms of genus g, weight k and level 2 and ρ is the representation of the finite group
Sp(2g) on this space defined by:

(ρ(h−1)f)(τ) := det(Cτ +D)−kf(M · τ),

where M ∈ Γg is a representative of h ∈ Sp(2g) and f ∈Mk(Γg(2)). The action of Γg on
τ ∈ Hg was defined in Section 3.3. Among the functions in M8(Γg(2)), we will search for
the ones satisfying the three constraints. This is a general procedure, but for g > 4 there
are some subtleties due to the loss of the uniqueness of the form Ξ(g)

8 [0(g)]. By means of
the 2g second order theta constant we are able to built the O+-invariants, as explained
in detail in Chapter 4, see also [DvG] The dimension of the space of O+-invariants
can be determined from the decomposition of the Sp(2g)-representation into irreducible
representations and using the Frobenius reciprocity. We obtained this decomposition
for g ≤ 4 in the previous chapter. Thus, the dimension is given by the multiplicity of
the trivial representation 1 of O+ in the O+−representation ResSp(2g)

O+ (V ):

dimV O+
= 〈ResSp

O+(V ),1 〉O+ = 〈V, IndSp
O+(1) 〉Sp.

As before, ResSp
O+(V ) is the restriction of the representation from Sp(2g) to O+(2g),

IndSp
O+(1) is the induced representation of the representation 1 of O+(2g) to the whole

Sp(2g) and the second identity is the Frobenius identity, see [DvG,CD2,Sa]. Frame [Fr2]
showed that IndSp

O+(1) = 1 + σθ, where 1 is the trivial representation and σθ is an
irreducible representation of dimension 2g−1(2g + 1)− 1, so that if the multiplicities of
1 and σθ in V are n1 and nσθ respectively, the dimension of the space of O+-invariants
is dimV O+

= n1 + nσθ .
Like in Chapter 4 we will label the irreducible representations of Sp(2g) with the

partitions of 3 and 6 for genus one and two respectively (recall that Sp(2) ∼= S3 and
Sp(4) ∼= S6), as in [CD1]; we will follow Frame’s notation [Fr1] for genus three and
indicate them just with their dimensions2 for g ≥ 4. In Table 5.2 are reported the

2If they are not unique at the given size, we will indicate also the character of the second conjugacy

class, the one of the non zero transvections (which has 255 and 1023 elements for genus four and five

respectively). Transvections are analogous to reflections in orthogonal groups (cf. [J], § 6.9 or [DvG]).
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g σθ dim(σθ)

1 ρ[21] 2
2 ρ[42] 9
3 35b 35
4 135 135
5 527 527

Table 5.2: The σθ representations for the low genus cases and their dimensions.

σθ representations for the lower genus cases. In case g = 1, ρ[21] is the unique two
dimensional representation of S3

∼= Sp(2) and [21] is the partition of 3 labelling it. For
g = 2, ρ[42], or n9 in the notations of [CD1], is the nine dimensional representation
of S6

∼= Sp(4) for which the character of 1 + σθ is positive ([42] is the partition of six
labelling this irreducible representation; see [DvG] Section 4.2 and [CD2] Section 5.2.1
for the explanation of why the character of the representation must be positive). For
g = 3, the 35b is the unique 35 dimensional representation of Sp(6), as reported in [Fr1]
or as can be computed using, for example, the software Magma. For g = 4, 135 is the
unique 135 dimensional irreducible representation of Sp(8) and for g = 5, 527 is the
unique 527 dimensional irreducible representation of Sp(10), as can be computed using
Magma.

In the previous chapter (see also [DvG]), the representations of Sp(2g) on the vector
space Mk(Γg(2)) were studied for small genus g, and decomposed into irreducible repre-
sentations. For the applications in string theory, we are interested in the representations
of Sp(2g) on the space M8(Γg(2)), the modular forms of weight eight with respect to
the group Γg(2). Let us recall the decomposition of these representations for g ≤ 3:

M8(Γ1(2)) ∼= Sym4(ρ[21]) = 1 + 2ρ[21],

M8(Γ2(2)) ∼= Sym4(ρ[23])− 1 = 1 + 3ρ[23] + 3ρ[42] + ρ[313] + ρ[321],

M8(Γ3(2)) = 1 + 4 · 15a + 35a + 4 · 35b + 5 · 84a + 2 · 105c + 168a+

2 · 189c + 3 · 216 + 3 · 280b + 2 · 336a + 420a.

We have explained as from the Frobenius identity it follows that for g = 1 the dimension
of the space of O+-invariants is three, for g = 2 is four and for g = 3 is five. For genus
four and five we do not know the decomposition of the whole M8(Γg(2)) and, moreover,
the ring of modular forms is not understood in terms of Heisenberg invariant polynomials
in theta constants. However, in Sections 5.5.2 and 5.5.3, we will restrict our attention
to the space M θ

8 (Γg(2)), searching the O+-invariants there.
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5.3 The construction of the O+-invariants

Once the dimension of M8(Γg(2))O
+

is known, the main problem is to find an explicit
expression for a basis of this space in terms of theta constants, if possible. We employed
the notion of isotropic subspaces to find such bases for the genus three and four cases.
Recall that, if V is provided with a symplectic form, W ⊂ V is an isotropic subspace
if on every pair of vectors in W the symplectic form vanishes. This way to determine
the invariants makes use of the geometry underlying the theta characteristics and the
corresponding action of the symplectic group on them. For example, the condition
for a subspace to be isotropic is preserved under the action of Sp(2g). Moreover, it
is quite simple to determine the restriction on a block diagonal period matrix of the
O+-invariant built in this way, despite to the huge number of terms appearing in these
functions, cf. the discussion in Appendix C of [CDG1]. The knowledge of a basis for
these spaces allows to find, for g ≤ 5, a linear combination of the O+-invariants such
that its restrictions fits all requests in the ansätze discussed in Section 2.3. For g = 1, 2, 3
the fact that any modular form of weight 2k can be expressed as a polynomial of degree
4k in theta constants in a unique way (unique up to a multiple of J (3) if g = 3 and
k > 4) allows us to prove the uniqueness for the expression of the superstring measure.
In genus four the ring of Siegel modular forms is not normal. This means that in
general there could be some modular forms that cannot be expressed as polynomials in
theta constants. In this case the uniqueness was proved in a weakened form, assuming
the polynomiality for the amplitude, i.e. considering O+-invariants contained in the
space M θ

8 (Γ4(2)) only. In [OPSY] the proof is also extended to the general case. As
anticipated in Section 5.1, in genus five the three constraints are not strong enough to
assure the uniqueness of the superstring measure neither if we restrict to the normal
part of the ring of modular forms as we will prove in Section 5.5.3 and in [DGdC]. Thus,
in genus five the loss of the uniqueness is not due just to the non normality of the ring
of modular forms.

In [Gr] a generalisation for the expression of the chiral measure at any genus g was
proposed. In the approach used there, the action of the symplectic group underlying that
expression is not manifest although the correct factorisation is obtained. The author
restricts the search for the g loop amplitudes to a suitable vector space of dimension
g + 1 then finding there a unique solution of the constraints. However, for genus three
(four and more) the vector space defined by the transformation constraint has dimension
five (≥ 7), see §7.4 and 7.5, which is larger than the dimensions of the starting spaces
selected in [Gr]. Moreover, his expression might be not well-defined for g > 5 (Salvati
Manni in [SM2] discusses the case g = 5) due to the presence of some roots.

We will now provide new expressions for Ξ(g)
8 [∆(g)] at lower genus. In these new

formulas, the theta constants appear at higher power than in the expressions given in
the previous chapter.
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5.3.1 O+-invariants for the genus 3 case

For genus g = 3 the only Sp(6)-representations that have an O+-invariant are 1 and
σθ = 35b and we know that there are five such linearly independent invariants, see
[DvG]. The representation 1 provides the Sp(6)-invariant and 35b the representation
on the θ[∆(3)]8. A natural question is about the number of linearly independent O+-
invariants of degree 16 that can be written as quadratic polynomials in θ[∆(3)]8. From
the decomposition of the tensor products in irreducible representations we find that:

Sym2(1 + 35b) = 1 + 35b + Sym2(35b)

= 1 + 35b + 1 + 27a + 2 · 35b + 84a + 168a + 280b
= 2 · 1 + 27a + 3 · 35b + 84a + 168a + 280b,

so that we get the two Sp(6)-invariants
∑

∆ θ[∆
(3)]16 and (

∑
∆ θ[∆

(3)]8)2 and three
O+-invariants (but not Sp(6)), two of which are θ[0(3)]16 and θ[0(3)]8

∑
∆ θ[∆

(3)]8. In
order to find the third invariant quadratic in θ[∆(3)]8 we can adopt a general method
that allows us to generate many O+-invariants (clearly not all independent). This
consists in starting from a certain monomial of degree sixteen which contains the theta
constants to the power at least four, and imposing some suitable condition on the
corresponding characteristics. For example, in the spirit of [DP5] and [DP6], we can
take θ[∆(3)

1 ]4θ[∆(3)
2 ]4θ[∆(3)

3 ]4θ[∆(3)
4 ]4 with the conditions ∆1 + ∆2 + ∆3 + ∆4 = 0(3).

There are 1611 such monomials which summed up give an O+-invariant. In fact, this
is redundant because there are “sub-polynomials” that are orbits for O+ and then are
themselves invariant. In [DvG] Section 8.5, the generators of O+ ∼= S8 are given in
terms of transvections acting on the theta constants. Thus, an orbit can be determined
acting on a single monomial with these transvections until the number of terms of the
generated polynomial stops to grow. Next, one considers a second monomial (not in the
orbit of the first) and repeats the procedure. In this way we can recognise eight O+-
invariants inside the big polynomial, as shown in Table 5.3. It is clear that the searched
invariant could be the sixth or the seventh. Using a computer or (quite lengthy!) by
hand and the classical theta formula (cf. [CDG1], Section 3.2), we verify that each of
them is linearly independent from the other invariants. We then choose the sixth, which
we will call F (3)

88 (and F
(g)
88 for arbitrary genus g). Thus, each monomial in F

(3)
88 is the

product of two theta constants at the eighth power, with the conditions that the sum of
their characteristics is odd (even, if we choose the seventh), the two characteristics are
not equal and both are not zero. Note the following equality between the O+-invariants:(∑

∆

θ[∆(3)]8
)2

−
∑
∆

θ[∆(3)]16 = 2
∑

(∆i,∆j)e

θ[∆(3)
i ]8θ[∆(3)

j ]8 + 2
∑

(∆i,∆j)o

θ[∆(3)
i ]8θ[∆(3)

j ]8

+ 2(θ[0(g)]8
∑
∆

θ[∆(3)]8 − θ[0(3)]16),

where the first two functions on the r.h.s. are the O+-invariants of lines six and seven
of the Table 5.3 and the “e” and “o” stand for even sum and odd sum of the two
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orbit general expression condition num. elem.

1 θ[0]16 1
2 θ[∆]16 ∆ 6= 0 35
3 θ[0]8

∑
∆ θ[∆]8 ∆ 6= 0 35

4 θ[0]4
∑

∆i,∆j ,∆k
θ[∆i]4θ[∆j ]4θ[∆k]4 ∆i + ∆j + ∆k = 0

∆i,∆j ,∆k 6= 0
∆i 6= ∆j 6= ∆k

105

5
∑

∆i,∆j ,∆k,∆l
θ[∆i]4θ[∆j ]4θ[∆k]4θ[∆l]4 ∆i + ∆j + ∆k + ∆l = 0

∆i + ∆j + ∆k even
∆i + ∆j even
∆i,∆j ,∆k,∆l 6= 0
∆i 6= ∆j 6= ∆k 6= ∆l

210

6
∑

∆i,∆j
θ[∆i]8θ[∆j ]8 ∆i + ∆j odd

∆i,∆j 6= 0
∆i 6= ∆j

280

7
∑

∆i,∆j
θ[∆i]8θ[∆j ]8 ∆i + ∆j even

∆i,∆j 6= 0
∆i 6= ∆j

315

8
∑

∆i,∆j ,∆k,∆l
θ[∆i]4θ[∆j ]4θ[∆k]4θ[∆l]4 ∆i + ∆j + ∆k + ∆l = 0

∆i + ∆j + ∆k even
∆i + ∆j even
∆k + ∆l odd
∆i,∆j ,∆k,∆l 6= 0
∆i 6= ∆j 6= ∆k 6= ∆l

630

Table 5.3: Orbits under the action of O+ (genus three case).

characteristics respectively. The two functions on the l.h.s. are the two Sp(6)-invariants,
F

(3)
8 and F

(3)
16 as we will call them in the following. In fact, for genus three the two

Sp(6)-invariants are not linearly independent but there is a relation between them (the
J (3), see below, or F16 in the notation of [DvG]). Therefore, to find a basis we need
to look for another invariant which cannot be expressed as a quadratic polynomial in
θ[∆(3)]8. We can take θ[0(3)]4

∑
∆ θ[∆

(3)]12.
In Section 5.5.1 we will show how to build the chiral measure from these functions.

5.3.2 O+-invariants for the genus 4 case.

For genus g = 4, the only Sp(8)-representations containing an O+-invariant are 1 and
135. Now, it is not known if M θ

2k(Γ4(2)), the space of modular forms of weight 2k which
are (Heisenberg-invariants) polynomial in Θ[σ]’s, coincides with M2k(Γ4(2)). Recently,
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Oura determined the dimension of M θ
2k(Γg(2))O

+
obtaining 7 for the g = 4 case. In

principle these dimensions could also be computed using a method similar to those
we used for g < 4, i.e. searching for the decomposition of M θ

8 (Γg(2)) in irreducible
representations, but it is very time and memory consuming for increasing g. As for
the genus three case, we want to find a basis for the O+-invariants in which the theta
constants appear with the highest possible degree. Let us start by determining the
decomposition of the symmetric product Sym2(1 + 135) in irreducible representations.
This can be done using Magma or, by hand, with the character table of Sp(8) and the
character inner product (see [CD2], Section 5.2.1, for the case g = 2). We obtain the
decomposition:

Sym2(1 + 135) = 1 + 135 + Sym2(135)

= 2 · 1 + 119 + 3 · 135 + 1190 + 3400 + 4200.

This means that we can find five O+-invariants that are quadratic polynomials in the
theta constants at the eighth power. Two of them are the Sp(8)-invariants

∑
∆ θ[∆

(4)]16

and (
∑

∆ θ[∆
(4)]8)2 which are now linearly independent because the Schottky relation

J (4), the analogous of J (3) for genus four (see Section 5.3.4 for the definition), vanishes
just on J4 and not identically on the whole H4. The remaining three invariants are
θ[0(4)]16, θ[0(4)]8

∑
∆ θ[∆

(4)]8 and the generalisation of the O+-invariant found in Section
5.3.1 to the genus four case, F (4)

88 (the construction of such a function for g ≥ 4 is
straightforward).

