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Summary. Survival analysis is a useful statistical technique for analyzing failure time data.  It overcomes the limitations 

of cross-sectional analysis and convention regression analysis. This study proposes three statistical models that analyze 

the failure time when university students withdraw from B.Sc courses.  The sample comprises all the 91 students who 

commenced their four-year studies with the Faculty of Science in 2002.  The first approach uses the Kaplan-Meier 

product limit method for estimating the survival functions under non-informative censoring.  The second approach uses 

the Cox regression model, which involves the assumption of proportional hazard functions.  The third approach uses a 

parametric model to estimate the hazard function using an appropriate distribution.  The aim of the study is to fit 

survival models that predict the probabilities of retention and dropout of B.Sc students within each study area using the 

facilities of SPSS and STATA.   
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1.   Introduction 

Survival analysis is a useful statistical technique for 

answering questions that deal with the duration of events 

and was originally developed by biostatisticians to model 

human lifetimes. The term survival data has been used for 

data involving time to a certain event such as relapse, 

death, and onset of a disease.  Recently, applications of 

survival analysis have been extended beyond biomedical 

research to other fields such as criminology, sociology, 

marketing, health insurance practice and institutional 

research.  The key feature of survival data is censoring.  

This occurs when the value of an observation is partially 

known. The mechanisms that give rise to censoring play 

an important role when making statistical inference. The 

purpose of this study is to conduct survival analysis to 

investigate the duration before withdrawal of students 

from B.Sc courses in the Faculty of Science. Investigation 

into retention and dropout is crucial to academic planning. 

  

The data set comprises 91 B.Sc students who commenced 

their studies with the Faculty of Science in 2002.  The 

course spans over four years; however, a student who fails 

to satisfy the requirements to proceed to the subsequent 

year is allowed to repeat the study programme for that 

year.  This concession is approved only once and if a 

student fails twice, his course is terminated.  So a student 

has to complete a B.Sc course successfully in at most five 

years.  A small group of students, who enrolled for the 

B.Sc course in 2001 but failed during their first year of 

study, were included with the 2002 cohort on re-applying 

for the course.  These students were left censored.  All 

students who failed to complete the course for academic 

and non-academic causes were regarded uncensored 

observations; whereas students who completed the course 

successfully were right censored.  Students applying for a 

B.Sc course have to choose two subject areas that include 

Biology, Mathematics, Physics, Chemistry and Statistics 

& Operations Research (SOR).  

 

 Completed 
course after 

4 years 

Completed 
course after 

5 years 

Failed to 
complete 
course 

Biology Count 29 5 8 

Percentage 69.0% 11.9% 19.0% 

Chemistry Count 30 7 13 

Percentage 60.0% 14.0% 26.0% 

Maths Count 10 6 24 

Percentage 25.0% 15.0% 60.0% 

Physics Count 6 5 24 

Percentage 17.1% 14.3% 68.6% 

SOR Count 3 5 7 

Percentage 20.0% 33.3% 46.7% 

Total Count 78 28 76 

Percentage 42.9% 15.4% 41.8% 

 
Table 1: Crosstab displaying frequency and percentage of 

students categorized by subject area and course outcome 



Table 1 demonstrates that a large proportion of Biology 

and Chemistry students completed the B.Sc course in four 

years; whereas a large proportion of Mathematics, Physics 

and SOR students failed to complete the course.  The chi-

squared test ( 2 41.38 and 0.0005p   ) reveals that the 

above association is significant and not attributed to 

chance.  This discrepancy is mainly attributed to different 

assessment methods employed by the departments.  Some 

subjects are assessed solely by examinations; whereas 

other subjects are assessed by both examinations and 

coursework. Contrasting examination paper settings and 

different marking schemes may add to this discrepancy.   

 

Survival time depends on past academic performance.  

Students with low A-level grades are more likely to fail or 

withdraw than students with high A-level grades. To 

investigate this issue the A-level grades obtained by each 

student were converted to scores using the MATSEC 

point system where grades A, B, C, D and E correspond 

to  30, 24, 18, 12 and 6 points respectively.  An entry 

qualification score was generated by summing the scores 

for the two A-levels.   

 

 
Mean Entry 

Score 
Std. 

