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Abstract. Generalised estimating equation (GEE) models are extensions of generalised 
linear models by relaxing the assumption of independence. These models are appropriate 
to analyze correlated longitudinal responses which follow any distribution that is a member 
of the exponential family. This model is used to relate daily mortality rate of Maltese 
adults aged 65 years and over with a number of predictors, including apparent temperature, 
season and year. To accommodate the right skewed mortality rate distribution a Gamma 
distribution is assumed. An identity link function is used for ease of interpretating the 
parameter estimates. An autoregressive correlation structure of order 1 is used since 
correlations decrease as distance between observations increases. The study shows that 
mortality rate and temperature are related by a quadratic function. Moreover, the GEE 
model identifies a number of significant main and interaction effects which shed light on 
the effect of weather predictors on daily mortality rates. 
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1 Introduction 
 

The efficient heat regulation system of the human body enables healthy adults to 
cope effectively with heat and cold stress; however, this is not the case with more 
vulnerable older adults. The vulnerability of adults suffering from cardiovascular, 
respiratory and other health problems increases exponentially when temperatures 
exceed certain threshold limit in cold winter spells and hot summer heat waves. 
The cause of death during extreme temperature spells is very often attributed to 
the medical condition of the individual but rarely attributed to the hot or cold 
temperatures. There is sufficient evidence in literature of the relationship between 
mortality rates and temperature. 
 
Numerous studies report a quadratic relationship between mortality rates and 
temperature; however the trough of the function varies by location.  In warmer 
climatic regions, the minimum mortality rates occur at higher temperatures than 
colder regions. This minimum mortality temperature range varies from 14.3-
17.3°C in Finland, 19.3-22.3°C in London and 22.7-25.7°C in Athens. Optimal 
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temperature ranges yielding minimum mortality rates vary between regions due 
to the physiological adaptation of the people living in a particular region to its 
climate, where individuals living in hot climatic regions use air conditioners and 
other cooling facilities, while persons living in cold regions wear appropriate 
clothing and dwell in well-insulated houses.  
 
The aim of the study is to identify the effect of temperature on mortality in the 
Maltese Islands and identify the optimal temperature band that yields minimum 
daily mortality rates. Moreover, Generalized Estimation Equation (GEE) is used 
to identify the significant predictors of daily mortality rates in Malta given that 
these outcomes are not independent. 
 
 

2 Methodology 
 
The number of daily deaths among Maltese adults aged 65 years and over was 
recorded over a fourteen year period. Since Malta had one of the largest population 
rises in the EU throughout the last decade and life expectancy is on the increase it 
was appropriate to rescale the number of daily deaths to yield daily mortality rates 
per 100,000 adults. Given the daily air temperature and relative humidity it was 
possible to calculate the saturated vapour pressure, vapour pressure, dew point 
temperature and apparent temperature.   
 
The saturated vapour pressure (SVP) is related to the air temperature (T) by: 
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The vapour pressure (VP) is related to relative humidity (RH) and saturated 
vapour pressure (SVP) by: 
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The dew point temperature (DPT) is related to the vapour pressure (VP) by: 
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The apparent temperature (AT) is related to dew point temperature (DPT) and air 
temperature (T) by: 
 

22.653 0.994 0.0153AT T DPT= − + +  



Daily mortality rates (per 100,000) were analyzed using generalized estimating 
equation (GEE). To allow for skewness in the daily mortality rate distribution the 
model assumed a Gamma distribution and an identity link function. An auto 
regressive correlation structure with lag one was used since it was evident that 
correlations decrease as distance between observations increase. Season, year of 
death and apparent temperature were included both as main and interaction effects 
in the model fit to explain optimally thevariations in the daily mortality rates.   
 

3 Theoretical Framework 
 
One of the most far-reaching contributions in statistical modelling is the concept 
of generalized linear models introduced by Nelder and Wedderburn[8]. These 
models overcome the limitations of regression models, which rely heavily on the 
normality assumption. Generalized linear models relate the outcome variable to the 
linear predictor (non-random component) through an invertible link function and 
accommodate any error distribution within the exponential family.  These models 
provide a unified theoretical and conceptual framework for categorical modelling 
procedures – Logistic and Probit regression models for Binomial data and 
Loglinear models for Poisson data – with the traditional regression and ANOVA 
methods for Normal response data. Although Generalized Linear models 
accommodate most of the assumptions of Regression models they still rely on the 
assumption that the responses are independent.  These models are not well suited 
for the analysis of highly correlated responses when the assumption of 
independence is violated.  On the other hand, generalized estimating equation 
procedures extend generalized linear models because they accommodate correlated 
longitudinal and clustered data.  Given the correlated structure of the responses, 
these procedures are well suited to analyze daily mortality rates (per 100000) in 
the Maltese Islands and relate these rates to a number of predictors.   
 