We now check how many O+-invariants can be written as polynomials of degree
four in the θ[∆(4)]4. This can be done decomposing the symmetric product Sym4(ρθ)
in irreducible representations3, and counting the multiplicity of the representations 1
and σθ (σθ = 135 in this case). In [vG2] it was shown that the representation of Sp(2g)
on the subspace M θ

2 (Γg(2)) ⊂M2(Γg(2)), that is spanned by the θ[∆(g)]4, is isomorphic
to the representation ρθ found by Frame [Fr2] that supports O+-anti-invariants. This
representation has dimension dim ρθ = (2g + 1)(2g−1 + 1)/3, so for g = 4 one finds
ρθ = 51; see [DvG] for details. Thus, a function belonging to Sym2n(ρθ) is an O+-
invariant of degree 2n in θ[∆(g)]4, n ∈ N. We have:

Sym4(51) = 2 · 1 + 51 + 119 + 4 · 135 + 510 + 2 · 918 + 5 · 1190 + 1275

+ 2856−504 + 2 · 3400 + 3 · 4200 + 5712 + 5950−210 + 7140

+ 8160 + 11900700 + 3 · 13600 + 18360 + 2 · 19040 + 23800−1960

+ 321302898 + 34560 + 57120,

so we get six O+-invariants, the five found before and θ[0(4)]4
∑

∆ θ[∆
(4)]12. The seventh

invariant cannot be written in this way, but we can search for it as a polynomial in
the θ[∆(2)]2. Due to the signs appearing on the transformation formula of the theta
constants, there is not a representation of Sp(2g,F2) on the space generated by the

3Here ρθ is the representation of Sp(2g) on the θ[∆(g)]4 (2g = 8 in this case).
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θ[∆(g)]2. So we can not determine the number of the O+-invariants that are polynomial
in θ[∆(g)]2 using representation theory of finite group (i.e. we cannot repeat the previous
method using something like Sym8(· · · )). However, we already know at least one O+-
invariant linearly independent from the others that can be written as a polynomial
in θ[∆(4)]2: the invariant G1[0(4)] defined in Section 4.5.1 (see also [CDG2] and [Gr]),
which, for later convenience, will be renamed4 G

(4)
3 [0(4)]. Using a computer, we have

verified that it is linearly independent from the other six. The same conclusion can be
achieved using the approach of [DGdC].

Having found seven linearly independent O+-invariants, according to Oura’s result,
we have a basis for M θ

8 (Γ4(2))O
+

and in Section 5.10.4 we will search for a linear
combination of them to build the function Ξ(4)

8 [0(4)] which restricts correctly.

5.3.3 O+-invariants for the genus 5 case

For genus five, the ring of modular forms, as for g = 4, is not normal. Moreover,
there may exist many relations satisfied by the second order theta constants, but in any
case they are not known. Finally, the Schottky relation does not vanish on the Jacobi
locus (although this was conjectured by Belavin and Knizhnik [BK2], Conjecture 3, by
Morozov and Perelemov [BKMP,Mo3] and by D’Hoker and Phong in [DP6], Section 4.1
and it was shown that it vanishes for any genus on the hyperelliptic locus by Poor [P]):
a very recent result [GS], Corollary 18, shows that the zero locus of this form is the
locus of trigonal curves.

Despite these difficulties, starting from the seven functions and mimicking the g = 4
invariants, we can try to add a further linearly independent O+-invariant polynomial
and look for a linear combination (possibly unique) which factorises in the right way.
Indeed, for genus five it is known that

dimM θ2

8 (Γ5(2))O
+ ≤ dimM θ

8 (Γ5(2))O
+ ≤ dimM θS

8 (Γ5(2))O
+

= 8, (5.2)

where the first term is the space of modular forms with respect to the group Γ5(1, 2) of
weight eight which are polynomial in θ[∆(5)]2, the second is the space of modular forms
polynomial in θ[∆(5)] (w.r.t. the same group and of same weight as before), and the
third is the space of the theta series associated to quadratic forms, see [AZ]. Note that
it is not clear that M θ

8 (Γ5(2))O
+

is a subset of M θS
8 (Γ5(2))O

+
, in fact in paper [DGdC]

we have shown that these two spaces are the same.
In order to construct a basis for M θ

8 (Γ5(2))O
+

we generalise the form G
(4)
3 [0(4)] used

before and the inequalities (5.2) show that we can find at most one O+-invariant poly-
nomial in θ[∆(5)]. To this aim we consider the form G

(4)
4 [0(4)] introduced in Section 4.5.1

(see [CDG2] and [Gr]) and define it also for the g = 5 case. This goes straightforward
with the notion of isotropic subspaces and in principle we can define similar forms for
arbitrary genus g using isotropic subspaces of dimension at most g (see e.g. [Gr]).

4We made a change of notation with respect our previous works: all the forms built using the isotropic

space will be indicated by G
(g)
d [0(g)], where d is the dimension of the isotropic subspace and g the genus

we are considering. For example the form H[0(3)] of [CDG2] becomes G
(3)
2 [0(3)] in the new notation.
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In the next two sections we give the genus five extension of the definition of the two
functions G(4)

3 [∆(4)] and G
(4)
4 [0(4)] defined before for g = 4.

The form G
(5)
3 [0(5)]

We will follow the definitions of [CDG2]. Let W ⊂ F10
2 be a three dimensional isotropic

subspace. Given such a W , there are 10 · 8 = 80 even quadrics Q∆ such that W ⊂ Q∆.
Let Q0 ⊂ F10

2 be the even quadric with characteristic ∆(5)
0 = [0(5)]. We will only use

the octets of quadrics which contain Q0 to define the modular form G
(5)
3 [0(5)], or P (5)

3,2

in the notations of [Gr]:

G
(5)
3 [0(5)] :=

∑
W⊂Q0

∏
w∈W

θ[∆(5)
0 + w]2,

where we sum over the 118575 three dimensional isotropic subspaces W ⊂ Q0, and for
each such subspace we take the product of the eight θ[∆(5)

0 + w]2.

The form G
(5)
4 [0(5)]

Let W ⊂ F10
2 be a four dimensional isotropic subspace. Given such a W , there are

48 even quadrics Q∆ such that W ⊂ Q∆. Let Q0 ⊂ F10
2 be the even quadric with

characteristic ∆(5)
0 = [0(5)]. We will only use the sets of quadrics which contain Q0 to

define the modular form G
(5)
4 [0(5)], or P (5)

4,1 as in [Gr]:

G
(5)
4 [0(5)] :=

∑
W⊂Q0

∏
w∈W

θ[∆(5)
0 + w],

where we sum over the 71145 four dimensional isotropic subspaces W ⊂ Q0, and for
each such subspace we take the product of the sixteen θ[∆(5)

0 + w].

Remark

The eight functions F (5)
1 , F (5)

2 , F (5)
3 , F (5)

8 , F (5)
18 , F (5)

16 , G(5)
3 [0(5)], G(5)

4 [0(5)] are linearly
independent, as can be checked by a computer or by the restriction we will deduce in
Section 5.5.3 or using the technique of [DGdC]. Thus, it follows that in (5.2) an equality
must hold between the second and the third term:

dimM θ
8 (Γ5(2))O

+
= dimM θS

8 (Γ5(2))O
+

= 8

From the computations at genus four, given in Section 5.10.4, and from a result of
Nebe [N], it also follows that at genus five:

dimM θ2

8 (Γ5(2))O
+

= 7. (5.3)

Indeed, we obtain seven linear independent functions in the space M θ2

8 (Γ5(2))O
+

so its
dimension is greater or equal than seven. In [N] it was determined seven as an upper
limit for the dimension of the space of theta square series associated to quadratic forms.
As this space contains M θ2

8 (Γ5(2))O
+

, it follows the equality (5.3). This result can also
be checked using the method of [DGdC]. This fixes all the dimensions of the spaces
appearing in the previous inequality (5.2).
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5.3.4 Genus g expressions for O+-invariants

In this Section we recall the six O+-invariants belonging to Sym4 ρθ, found for the lower
genus, and we generalise them for arbitrary g. The functions F (g)

8 and F (g)
16 are the two

Sp(2g)-invariants, F (g)
88 is the generalised O+-invariant introduced in Section 5.3.1 and

the modular form J (g) := 2gF (g)
16 −F

(g)
8 vanishes identically for genus three, as explained

in [CDG1]. These are:

F
(g)
1 := θ[0(g)]16,

F
(g)
2 := θ[0(g)]4

∑
∆(g)

θ[∆(g)]12,

F
(g)
3 := θ[0(g)]8

∑
∆(g)

θ[∆(g)]8,

F
(g)
8 := (

∑
∆(g)

θ[∆(g)]8)2,

F
(g)
88 :=

∑
(∆

(g)
i ,∆

(g)
j )o

θ[∆(g)
i ]8θ[∆(g)

j ]8,

F
(g)
16 :=

∑
∆(g)

θ[∆(g)]16,

J (g) := 2g
∑
∆(g)

θ[∆(g)]16 − (
∑
∆(g)

θ[∆(g)]8)2 = 2gF (g)
16 − F

(g)
8 ,

where (∆(g)
i ,∆(g)

j )o stands for all the pairs of distinct even characteristics such that

their sum is odd. Behind these, we also introduced the forms G(g)
3 [0(g)] for g = 4, 5 and

G
(g)
4 [0(g)] for g = 5. However G(g)

3 [0(g)] (G(g)
4 [0(g)]) could be defined for every genus5

g ≥ 3 (g ≥ 4) considering three (four) dimensional isotropic subspace of F2g
2 . In the same

way, we can consider two dimensional isotropic subspaces of F2g
2 , for g ≥ 2 and introduce

another O+-invariant, G(g)
2 [0(g)] (clearly not linear independent from the others), that

is a sum of suitable products of four theta constants at the fourth power. This form
will appear in the factorisation of some O+-invariants.

5.4 Factorization of the O+-invariants

5.4.1 Genus one formulae

For the construction of the forms Ξ(g)
8 [0(g)] defining the chiral measure and to check that

they have the correct restriction on H1×Hg−1, it will be useful to recall some identities
between theta constants at genus one. Again we will use the Dedekind function η for
which the classical formula η3 = θ[00]θ[01]θ[10] holds6, so 3η12 = θ[00]12−θ[01]12−θ[10]12. Also

5In [CDG1], where it was considered the case g = 3, this form is called G[0].
6Note that our definition of the Dedekind function differs from the classical ones, cf. [RL], for a factor

1
2
. This explains the difference for a global factor 24g between our definition of the forms Ξ

(g)
8 [0(g)] and

the ones in [OPSY].
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we recall the definition of the function f21 = 2θ[00]12 +θ[01]12 +θ[10]12. In Section 5.10.1 we
found that the two functions η12 and f21 are a basis for the genus one O+-anti-invariants
and so we can expand the anti-invariants on this basis and the O+-invariants on the
basis θ[00]4η21, θ[00]4f21 and F

(1)
16 = θ[00]16 + θ[10]16 + θ[01]16. Another useful basis for the

genus one O+-invariants is given by F
(1)
1 , F (1)

2 and F
(1)
16 . The proof of these identities

is straightforward using the Jacobi identity θ[00]4 = θ[01]4 + θ[10]4:

F
(1)
1 = θ16[00] = θ[00]4

(
1
3
f21 + η12

)
,

F
(1)
3 = θ[00]8(θ[00]8 + θ[01]8 + θ[10]8) = θ[00]4

2
3
f21 =

2
3
F

(1)
1 +

2
3
F

(2)
2 ,

F
(1)
2 = θ[00]4

(
θ[00]12 + θ[01]12 + θ[10]12

)
= θ[00]4

(
2
3
f21 − η12

)
,

θ[00]8θ[01]8 + θ[00]8θ[10]8 = θ[00]4
(

1
3
f21 − η12

)
= −1

3
F

(1)
1 +

2
3
F

(1)
2 ,

θ[00]16 + 2θ[00]8θ[01]8 + 2θ[00]8θ[10]8 = θ[00]4
(
θ[00]4(f21 − η12)

)
=

1
3
F

(1)
1 +

4
3
F

(1)
2 ,

1
2
θ[00]8θ[01]8 +

1
2
θ[00]8θ[10]8 − θ[00]4θ[01]12 − θ[00]4θ[10]12 = θ[00]4

(
3
2
η12 − 1

6
f21

)
=

5
6
F

(1)
1 − 2

3
F

(1)
2 ,

θ[00]16 + 3θ[00]8θ[01]8 + 3θ[00]8θ[10]8 − 2θ[00]4θ[01]12 − 2θ[00]4θ[10]12 = θ[00]4
(

2
3
f21 + 2η12

)
= 2F (1)

1 ,

θ[01]8θ[10]8 =
1
2
θ[01]16 +

1
2
θ[10]16 +

1
2
θ[00]8θ[01]8 +

1
2
θ[00]8θ[10]8 − θ[00]4θ[01]12 − θ[00]4θ[10]12

=
1
2
F

(1)
16 + θ[00]4(η12 − 1

3
f21) =

1
3
F

(1)
1 − 2

3
F

(1)
2 +

1
2
F

(1)
16 .
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5.4.2 The restrictions on H1 ×Hg−1

Let us report here the factorisation of the six O+-invariants found before for a reducible
period matrix:

F
(g)
1 |∆1,g−1

=θ[00]4(1
3f21 + η12)F (g−1)

1 = F
(1)
1 F

(g−1)
1 ,

F
(g)
2 |∆1,g−1

=θ[00]4(2
3f21 − η12)F (g−1)

2 = F
(1)
2 F

(g−1)
2 ,

F
(g)
3 |∆1,g−1

=2
3θ[

0
0]4f21F

(g−1)
3 = F

(1)
3 F

(g−1)
3 ,

F
(g)
8 |∆1,g−1

=(θ[00]16 + θ[01]16 + θ[10]16 + 2θ[00]8θ[01]8 + 2θ[00]8θ[10]8 + 2θ[01]8θ[10]8)F (g−1)
8

=2F (1)
16 F

(g−1)
8 ,

F
(g)
88 |∆1,g−1

=(θ[00]16 + θ[01]16 + θ[10]16 + 2θ[00]8θ[01]8 + 2θ[00]8θ[10]8 − 2θ[01]8θ[10]8)F (g−1)
88

+ θ[01]8θ[10]8F (g−1)
8

=θ[01]4f21(
4
3
F

(g−1)
88 − 1

3
F

(g−1)
8 ) + θ[01]4η12(−4F (g−1)

88 + F
(g−1)
8 ) +

1
2
F

(1)
16 F

(g−1)
8

=
(

2
3
F

(1)
2 − 1

3
F

(1)
1

)(
4F (g−1)

88 − F (g−1)
8

)
+

1
2
F

(1)
16 F

(g−1)
8 ,

F
(g)
16 |∆1,g−1

=(θ[00]16 + θ[01]16 + θ[10]16)F (g−1)
16 = F

(1)
16 F

(g−1)
16 .

The factorisation of the forms G(g)
3 [0(g)] and G(g)

4 [0(g)] can be determined for any g using
Theorem 15 of [Gr] and we report the result for the cases g = 4, 5 in Section 5.5.2 and
5.5.3 respectively.

