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Abstract. Generalised estimating equation (GEE) models =iensions of generalised
linear models by relaxing the assumption of indeleeice. These models are appropriate
to analyze correlated longitudinal responses wfattbw any distribution that is a member
of the exponential family. This model is used ttate daily mortality rate of Maltese
adults aged 65 years and over with a number ofqiogsd, including apparent temperature,
season and year. To accommodate the right skewetlityorate distribution a Gamma
distribution is assumed. An identity link functiésm used for ease of interpretating the
parameter estimates. An autoregressive correlatarcture of order 1 is used since
correlations decrease as distance between obsawadticreases. The study shows that
mortality rate and temperature are related by aliig function. Moreover, the GEE
model identifies a number of significant main antéraction effects which shed light on
the effect of weather predictors on daily mortatises.
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1 Introduction

The efficient heat regulation system of the humagiytenables healthy adults to
cope effectively with heat and cold stress; howethés is not the case with more
vulnerable older adults. The vulnerability of aduduffering from cardiovascular,
respiratory and other health problems increasesrexyially when temperatures
exceed certain threshold limit in cold winter spedhd hot summer heat waves.
The cause of death during extreme temperaturessisellery often attributed to
the medical condition of the individual but rareltributed to the hot or cold
temperatures. There is sufficient evidence inditare of the relationship between
mortality rates and temperature.

Numerous studies report a quadratic relationshipvd®n mortality rates and
temperature; however the trough of the functioriegaby location. In warmer
climatic regions, the minimum mortality rates ocetithigher temperatures than
colder regions. This minimum mortality temperatuamge varies from 14.3-
17.3°C in Finland, 19.3-22.3°C in London and 225772C in Athens. Optimal
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temperature ranges yielding minimum mortality ratasy between regions due
to the physiological adaptation of the people livin a particular region to its

climate, where individuals living in hot climatiegions use air conditioners and
other cooling facilities, while persons living irld regions wear appropriate
clothing and dwell in well-insulated houses.

The aim of the study is to identify the effect efrtperature on mortality in the
Maltese Islands and identify the optimal tempemtand that yields minimum
daily mortality rates. Moreover, Generalized EstiormEquation (GEE) is used
to identify the significant predictors of daily ntality rates in Malta given that
these outcomes are not independent.

2 Methodology

The number of daily deaths among Maltese adultsl &§eyears and over was
recorded over a fourteen year period. Since Malthdne of the largest population
rises in the EU throughout the last decade anckfectancy is on the increase it
was appropriate to rescale the number of dailyhdeat yield daily mortality rates
per 100,000 adults. Given the daily air temperaturé relative humidity it was
possible to calculate the saturated vapour pressapour pressure, dew point
temperature and apparent temperature.

The saturated vapour pressus¥R) is related to the air temperatui@ by:

7.5T ]
SVP=6.11 xlgm””

The vapour pressure/R) is related to relative humidityRH) and saturated
vapour pressureS{/P) by:

_RH xSVP
100

VP

The dew point temperaturBPT) is related to the vapour pressud®) by:

DPT = 237_{ln(\/lo) ~In 6.11)
19.08- Iny/P)

The apparent temperatu&T is related to dew point temperatut2P(T) and air
temperatureT) by:

AT =-2.653+ 0.997 + 0.0193PT?



Daily mortality rates (per 100,000) were analyzethg generalized estimating
equation (GEE). To allow for skewness in the dailyrtality rate distribution the
model assumed a Gamma distribution and an idelitiky function. An auto
regressive correlation structure with lag one wssdusince it was evident that
correlations decrease as distance between obseiwaticrease. Season, year of
death and apparent temperature were included katiea and interaction effects
in the model fit to explain optimally thevariatioimsthe daily mortality rates.

3 Theoretical Framework

One of the most far-reaching contributions in stai@l modelling is the concept
of generalized linear models introduced by Nelded &/edderburn[8]. These
models overcome the limitations of regression m&dehich rely heavily on the
normality assumption. Generalized linear modeksteghe outcome variable to the
linear predictor (non-random component) throughnamrtible link function and
accommodate any error distribution within the exgdial family. These models
provide a unified theoretical and conceptual framéwfor categorical modelling
procedures — Logistic and Probit regression modets Binomial data and
Loglinear models for Poisson data — with the tiadél regression and ANOVA
methods for Normal response data. Although GenedliLinear models
accommodate most of the assumptions of Regressiolelmthey still rely on the
assumption that the responses are independense Thedels are not well suited
for the analysis of highly correlated responses nwtihe assumption of
independence is violated. On the other hand, géred estimating equation
procedures extend generalized linear models betheg@ccommodate correlated
longitudinal and clustered data. Given the coteelastructure of the responses,
these procedures are well suited to analyze dailgtaiity rates (per 100000) in
the Maltese Islands and relate these rates to éewwf predictors.