Deviation 

95% Confidence Interval 
for Mean 

Lower 
Bound 

Upper 
Bound 

Biology 38.86 7.754 36.44 41.27 

Chemistry 38.40 8.221 36.06 40.74 

Mathematics 37.11 10.702 33.59 40.62 

Physics 38.57 10.007 35.13 42.01 

Statistics 31.20 8.239 26.64 35.76 

  
Table 2: Table displaying means, standard deviations and 95% 

confidence limits of entry scores categorized by subject area 

 

Table 2 displays that the mean entry scores for Biology, 

Chemistry, Mathematics and Physics students are higher 

( 2.587 and 0.0386F p  ) than those obtained by SOR 

students. This difference is attributed to the fact that the 

entry requirements for some departments are more 

stringent than others.  

 

 Mean 
Entry 
Score 

Std. 
Deviation 

95% Confidence 
Interval for Mean 

Lower 
Bound 

Upper 
Bound 

Completed course 
after 4 years 

41.85 9.121 39.79 43.90 

Completed course 
after 5 years 

35.57 8.153 32.41 38.73 

Failed to complete 
course 

34.05 7.827 32.24 35.87 

 
Table 3: Table displaying means, standard deviations and 95% 

confidence limits of entry scores categorized by course outcome 

Table 3 shows that the mean entry score for students who 

complete the course in 4 years are significantly higher 

( 17.118 and 0.0005F p  ) compared to the mean score 

of their counterparts.  Students with a low entry score are 

more likely to fail or withdraw from the course than those 

with a high entry score.   

 

2.   Kaplan-Meier (product-limit) estimator 

The proportion of B.Sc students who fail to complete the 

course at the end of each academic year depends on both 

the subject areas chosen and the entry qualification score 

of each student. These predictors contribute significantly 

in explaining variation of survival times.  To measure 

survival probabilities for the distinct categories of these 

predictors, the students’ entry scores were categorized 

into three groups. Entry scores ranging from 20 to 30 

correspond to low grades. Moderately good and high 

grades range from 31 to 50 and 51 to 60 respectively. The 

objective of this study is to predict the proportion of 

unsuccessful students that drop out each year form these 

B.Sc course.    

 

The survival function ( )S t  provides the probability that a 

student does not withdraw from the course before time t. 

The Kaplan-Meier estimator is a nonparametric maximum 

likelihood estimate of ( )S t . This estimator is obtained by 

maximizing the likelihood function which is expressed as 

the product of independent binomial likelihoods. 
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jd  and jn  are respectively the number of students who 

withdraw from the course and the number of students who 

are allowed to proceed at time jt ; whereas j  is the 

hazard at this time.  The maximum likelihood estimator of 

this hazard is given by: 
 

ˆ
j j jd n   for 1,2,...,                          (2)j k  

 

The Kaplan-Meier estimate is derived by replacing the 

hazard j  by its maximum likelihood estimate ˆ
j . 
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Let the number of censored lives in the interval 

1( ,  )j jt t  be denoted by jc . The relationship between 

jc , jn  and jd  is given by: 

 

1j j j jn d c n     for 1,2, ,               (4)j k                             



Subject  Year nj dj cj Survival 
Probability 

St 
Error 

Biology 1 42 6 0 0.8571 0.0540 

2 36 1 0 0.8333 0.0575 

3 36 1 0 0.8095 0.0606 

4 34 0 29 0.8095 0.0606 

5 5 0 5 0.8095 0.0606 

Chemistry 1 50 9 0 0.8200 0.0543 

2 41 2 0 0.7800 0.0586 

3 39 2 0 0.7400 0.0620 

4 37 0 30 0.7400 0.0620 

5 7 0 7 0.7400 0.0620 

Maths 1 40 16 0 0.6000 0.0775 

2 24 3 0 0.5250 0.0790 

3 21 3 0 0.4500 0.0787 

4 18 2 10 0.3375 0.0907 

5 6 0 6 0.3375 0.0907 

Physics 1 35 16 0 0.5429 0.0842 

2 19 4 0 0.4286 0.0836 

3 15 2 0 0.3714 0.0817 

4 13 2 6 0.2653 0.0862 

5 5 0 5 0.2653 0.0862 

Statistics 1 15 3 0 0.8000 0.1033 

2 12 2 0 0.6667 0.1217 

3 10 2 0 0.5333 0.1218 

4 8 0 3 0.5333 0.1218 

5 5 0 5 0.5333 0.1218 

 
Table 4: Kaplan Meier survival probability estimates of B.Sc 

students categorized by subject area. 