5.5 Solution of the constraints for g ≤ 5

In this section we find a solution for the three constraints, using the basis for the O+-
invariants just constructed, and we obtain the functions Ξ(g)

8 [∆(g)]. These solutions are
equivalent to the ones found in Chapter 4 for g = 3, 4, but written in a different basis.
The advantage is that in this way the theta constants appear at higher power than
before. Moreover, here we full exploit the insight given by the group theory.

5.5.1 Genus three case

In Section 5.3.1 we found a basis for the five dimensional space of O+-invariants sat-
isfying the transformation constraints. Let us search a linear combination satisfying
the factorisation constraints. We will follow the strategy of Chapter 4: write the more
general vector in this space,

Ξ(3)
8 [0(3)] = a1F

(3)
1 + a2F

(3)
2 + a3F

(3)
3 + a4F

(3)
8 + a5F

(3)
88 , (5.4)

and then impose for it to factorise as the product of the genus one form Ξ(1)
8 [0(1)] =

θ[00]4η12 and the form Ξ(2)
8 [0(2)] = 2

3F
(2)
1 + 1

3F
(2)
2 − 1

2F
(2)
3 at genus two. In this way we

obtain a linear equation in the five coefficients ai.
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The restriction of Ξ(3)
8 [0(3)] on H1 ×H2

The factorisation of the expression (5.4) for a reducible period matrix of the form
τ1,2 =

(
τ1 0
0 τ2

)
is:(

a1F
(3)
1 + a2F

(3)
2 + a3F

(3)
3 + a4F

(3)
8 + a5F

(3)
88

)
(τ1,2)

= θ[00]4
(
a1(1

3f21 + η12)F (2)
1 + a2(2

3f21 − η12)F (2)
2 + a3

2
3f21F

(2)
3

)
+ a42F (1)

16 F
(2)
8 + a5

[
θ[01]4f21(

4
3
F

(2)
88 −

1
3
F

(2)
8 ) + θ[01]4η12(−4F (2)

88 + F
(2)
8 ) +

1
2
F

(1)
16 F

(2)
8

]
Necessary condition for the restriction to take the form:

(Ξ(3)
8 [0(3)])(τ1,2) =(
θ[00]4η12

)
(τ1)Ξ(2)

8 [0(2)](τ2) ≡
(
θ[00]4η12

)
(τ1)

(
θ[0(2)]4Ξ6[0(2)]

)
(τ2)

is that the terms proportional to f21 and to F (1)
16 disappear. Here Ξ6[0(2)] is the function

found by D’Hoker and Phong in [DP4]. First, let us impose the condition to get rid of
the terms proportional to f21. This condition is satisfied if:

a1
1
3
F

(2)
1 + a2

2
3
F

(2)
2 + a3

2
3
F

(2)
3 + a5

(
4
3
F

(2)
88 −

1
3
F

(2)
8

)
= 0.

This equation has a unique solution up to a scalar multiple:

(a1, a2, a3, a5) = λ

(
16
3
,
16
3
,−4, 1

)
, λ ∈ C.

To eliminate the terms proportional to F (1)
16 the expression (2a4 + 1

2a5)F (2)
8 must vanish,

so, from the solution 5.5.1, we obtain

a4 = −1
4
a5 = −λ1

4
.

Thus the expression for the factorised measure is:

θ[00]4η12 λ

[
16
3
F

(3)
1 +

16
3

(−F (3)
2 ) +

(
F

(3)
8 − 4F (3)

88

)]
,

and it is of the form Ξ(3)
8 [0(3)](τ1,2) = (θ[00]4η12)(τ1)(θ[0(2)]4Ξ6[0(2)]) if λ = 1

16 , as can
be verified with a computer or using the classical theta formula. This solution for the
form Ξ(3)

8 [0(3)] is, up to a term proportional to J (3), the same found in Section 5.5.1.
Using this basis, the theta constants in the function Ξ(3)

8 [0(3)] appear with higher power
than using the one of Section 5.5.1: the four functions F (3)

1 , F (3)
3 , F (3)

8 and F
(3)
88 are

polynomials in θ[∆(3)]8 and they belong to Sym2(1 + 35b) and the F (2)
2 is a polynomial

in θ[∆(3)]4 and belongs to Sym4(15a). The final expression for the form Ξ(3)
8 [0(3)] is:

Ξ(3)
8 [0(3)] =

1
3
F

(3)
1 +

1
3
F

(3)
2 − 1

4
F

(3)
3 − 1

64
F

(3)
8 +

1
16
F

(3)
88 ,
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and it is completely equivalent to the one determined before:

Ξ(3)
8 [0(3)] =

1
3
F

(3)
1 +

1
3
F

(3)
2 − 1

4
F

(3)
3 −G(3)

3 [0(3)].

In fact, they differ for a multiple of the form J (3) (that vanishes on the whole H3),
precisely the new expression is equal the old one − 5

448J
(3), as it can be computed using

the results of Table 5.4. This procedure will be explained in detail for the genus four
case in the next section. So we can use this two expressions to show that the form
G

(3)
3 [0(3)] is polynomial in θ[∆(3)]8:

G
(3)
3 [0(3)] =

1
64
F

(3)
8 − 1

16
F

(3)
88 −

5
448

(8F (3)
16 − F

(3)
8 ). (5.5)

We include also the form J (3) because it is zero as a function of τ ∈ H3 and using a
computer to perform the computations one has to add explicitly this fact.

5.5.2 Genus four case

For the genus four case we repeat the method used for the genus three in the previous
section. In Section 5.3.2 we found seven linear independent O+-invariants that form
a basis. We can now search a linear combination that also satisfies the factorisation
constraints:

Ξ(4)
8 [0(4)] = a1F

(4)
1 + a2F

(4)
2 + a3F

(4)
3 + a4F

(4)
8 + a5F

(4)
88 + a6F

(4)
16 + a7G

(4)
3 [0(4)], (5.6)

where G(4)
3 [0(4)] is the function defined in 5.3.2, or in the notations of Grushevsky P (4)

3,2 .

In this case we also use the F (4)
16 because in g = 4 it is independent from F

(4)
8 , i.e. the

expression J (4) is not identically zero on the whole H4, but just on the Jacobi locus.

The restriction of Ξ(4)
8 [0(4)] on H1 ×H3

The restriction on H1 × H3 of the function G
(4)
3 [0(4)] was found in Section 4.5.1 (cf.

[CDG2]):

G
(4)
3 [0(4)](τ1,3) = θ[00]4(τ1)

[
1
3
f21(τ1)

(
G

(3)
2 [0(3)] + 8G(3)

3 [0(3)]
)

(τ3)

−η12(τ1)
(
G

(3)
2 [0(3)] + 6G(3)

3 [0(3)]
)

(τ3)
]
,

this follows also from Theorem 15 of [Gr]. The modular formsG(3)
3 [0(3)] andG(3)

2 [0(3)] are
defined, as usual, using three and two dimensional isotropic subspaces respectively (see
also [CDG1, CDG2, Gr]). Thus the factorisation of the expression (5.6) for a reducible
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period matrix of the form τ1,3 =
(
τ1 0
0 τ3

)
is:(

a1F
(4)
1 + a2F

(4)
2 + a3F

(4)
3 + a4F

(4)
8 + a5F

(4)
88 + a6F

(4)
16 + a7G

(4)
3 [0(4)]

)
(τ1,3)

= θ[00]4
[
a1(1

3f21 + η12)F (3)
1 + a2(2

3f21 − η12)F (3)
2 + a3

2
3f21F

(3)
3

]
+ a42F (1)

16 F
(3)
8

+ a5

[
θ[01]4f21(

4
3
F

(3)
88 −

1
3
F

(3)
8 ) + θ[01]4η12(−4F (3)

88 + F
(3)
8 ) +

1
2
F

(1)
16 F

(3)
8

]
+ a6F

(1)
16 F

(3)
16 + a7

[
θ[00]4f21(

1
3
G

(3)
2 [0(3)] +

8
3
G

(3)
3 [0(3)])

+θ[00]4η12(−G(3)
2 [0(3)]− 6G(3)

3 [0(3)])
]
.

The terms proportional to f21 disappear if:

a1
1
3
F

(3)
1 + a2

2
3
F

(3)
2 + a3

2
3
F

(3)
3 + a5

(
4
3
F

(3)
88 −

1
3
F

(3)
8

)
+ a7

1
3

(G(3)
2 [0(3)] + 8G(3)

3 [0(3)]) = 0.

This equation has a unique solution up to a scalar multiple:

(a1, a2, a3, a5, a7) = λ

(
−56

5
,−112

5
,
42
5
,−21

5
,
168
5

)
, λ ∈ C.

The term proportional to F (1)
16 vanishes if:

a42F (3)
8 + a5

1
2
F

(3)
8 + a6F

(3)
16 = 0.

This equation has infinitely many solutions. Due to the vanishing of J (3) on the whole
Siegel upper half space we can rewrite the previous equation as (2a4 + 1

2a5 + 1
8a6)F8 = 0,

which has solution a4 = −a5
4 −

a6
16 with a6 ∈ C. For any choice of a6 an additive

term proportional to J (4) appears in the expression of Ξ(4)
8 [0(4)] and precisely it is

a6
16 (16F (4)

16 − F
(4)
8 ). In this sense the form Ξ(4)

8 [0(4)] is unique up to a term proportional
to J (4), as proved in Chapter 4. Thus, we can choose a6 = 0 and a4 = −1

4a5. The
request for the restriction to be of the form Ξ(4)

8 [0(4)](τ1,3) =
(
θ[00]4η12

)
(τ1)Ξ(3)

8 [0(3)](τ3)
fixes the value of λ = − 5

336 . This follow from the condition:

θ[00]4η12 λ

[
−56

5
F

(3)
1 − 112

5
(−F (3)

2 ) +
21
5

(
F

(3)
8 − 4F (3)

88

)
+

168
5

[
−
(
G

(3)
2 [0(3)] + 6G(3)

3 [0(3)]
)]]

= θ[00]4η12Ξ(3)
8 [0(3)],

and, using again the fact that J (3) identically vanishes, we obtain λ = − 5
336 .

The above discussion shows that the form Ξ(4)
8 [0(4)] is:

Ξ(4)
8 [0(4)] =

1
6
F

(4)
1 +

1
3
F

(4)
2 − 1

8
F

(4)
3 +

1
64
F

(4)
8 − 1

16
F

(4)
88 −

1
2
G

(4)
3 [0(4)], (5.7)
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which, for the uniqueness (up to a multiple of J (4)) of the form Ξ(4)
8 [0(4)], is equivalent

to the one found in Section 4.45:

Ξ(4)
8 [0(4)] =

1
6
F

(4)
1 +

1
3
F

(4)
2 − 1

8
F

(4)
3 − 1

2
G

(4)
3 [0(4)] + 4G(4)

4 [0(4)]. (5.8)

This two expressions must be equated and they could differ just for a multiple of
the Schottky relation J (4). Calling the form Ξ(4)

8 [0(4)] (5.7) Ξ(4)
8 [0(4)]DP and the (5.8)

Ξ(4)
8 [0(4)]CDG we can write:

Ξ(4)
8 [0(4)]DP = Ξ(4)

8 [0(4)]CDG + aJ (4).

Summing over the 136 even theta characteristics and using the results of Table 5.5 we
find:

45
56
J (4) =

12
7
J (4) + 136aJ (4),

from which it follows that a = −3/448. This shows that the modular form G
(4)
4 [0(4)] is,

actually, polynomial in θ[∆(4)]8:

G
(4)
4 [0(4)] =

1
256

F
(4)
8 − 1

64
F

(4)
88 +

3
1792

J (4) (5.9)

=
1

448
F

(4)
8 − 1

64
F

(4)
88 +

3
112

F
(4)
16 .

Remark

Recently, Oura has proved, as a consequence of the results in [N], that the space of
modular forms with respect to the subgroup Γ4(1, 2) of weight 8, quadratic in the theta
constants, has dimension no bigger than 7, dimM θ2

8 (Γ4(2))O
+ ≤ 7. The computations

in the previous section show that this dimension is precisely seven:

dimM θ2

8 (Γ4(2))O
+

= 7.

Moreover, in [OPSY] it is proved that the space of cusp forms [Γ4(1, 2), 8]0, in which
Ξ(4)

8 [0(4)] lies, has dimension two. From this, it follows the uniqueness (up to a multiple
of J (4)) of the form Ξ(4)

8 [0(4)] (as explained in [OPSY] and [GS]) and not just in a
weakened form, i.e. assuming polynomiality in the theta constants, as in previous
chapter (cf. [DvG]).

5.5.3 Genus five case

In Section 5.3.3 we found eight linear independent O+-invariants that form a basis.
Their general linear combination is:

Ξ(5)
8 [0(5)] = a1F

(5)
1 + a2F

(5)
2 + a3F

(5)
3 + a4F

(5)
8 + a5F

(5)
88 (5.10)

+ a6F
(5)
16 + a7G

(5)
3 [0(5)] + a8G

(5)
4 [0(5)].

We will search for eight coefficients ai such that this expression satisfies the right fac-
torisation.
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The restriction of G(5)
3 [0(5)] and G

(5)
4 [0(5)] on H1 ×H4

These restrictions follow quite directly from the Theorem of Grushevsky, identifying
G

(5)
4 [0(5)] with P

(5)
4,1 and G

(5)
3 [0(5)] with P

(5)
3,2 . For the function G

(5)
3 [0(5)] we get:

P
(5)
3,2 (τ1,4) = P

(1)
0,16(τ1)P (4)

3,2 (τ4) + P
(1)
1,8 (τ1)P (4)

2,4 (τ4) + 7P (1)
1,8 (τ1)P (4)

3,2 (τ4)

= θ[00]4(
8
3
f21 − 6η12)(τ1)G(4)

3 [0(4)](τ4) + θ[00]4(
1
3
f21 − η12)(τ1)G(4)

2 [0(4)](τ4),

where we used P
(1)
0,16 = θ[0(1)]4

(
1
3f21 + η12

)
, P (1)

1,8 = θ[0(1)]4
(

1
3f21 − η12

)
and P

(4)
2,4 =

G
(4)
2 [0(4)]. For G(5)

4 [0(5)] we get:

P
(5)
4,1 (τ1,4) = P

(1)
0,16(τ1)P (4)

4,1 (τ4) + P
(1)
1,8 (τ1)P (4)

3,2 (τ4) + 15P (1)
1,8 (τ1)P (4)

4,1 (τ4)

= θ[00]4(
16
3
f21 − 14η12)(τ1)G(4)

4 [0(4)](τ4) + θ[00]4(
1
3
f21 − η12)(τ1)G(4)

3 [0(4)](τ4),

where, as before, P (1)
0,16 = θ[0(1)]4

(
1
3f21 + η12

)
and P

(1)
1,8 = θ[0(1)]4

(
1
3f21 − η12

)
. These

restrictions could be also determined using the method of isotropic subspaces, as in
[CDG1], or by direct computation using a computer. In the next section it will be
useful to use also G(4)

2 [0(4)] =
(

2F (4)
1 + 16F (4)

2 − 3F (4)
3

)
/6 (instead, at genus three we

have G(3)
2 [0(3)] =

(
2F (3)

1 + 8F (3)
2 − 3F (3)

3

)
/6).