The seminal work authored by Liang and Zeger[6]Generalized estimating
equations (GEE) introduced an extension to thedstaharray of Generalized
linear models (GLM) for the analysis of longitudimkata. The major limitation
of GLM is that the observations are assumed tatdepgendent; however, GEE
overcome this restrictive assumption of independeiidis type of estimating
equations has become increasingly popular in biecaédnd health science in
handling existing correlated data. This categorgsiimating equations can also
be identified as an extension of repeated measuooekels for non-Normal data.
Parameters from GEE are estimated with a possitdeawn correlation between
outcomes, which are also consistent when the avegistructure is misspecified,
under mild regularity conditions. The focus of t8&E is on estimating the
average response over the population rather thaneression parameters that
would enable prediction of the effect of changinge @r more covariates on a
given individual. These models are appropriatemimdel panel data which
includes all forms of correlated data ranging freepeated measures, clustered
or multilevel data.



Primarily, in a panel data set we assume that we ha1l,...,k panel (clusters)
for which each panel have=1....,n correlated observations. In balanced panels
n =n; foralli# j and in unbalanced panets# n; for at least one # . The

probability density function ofy, is assumed to follow the form of the exponential
family of distributions

8 —b(@
f(y,)= eXp{y"“—(“)ﬂ(yn #’)} 1)
a(¢)

where the repeated observations within a given Iparsge assumed to be
correlated. In GLM, maximum likelihood estimatios used to estimate the
parameters and hence the linear predictors aratl fithlues. These parameter
estimates and their standard errors are consisfetite observations are
independent; however their efficiency will detedats when the correlation
between observations increases. On the other, ubsi-{ikelihood estimation
method used in GEE models takes correlation betwaleservations into
account, thus increasing the efficiency of theneators. This leads to consistent
estimates of the parameters and their standardseeeen when the covariance
structure is misspecification.

Wedderburn[9] show that the mear) and variance functiov (,ui ) are part of

the estimating equation even when the distributieimg used is not a member of
the exponential family. The log-likelihood impliéy the estimating equation is
called quasilikelihood and the rresulting parametimates are called maximum
quasilikelihood estimates. The quasilikelihood restes is a generalization of
the likelihood. In fact, all estimates obtainednfra GLM can be referred to
maximum quasilikelihood estimates irrespectivehef source distribution of the
applied mean and variance functions. Hence thesilikelihood estimating
equation for GLMs with no restriction on the chomfethe mean and variance
functions is given by:

LP(B)_izllZ:; al@) V(z)on, X, =0for j=12,..,p )

Rewriting it in matrix terms of the panels

w(g):i{x'jio[v(ui )}1M}=O for j=1,2,....p 3)

a(¢)

whereD is a diagonal matrix of derivativedy /07, and V (p,)is an (n xn)
diagonal matrix which can be decomposed into:



V() =DV (1) "1y o PLV (14)]" (4)

The estimating equation is treating each obsemvatithin a panel as independent.
If we focus on the marginal distribution of the @uine, for which the expected
value and variance functions are averaged overmpd#rels, then the identity

matrix in (4) is the within-panel correlation matrirhe GEE proposed by Liang
and Zeger[5] is a modification of quasilikelihoostimating equations for GLMs

that simply replaces the identity matrix with a maeneral correlation matrix,

since the variance matrix for correlated data dot$iave a diagonal form.

V(1) =DV ()]"R, (a)D[V (1)]" ©)

The correlation matrixR; (a) is estimated through the parameter veetorLiang
and Zeger[6] stated that if the correlation magige(a) are correctly specified,

the estimatorﬁ is consistent and asymptotically Normal. MoreO\{Abri,s fairly
robust against mis-specification &, (a). Moreover, GEE models yields both

robust and model-based standard errors implying ¢berect specification of
R, (a) is not essential. Liang and Zeger[6] used the tewrking correlation

matrix for R, (a) and suggested that knowledge of the study desigresults

from explanatory analysis should be used to selgiausible form. Preferably,
R, (a) should depend on a small number of parametensg @sisumptions such

as equicorrelation or autoregressive correlation.