 

Table 4 displays the Kaplan-Meier survival probabilities 

for each subject area.  The drop in survival probabilities is 

most conspicuous during the first year of study and this 

applies to all subject areas.  Moreover, these survival 

probabilities vary considerably between subject areas.  

Biology students are most likely to complete the course 

successfully; whereas Physics and Mathematics students 

are most likely to fail or withdraw from the course.  

 

 
 

Figure 1: Survival curves of B.Sc students by subject area 

The survival curves, shown in Figure 1, display a picture 

of the survival rate for each subject area.  It is evident that 

most failures and drop-outs occur during the first year of 

study.  The Log Rank (Mantel-Cox) test reveals that these 

survival functions differ significantly between study areas 

( 2 39.198 and 0.0005p   ). 

 
Score  Year nj dj cj Survival 

Probability 
St 

Error 

20 - 30 1 66 30 0 0.5455 0.0613 

2 36 6 0 0.4545 0.0613 

3 30 6 0 0.3636 0.0592 

4 24 0 10 0.3636 0.0592 

5 14 0 14 0.3636 0.0592 

31 - 50 1 96 18 0 0.8125 0.0398 

2 78 6 0 0.7500 0.0442 

3 72 4 0 0.7083 0.0464 

4 68 4 50 0.5509 0.0782 

5 14 0 14 0.5509 0.0782 

 
Table 5: Kaplan Meier survival probability estimates of B.Sc 

students categorized by entry qualification score. 

 

The Kaplan-Meier survival probabilities, shown in Table 

5, reveal that almost 45% of all students with an entry 

score ranging from 20 to 30 fail or drop out of the course 

during the first year of study.  Only 36% of this low entry 

score group manages to complete the course successfully.  

The failure rate of students with middling entry score is 

more gradual; however, only 55% of the students in this 

group succeed to get a degree. The survival probabilities 

of the high entry score group are not displayed since all 

the students completed the course successfully in four 

years. The Log Rank (Mantel-Cox) test that compares the 

survival functions reveals that these survival curves differ 

significantly ( 2 27.089 and 0.0005p   ). 

 

 
 

Figure 2: Survival curves of B.Sc students by entry score 



3.   Cox proportional hazard model 

The second approach uses the Cox regression model, 

which involves the assumption of proportional hazard 

functions.  This semi-parametric approach overcomes the 

limitations of the first approach by accommodating the 

effects of covariates on survival.  A proportional hazards 

model proposed by Cox (1972) assumes that 
 

     ; exp '                             (5)oh t h tX X β  

 

( )oh t  is the baseline hazard function, 1( , , )p  β  is a 

vector of regression parameters and matrix X includes the 

values of the entry qualification scores and subject area of 

each student.   

 

The vector of regression parameters β  is estimated by 

maximizing the partial likelihood function with respect to 

the parameters.  
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The utility of the Cox model arises from the fact that the 

baseline hazard function determines the general shape of 

the hazard for all students, whereas the exponential term 

accounts for the differences between students.  Under the 

Cox regression model, the hazards of two students, with 

predictor matrix X1 and X2, are in the same proportion at 

all times. 
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The model fitting process uses the likelihood ratio statistic 

(scaled deviance) to select the main effects and interaction 

terms that have a significant effect on the model fit. The 

scaled deviance D compares the likelihood of the current 

model cL  to the likelihood of the full model fL   
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D has a chi-squared distribution with ( )p q  degrees of 

freedom, where p and q are the number of independent 

parameters estimated for the two models. Using a forward 

procedure, the parsimonious model included solely main 

effects.   

 

Table 6 displays the regression coefficients, their standard 

errors, the Wald test statistics, and the relative hazards. 

Relative hazards are exponentiated regression parameters 

that are interpreted as the hazard change for specified 

risk-related predictors compared to the baseline.  The 

relative hazard for Entry Score is 0.950, which implies 

that for every unit increment in the entry score the odds of 

failing to complete the course decreases by 5%.   
 

 
Predictor Estimate 

St 
Error Wald df P-value 

Relative 
Hazard 

Entry Score -0.051 .014 12.55 1 0.000 0.950 

Biology -0.496 .530 0.875 1 0.350 0.609 

Chemistry -0.200 .480 0.174 1 0.677 0.819 

Mathematics 0.574 .438 1.718 1 0.190 1.776 

Physics 0.896 .439 4.165 1 0.041 2.449 

Statistics 0     1 

 

Table 6:  Parameter estimates and Relative hazards 

 

Parameter estimates for the subjects vary considerably.  