The restriction of Ξ(5)
8 [0(5)] on H1 ×H4

Using the results of the previous section and of Section 5.4 the factorisation of the
expression (5.10) for a reducible period matrix of the form τ1,4 =

(
τ1 0
0 τ4

)
is:

(
a1F

(5)
1 + a2F

(5)
2 + a3F

(5)
3 + a4F

(5)
8 + a5F

(5)
88

+a6F
(5)
16 + a7G

(5)
3 [0(5)] + a8G

(5)
4 [0(5)]

)
(τ1,4) =[

a1θ[00]4(1
3f21 + η12)F (4)

1 + a2θ[00]4(2
3f21 − η12)F (4)

2 + a3
2
3θ[

0
0]4f21F

(4)
3

]
+

a42F (1)
16 F

(4)
8 + a5

[
θ[01]4f21(

4
3
F

(4)
88 −

1
3
F

(4)
8 ) + θ[01]4η12(−4F (4)

88 + F
(4)
8 )

+
1
2
F

(1)
16 F

(4)
8

]
+ a6F

(1)
16 F

(4)
16 +

a7θ[00]4
[

1
3
f21(G(4)

2 [0(4)] + 8G(4)
3 [0(4)]) + η12(−G(4)

2 [0(4)]− 6G(4)
3 [0(4)])

]
+

a8θ[00]4
[
f21

(
16
3
G

(4)
4 [0(4)] +

1
3
G

(4)
3 [0(4)]

)
+ η12

(
−14G(4)

4 [0(4)]−G(4)
3 [0(4)]

)]
.
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From the relations of paragraph 5.4.1 we obtain the condition for the vanishing of the
terms proportional to f21:

a1
1
3
F

(4)
1 + a2

2
3
F

(4)
2 + a3

2
3
F

(4)
3 + a5

(
4
3
F

(4)
88 −

1
3
F

(4)
8

)
+

+a7
1
3

(G(4)
2 [0(4)] + 8G(4)

3 [0(4)]) + a8
1
3

(G(4)
3 [0(4)] + 16G(4)

4 [0(4)]) = 0.

Again, this equation, using the fact that J (4) vanishes on the Jacobi locus (actually, one
solves the equation modulo the Schottky relation J (4)), has an unique solution, up to a
scalar multiple:

(a1, a2, a3, a5, a7, a8) = λ

(
−14

3
,−56

3
,
7
2
,−7, 14,−112

)
, λ ∈ C.

The term proportional to F (1)
16 vanishes if:

a42F (4)
8 + a5

1
2
F

(4)
8 + a6F

(4)
16 = 0.

As for g = 4 this equation has infinitely many solutions and using again the fact that
J (4) vanishes on the Jacobi locus we obtain (2a4 + 1

2a5 + 1
16a6)F (4)

8 = 0, which has
solution a4 = −a5

4 −
a6
32 , with a6 ∈ C. For any choice of the coefficient a6 the additive

term a6
32 (32F (5)

16 − F
(5)
8 ) appears in Ξ(5)

8 [0(5)]. However, in genus five this term vanishes
just on the locus of trigonal curves and not on the whole Jacobi locus. This shows how
the uniqueness of the form Ξ(5)

8 [0(5)] can not be longer assured by the three constraints
of Section 5.2 on J5, as also pointed out in [OPSY]. Thus, we can choose a6 = 0
and a4 = −1

4a5. The request for the restriction to be of the form Ξ(5)
8 [0(5)](τ1,4) =

(θ[00]4η12)(τ1)Ξ(4)
8 [0(4)](τ4) means that:

(θ[00]4η12)(τ1)λ
[
a1F

(4)
1 − a2F

(4)
2 + a5

(
F

(4)
8 − 4F (4)

88

)
+ a7(−G(4)

2 [0(4)]− 6G(4)
3 [0(4)]) + a8(−14G(4)

4 [0(4)]−G(4)
3 [0(4)])

]
= (θ[00]4η12)(τ1)Ξ(4)

8 [0(4)],

where Ξ(4)
8 [0(4)] is the function found in Section 5.10.4, and this should fix the constant

λ. Therefore, we impose:

θ[00]4η12 λ

[
−14

3
F

(4)
1 − 56

3
(−F (4)

2 )− 7(F (4)
8 − 4F (4)

88 ) + 14(−G(4)
2 [0(4)]− 6G(4)

3 [0(4)])

−112(−14G(4)
4 −G

(4)
3 )
]

= θ[00]4η12
(

Ξ(4)
8 [0(4)] + ΛJ (4)

)
,

this equation has solution λ = − 1
56 and Λ = − 3

64 . Actually, using λ = − 1
56 and summing

over all the even characteristics one finds that the expression in the square brackets on
the left and the Ξ(4)

8 [0(4)] on the right sides of the previous equation differ by − 3
64J

(4).
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Thus, in genus five the function Ξ(5)
8 [0(5)] satisfying the three constraints on the Jacobi

locus is:

Ξ(5)
8 [0(5)] =

1
12
F

(5)
1 +

1
3
F

(5)
2 −

1
16
F

(5)
3 −

1
32
F

(5)
8 +

1
8
F

(5)
88 −

1
4
G

(5)
3 [0(5)]+2G(5)

4 [0(5)]. (5.11)

Note that also for the solution found in [OPSY] the correct restriction holds if one
restrict to J4.

The constraint on H2 ×H3

Now we consider the restriction of the function Ξ(5)
8 [0(5)] to H2×H3 and this, to satisfy

the factorization constraint of Section 5.2, must be equal to the product Ξ(2)
8 [0(2)]Ξ(3)

8 [0(3)]
i.e. the genus two times the genus three measure.

In order to obtain the restriction of Ξ(5)
8 [0(5)] we need the restriction of the eight

basis functions. We have:

F
(5)
1 |∆2,3

=F (2)
1 F

(3)
1 ,

F
(5)
2 |∆2,3

=F (2)
2 F

(3)
2 ,

F
(5)
3 |∆2,3

=F (2)
3 F

(3)
3 ,

F
(5)
8 |∆2,3

=F (2)
8 F

(3)
8 ,

F
(5)
16 |∆2,3

=F (2)
16 F

(3)
16 ,

F
(5)
88 |∆2,3

=F (2)
1 (

16
3
F

(3)
88 −

4
3
F

(3)
8 ) + F

(2)
2 (

32
3
F

(3)
88 −

8
3
F

(3)
8 )

+F (2)
3 (−8F (3)

88 + 2F (3)
8 ) + F

(2)
16 F

(3)
8 ,

G
(5)
3 |∆2,3

=G(2)
0 G

(3)
3 + 7G(2)

1 G
(3)
3 +G

(2)
1 G

(3)
2 + 42G(2)

2 G
(3)
3 + 9G(2)

2 G
(3)
2 +G

(2)
2 G

(3)
1

=F (2)
1 (

1
3
F

(3)
1 +

8
3
F

(3)
2 − 2

3
F

(3)
3 +

1
8
F

(3)
8 − 1

2
F

(3)
88 )

+F (2)
2 (

4
3
F

(3)
1 + 8F (3)

2 − 7
3
F

(3)
3 +

7
16
F

(3)
8 − 7

4
F

(3)
88 )

+F (2)
3 (−2

3
F

(3)
1 − 14

3
F

(3)
2 +

5
4
F

(3)
3 − 7

32
F

(3)
8 +

7
8
F

(3)
88 ),

G
(5)
4 |∆2,3

=G(2)
1 G

(3)
3 + 21G(2)

2 G
(3)
3 +G

(2)
2 G

(3)
2

=F (2)
1 (

1
9
F

(3)
1 +

4
9
F

(3)
2 − 1

6
F

(3)
3 +

3
32
F

(3)
8 − 3

8
F

(3)
88 )

+F (2)
2 (

2
9
F

(3)
1 +

8
9
F

(3)
2 − 1

3
F

(3)
3 +

7
32
F

(3)
8 − 7

8
F

(3)
88 )

+F (2)
3 (−1

6
F

(3)
1 − 2

3
F

(3)
2 +

1
4
F

(3)
3 − 19

128
F

(3)
8 +

19
32
F

(3)
88 ).

The first five relations follow quite easly from the definitions and the classical theta
formula. The sixth is longer to prove in the same manner and it can be obtained
using software like Mathematica. The last two follow from Theorem 15 of [Gr]. Using
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the linear relations between the lattice theta series and the classical theta constants of
Section 5.10.5, another proof of the restrictions can be given.

We can now obtain the restriction of the form Ξ(5)
8 [0(5)]:

Ξ(5)
8 [0(5)](τ2,3) =

(
2
3
F

(2)
1 +

1
3
F

(2)
2 − 1

2
F

(2)
3

)
·
(

1
3
F

(3)
1 +

1
3
F

(3)
2 − 1

4
F

(3)
3 − 1

64
F

(3)
8 +

1
16
F

(3)
88

)
= Ξ(2)

8 [0(2)](τ2)Ξ(3)
8 [0(3)](τ3).

Therefore the modular form Ξ(5)
8 [0(5)] on Γ5(1, 2) of weight 8, defined in 5.5.3, satisfies

all the factorization constraints in genus five.

Remark

It is interesting to investigate the possibility to apply a similar procedure to the genus six
case. However, in this case it is hard to think that the procedure will work. Indeed, in
Section 5.7 we will show that the dimension of the space of the O+-invariants polynomial
in the theta constants is eight for all g ≥ 5. Moreover, at the moment we have no
indication wether in genus g ≥ 6 a solution for the constraints can be find if one
consider also the non part of the ring of modular forms.

5.5.4 On the dimensions of certain space of modular forms

In Sections 5.5.2 and 5.5.3 we considered the space of the modular forms of weight 8 with
respect the group Γg(1, 2). In particular we focused on the modular forms polynomial
in theta constants. In order to find the forms Ξ(g)

8 [0(g)] that factorise in the right way
we searched for a basis for these spaces and this allowed us to find the dimensions of
the spaces. We summarise these results in the following (cf. Remark 5.3.3):

Proposition 5.5.1. For the space M θ2

8 (Γ4(2))O
+

, M θ2

8 (Γ5(2))O
+

and M θ
8 (Γ5(2))O

+
the

following equalities hold:

dimM θ2

8 (Γ4(2))O
+

= 7,

dimM θ2

8 (Γ5(2))O
+

= 7,

dimM θ
8 (Γ5(2))O

+
= 8.

5.6 The vanishing of the cosmological constant

In this section we reinterpret the vanishing of the cosmological constant on the light of
the group representation theory. In Section 5.2 we pointed out that the O+-invariants
belong to the 1 and σθ representations. For the case g ≤ 5 we know that the only
Sp(2g) invariants are F (g)

16 and F (g)
8 (they are not independent for g = 3) and they form
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a basis for the 1 part of the space of the O+-invarints. Let {eσi}i=1,··· ,nσθ be the basis
for the σθ part. Then, an O+-invariant decomposes in two parts: the first one lying in
the representation 1 and the second one in the σθ. Thus, if f [0(g)] ∈ M8(Γg(2))O

+
, we

can write f [0(g)] = aF
(g)
8 + bF

(g)
16 +

∑nσθ
i cieσi , for g ≤ 5. Acting on these functions

with all the generators of the group Sp(2g) and summing up the result at each step
we obtain a Sp(2g)-invariant. We know that the unique Sp(2g)-invariants are the two
functions F (g)

8 and F
(g)
16 so that the σθ representation part gives no contribution to the

sum. Therefore, if the function f [0(g)] contains a non trivial part proportional to F (g)
8

or F (g)
16 , the result of the sum will be non zero.

The cosmological constant is the sum of the functions Ξ(g)
8 [∆(g)] over all the even

characteristics. This sum is a Sp(2g)-invariant and it must then be proportional to a
combination of F (g)

8 and F
(g)
16 . Thus the cosmological constant vanishes if this sum is

zero. We now verify this for the genus three, four and five cases.

5.6.1 Genus three

In Table 5.4 we report the sums of each term appearing in the form Ξ(3)
8 [0(3)]. These

show that for the expression of the measure in the three bases (the one of Chapter 4
(CDG), the one of this Chapter (DP) and the basis of [Gr] (Gr)) for the space of O+-
invariants we always obtain the vanishing of the cosmological constant (as expected)
due to the vanishing of the form J (3).

Function Sum CDG DP Gr

F
(3)
1 F

(3)
16

1
3

1
3

1
8

F
(3)
2 8F (3)

16
1
3

1
3 0

F
(3)
3 F

(3)
8 −1

4 −1
4 0

F
(3)
8 36F (3)

8 0 − 1
64 0

F
(3)
88 8F (3)

8 − 8F (3)
16 0 1

16 0
G

(3)
1 [0(3)] F

(3)
8 − F (3)

16 0 0 −1
8

G
(3)
2 [0(3)] 11F (3)

16 − 1
2F

(3)
8 0 0 1

4

G
(3)
3 [0(3)] 1

28(13F (3)
8 − 76F (3)

16 ) -1 0 -1

Total 5
7(8F (3)

16 − F
(3)
8 ) 5

16(8F (3)
16 − F

(3)
8 ) 5

7(8F (3)
16 − F

(3)
8 )

Table 5.4: Sums of the terms appearing in Ξ(3)
8 [0(3)]. In the third, fourth and fifth columns we

report the coefficients of the O+-invariants appearing in the expression of Ξ(3)
8 [0(3)] in the three

basis.

5.6.2 Genus four

As for the genus three case, we report in Table 5.5 the sums of each term appearing in
the form Ξ(4)

8 [0(4)]. Again, for the three equivalent bases of the space of O+-invariants,
the cosmological constant vanishes on the Jacobi locus due to the vanishing of the form
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J (4). It should be noted that the cosmological constant vanishes just on the moduli
space of curves even if the forms Ξ(4)

8 [∆(4)] are well defined on the whole H4.

Function Sum CDG DP Gr

F
(4)
1 F

(4)
16

1
6

1
6

1
16

F
(4)
2 16F (4)

16
1
3

1
3 0

F
(4)
3 F

(4)
8 −1

8 −1
8 0

F
(4)
8 136F (4)

8 0 1
64 0

F
(4)
88 32F (4)

8 − 32F (4)
16 0 − 1

16 0
F

(4)
16 136F (4)

16 0 0 0
G

(4)
1 [0(4)] F

(4)
8 − F (4)

16 0 0 − 1
16

G
(4)
2 [0(4)] 43F (4)

16 − 1
2F

(4)
8 0 0 1

8

G
(4)
3 [0(4)] 15

7 (3
4F

(4)
8 − 5F (4)

16 ) −1
2 −1

2 −1
2

G
(4)
4 [0(4)] 29

7 F
(4)
16 − 11

56F
(4)
8 4 0 4

Total 12
7 (16F (4)

16 − F
(4)
8 ) 45

56(16F (4)
16 − F

(4)
8 ) 12

7 (16F (4)
16 − F

(4)
8 )

Table 5.5: Sums of the terms appearing in Ξ(4)
8 [0(4)]. In the third, fourth and fifth columns we

report the coefficients of the O+-invariants appearing in the expression of Ξ(4)
8 [0(4)] in the three

basis.

