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 Abstract 

This paper presents three statistical models that analyze longitudinal data 

on student performance in English.  A random sample, comprising male and 

female students who attend either a state or a private school, was selected to 

investigate gender and school bias in this subject.  The English annual marks 

attained by each student were recorded during the last three years in primary 

schools.  In the first approach, we present a repeated measures analysis of 

variance that captures the correlation between the repeated measures.  Several 

tests are carried out to check for within subjects and between subjects effects; 

equality of covariance matrices and sphericity.  In the second approach, we fit 

a two-level random coefficient model to examine the effect of time on student 

performance in English. This model allows the student-specific coefficients 

describing individual trajectories to vary randomly. In the third approach, we 

fit a Logistic regression model to estimate the probability of passing the 

Eleven-Plus examination that students sit for when they terminate Primary 

education.  

1 Introduction 

The Junior Lyceum eleven-plus examination, in Malta, is an important benchmark 

of academic performance as students proceed from Primary to Secondary school. 

This examination assesses students on five subjects, including English and 

Mathematics. To attend a Junior Lyceum a student has to pass in all five subjects. 

These Junior Lyceums are rated amongst the best schools on the island where 

students receive a sound education in all aspects of their development.  A prevailing 

outcome of this examination is that females outperform their male counterpart in the 
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languages, while almost matching them in Mathematics.  Although students sit in 

the same classroom, read the same textbooks and listen to the same teacher, the 

percentage of successful females in English has exceeded the percentage of 

successful male students by more than 5% for several years.  Another notable 

contrast is the discrepancy in performance between students attending private 

schools and those attending state schools.  Each year, approximately 75% of the 

students attending private schools do get a pass in English.  This contrasts 

considerably with a 50% pass rate for students attending state schools.  This 

performance discrepancy is more attributed to diverse socio-economic family status 

rather than different teaching methods.  It is known that parents with a high 

educational background and high socio-economic status are more likely to send their 

children to private schools rather than state schools.  These parents, besides 

affording to pay for the school fees, are more likely to prioritize their children’s 

educational upbringing.  A study conducted in 2006 revealed that 38.6% of the 

parents whose children attended private schools had a professional occupation.  This 

contrasted considerably with 8.4% of the parents whose children attended state 

schools.  

2 A Repeated Measures Model 

Suppose we have N  individuals and for the thi  individual we have in  observations.  

Let iy  denote the vector of in  responses for the thi  individual and let y denote the 

vector of responses for all individuals.  A Normal linear regression model for y  is: 

 

εXβy   where  V0,N~ε                                    (2.1) 
 

X is the design matrix, β is a vector of fixed effects parameters, ε  is a vector of 

error terms and V is the variance-covariance matrix.  V has a block diagonal form if 

we assume that the responses for different individuals are independent.  The 

probability density function for iy  is given by:   
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Suppose that  '21 Ny,,y,y   is a random sample from   N Xβ, V  then the 

likelihood function is given by: 
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β can be estimated by maximizing the log-likelihood function given that the 

elements of V are known.  Thus, the score equations become 
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The maximum likelihood estimator of β  is given by: 
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The sampling distribution of β̂  has an asymptotic multivariate normal distribution 

where  
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In practice, iV  is unknown and has to be estimated from the data by an iterative 

process.  There are several forms for the matrix iV .   

 

The simplest structure for iV  is given by (2.7).  This pattern assumes that the 

correlation is constant regardless of the distance between the measurements.   This 

equicorrelation matrix is said to have compound symmetry when  2 2 2

a a b      
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The autoregressive structure given by (2.8) has homogeneous variances and 

correlations that decrease exponentially with distance.   
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The Toeplitz structure given by (2.9) assumes that any pair of elements equidistant 

from the diagonal has the same correlation.  The first-order autoregressive structure 

is a special case of the Toeplitz.   
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If iV  is assumed to be an unstructured correlation matrix then all the correlation 

terms may be different.  The merit about this structure is that it involves no 

assumptions about the correlations.  The demerit is that a large number of 

parameters have to be estimated when the order of iV  is large. 