The seminal work authored by Liang and Zeger[6] on Generalized estimating 
equations (GEE) introduced an extension to the standard array of Generalized 
linear models (GLM) for the analysis of longitudinal data. The major limitation 
of GLM is that the observations are assumed to be independent; however, GEE 
overcome this restrictive assumption of independence. This type of estimating 
equations has become increasingly popular in biomedical and health science in 
handling existing correlated data. This category of estimating equations can also 
be identified as an extension of repeated measures models for non-Normal data.  
Parameters from GEE are estimated with a possible unknown correlation between 
outcomes, which are also consistent when the covariance structure is misspecified, 
under mild regularity conditions. The focus of the GEE is on estimating the 
average response over the population rather than the regression parameters that 
would enable prediction of the effect of changing one or more covariates on a 
given individual.  These models are appropriate to model panel data which 
includes all forms of correlated data ranging from repeated measures, clustered 
or multilevel data. 



Primarily, in a panel data set we assume that we have 1, ,i k= …  panel (clusters) 

for which each panel have 1, , it n= …  correlated observations. In balanced panels 

i jn n=  for all i j≠  and in unbalanced panels i jn n≠  for at least one i j≠ . The 

probability density function of ity  is assumed to follow the form of the exponential 

family of distributions 
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where the repeated observations within a given panel i are assumed to be 
correlated. In GLM, maximum likelihood estimation is used to estimate the 
parameters and hence the linear predictors and fitted values.  These parameter 
estimates and their standard errors are consistent if the observations are 
independent; however their efficiency will deteriorate when the correlation 
between observations increases. On the other, the quasi-likelihood estimation 
method used in GEE models takes correlation between observations into 
account, thus increasing the efficiency of the estimators. This leads to consistent 
estimates of the parameters and their standard errors, even when the covariance 
structure is misspecification. 
 
Wedderburn[9] show that the mean itµ and variance function ( )itV µ  are part of 

the estimating equation even when the distribution being used is not a member of 
the exponential family. The log-likelihood implied by the estimating equation is 
called quasilikelihood and the rresulting parameter estimates are called maximum 
quasilikelihood estimates. The quasilikelihood estimates is a generalization of 
the likelihood.  In fact, all estimates obtained from a GLM can be referred to 
maximum quasilikelihood estimates irrespective of the source distribution of the 
applied mean and variance functions.  Hence the quasilikelihood estimating 
equation for GLMs with no restriction on the choice of the mean and variance 
functions is given by: 
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Rewriting it in matrix terms of the panels 
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where D is a diagonal matrix of derivatives /i iµ η∂ ∂  and ( )iV µ is an (  x )i in n  

diagonal matrix which can be decomposed into: 
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The estimating equation is treating each observation within a panel as independent. 
If we focus on the marginal distribution of the outcome, for which the expected 
value and variance functions are averaged over the panels, then the identity 
matrix in (4) is the within-panel correlation matrix. The GEE proposed by Liang 
and Zeger[5] is a modification of quasilikelihood estimating equations for GLMs 
that simply replaces the identity matrix with a more general correlation matrix, 
since the variance matrix for correlated data does not have a diagonal form. 
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The correlation matrix ( )iR α is estimated through the parameter vector α . Liang 

and Zeger[6] stated that if the correlation matrices ( )iR α  are correctly specified, 

the estimator ̂β  is consistent and asymptotically Normal. Moreover, β̂  is fairly 

robust against mis-specification of ( )iR α . Moreover, GEE models yields both 

robust and model-based standard errors implying that correct specification of 
( )iR α  is not essential. Liang and Zeger[6] used the term working correlation 

matrix for ( )iR α  and suggested that knowledge of the study design and results 

from explanatory analysis should be used to select a plausible form.  Preferably, 
( )iR α  should depend on a small number of parameters, using assumptions such 

as equicorrelation or autoregressive correlation. 
 