5.6.3 Genus five

As for the two previous cases we report in Table 5.6 the sums of each term appearing in
the form Ξ(5)

8 [0(5)]. In the Table the functions G(5)
i [0(5)], i = 0, · · · , 5, with G

(5)
0 [0(5)] ≡

F
(5)
1 , are the same as in [Gr]. In the genus five case the cosmological constant no

longer vanishes neither on J5. Actually, it was shown in [GS] that the zero locus of
J (5) is the locus of trigonal curves. Following [OPSY], if we subtract from the forms
Ξ(5)

8 [0(5)] the value of the cosmological constants divided by 528, the number of the even
characteristics in genus five, we obtain again a function satisfying the three constraints
and, moreover, having zero cosmological constant. The correct factorization is due to
the fact that the form J (5) vanishes when restrict both on H1 × H4 and on H2 × H3.
Moreover, this consideration shows that in genus five the three constraints no longer
assure the uniqueness of the form Ξ(5)

8 [0(5)] because we can always add a multiple of
the Schottky relation that is not zero on J5 obtaining another forms with the correct
behaviour.

Remark

The sums reported in Table 5.4, 5.5, and 5.6 can be computed using a computer and
a software (for example, Mathematica), and in any case follow directly from Lemma 9
in [SM2].
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Function Sum DP Gr

F
(5)
1 F

(5)
16

1
12

1
32

F
(5)
2 32F (5)

16
1
3 0

F
(5)
3 F

(5)
8 − 1

16 0
F

(5)
8 528F (5)

8 − 1
32 0

F
(5)
88 128F (5)

8 − 128F (5)
16

1
8 0

F
(5)
16 528F (5)

16 0 0
G

(5)
1 [0(5)] F

(5)
8 − F (5)

16 0 − 1
32

G
(5)
2 [0(5)] 171F (5)

16 − 1
2F

(5)
8 0 1

16

G
(5)
3 [0(5)] 173

28 F
(5)
8 − 299

7 F
(5)
16 −1

4 −1
4

G
(5)
4 [0(5)] 389

7 F
(5)
16 − 43

56F
(5)
8 2 2

G
(5)
5 [0(5)] −733

217F
(5)
16 + 475

3472F
(5)
8 0 −32

Total 51
14(32F (5)

16 − F
(5)
8 ) 1632

217 (32F (5)
16 − F

(5)
8 )

Table 5.6: Sums of the terms appearing in Ξ(5)
8 [0(5)]. In the third, fourth and fifth columns we

report the coefficients of the O+-invariants appearing in the expression of Ξ(5)
8 [0(5)] in the three

basis.

5.7 Superstring amplitude and lattice theta series

In [OPSY] another candidate for the genus five superstring measure has been proposed.
The authors have made use of the notion of lattice theta series. The forms Ξ8[∆]
defined there to build up the measure, just like the ones obtained using the classical
theta constants, satisfies all the constraints. The same tools has been used to obtain
the expressions of the measures for g ≤ 4. It is not clear if the two constructions
are equivalent and lead to the same forms Ξ8[∆], thereby to the same measure dµ[∆].
Obviously, this is the case for g ≤ 4, as a consequence of the uniqueness theorems in
lower genus. The goal of the last part of this chapter is to show that also in genus five
the two constructions are equivalent, and the forms obtained are equal on the whole
Siegel half upper plane H5, provided we add to the three constraints the supplementary
request of vanishing cosmological constant. Otherwise they could differ for a multiple of
the Schottky form J (5) (that vanishes on the locus of trigonal curves, cf. [GS]). Actually,
adding a scalar multiple of J (5) to a form satisfying the three constraints one obtains
a function again satisfying the same constraints: the Schottky J (5) is a modular form
of weight eight and the restriction to H1 × H4 is proportional to F

(1)
16 times J (4) and

this product vanishes on the Jacobi locus. This is a remarkable fact because, differently
from the genus four case, the zero locus J (5) is not the whole Jacobi locus, but the
space of trigonal curves. Thus, the three constraints do not characterize uniquely the
superstring measure, see [GS, DbMS, MV2]. This freedom can be fixed requiring the
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vanishing of the cosmological constant. Nevertheless, this should be a prediction of
the theory and it should not be imposed by hand. This is a remarkable result both
for the viewpoint of physics and of mathematics. Indeed, this shows that there are
an infinity of different forms satisfying the three constraints on H5, actually on J5.
Thus, the constraints, without the additional request on the cosmological constant, do
not suffice to characterize the measure uniquely in any genus. Furthermore, a deeper
question arises about the conjecture by D’Hoker and Phong on the general expression
(2.11) for the superstring chiral measure and about the procedure leading to it. These
issues are at the basis of the mathematical correct formulation of the string theory in
the perturbative approach. To solve these problems some more insight in the physics
leading to the (conjectured) ansatz (2.11) is necessary.

Mathematically, to prove the equivalence of the forms Ξ(5)
8 , one has to show that the

space spanned by the lattice theta series and the one spanned by the eight functions
defined in Section 5.8 (that are a basis for M θ

8 (Γ5(2)), cf. [D]) are the same space of
dimension eight. This is the content of the following theorem:

Theorem 5.7.1. The spaces M θ
8 (Γ5(2))O

+
and MΘS

8 (Γ5(2)) coincide.

Here M θ
8 (Γ5(2))O

+
is the space of genus five modular forms of weight eight with

respect to the group Γ5(2) that are O+-invariant polynomials in the classical theta
constants, MΘS

8 (Γ5(2)) is the space of modular forms of weight eight spanned by the
lattice theta series ([ΓΘS

5 (1, 2), 8] in the notation of [OPSY]), and M8(Γ5(2))O
+

is the
space of genus five modular forms of weight eight with respect to the group Γ5(2), which
are O+-invariant, cf. [CD2,DvG,D,OPSY,MV2] for details. The theorem follows from a
result of Salvati Manni [SM3,SM4,SM5] in which it was proved that the space generated
by the lattice theta series contains the subspace generated by classical theta constants
that are Γg invariant whenever 4 divides the weight (see also [Fre], theorem VI.1.5).
The result applies also for the Γg(1, 2) case and, as a consequence, one has:

M θ
4k(Γg(2))O

+ ⊂MΘS (Γg(2)), (5.12)

for integer k. In genus five the dimensions of both spaces is eight, see [OPSY] for the
MΘS (Γg(2)) case, and Section 5.3.3 and Proposition 5.5.1 (cf. [D]) for the M θ

8 (Γg(2))O
+

one where also a basis for this space has been constructed. Thus, the theorem follows
from the equality of the dimensions of the spaces.

In this chapter we exhibit a complete map between the two spaces obtaining all
the linear relations between the lattice theta series and the basis functions of the space
M θ

8 (Γ5(2))O
+

defined in Section 5.8 by means of the classical theta constants. To obtain
the map we compute certain Fourier coefficients of the functions appearing in the defi-
nition of the superstring measure. Since the spaces M θ

8 (Γ5(2))O
+

and MΘS
8 (Γ5(2)) have

dimension eight (see [D, OPSY]) we need at least eight suitable Fourier coefficients to
get linear isomorphisms between these spaces and two copies of C8. In particular, being
the two spaces the same, there must be linear relations among the Fourier coefficients
of the elements of the two bases, which obviously extend to the complete series. In
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Section 5.11.2 we also give an analytic proof of the equivalence between the functions
Ξ8[∆] constructed employing the three constraints and the supplementary request of
the vanishing of the cosmological constant. In addition, the Fourier coefficients method
will permit to obtain, for g ≤ 4, the complete set of linear relations between the lattice
theta series and the basis functions of M θ

8 (Γg(2))O
+

. We will also check the well known
linear relations among the lattice theta series themselves [DbMS,OPSY].

5.7.1 Lattices and theta series

A powerfull tool for constructing in a general way modular forms is the theta series
constructed using lattices. In this section we introduct the notion of lattices, quadratic
forms associated with them and lattice theta series, see [AZ, CS] for details. An n

dimensional lattice in Rn has the form Λ = {
∑n

i=1 aivi s.t. ai ∈ Z}, where vi are the
elements of a basis of Rn and are called basis for the lattice. A fundamental region is
a building block which when repeated many times fills the whole space with just one
lattice point in each copy. Different basis vector could define the same lattice, but the
volume of the fundamental region is uniquely determined by Λ. The square of this
volume is called the determinant or discriminant of the lattice. The matrix

M =

v11 · · · v1m

...
...

vn1 · · · vnm

 , (5.13)

where vi = (vi1, · · · , vim) are the basis vectors is called generator matrix for the lattice.
The matrix A = M tM is called Gram matrix and the entry (i, j) of A is the inner product
vi ·vj . The determinant of Λ is the determinant of A. A generic vector x = (x1, · · · , xn)
of the lattice can be written as x = ζM = ζ1v1 + · · · + ζnvn, where ζ = (ζ1, · · · , ζn) is
an arbitrary vector with integer components. Its norm is N(x) = x · x = ζAtζ. This
is a quadratic form associated with the lattice in the integer variables ζ1, · · · , ζn. Any
n-dimensional lattice Λ has a dual lattice, Λ∗, given by:

Λ∗ = {x ∈ Rn s.t. : x · u ∈ Z for all u ∈ Λ}. (5.14)

If a lattice can be obtained from another one by a rotation, reflection and change of
scale we say that the two lattices are equivalent (or similar). Two generators matrices
define equivalent lattices if and only if they are related by M ′ = cUMB, where c is a
non zero constant, U is a matrix with integer entries and determinant ±1, and B is a real
orthogonal matrix. Then, the corresponding Gram matrices are related by A′ = c2UAtU .
If c = 1 the two lattices are congruent and if also detU = 1 they are directly congruent.
Quadratic forms corresponding to congruent lattices are called integrally equivalent, so
there is a one to one correspondence between congruence classes of lattice and integral
equivalence classes of quadratic forms. If Λ is a lattice in n-dimensional space that is
spanned by n independent vectors (i.e. a full rank lattice), then M has rank n, A is a
positive definite matrix, and the associated quadratic form is called a positive definite
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form. A lattice or a quadratic form is called integral if the inner product of any two
lattice vectors is an integer or, equivalently, if the Gram matrix A has integer entries.
One can prove that a lattice is integral if and only if Λ ⊆ Λ∗. An integral lattice with
det Λ = 1, or equivalently with Λ = Λ∗ is called unimodular or self-dual. If Λ is integral
then the inner product x · x is necessarily an integer for all points x of the lattice. If
x · x is an even integer for all x ∈ Λ then the lattice is called even, otherwise odd.
Even unimodular lattices exist if and only if the dimension is a multiple of 8, while odd
unimodular lattices exist in all dimensions.

For a lattice Λ let Nm be the number of vectors x ∈ Λ of norm m = x ·x. Thus, Nm

is also the number of integral vectors ζ that are solutions of the Diophantine equation

ζAtζ = m (5.15)

or, in other words, the number of times that the quadratic form associated with Λ
represents the number m. The (genus one) theta series of a lattice Λ is a holomorphic
function on the Siegel upper half space H1, defined by

ΘΛ(τ) =
∑
x∈Λ

qx·x =
∞∑
m=0

Nmq
m, (5.16)

where q = eπiτ and τ ∈ H1. For example, the theta series associated to the lattice Z is
the classical Jacobi theta constant ΘZ(τ) =

∑∞
m=−∞ q

m2
= 1 + 2q + 2q4 + 2q9 + · · · ≡

θ[00](τ), see Section 5.8. This definition generalizes to theta series of arbitrary genus g.
In this case the vector ζ becomes a g × n matrix ζ with integer entries. In addition,
one also introduces a g × n array x whose rows are the vectors of the lattice Λ. It can
be written as x = ζM . Let Nm ∈ Z be the number of integral matrix solutions of the
Diophantine system

ζAtζ = m, (5.17)

where m is a g × g symmetric matrix with integer entries. The component (i, j) of m
represents the scalar product between the vectors xi ∈ Λ and xj ∈ Λ of x. Thus, Nm is
also the number of the sets x of g-vectors such that xi · xj = mij . In the same spirit of
the genus one case, the genus g theta series associated to a lattice Λ is a holomorphic
function on the Siegel upper half space Hg, defined by

Θ(g)
Λ (τ) =

∑
x∈Λ(g)

eπiTr(x·xτ) =
∑
ζ∈Zg,n

eπiTr(ζAtζτ) =
∑
m

Nm

∏
i≤j

eπimijτij , (5.18)

and τ ∈ Hg. Lattice theta series corresponding to a self-dual n-dimensional lattice, with
n divisible by 8, is a modular form of weight n

2 with respect to the group Γg(1, 2) if the
lattice is odd and with respect to Γg if the lattice is even. Thus, lattice theta series
associated to 16-dimensional self-dual lattices are modular forms of weight 8. There
are eight 16-dimensional self-dual lattice [CS], two even and six odd, and they can
be obtained from the root lattice of some Lie algebra. See also [DbMS, OPSY, MV2].
In what follows we will use a nice property of lattice theta series when restricted to
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block diagonal period matrices: indeed, they factorize in a very simple way when τ ∈
Hk ×Hg−k:

Θ(g)
Λ

(
τk 0
0 τg−k

)
= Θ(k)

Λ (τk)Θ
(g−k)
Λ (τg−k). (5.19)

5.7.2 Fourier coefficients of lattice theta series

In order to express the relations between lattice theta series and the classical theta
constants, we first expand in Fourier series the lattice theta constants. We just need the
coefficient Nm of the series (5.18) for some integer matrix m. It is known (cf. [OPSY])
that in genus five the eight theta series are all independent, whereas for lower genus
there are linear relations among them. Thus, we have to choose at least eight m in such
a way that the matrix of the Fourier coefficients Nm of the eight theta series has rank
8. In Table 5.7 are shown the Fourier coefficients for the eight theta series up to g = 5.
We computed the coefficients for the matrices:

m1 =

(
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)
m2 =

(
2 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)
m3 =

(
3 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)
m4 =

(
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)

m5 =

(
2 0 0 0 0
0 2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)
m6 =

(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

)
m7 =

(
2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 0 0
0 0 0 0 0

)
m8 =

(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

)

m9 =

(
2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 0

)
m10 =

(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
.

Appealing to the geometric interpretation for the matrices mk, with k = 1, · · · , 10,
for each of the eight 16-dimensional self-dual lattices, we are looking for the number
of integer solutions of the Diophantine equation ζAΛ

tζ = mk. In other terms, we are
counting the number of sets x of five vectors in the lattice Λ such that the vector xi
has norm (mk)ii and the inner product with the vector xj is xi · xj = (mk)ij . It is
clear that the Fourier coefficients corresponding, for example, to the matrix m4 can be
interpreted as the Fourier coefficients for the genus two theta series in which the two
orthogonal vectors x1 and x2 have both norm 1, but also as the coefficients of the theta
series of genus g > 2 in which the vectors xi with i > 2 have null norm. It is not hard
to perform this computation using a software like Magma, although the computation of
the coefficients corresponding to the matrix diag(2, 2, 2, 2, 0) may take some hours.