Positive parameters indicate higher risk of failure.  This 

implies that Mathematics and Physics students are more 

likely to fail the B.Sc course than Biology and Chemistry 

students.   The odds that a Mathematics student withdraws 

or fails to complete the course is 77.6% higher compared 

to a Statistics student.  Conversely, the odds of failing for 

a Biology student is 39.1% lower compared to a Statistics 

student. The parameter for Statistics is set to 0 (intrinsic 

aliasing) to accommodate redundancy in the specification 

of the linear structure.   
 

 
 

Figure 3: Probability plots categorized by course outcome, 

subject area and entry qualification score. 



Figure 3 displays the probability curves for the course 

outcome categories by subject area and entry qualification 

score.  These probability distributions are obtained by 

fitting a Multinomial Logistic Regression model having 

course outcome as the response variable and entry score 

and subject area as predictors.  The plots reveal that for all 

subjects the probability of failing to complete the course 

decreases with an increase in the entry qualification score.  

The probability curves representing completion in 4 years 

and failure to complete course overlap at different entry 

scores for the five subject areas.  For a Chemistry student 

this overlap occurs at entry score of 31; whereas, for a 

Physics student this overlap occurs at an entry score of 

52.  For Statistics and Mathematics students this overlap 

occurs at entry scores of 38 and 45 respectively. The 

probability that Biology students complete the course in 4 

years exceeds the probability of failing irrespective of the 

entry score.  This implies that Biology students with low 

entry scores are less likely to withdraw or fail to complete 

the course than Physics and Mathematics students. 

 

4.   Parametric Regression model 
The Cox proportional hazard regression model is a widely 

used tool in analyzing censored survival data.  However, 

constraints arise when using this model.  They include the 

restrictive assumption of proportional hazard for covariate 

effects.  The hazard function, which is the instantaneous, 

failure rate at any point in time, is essential to predict the 

probabilities of retention and dropout of B.Sc students.  A 

smooth estimate of the hazard function can be obtained by 

implementing parametric regression models. 

 

There are several contender models with different hazard 

function. The Exponential survival model is the simplest 

parametric model and specifies that the hazard does not 

vary with time.  The Weibull model specifies a monotonic 

hazard function adequate for ageing processes where the 

risk of failure increases monotonically with an increase in 

time or for a declining hazard after a medical treatment 

where the risk of failure decreases monotonically as time 

increases.  The Gompertz model specifies an exponential 

hazard function.  This model is appropriate when hazard 

risk increases or decreases exponentially. The Lognormal 

and Log-Logistic models specify humped hazard rates, 

specifically initially increasing then decreasing rates.  

 

A common approach for comparing non-nested models is 

to use information criteria that are based on the bias-

corrected log-likelihood given by: 
 

 2log                             (9)C L dc  Ψ                        

 

where d is the number of estimated parameters and c is a 

penalty constant.  The second term, which is the penalty 

term, measures the complexity of the model.  The Akaike 

(AIC) and Bayesian (BIC) information criteria arise when 

2c  and log( )c N  respectively, where N is the sample 

size. When the number of parameters in a model fit is 

increased, the log-likelihood decreases but the penalty 

term increases.  So the AIC and BIC criteria trade-off 

between complex models that explain the data well but 

comprise too many parameters and simpler models that 

explain the data adequately but have less parameters. The 

model with the smallest AIC or BIC value is the model 

that fits the data best (parsimonious model).   
 

Distribution Log likelihood AIC BIC 
Exponential -154.96 321.92 340.59 

Weibull -154.61 323.22 345.01 

Gompertz -153.25 320.49 342.28 

Lognormal -149.12 312.23 334.02 

Log-logistic -150.25 314.50 336.28 

 

Table 7:  AIC and BIC values for contender survival models 
 

The AIC and BIC criteria both infer that the lognormal 

model is the most plausible.  Figure 4 displays the hazard 

function which peaks at around the first year of study.  