Efficiency in the estimation of regression parameters is gained by choosing to 
formally include a hypothesized structure to the within-panel correlation.  If the 
observations within a panel follow no specific order and that they are equally 
correlated then only one additional scalar parameter needs to be estimated.  If 
the observations within a panel follow a more complicated structure having a 
specific order then a vector of additional parameters needs to be estimated.  The 
simplest form of the working correlation matrix is the identity matrix assumed 
by the independence model, which imposes no additional ancillary parameters. 
A simple extension to the independence model correlation structure is when the 
observations within a panel are equally correlated, implying an additional ancillary 
parameter. 
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This structure is suitable for clustered data and repeated measurements that have 
no time dependence. The term α  is called the intra-class correlation coefficient. 
This type of correlation goes under several names including the equicorrelation, 



exchangeable, spherical and compound symmetry. If the repeated measurements 
are time dependent then it would be more appropriate that the observations 
within the panels have a natural order. If panels include observations with repeated 
measures recorded over time the first-order autoregressive correlation structure 
AR(1) assumes that: 
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The Toeplitz working correlation matrix is similar to autoregressive correlation 
and assumes that any pair of observations that are equally separated in time have 
the same correlation, implying that the correlation structure has n parameters. 
Technically, the first-order autoregressive model is a special case of the Toeplitz. 
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This banded correlation matrix is an alternative to autoregressive correlation 
where the correlations exist for small number of time units. A maximum time 
difference k is specified for which observations are correlated.   
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The unstructured correlation matrix is the most general correlation structure and 
it imposes no structure to ( )ij αR . It is only practical to use this form when ( )ij αR  

is not large since the number of estimated parameters ( 1) 2n n −  depends on n.  

The working correlation matrix is given by: 
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The procedure used to estimate the vector of parameters β  for the GEE models 

is equivalent to the iteratively weighted least square method used for the GLMs. 
This algorithm is a modification of the Newton-Raphson algorithm in which the 
expected Hessian matrix is substituted for the observed Hessian. The 
modification is known as the method of Fisher scoring. The iterative procedure 
is initiated by setting the correlation matrix ( )iR α  as the identity matrix and 

setting ( ) 1ia φ φ= = . The parameters β  are estimated by solving equations (3). 



The estimates are then used to calculate the fitted values 1 'ˆ ( )i igµ −= x β  and hence 

the residuals ˆi iy µ− . Consequently these are used to estimate ( )iV µ , ( )iR α  

and φ .  By solving (3) and using (4) iteratively the estimates β  can be updated. 
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The solution ̂β  entails the alternating estimation of β  and α  until the iterative 

procedure converges when a predetermined criterion is reached.  
 
 

4   Data Results 
 
The sample comprises 5102 daily mortality rates, rescaled per 100,000 individuals, 
recorded over a 14-year period. The daily mortality distribution is right skewed and 
follows closely the Gamma distribution. It peaks at around 13 deaths daily. 
 

 
Fig.1. Daily mortality rate distribution per 100,000 adults aged 65 years and over 



 
Fig.2. Relationship between daily mortality rate and apparent temperature 
 

 
Fig.3. 95% confidence intervals for the actual mean daily mortality rates by season 



 
Fig.4. Daily mortality rate trends by apparent temperature and season 
 
Figure 2 evidently shows that daily mortality rates increases at both low and high 
temperatures. The relationship between mortality and apparent temperature is a 
quadratic function, reaching a minimum daily mortality rate at around 26oC. 
Figure 3 clearly shows that daily mortality rate in winter is significantly larger 
than other seasons.  Figure 4 shows an interaction effect for daily mortality rate 
between apparent temperature and season. Daily mortality rate tend to decrease 
with an increase in temperature in winter and tend to increase with an increase in 
temperature in summer; however, daily mortality rate is not affected by a 
change in temperature in spring and autumn. 
 
In the fitted GEE model, daily mortality rate is the dependent variable, whereas 
apparent temperature, season, and year are the predictors. The model includes 
season and year as main effects, a quadratic function of apparent temperature and 
an interaction effect of season and apparent temperature to encompass the strong 
results derived from the descriptive statistical analysis. Other interaction terms 
were excluded from the GEE model fit since their contribution in explaining 
variations in the daily mortality rates were not found to be significant.  An AR(1) 
correlation structure was selected on the merit that mortality rates recorded from 
close days were more correlated than mortality rates recorded from distant days.  
This is partly explained by the high mortality rates during seasonal influenza 
spells or pandemic episodes and the low mortality rates during more favourable 



climatic conditions. Moreover, the quasi-likelihood under the independence model 
criterion yielded the lowest QIC (981.92) indicating the AR(1) as the best 
correlation structure.  Table 1 displays the results of the tests of model effects. 
All models effects contributed significantly in explaining total variance of the 
daily mortality rates and their p-values are considerably lower than the 0.05 
level of significance. 
 