The notation of the Table 5.7 is the same as in [OPSY]. The rows contain the Fourier
coefficients of the theta series corresponding to the eight lattices (D8 ⊕D8)+, Z⊕A+

15,
Z2⊕ (E7⊕E7)+, Z4⊕D+

12, Z8⊕E8, Z16, E8⊕E8, and D+
16, where the last two lattices

are the even ones. At the top of the columns we just indicated the diagonal elements
of the matrices mk, the other elements being zero. As anticipated, the rank of the full
matrix of the coefficient is eight, thus no linear relations between genus five theta series
exist. However, considering the same matrix for genus less than five one can obtain the
relations between theta series, as we will show in the following, for every g ≤ 4. In the
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top of the table we write in bold the matrices strictly necessary for the computation,
whereas some other columns are added as a check. The same convention will be used
throughout in the chapter.

(1,0,0,0,0) (2,0,0,0,0) (3,0,0,0,0) (1,1,0,0,0) (2, 2, 0, 0, 0) (1,1,1,0,0) (2, 2, 2, 0, 0) (1,1,1,1,0) (2,2,2,2,0) (1,1,1,1,1)

Θ(D8⊕D8)+ 0 224 4096 0 38976 0 5069568 0 475270656 0
ΘZ⊕A+

15
2 240 4120 0 43680 0 5765760 0 518918400 0

ΘZ2⊕(E7⊕E7)+ 4 256 4144 8 48896 0 6676992 0 644668416 0
ΘZ4⊕D+

12
8 288 4192 48 60864 192 9181440 384 964200960 0

ΘZ8⊕E8
16 352 4288 224 90944 2688 17176320 26880 2316142080 215040

ΘZ16 32 480 4480 960 175680 26880 47174400 698880 8858304000 16773120
ΘE8⊕E8 0 480 0 0 175680 0 47174400 0 9064742400 0
ΘD+

16
0 480 0 0 175680 0 47174400 0 8858304000 0

Table 5.7: Fourier coefficients for the lattice theta series.

5.8 Riemann theta constants and the forms Ξ
(g)
8

The form Ξ(g)
8 [0(g)], appearing in the expression for the superstring chiral measure,

belongs to M8(Γg(2))O
+

, the space of modular forms of weight eight with respect to the
group Γg(2), and invariant under the action of O+ := Γg(1, 2)/Γg(2). In Section 5.3.3 a
basis for these spaces has been found for g ≤ 5 and a suitable linear combination among
these basis vectors has been obtained by imposing the constraints of Section 2.3.

Before starting the computation of the Fourier coefficients of the functions defined in
Section 5.3.3 we recall briefly the definition, introduced in Chapter 3, of theta constants
with characteristics, which are a powerful tool for constructing modular forms on Γg(2).
An even characteristic is a 2× g matrix ∆ = [ab ], with a, b ∈ {0, 1} and

∑
aibi ≡ 0 mod

2. Let τ ∈ Hg, the Siegel upper half space, then we define the theta constants with
characteristic:

θ[ab ](τ) :=
∑
tm∈Zg

eπi((m+a/2)τ t(m+a/2)+(m+a/2)tb), (5.20)

where m is a row vector. Thus, theta constants are holomorphic functions on Hg.
One can build modular forms of weight eight as suitable polynomials of degree sixteen
in the theta constants. Defining the g × g symmetric matrix M with entries Mii =
m2
i + aimi + a2

i
4 , i = 1, · · · , g and Mij = mimj + aj

2 mi + ai
2 mj + aiaj

4 , 1 ≤ i < j ≤ g, the
definition of theta constant can be rewritten as

θ[ab ](τ) : =
∑
m∈Zg

(−)
a1b1

2
+···+agbg

2 (−)b1m1+···+bgmgeπiTr(Mτ)

= (−)
a1b1

2
+···+agbg

2

∑
m∈Zg

(−)b1m1+···+bgmg
∏
i≤j

eπi(2−δij)Mijτij

=
∑

A∈ Zg,g
4
,tA=A

NA

∏
i≤j

eπiAijτij , (5.21)
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where A is a symmetric g×g matrix with entries in 1
4Z and NA is an integer coefficient.

In particular NA is the number of times7 that the particular matrix A appears in the
sum (5.21). Note that the factor (−)

a1b1
2

+···+agbg
2 is a global sign depending only on the

characteristic ∆ and the coefficient (−)b1m1+···+bgmg is a sign depending on the second
row of the theta characteristic and on the matrix M .

In previous sections, we have computed the dimensions of the spaces of O+-invariants
for g ≤ 5. It turned out that these dimensions are 3, 4, 5, 7 and 8 for g = 1, 2, 3, 4 and 5
respectively, see Proposition 5.5.1. Moreover, a basis has been provided for each of these
genera, by means of the classical Riemann theta constants. For each genus g ≤ 5 we
chose the bases reported in Table 5.8, where the symbol

√
means that the same function

as in lower genus has been taken as element of the basis (with obvious modifications).
We will indicate generically with e

(g)
i the elements of the genus g basis. Each function

Basis/g 1 2 3 4 5

F1 θ[0]16 √ √ √ √

F2 θ[0]4
∑

∆ θ[∆]12 √ √ √ √

F16
∑

∆ θ[∆]16 √ √ √ √

F3 θ[0]8
∑

∆ θ[∆]8
√ √ √

F88
∑

(∆i,∆j)o
θ[∆i]8θ[∆j ]8

√ √

F8 (
∑

∆ θ[∆]8)2 √

G3[0] G3[0]
√

G4[0] G4[0]

Table 5.8: Basis for the O+−invariants

in Table 5.8 is a suitable polynomial of degree sixteen in the theta constants and the
forms Ξ(g)

8 [0(g)] are suitable linear combinations of them. In order to compare the two
expressions of the proposed superstring chiral measure for g ≤ 5 we also need the Fourier
coefficients of the basis of the O+-invariants. In general, given two series

∑
n anq

n and∑
m bmq

m, their product is
∑

n anq
n
∑

m bmq
m =

∑
k ckq

k, with ck =
∑

m+n=k anbm.
In this way one computes the Fourier coefficients of the eight functions starting from
the ones of the theta constants. However, for increasing g the computation becomes
extremely lengthy, due to the huge number of monomials appearing in the definition
of the e(g)

i . Thus, although in principle possible by hand, we perform the computation
using a computer and the C + + language, see Section 5.12.

5.9 CDG ansätze and OPSY ansätze for Ξ
(g)
8

Before starting the computation of the Fourier coefficients we review the expressions of
the forms Ξ(g)

8 [0(g)] for g ≤ 5 in both formalisms. Again we will call Ξ(g)
8 [0]CDG the forms

7Counted with signs given by the factor multiplying the product of exponentials.
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we have defined and Ξ(g)
8 [0]OPSY the forms of [OPSY]. The expressions of the forms

Ξ(g)
8 [0(g)]CDG constructed using the classical theta constants, see also [CDG1, CDG2]

for the case g ≤ 5, are:

Ξ(1)
8 [0]CDG =

2
3
F

(1)
1 − 1

3
F

(1)
2 ,

Ξ(2)
8 [0]CDG =

2
3
F

(2)
1 +

1
3
F

(2)
2 − 1

2
F

(2)
3 ,

Ξ(3)
8 [0]CDG =

1
3
F

(3)
1 +

1
3
F

(3)
2 − 1

4
F

(3)
3 − 1

64
F

(3)
8 +

1
16
F

(3)
88 ,

Ξ(4)
8 [0]CDG =

1
6
F

(4)
1 +

1
3
F

(4)
2 − 1

8
F

(4)
3 +

1
64
F

(4)
8 − 1

16
F

(4)
88 −

1
2
G

(4)
3 [0(4)]− c4J

(4),

Ξ(5)
8 [0]CDG =

1
12
F

(5)
1 +

1
3
F

(5)
2 − 1

16
F

(5)
3 − 1

32
F

(5)
8 +

1
8
F

(5)
88 −

1
4
G

(5)
3 [0(5)]

+ 2G(5)
4 [0(5)]− c5J

(5).

Here we have included the terms −c4J
(4) and −c5J

(5) to have vanishing cosmological
constant on the whole H4 and H5 and to compare these functions to the ones of [OPSY].
In particular, c4 = 32·5

26·7·17
and c5 = 17

25·7·11
(see Section 5.6). The forms Ξ(g)

8 [0(g)]OPSY
defined in [OPSY] by means of the lattice theta series are:

Ξ(1)
8 [0]OPSY = −31

32
Θ(D8⊕D8)+ +

512
315

ΘZ⊕A+
15
− 16

21
ΘZ2⊕(E7⊕E7)+ +

1
9

ΘZ4⊕D+
12

− 1
168

ΘZ8⊕E8
+

1
10080

ΘZ16 ,

Ξ(2)
8 [0]OPSY =

155
512

Θ(D8⊕D8)+ − 16
21

ΘZ⊕A+
15

+
23
42

ΘZ2⊕(E7⊕E7)+ −
3
32

ΘZ4⊕D+
12

+
29

5376
ΘZ8⊕E8

− 1
10752

ΘZ16 ,

Ξ(3)
8 [0]OPSY = − 155

4096
Θ(D8⊕D8)+ +

1
9

ΘZ⊕A+
15
− 3

32
ΘZ2⊕(E7⊕E7)+ +

101
4608

ΘZ4⊕D+
12

− 3
2048

ΘZ8⊕E8
+

1
36864

ΘZ16 ,

Ξ(4)
8 [0]OPSY =

31
16384

Θ(D8⊕D8)+ − 1
168

ΘZ⊕A+
15

+
29

5376
ΘZ2⊕(E7⊕E7)+

− 3
2048

ΘZ4⊕D+
12

+
23

172032
ΘZ8⊕E8

− 1
344064

ΘZ16 − b4
(

ΘE8⊕E8 −ΘD+
16

)
,

Ξ(5)
8 [0]OPSY = − 1

32768
Θ(D8⊕D8)+ +

1
10080

ΘZ⊕A+
15
− 1

10752
ΘZ2⊕(E7⊕E7)+

+
1

36864
ΘZ4⊕D+

12
− 1

344064
ΘZ8⊕E8

+
1

10321920
ΘZ16 − b5

(
ΘE8⊕E8 −ΘD+

16

)
.

Here b4 = 22·33·5·11
7·17 and b5 = −25·17

7·11 (see [MV2]) make the cosmological constant
vanishing on the whole H4 and H5 respectively. One of the goals of this chapter is
to show that up to genus five the two expressions for the superstring chiral measure
coincide. For g ≤ 4 this was expected from the uniqueness theorems. Instead, for
g = 5 the formalism of the classical theta constants and the one of the lattice theta
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series lead to distinct functions both satisfying the three constraints of Section 2.3.
Actually, this indetermination could appear for each choice for the basis of the spaces
M θ

8 (Γ5(2))O
+

or M θS
8 (Γ5(2)). Moreover, their difference is proportional to the Schottky

form J (5) and the two forms become equivalent if one requires also the vanishing of the
cosmological constants, i.e. the vanishing of their sum over all the even characteristics,∑

∆ Ξ(g)
8 [∆(g)] = 0.

5.10 Change of basis

In this section we search the relations between the functions defined in Section 5.8 and
the lattice theta series. For g ≤ 3 one can proceed in several way, but for g ≥ 4 the
knowledge of the Fourier coefficients becomes necessary.

5.10.1 The case g=1

In genus one we can expand the eight lattice theta series on the basis of O+-invariants
F

(1)
1 , F (1)

2 , F (1)
16 using the Table 2 in [OPSY], page 491, that we reproduce in Table

5.9. There, Λi, i = 0, · · · , 7 label the eight lattices and τi, bi and ci are the coefficients

i Λi τi bi ci

0 (D8 ⊕D8)+ 0 1 0
1 Z⊕A+

15 2 1 0
2 Z2 ⊕ (E7 ⊕ E7)+ 4 1 0
3 Z4 ⊕D+

12 8 1 0
4 Z8 ⊕ E8 16 1 0
5 Z16 32 1 0
6 E8 ⊕ E8 0 0 1
7 D+

16 0 0 1

Table 5.9: Linear relation between lattice theta series.

of the linear expansions of the series ΘΛi on the basis Ξ(1)
8 [0(1)]OPSY , Θ(1)

Λ0
, Θ(1)

Λ6
for

the space [Γ1(1, 2), 8]. Thus, Θ(1)
Λi

= τiΞ
(1)
8 [0(1)] + biΘ

(1)
Λ0

+ ciΘ
(1)
Λ6

. It is easy to show

that the relations Ξ(1)
8 [0(1)]OPSY = 1

16θ[
0
0]4η12 = 1

24F
(1)
1 − 1

48F
(1)
2 (cf. [D], section 4.1),

ΘZ16 = θ[00]16 ≡ F (1)
1 (cf. [CS], first formula, page 46), Θ(D8⊕D8)+ = −1

3F
(1)
1 + 2

3F
(1)
2 (by

the fifth line of Table 5.9) and ΘE8⊕E8 = 1
2F

(1)
16 (cf. [CS], last formula, page 47) hold.

Thus, the linear relations of Table 5.10 follow immediatly.
Moreover, the lattice theta series in genus one are not all linear independent, but

they generate a three dimensional vector space. Therefore, they must satisfy some linear
relations, which can be obtained studying the five dimensional kernel of the first three
bold columns of Table 5.7 computed with Magma. This give the following relations
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Theta series/Basis F1 F2 F16

Θ(D8⊕D8)+ -1/3 2/3 0
ΘZ⊕A+

15
-1/4 15/24 0

ΘZ2⊕(E7⊕E7)+ -1/6 7/12 0
ΘZ4⊕D+

12
0 1/2 0

ΘZ8⊕E8
1/3 1/3 0

ΘZ16 1 0 0
ΘE8⊕E8 0 0 1/2
ΘD+

16
0 0 1/2

Table 5.10: Theta series on the basis F1, F2 and F16.

among theta series:


0 0 0 0 0 0 −1 1
15 −16 0 0 0 1 0 0
7 −8 0 0 1 0 0 0
3 −4 0 1 0 0 0 0
1 −2 1 0 0 0 0 0





Θ(D8⊕D8)+

ΘZ⊕A+
15

ΘZ2⊕(E7⊕E7)+

ΘZ4⊕D+
12

ΘZ8⊕E8

ΘZ16

ΘE8⊕E8

ΘD+
16


= 0.

As a check, one can show that these relations are in complete agreement with those
that can be computed using Table 5.10. For example, from the second line one reads
15Θ(D8⊕D8)+−16ΘZ⊕A+

15
+ ΘZ8⊕E8

= 0. From the Fourier coefficients of the eight theta
series and from their expansion on the basis of the O+−invariants we can also find the
Fourier coefficients for the three functions F (1)

1 , F (1)
2 and F (1)

16 expressed as polynomials
of degree sixteen in the classical theta constants as showed in Table 5.11. As this space is
three dimensional, we just need three coefficients and we choose the ones corresponding
to the matrices (that in g = 1 are just numbers) 1, 2 and 3. Using the C + + program
(cf. Section 5.12) we also checked the correctness of the coefficients and further we
computed the coefficient corresponding to the matrix 0. Actually, for lower genus this
computation can be performed easily by hand.