This conforms to what we expect since a large proportion 

of dropouts occur after the first year of study. As expected 

the lognormal distribution exhibits humped hazard rates 
 

 
 

Figure 4:  The Lognormal distributed hazard function 

 

For the Lognormal model, the logarithm of time follows a 

Normal distribution having density function  
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The Lognormal survival function is given by: 
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( )z  is the standard normal distribution function.  The 

lognormal regression is applied by setting 'j j  x β  and 

treating the standard deviation  as a scale parameter to 

be estimated from the data.  



Table 8 displays the parameter estimates, standard errors 

and their 95% confidence limits.  The parameter estimate 

for entry score is significant implying that it is a crucial 

predictor of failure time. The parameter estimate (-1.198) 

for Physics is significantly different from 0 implying that 

failure times for Physics students differ considerably from 

those of Statistics students. 

 

 
Predictor Estimate 

Standard 
Error P-value 

95% Confidence 
Interval 

Constant 0.0639 0.5717 0.911 -1.0566 1.1845 

Entry Score 0.0566 0.0139 0.000 0.0294 0.0839 

Biology 0.0999 0.4854 0.837 -0.8514 1.0512 

Chemistry -0.0205 0.4744 0.966 -0.9503 0.9093 

Mathematics -0.8408 0.4672 0.072 -1.7566 0.0750 

Physics -1.1979 0.4798 0.013 -2.1383 -0.2574 

Statistics 0     

  1.1916 0.1232  0.9730 1.4594 

 

Table 8:  Parameter estimates and 95% confidence limit 
 

Table 9 displays the probabilities of survival for B.Sc 

students throughout the study period given the predictors. 

The probability that a Physics student with an entry score 

of 24 completes the course in 4 years is 0.165; whereas 

the probability of survival for a Biology student with the 

same entry score is 0.545.  These survival probabilities 

increase as the entry score augments. 
 

 
Predictor 

Entry 
Score j  (1)S  (2)S  (3)S  (4)S  

Biology 

24 

1.5222 0.899 0.757 0.639 0.545 

Chemistry 1.4018 0.880 0.724 0.600 0.505 

Maths 0.5815 0.687 0.463 0.332 0.250 

Physics 0.2244 0.575 0.347 0.232 0.165 

Statistics 1.4223 0.884 0.730 0.607 0.512 

Biology 

36 

2.2014 0.968 0.897 0.823 0.753 

Chemistry 2.0810 0.960 0.878 0.795 0.720 

Maths 1.2607 0.855 0.683 0.554 0.458 

Physics 0.9036 0.776 0.570 0.435 0.343 

Statistics 2.1015 0.961 0.881 0.800 0.726 

Biology 

48 

2.8806 0.992 0.967 0.933 0.895 

Chemistry 2.7602 0.990 0.959 0.918 0.876 

Maths 1.9399 0.948 0.852 0.760 0.679 

Physics 1.5828 0.908 0.772 0.658 0.565 

Statistics 2.7807 0.990 0.960 0.921 0.879 

Biology 

60 

3.5598 0.999 0.992 0.981 0.966 

Chemistry 3.4394 0.998 0.989 0.975 0.958 

Maths 2.6191 0.986 0.947 0.899 0.850 

Physics 2.2620 0.971 0.906 0.836 0.769 

Statistics 3.4599 0.998 0.990 0.976 0.959 

 

Table 9:  Survival Probabilities categorized by subject area, 

entry qualification score and duration 

5.   Conclusion 

In the review we gave an overview of three approaches 

that are used to analyze survival data related to dropouts 

of students from B.Sc courses.  All three models suggest 

that entry qualification score and study area selected by 

students are two central predictors of the duration of B.Sc 

students before withdrawing from their course. Biology 

students with a high entry score are the most likely to 

complete the course in four years.  Physics students with a 

low entry score are the most likely to fail to complete the 

course. 

 

A limitation of the study is that it does not discriminate 

between students who fail to qualify because they do not 

possess enough ECTS credits and students who resign 

because they simply lose interest or find the course too 

difficult.  Another limitation is the implicit assumption is 

that there is no variability in survival probabilities beyond 

that which is explained by the predictors included in the 

model.   

 

We suggest three approaches for future research. The first 

recommendation is to discriminate between students who 

fail and students who drop out.  The second suggestion is 

to include demographic and student-related predictors in 

the model to improve prediction. The third suggestion is 

to develop frailty models that include random effects to 

explain unobserved heterogeneity in models for survival 

data.  Frailty models are extensions of Cox proportional 

hazard models that assume that the proportionality factor, 

which modifies the hazard function, is random.   
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