Efficiency in the estimation of regression paramseis gained by choosing to
formally include a hypothesized structure to théhimi-panel correlation. If the
observations within a panel follow no specific aréad that they are equally
correlated then only one additional scalar parameteds to be estimated. If
the observations within a panel follow a more cdogtéd structure having a
specific order then a vector of additional paramseteeds to be estimated. The
simplest form of the working correlation matrixttee identity matrix assumed
by the independence model, which imposes no additiancillary parameters.
A simple extension to the independence model @@l structure is when the
observations within a panel are equally correlataglying an additional ancillary
parameter.

1 ifi=j
a ifiz]

Ri(a) = { (6)

This structure is suitable for clustered data apkated measurements that have
no time dependence. The temmis called the intra-class correlation coefficient.
This type of correlation goes under several namelsiding the equicorrelation,



exchangeable, spherical and compound symmetrjelfépeated measurements
are time dependent then it would be more apprapribat the observations
within the panels have a natural order. If pamsthude observations with repeated
measures recorded over time the first-order autessg/e correlation structure
AR(1) assumes that:

1 ifi=j
al iz

R (@) ={ ()

The Toeplitz working correlation matrix is similar autoregressive correlation
and assumes that any pair of observations tharally separated in time have
the same correlation, implying that the correlatstructure has parameters.
Technically, the first-order autoregressive model special case of the Toeplitz.

Lo
Rj(a):{ el ®)

a., ifi#j

This banded correlation matrix is an alternativeatioregressive correlation
where the correlations exist for small number ofetiunits. A maximum time
differencek is specified for which observations are correlated

1 ifi=j
R(@)=1a,, ifli-jsk (©)
0 iffi-j>k

The unstructured correlation matrix is the mostegahcorrelation structure and
it imposes no structure B, (a) . It is only practical to use this form whé® (@)

is not large since the number of estimated parasei@ —1)/2 depends om.
The working correlation matrix is given by:

1 ifi=]

a;, ifi#]j

Ri(a) = { (10)

The procedure used to estimate the vector of pasasg for the GEE models
is equivalent to the iteratively weighted leastamgumethod used for the GLMs.
This algorithm is a modification of the Newton-Raph algorithm in which the
expected Hessian matrix is substituted for the esk Hessian. The
modification is known as the method of Fisher supriThe iterative procedure
is initiated by setting the correlation matrR, (a) as the identity matrix and

setting a (¢) = ¢=1. The parameter§ are estimated by solving equations (3).



The estimates are then used to calculate the fitteebs 2 = g™ (x,8) and hence
the residualsy, - &z . Consequently these are used to estin\b{gJ, R, (a)
and ¢. By solving (3) and using (4) iteratively theiggitesf can be updated.

#0=5-{ Soiv) "o {Tovw)T's)

whereD, = D|:V(,ui,):|D(a"%,7)Xi andS =y, -g™*(n;)

The solutionﬁ entails the alternating estimation pfand a until the iterative
procedure converges when a predetermined critésicgached.

4 Data Results

The sample comprises 5102 daily mortality ratescaked per 100,000 individuals,
recorded over a 14-year period. The daily mortaliggribution is right skewed and
follows closely the Gamma distribution. It peaksuaiund 13 deaths daily.
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Fig.1. Daily mortality rate distribution per 100@adults aged 65 years and over
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Figure 2 evidently shows that daily mortality raiesreases at both low and high
temperatures. The relationship between mortality gpparent temperature is a
quadratic function, reaching a minimum daily mdtyatate at around 2€.
Figure 3 clearly shows that daily mortality ratewimter is significantly larger
than other seasons. Figure 4 shows an interaetfent for daily mortality rate
between apparent temperature and season. Dailalitywrate tend to decrease
with an increase in temperature in winter and tenithicrease with an increase in
temperature in summer; however, daily mortalityeré not affected by a
change in temperature in spring and autumn.

In the fitted GEE model, daily mortality rate isstdependent variable, whereas
apparent temperature, season, and year are thietpredThe model includes
season and year as main effects, a quadratic dnnatiapparent temperature and
an interaction effect of season and apparent teatyrerto encompass the strong
results derived from the descriptive statisticahlgsis. Other interaction terms
were excluded from the GEE model fit since theintdbution in explaining
variations in the daily mortality rates were nadrid to be significant. An AR(1)
correlation structure was selected on the merttrii@tality rates recorded from
close days were more correlated than mortalitysregeorded from distant days.
This is partly explained by the high mortality téuring seasonal influenza
spells or pandemic episodes and the low mortaditgs during more favourable



climatic conditions. Moreover, the quasi-likelihoodder the independence model
criterion yielded the lowest QIC (981.92) indicagtithe AR(1) as the best
correlation structure. Table 1 displays the rasaftthe tests of model effects.
All models effects contributed significantly in daming total variance of the

daily mortality rates and their p-values are coesitlly lower than the 0.05

level of significance.