5.10.2 The case g=2

Using the factorization properties of the classical theta constants one obtains the fac-
torization of the basis of the space of O(+) invariants, whereas for the theta series one
can apply property (5.19). Thus, we can find the expansions of the g = 2 theta series on
the basis of the four O+−invariants as follows (sometimes for brevity we will indicate
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Functions/m 0 1 2 3

F1 1 32 480 4480
F2 2 16 576 8384
F16 2 0 960 0

Table 5.11: Fourier coefficients for the F1, F2 and F16 in genus one.

this space as Og). In general we have

Θ(g)
Λi

(τ) =
dimOg∑
j=1

k
(g) j
i e

(g)
j , (5.22)

where e(g)
j are the basis for the genus g O+-invariants, written as polynomials in the clas-

sical theta constants, and k(g)j
i are the constants we want to determine. The restriction

on H1 ×Hg−1 of the theta series is

Θ(g)
Λi

(τ1,g−1) = Θ(g)
Λi

(τ1)Θ(g−1)
Λi

(τg−1) =
dimO1∑
j=1

k
(1) j
i e

(1)
j

dimOg−1∑
m=1

k
(g−1)m
i e(g−1)

m

=
dimO1∑
j=1

dimOg−1∑
m=1

k
(1) j
i k

(g−1)m
i e

(1)
j e(g−1)

m , (5.23)

but also

Θ(g)
Λi

(τ1,g−1) =
dimOg∑
j=1

k
(g) j
i e

(g)
j (τ1,g−1) =

dimOg∑
j=1

k
(g) j
i (

dimO1∑
l=1

a
(1)l
j e

(1)
l )(

dimOg−1∑
m=1

a
(g−1)m
j e(g−1)

m )

=
dimOg∑
j=1

dimO1∑
l=1

dimOg−1∑
m=1

k
(g) j
i a

(1)l
j a

(g−1)m
j e

(1)
l e(g−1)

m .

(5.24)

The expressions (5.23) and (5.24) must be equal. Thus, for every fixed choice of l and
m we obtain a linear equation in k

(g) j
i . The solution of this linear system gives the

coefficients in the change of basis. We give the result for the case g = 2 in Table 5.12.

As expected (cf. [DvG,D,OPSY]), the matrix of the coefficients has rank four, which
is then also the dimension of the kernel and we can determine the linear relations among
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Theta series/Basis F1 F2 F3 F16

Θ(D8⊕D8)+ 1/3 2/3 -1/2 0
ΘZ⊕A+

15
7/32 35/64 -45/128 0

ΘZ2⊕(E7⊕E7)+ 1/8 7/16 -7/32 0
ΘZ4⊕D+

12
0 1/4 0 0

ΘZ8⊕E8
0 0 1/4 0

ΘZ16 1 0 0 0
ΘE8⊕E8 0 0 0 1/4
ΘD+

16
0 0 0 1/4

Table 5.12: Theta series on the basis F1, F2, F3 and F16.

the theta series


0 0 0 0 0 0 −1 1
−105 224 −120 0 0 1 0 0
−21 48 −28 0 1 0 0 0
−3 8 −6 1 0 0 0 0





Θ(D8⊕D8)+

ΘZ⊕A+
15

ΘZ2⊕(E7⊕E7)+

ΘZ4⊕D+
12

ΘZ8⊕E8

ΘZ16

ΘE8⊕E8

ΘD+
16


= 0.

For example, from the third line, we have−21 Θ(D8⊕D8)++48 ΘZ⊕A+
15
−28 ΘZ2⊕(E7⊕E7)++

ΘZ8⊕E8
= 0. One can verify that the same relations result by the study of the kernel

of the first four bold columns of the Table 5.7 of the Fourier coefficients for the lattice
theta series.

As for the genus one case, we compute the Fourier coefficients for the four functions
F

(2)
1 , F (2)

2 , F (2)
3 and F

(2)
16 both using the previous results and the C + + program. The

Table 5.13 shows the result.

Functions/m (0, 0) (1,0) (2,0) (3,0) (1,1) (2, 2)

F1 1 32 480 4480 960 175680
F2 4 32 1152 16768 192 243456
F3 4 64 1408 17152 896 363776
F16 4 0 1920 0 0 702720
F8 16 0 7680 0 0 2810880
F88 0 0 1024 -16384 0 546816

Table 5.13: Fourier coefficients for the F1, F2, F3 and F16 in genus two.
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5.10.3 The case g = 3

In genus three we can obtain the expansion of the theta series on the basis e(3)
i with

the method of factorization explained in the previous section. We report the result in
Table 5.14. As expected, the matrix of the coefficients has rank five, thus its kernel has

Theta series/Basis F1 F2 F3 F16 F88

Θ(D8⊕D8)+ 0 0 0 1/8 -1/16
ΘZ⊕A+

15
7/512 35/512 -45/2048 315/4096 -315/8192

ΘZ2⊕(E7⊕E7)+ 1/64 7/64 -7/256 21/512 -21/1024
ΘZ4⊕D+

12
0 1/8 0 0 0

ΘZ8⊕E8
0 0 1/8 0 0

ΘZ16 1 0 0 0 0
ΘE8⊕E8 0 0 0 1/8 0
ΘD+

16
0 0 0 1/8 0

Table 5.14: Theta series on the basis F1, F2, F3, F16 and F88 in genus three.

dimension three. Again we find the linear relations studying the kernel of the matrix:

 0 0 0 0 0 0 −1 1
315 −896 720 −140 0 1 0 0
21 −64 56 −14 1 0 0 0





Θ(D8⊕D8)+

ΘZ⊕A+
15

ΘZ2⊕(E7⊕E7)+

ΘZ4⊕D+
12

ΘZ8⊕E8

ΘZ16

ΘE8⊕E8

ΘD+
16


= 0.

As in the two previous cases, the same linear relations follow from the Table 5.7 of the
Fourier coefficients of the lattice theta series considering the first five bold columns.

As for genus one and two we compute the Fourier coefficients for the functions F (3)
1 ,

F
(3)
2 , F (3)

3 , F (3)
16 and F

(3)
88 and we control the result using the computer. In Table 5.15

we show the result. We also compute the Fourier coefficients of the functions F (3)
8 and

G
(3)
3 [0(3)]. Thus, we get another proof of the relation (5.5):

G
(3)
3 [0(3)] =

1
64
F

(3)
8 − 1

16
F

(3)
88 −

5
448

(8F (3)
16 − F

(3)
8 ), (5.25)

as can be check inserting in the previous equation the Fourier coefficients.

5.10.4 The case g = 4

The genus four case is the first interesting case because the factorization approach does
no more work. The failure of this method is due to the fact that the space of moduli of
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Functions/m (0, 0, 0) (1,0,0) (2,0,0) (3,0,0) (1,1,0) (2, 2, 0) (1,1,1) (2, 2, 2)

F1 1 32 480 4480 960 175680 26880 47174400
F2 8 64 2304 33536 384 486912 1536 73451520
F3 8 128 2816 34304 1792 727552 21504 137410560
F16 8 0 3840 0 0 1405440 0 377395200
F8 64 0 30720 0 0 11243520 0 3019161600
F88 0 0 4096 -65536 0 2187264 0 673677312
G3[0] 1 0 224 4096 0 38976 0 5069568

Table 5.15: Fourier coefficients for the F1, F2, F3, F16 and F88 in genus three.

curves is not the whole Siegel upper half plane. Indeed, the two theta series defined by
the lattice D+

16 and E8 ⊕E8 are no longer the same function and the differences among
this two functions are lost by restricting on the boundary of H4.

Thus, in order to find the relations between the lattice theta series and the functions
e

(4)
i we need the Fourier coefficients of the functions e(4)

i . We have computed them with
the C + + program. The results are reported in Table 5.16. Adding the rows of this

(0,0,0,0,0) (1,0,0,0,0) (2,0,0,0,0) (3,0,0,0,0) (1,1,0,0,0) (2, 2, 0, 0, 0) (1,1,1,0,0) (2, 2, 2, 0, 0) (1,1,1,1,0) (2,2,2,2,0)

F1 1 32 480 4480 960 175680 26880 47174400 698880 8858304000
F2 16 128 4608 67072 768 973824 3072 146903040 6144 15427215360
F3 16 256 5632 68608 3584 1455104 43008 274821120 430080 37058273280
F16 16 0 7680 0 0 2810880 0 754790400 0 141732864000
F8 256 0 122880 0 0 44974080 0 12076646400 0 2320574054400
F88 0 0 16384 -262144 0 8749056 0 2694709248 0 549726191616

G3[0] 15 32 3616 61824 -64 655808 256 85511424 -1536 8099185152
G4[0] 1 0 224 4096 0 38976 0 5069568 0 386797056
J (4) 0 0 0 0 0 0 0 0 0 -52848230400

Table 5.16: Fourier coefficients for the basis F1, F2, F3, F16, F88, F8 and G3[0] in genus four.
In addition we compute the coefficients of G4[0] and of J (4).

table to the ones of Table 5.7 and considering the first seven bold columns, one finds,
as expected, that the complete matrix has rank seven. Again, we get the expansions
of the lattice theta series on the basis e(4)

i . The result is shown in Table 5.17. These
Fourier coefficients also provide a proof of the relation (5.9):

G
(4)
4 [0(4)] =

1
256

F
(4)
8 − 1

64
F

(4)
88 +

3
1792

J (4)

=
1

448
F

(4)
8 − 1

64
F

(4)
88 +

3
112

F
(4)
16 .
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Theta series/Basis F1 F2 F3 F16 F88 F8 G3[0]

Θ(D8⊕D8)+ 0 0 0 0 -1/64 1/256 0
ΘZ⊕A+

15
7/8192 35/4096 -45/32768 135/16384 -315/65536 45/65536 315/8192

ΘZ2⊕(E7⊕E7)+ 1/512 7/256 -7/2048 0 0 0 21/512
ΘZ4⊕D+

12
0 1/16 0 0 0 0 0

ΘZ8⊕E8
0 0 1/16 0 0 0 0

ΘZ16 1 0 0 0 0 0 0
ΘE8⊕E8 0 0 0 0 0 1/256 0
ΘD+

16
0 0 0 1/16 0 0 0

Table 5.17: Theta series on the basis F1, F2, F3, F16, F88, F8 and G3[0] in genus four.

Moreover, we obtain a linear relation between the lattice theta series

(
1 −1024/315 64/21 −8/9 2/21 −1/315 −3/7 3/7

)



Θ(D8⊕D8)+

ΘZ⊕A+
15

ΘZ2⊕(E7⊕E7)+

ΘZ4⊕D+
12

ΘZ8⊕E8

ΘZ16

ΘE8⊕E8

ΘD+
16


= 0.

5.10.5 The case g = 5

In genus five, we consider the eight columns of Table 5.7. This matrix has rank eight,
so all the theta series are linearly independent. As in genus four, to study the relations
between the Riemann theta constants and the lattice theta series we need the Fourier
coefficients of the functions e(5)

i . We have computed them by the computer and we
report the result in Table 5.18, that also has rank eight. Gluing this table to the one of

(0,0,0,0,0) (1,0,0,0,0) (2,0,0,0,0) (3,0,0,0,0) (1,1,0,0,0) (2, 2, 0, 0, 0) (1,1,1,0,0) (2, 2, 2, 0, 0) (1,1,1,1,0) (2,2,2,2,0) (1,1,1,1,1)

F1 1 32 480 4480 960 175680 26880 47174400 698880 8858304000 16773120
F2 32 256 9216 134144 1536 1947648 6144 293806080 12288 30854430720 0
F3 32 512 11264 137216 7168 2910208 86016 549642240 860160 74116546560 6881280
F16 32 0 15360 0 0 5621760 0 1509580800 0 283465728000 0
F8 1024 0 491520 0 0 179896320 0 48306585600 0 9282296217600 0
F88 0 0 65536 -1048576 0 34996224 0 10778836992 0 2198904766464 0

G3[0] 155 480 38560 640640 64 7174336 -2304 954147072 22016 90356353536 -225280
G4[0] 31 32 7200 127360 -64 1279424 256 166624512 -1536 14287938048 12288
J (5) 0 0 0 0 0 0 0 0 0 -211392921600 0

Table 5.18: Fourier coefficients for the F1, F2, F3, F16, F88, F8, G3[0] and G4[0] in genus five.

the Fourier coefficients for the lattice theta series we obtain a matrix of rank eight. So,
all the lattice theta series can be expressed as linear combination of e(5)

i and vice versa!
Indeed we can be more precise. As the rank of the whole set of coefficients is 8, we get



5. Genus five 125

8 linear relations among the two bases:

F16 = 25ΘD+
16
, F8 = 210ΘE8⊕E8 , F1 = ΘZ16 , (5.26)

F3 = 25ΘZ8⊕E8
, F2 = 25ΘZ4⊕D+

12
, F8 − 4F88 = 210Θ(D8⊕D8)+ ,(5.27)

−4F1 − 112F2 + 7F3 − 84G3 = −16384ΘZ2⊕(E7⊕E7)+ , (5.28)

−28F1 − 560F2 + 45F3 − 1260G3 − 10080G4 = −524288ΘZ⊕A+
15
. (5.29)

Note that the relations (5.26) can be directly checked. The relations (5.27) also are
simply a generalization of the lower genus ones. However, for all the relations we can
also give some consistency cheks. Summing each side of the eight equalities over the
528 characteristics we obtain eight identities. For example for the (5.29) we obtain
−524288F (5)

16 = −524288 · 25ΘD+
16

and 25ΘD+
16

is exactly the F (5)
16 . These sums can be

performed using Table 5.6 and Table 1 and Appendix B.2 of [MV2]. Moreover, one
verifies that also the restriction to H1 ×H4 of each equality is an identity.

5.11 Equivalence of the CDG and the OPSY construction

In this section we prove the equivalence of the two functions constructed using the
classical theta functions and the lattice theta series. They at most differ by a multiple
of the Schottky form and become identical if one fixes the value of the cosmological
constant to zero. We first study the Fourier coefficients of the two Ξ(g)

8 [0(g)], then we
give an analytic proof of their equivalence.

5.11.1 Fourier coefficients for the partition function

Inserting the Fourier coefficients of the basis e(g)
i and of the lattice theta series in the

definition of the functions Ξ(g)
8 [0(g)] of Section 5.9 we can compute, for every genus

g ≤ 5, the Fourier expansions of the Ξ(g)
8 [0(g)]. Table 5.19 shows these coefficients for

the two expressions of the forms Ξ8. We also add 0 in the first column for the functions
Ξ(g)

8 [0]OPSY , because, from the geometric discussion of Section 5.7, it is clear that there
are no vectors in the lattice of null norm. We conclude that the two functions are the
same up to genus five, apart for an unessential global factor 24g due to the different
definition of the Dedekind function used here and in [OPSY] (cf. also the footnote 6 of
this chapter or the footnote 7 in [D], page 17).