Table 1. P-values of model effects 

Model Effects Wald Chi-Square df P-value 
Season 1436.64 4 0.000 
Year 68.446 1 0.000 
Temperature 25.256 1 0.000 
Temperature2 17.255 1 0.000 
Season * Temperature 26.157 3 0.000 

 
Table 2 displays the estimates and standard errors of the model parameters. The 
regression coefficients for the season categories indicate that daily mortality rates 
per 100,000 in winter and spring are approximately 3.5 and 1.1 deaths higher 
than autumn,  while the mean daily mortality in summer is comparable to autumn.  
The regression coefficient for Year indicates that daily mortality rate in Malta is 
decreasing by 0.167 yearly, given that other effects are kept fixed. The regression 
coefficients of the quadratic function of apparent temperature indicate that 
minimum daily mortality is attained at an apparent temperature of 26.4oC. 
Hence the 3-degree temperature band of minimum mortality for Malta ranges 
from 24.9oC to 27.9oC, which is similar to other Mediterranean countries. 
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Table 2. Estimates and standard errors of model parameter 

Model Terms Parameter Estimate Standard Error 
Intercept 20.837 1.255 
Season = Winter 3.516 1.209 
Season = Spring 1.093 0.513 
Season = Summer 0.213 2.181 
Season = Autumn 0 . 
Year -0.167 0.020 
Temperature -0.633 0.124 
Temperature2 0.012 0.003 
Season = Winter * Temperature -0.112 0.083 
Season = Spring * Temperature 0.011 0.038 
Season = Summer * Temperature 0.339 0.079 
Season = Autumn * Temperature 0 . 
Scale 0.167  



The regression coefficients of the interaction effect between apparent temperature 
and season indicate that in very hot summer days, daily mortality rates increase 
by 0.34 deaths for every 1oC rise in temperature compared to autumn.  Conversely, 
in very cold winter days, daily mortality rates increase by 0.11 deaths for every 
1oC drop in temperature compared to autumn. This implies that while more deaths 
occur in the winter months, daily mortality rates can soar up more rapidly with a 
abrupt increase in temperature during hot summer days than a sudden decrease 
in temperature during cold winter days. 
 
 
5 Conclusion 
 
This study shows that an optimal apparent temperature around 25 ºC to 27ºC 
results in minimum daily mortality rates. This indicates that minimum mortality 
rates in warmer regions occurs at higher temperatures than colder regions. This is 
mainly attributed to physiological adaptation of the people living in a particular 
region to its climate. People living in warm regions are better adapted to the hot 
weather through the use of air conditioners and cooling facilities. On the other 
hand, people living in cool regions are better adapted to the cold weather through 
the use of central heating, insulated houses and warm clothing. 
 
Extreme cold and hot temperatures increase the number of deaths, particularly 
adults aged 65 years and over. Thermoregulation of body temperature of older 
adults is less effective compared to their younger counterparts. This fact together 
with other health-related problems increases mortality risks in elderly persons.  
Basu et. al.[1] remark that individuals with pre-existing cardiovascular and 
respiratory problems have higher risks of death associated with ambient heat 
exposure. Since most influenza spells occur in winter, health precautions are more 
likely to be taken in winters than summers; however, this study reveals that abrupt 
increment in temperatures during hot summer periods are more fatal than sudden 
drop in temperatures during cold winter periods. 
 
In very humid conditions, a hot day feels hotter and a cold day feels colder.  In hot 
summer days, sweat evaporates more rapidly in a low humidity environment.  So 
perspiration, which is the body’s cooling mechanism, is less effective in humid 
conditions, resulting in a slower sweat evaporation rate and slower cooling process.  
Conversely, on cold rainy days our clothing absorbs moisture from the humid air 
causing a drop in body temperature.  Since Malta is an island, humidity tends to 
be high with very little seasonal variation. The logic of using apparent temperature 
rather than actual air temperature in this study is that it combines humidity and 
air temperature. This is important because humidity actually accentuates the body 
discomfort in very low and very high temperatures. It is highly recommended 
that health warnings are issued on different media by public health departments 
when temperatures fall below 10oC or rise above 35oC to caution vulnerable 
individuals of the mortality risks. 
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