Table 1. P-values of model effects

Model Effects Wald Chi-Squarg df P-value
Season 1436.64 4 0.000
Year 68.446 1 0.000
Temperature 25.256 1 0.000
Temperature 17.255 1 0.000
Season * Temperature 26.157 3 0.000

Table 2 displays the estimates and standard esfdhe model parameters. The
regression coefficients for the season categondisate that daily mortality rates
per 100,000 in winter and spring are approximagb/ and 1.1 deaths higher
than autumn, while the mean daily mortality in suen is comparable to autumn.
The regression coefficient for Year indicates thaity mortality rate in Malta is
decreasing by 0.167 yearly, given that other effact kept fixed. The regression
coefficients of the quadratic function of appardéemperature indicate that
minimum daily mortality is attained at an apparéemperature of 26°€.
Hence the 3-degree temperature band of minimumatityrfor Malta ranges
from 24.9C to 27.9C, which is similar to other Mediterranean courstrie

Minmum Apparent Temperature —=£ =- ﬂ = 26
2a 2x0.01

Table 2. Estimates and standard errors of modehpeter

Model Terms Parameter Estimatf  Standard Error

Intercept 20.837 1.255
Season = Winter 3.516 1.209]
Season = Spring 1.093 0.513
Season = Summer 0.213 2.181
Season = Autumn 0 .
Year -0.167 0.020}
Temperature -0.633 0.124
Temperature 0.012 0.003
Season = Winter * Temperature -0.112 0.083
Season = Spring * Temperature 0.011 0.038
Season = Summer * Temperatur 0.339 0.079]
Season = Autumn * Temperature 0

Scale 0.167




The regression coefficients of the interaction affeetween apparent temperature
and season indicate that in very hot summer daajly; chortality rates increase
by 0.34 deaths for everyQ rise in temperature compared to autumn. Conlyerse
in very cold winter days, daily mortality rates iease by 0.11 deaths for every
1°C drop in temperature compared to autumn. Thisi@mthat while more deaths
occur in the winter months, daily mortality ratesicsoar up more rapidly with a
abrupt increase in temperature during hot summegs tzan a sudden decrease
in temperature during cold winter days.

5 Conclusion

This study shows that an optimal apparent temperatound 25 °C to 27°C
results in minimum daily mortality rates. This icdies that minimum mortality
rates in warmer regions occurs at higher tempeasitilnvan colder regions. This is
mainly attributed to physiological adaptation of theople living in a particular
region to its climate. People living in warm regoare better adapted to the hot
weather through the use of air conditioners andirmpdacilities. On the other
hand, people living in cool regions are better aeldpo the cold weather through
the use of central heating, insulated houses anohwkthing.

Extreme cold and hot temperatures increase the auotfbdeaths, particularly
adults aged 65 years and over. Thermoregulatidmodf temperature of older
adults is less effective compared to their yourogemterparts. This fact together
with other health-related problems increases mitytekks in elderly persons.
Basu et. al.[1] remark that individuals with prestiang cardiovascular and
respiratory problems have higher risks of deatlo@ated with ambient heat
exposure. Since most influenza spells occur inexjitealth precautions are more
likely to be taken in winters than summers; howgethgs study reveals that abrupt
increment in temperatures during hot summer per@wdsmore fatal than sudden
drop in temperatures during cold winter periods.

In very humid conditions, a hot day feels hottett arcold day feels colder. In hot
summer days, sweat evaporates more rapidly in ehlowidity environment. So
perspiration, which is the body’s cooling mechanignless effective in humid
conditions, resulting in a slower sweat evaporataia and slower cooling process.
Conversely, on cold rainy days our clothing absaenossture from the humid air
causing a drop in body temperature. Since Maltmissland, humidity tends to
be high with very little seasonal variation. Thgitoof using apparent temperature
rather than actual air temperature in this studyas it combines humidity and
air temperature. This is important because humalityally accentuates the body
discomfort in very low and very high temperaturiéss highly recommended
that health warnings are issued on different megi@ublic health departments
when temperatures fall below %D or rise above 3& to caution vulnerable
individuals of the mortality risks.
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