5.11.2 Analytic proof of the equivalence of the CDG and the OPSY

construction

In this section we give an analytic proof of the equivalence of the two constructions of
the forms Ξ8[∆] through the study of their restriction to H1 × H4. We will show that
(Ξ(5)

8 [0(5)]CDG − Ξ(5)
8 [0(5)]OPSY )(τ1,4) = 0 on the whole H1 × H4. To compare the two

expressions of the forms Ξ8 one has to get rid of the factor 24g. We choose to multiply
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(0,0,0,0,0) (1,0,0,0,0) (2,0,0,0,0) (3,0,0,0,0) (1,1,0,0,0) (2, 2, 0, 0, 0) (1,1,1,0,0) (2, 2, 2, 0, 0) (1,1,1,1,0) (2,2,2,2,0) (1,1,1,1,1)

Ξ(1)
8 [0]OPSY 0 1 8 12

Ξ(1)
8 [0]CDG 0 16 128 192

Ξ(2)
8 [0]OPSY 0 0 0 0 1 64

Ξ(2)
8 [0]CDG 0 0 0 0 256 16384

Ξ(3)
8 [0]OPSY 0 0 0 0 0 0 1 192

Ξ(3)
8 [0]CDG 0 0 0 0 0 0 4096 786432

Ξ(4)
8 [0]OPSY 0 0 0 0 0 0 0 0 1 38976

17

Ξ(4)
8 [0]CDG 0 0 0 0 0 0 0 0 65536 2554331136

17

Ξ(5)
8 [0]OPSY 0 0 0 0 0 0 0 0 0 16043183100

11 1

Ξ(5)
8 [0]CDG 0 0 0 0 0 0 0 0 0 16822496762265600

11 1048576

Table 5.19: Fourier coefficients for the two expressions of the form Ξ8. In the first line of each
genus are the coefficients of the OPSY forms and in the second line the ones of the CDG forms.

Ξ(g)
8 [0]OPSY by 24g that implies that the constants b4 and b5 of Section 5.9 become

b4 = −27·3
7·17 and b5 = −25·17

7·11 . Indeed, using the expressions of Section 5.9:

Ξ(5)
8 [0(5)]OPSY (τ1,4) = Ξ(1)

8 [0(1)](τ1)Ξ(4)
8 [0(4)](τ4)

+
(

25 · 3 · 13
7 · 17

Θ(1)
Z8⊕E8

− 26 · 32 · 5
7 · 17

Θ(1)
Z16

+
25 · 17
7 · 11

Θ(1)
E8⊕E8

)(
Θ(4)
E8⊕E8

−Θ(4)

D+
16

)
= Ξ(1)

8 [0(1)](τ1)Ξ(4)
8 [0(4)](τ4)

+
[

3
22 · 7 · 17

(
−2

3
F

(1)
1 + 5F (1)

2

)
− 17

24 · 7 · 11
F

(1)
16

]
J (4), (5.30)

where we have used the linear relation among the genus four lattice theta series found
in 5.10.4, the genus one relations among the lattice theta series and the basis functions
e

(4)
i of Section 5.10.1, and the fact that8 J (4) = −28(Θ(4)

E8⊕E8
− Θ(4)

D+
16

). With a similar

computation we obtain for the form Ξ(5)
8 [0(5)]CDG:

Ξ(5)
8 [0(5)]CDG(τ1,4) = Ξ(1)

8 [0(1)](τ1)Ξ(4)
8 [0(4)](τ4)

+
(
− 32

23 · 7 · 17
F

(1)
1 +

3 · 5
22 · 7 · 17

F
(1)
2 − 17

24 · 7 · 11
F

(1)
16

)
J (4)

= Ξ(1)
8 [0(1)](τ1)Ξ(4)

8 [0(4)](τ4)

+
[

3
22 · 7 · 17

(
−2

3
F

(1)
1 + 5F (1)

2

)
− 17

24 · 7 · 11
F

(1)
16

]
J (4), (5.31)

that is exactly the same as (5.30). This and the fact that the sum over the 528 genus five
even characteristics of both the forms Ξ(5)

8 [0(5)] is a multiple of the Schottky form show
the equivalence of the two construcions. Fixing the value of the cosmological constant
and getting rid of the factor 24g, they do not differ neither for a multiple of J (5) because,
if so, a term proportional to F (1)

16 J
(4) should appear in the difference of their restrictions

due to the fact that J (5)(τ1,4) = 2F (1)
16 J

(4). The factorizations can be obtained using the

8In general J(g) = −22g(Θ
(g)
E8⊕E8

−Θ
(g)

D+
16

).
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properties of the lattice theta series (see Section 5.7) and the restrictions properties of
the functions e(5)

i . Alternatively, one can employs the linear relations found in Section
5.10.5. Indeed changing the basis with those relations one obtains Ξ(5)

8 [0(5)]CDG from
Ξ(5)

8 [0(5)]OPSY and vice versa. This is another check for the computation leading to
relations (5.26), (5.27), (5.28) and (5.29).

5.12 The program

In this section we briefly present the structure of the program we used to compute the
Fourier coefficients of the functions e(g)

i . The code is available on http://www.dfm.

uninsubria.it/thetac/

An element of Hg has the generic form:

τ =


τ1 τg+1 · · · · · · τ2g−1

τg+1 τ2 τ2g · · · τ3g−3

...
...

. . . · · ·
...

τ2g−2 τ3g−4 · · · τg−1 τg(g+1)/2

τ2g−1 τ3g−3 · · · · · · τg

 . (5.32)

Thus, from the definition of theta constant (5.21) it is clear that truncating the series
we obtain a polynomial in g(g + 1)/2 variables qij = eπiτij , with 1 ≤ i ≤ j ≤ g and the
same holds true for the functions e(g)

i . It will be useful to rewrite the definition (5.21)
as:

θ[ba](τ) = (−)
1
2

P
i aibi

∑
m∈Zg

(−)
P
imibi

(∏
i

p
(2mi+ai)

2

ii

)∏
i<j

p
2(2mi+ai)(2mj+aj)
ij

 ,

(5.33)
with pij = q

1/4
ij , so the exponents are integer numbers. This renders faster the compu-

tations with the computer. The previous expansion may be thought as a polynomial in
pii with coefficients that are polynomials in pij , i < j (this observation will be useful
later).

To perform the computation we have defined some C++ classes. First, we have defined
the generic class Polynomial, defined as template <typename CffType, typename

ExpType> class Polynomial, which accepts two types as parameters, CffType and
ExpType. CffType represents the type of the coefficient of a single monomial in Polynomial

and ExpType the type of the exponent. In order to perform the elementary opera-
tions with polynomials, we have introduced the operators of addition, multiplication
and raising to power for the Polynomial class. Then, we have defined a simple poly-
nomial with integer coefficients: typedef Polynomial<cln::cl I, short> IntPol9.
This type will be the coefficient for the ThetaPol polynomial, which will be used to

9To manage long integer coefficients we use the cl I class from CLN library, http://www.ginac.de/

CLN/
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represent the series expansion of the theta constants: typedef Polynomial<IntPol,

unsigned short> ThetaPol.
In order to compute the Fourier coefficients corresponding to the ten diagonal ma-

trices of Section 5.7.2 we proceed as follows. For each even theta constant10 we “fill up”
the ThetaPol by computing the (finite) sums (5.33) in which each component of m ∈ Zg

is no bigger than three. Using the operations on the polynomials we just defined, the
ThetaPol’s are the bricks to build up the functions e(g)

i from their definition. Therefore,
the function e

(g)
i has the generic form:

e
(g)
i (τ) =

∑
n1,··· ,ng∈N0

(· · · )pn1
11 · · · p

ng
gg , (5.34)

where in (· · · ) there are the non diagonal or constant terms. Note that the exponents
of the diagonal terms pii are always positive, hence multiplying the polynomials of the
theta constants the exponents cannot decrease. Due to our choice for the ten matrices,
we can introduce a sort of “filter” for the value of the exponents. Roughly speaking, in
the expansion (5.34) we neglect the terms with exponent of pii “bigger than the ones
appearing in the diagonal of the ten matrices”. This allows us to make the computations
very fast. Thus, the Fourier coefficients of the matrix m = diag(m1, · · · ,mg) is the
constant term in (· · · ) of the monomial with n1 = 4m1, · · · , ng = 4mg.

10Recall that the number of even theta constants is 2g−1(2g+1).



Chapter 6

Conclusions and perspectives

In this thesis we have considered the problem of the computation of superstring am-
plitudes. Such topic directly leads to the analysis of the perturbative formulation of
superstring theory. If the bosonic case is well understood and finds solid basis in the-
orems of algebraic geometry, the supersymmetric case is more delicate and includes
certain problems not yet solved. Actually, it is a well known fact that the path integral
formulation of superstring theory at higher genus is affected by ambiguities, mainly due
to the difficulty in finding a supercovariant formulation. Indeed, even though the super
moduli space of super Riemann surfaces can be locally split in even and odd part, this
does not work globally and the result comes out to depend on the choice of a bosonic
slice in a non covariant way. For these reasons, the path integral computation of ampli-
tudes from first principles is highly nontrivial and it is not clear how it can be performed
for genus higher than two. In a series of papers, D’Hoker and Phong have been able to
determine the genus two amplitudes by direct calculation. This is a remarkable result.
Their solution is expressed in terms of some suitable equivariant modular forms. As a
byproduct they formulated a set of ansätze that should be satisfied by the amplitudes
at all genera. However, they were not able to obtain an analog expression for the ampli-
tudes neither for the genus three case. This must be imputed to the too much restrictive
assumptions for the expression of the measure. In this thesis we have proposed a slightly
modification of their ansätze and we have shown that a solution exists and for low genus
it turns out to be unique. We have provided a detailed explanation of the results and
the methods adopted to determine a good candidate for the superstring measure. Our
method is based on the representation theory of finite groups. Indeed, this approach
makes clear the transformation properties that the superstring measure is required to
satisy. We have used the action of the finite symplectic group on modular forms, and
we have recovered that the representation space of interest for the computation of su-
perstring measure is the space of modular forms of weight eight that are left invariant
by a suitable subgroup of the symplectic group. In the construction of the measures we
have token advantage of the theory of induced representation. This approach is similar
to the method used by Wigner to classify the irreducible representations of the Poincaré
group induced from the representation of the little group. Indeed, the representation
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furnished by the space of forms is built up from the representation given by a suitable
subspace invariant under the action of subgroup of the entire modular group. Thus,
we have devoted a good part of this thesis to the study of the representations of the
finite symplectic group on the space of modular forms of various weight and genus. At
low genus one can decompose the space of modular forms in irreducible representation
subspaces in a systematic way. In principle this technique can be extended to higher
genus but the complexity of the computations increase rapidly for growing g.
Our axiomatic strategy, yet adopted by D’Hoker and Phong and by many other authors
earlier (see [Mo1] and references therein), is not to provide a direct computation from
first principles, but consists in looking for reasonable ansätze, inspired by first princi-
ples, which should lead to a unique solution that must then satisfy a number of tests.
The ansatz we have chosen is very closed to the one of D’Hoker and Phong, but the very
slight modification has been proved to be crucial in providing a solution. This ansatz is
the more general one after the assumption of the validity of the relation (2.15). We have
seen that such assumption is highly criticizable, but the fact that for low genus it gives
rise to the existence of a unique solution is quite encouraging. For genus four, the result
seem to be weakened by the fact that the Shottky set has strict positive codimension in
the Siegel upper half plane, and, indeed, we have proved the uniqueness in a restricted
form. However, in [OPSY] the authors show the uniqueness of the solution without any
restriction.
We have also checked that, as in general predicted by supersymmetry, the cosmological
constant computed with our solutions vanishes up to genus four. In [Mo2] it has been
shown that also the two-point and the three-point functions vanish, according to the
non renormalization theorems (cf. [Ma1,Ma2,Mo4]), but the proof is restricted to hyper-
elliptic surfaces, which are a zero measure subset for genus higher than 2. A complete
proof of the vanishing of the two-point function at genus g = 3 for our solution has been
provided in [GSM]. The check of the same condition for the three point function and
for the g = 4 case have yet to be provided beyond the hyperelliptic case.
Recently other papers appeared providing new expressions and generalizations of our
results, see for example [Gr,SM1, MV1, OPSY]. In particular, the remarkable paper of
Grushevsky [Gr] provided an elegant formal expressions for the solution at any genus g.
Unfortunately, such expressions involve square and higher order roots of modular forms,
which are not well defined in general. In [SM1] it has been proved that the Grushevsky’s
expression is well defined for g = 5. In Chapter 5 we have considered the genus five case
and we have obtained a candidate for the superstring measure constructed by means
of the classical theta constants in which no roots appear. Another candidate for the
g = 5 case is determined in [OPSY]. In this paper the authors started from a basis
of the lattice theta series of weight eight M θS

8 (Γ5(2)), whereas we start from a basis of
the genus five modular forms of weight eight M θ

8 (Γ5(2))O
+

. In each case it has been
determined a unique solution modulo J (5). By computing the Fourier coefficients of the
functions of both bases we have shown that these two solution are equivalent modulo
J (5) and coincide if we impose the vanishing of the cosmological constant. It is not yet
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clear if these two expressions are equivalent to the solution of Grushevsky. In order to
prove the equivalence of our solution and the one found in [OPSY] we also determined
an explicit identification of the spaces M θS

8 (Γg(2)) and M θ
8 (Γg(2))O

+
for g = 1, . . . , 5.

This identification is based on the result of Salvati Manni, asserting that in any genus
M θ

8 (Γg(2))O
+ ⊆ M θS

8 (Γg(2)) (see Proposition 5.5.1). As the dimension of the space of
the lattice theta series for g ≥ 5 is eight, it is clear that in genus greater than five it
cannot exist a solution polynomial in the theta constants. To search for a solution, if
it exists, one must include the non normal part of the ring of modular forms. Indeed,
for g ≥ 5 there might exist modular forms that are not polynomial in theta constants
and that satisfy the constraints. These considerations also lead to the question wether
for g > 5 the ambiguity left open by the constraints is again an indetermination of the
Schottky form contribution or has a stronger nature. Moreover, the trick of fixing the
value of the cosmological constant does not work for g > 5, as pointed out in [DbMS].
The answer to this kind of questions would lead to a generalization of the uniqueness
theorems proved up to genus four.
In any case, as remarked in [DbMS] the solutions at genus 5 are no more uniquely de-
termined by the ansatz and the vanishing of the cosmological constant is indeed added
as a further condition. Also, it is not clear whether the three ansätze and the condition
on the cosmological constant imply the uniqueness of the solution. This means that the
ansatz does not definitively encode the whole physical requirements and one is led to
turn back to a direct analysis by first principles, as done by D’Hoker and Phong for the
genus two case. Only such a kind of analysis could give a mathematical proof of the
starting assumption on the general form for the amplitudes (2.15) or improve it.
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