 

There are a number of criteria for selecting a covariance structure that trade-off 

between a simple structure and a complex one. Simple structures tend to yield 

incorrect estimates of the sampling variability that leads to misleading inferences, 

whereas, complex structures sacrifice power and efficiency. The information criteria 

that are used for the selection of the covariance structure are based on the bias-

corrected log-likelihood and a penalty term.  This penalty term measures the model 

complexity. 
 

 2logC L dc  Ψ                                         (2.10) 

 

where d is the number of estimated parameters and c is the penalty constant.  The 

well-known Akaike information criterion (AIC) arises when 2c  .  The Bayesian 

information criterion (BIC) arises when  logc N  where N is the number of 

respondents. For N > 8, BIC penalizes complex models more heavily than AIC.  

These criteria are functions of the log likelihood and can be compared across 

different models. Hence, one can fit several models, having different covariance 

structures, and compute their respective information criterion.  The model with the 

smallest information criterion has the optimal covariance structure.  

3 Results of the Repeated-Measures Model 

The data set comprise the English annual examination marks of male and female 

students attending private or state schools.  These marks were recorded during the 

last three years in Primary school. One of the aims of this study is to analyze this 

longitudinal data set through a Repeated Measures analysis to reveal correlations 

between successive assessments.  The within-subject variable comprise the English 



 

marks during year 4, 5 and 6; whereas the between-subjects variables are the student 

gender and school type each having two levels.  Several hypothesis tests are carried 

out to test for within subjects and between subjects effects; equality of covariance 

matrices and sphericity. Moreover, we examine the gender-school effect on student 

performance in English and fit models that predict the mean English annual marks.   
 

An assumption that needs to be satisfied when conducting an ANOVA with a 

repeated measures factor is sphericity.  Sphericity refers to the equality of the 

variances of the differences between levels of the repeated measures factor.  

Mauchly’s test of sphericity verifies the null hypothesis that the variance-covariance 

matrix of the orthonormalized-transformed dependent variables is proportional to 

the identity matrix.  The sphericity assumption is satisfied when the p-value exceeds 

0.05 implying that the variances for each set of difference scores are equal.     
  

Table 1: Mauchly’s test of Sphericity 

Within Subject Effect Mauchly’s W Chi-Square df P-value 

English Marks 0.998 0.603 2 0.740 
         

The p-value, displayed in Table 1, exceeds the 0.05 level of significance implying 

that the variance-covariance structure is circular in form. 
 

 

Figure 1: Line graphs displaying variations in English mean marks by Year and Gender 

Figure 1 reveals a discrepancy in English language performance between males and 

females but exhibits no interaction effects between gender and English marks .  

Females perform better than their male counterparts, however, this performance 

deteriorates for both gender groups as students progress from year 4 to year 6.   



 

 

    Figure 2: Line graphs displaying variations in English mean marks by Year and School  

Figure 2 reveals a discrepancy in English language performance between students 

attending private and state schools.  It also exhibits an interaction effects between 

school type and English marks.  Students attending private schools achieve better 

results; however, the rate of deterioration in English language performance is more 

conspicuous for students attending state schools.  

 

Table 2: Tests for Between-Subjects Effects 

Term Sum of Squares df Mean Square F P-value 

Gender 7312.968 1 7312.968 10.856 0.001 

School 9641.267 1 9641.267 14.312 0.000 

Gender*School 724.218 1 724.218 1.075 0.301 

Error 175146.590 260 673.641   
 

Table 2 displays the analysis of variance for tests of between-subjects effects.  It 

exhibits significant gender and school main effects.   

 

Table 3: Tests for Within-Subjects Effects 

Term Sum of Squares df Mean Square F P-value 

Marks 3022.268 2 1511.134 25.211 0.000 

Marks*Gender 76.886 2 38.443 0.641 0.527 

Marks*School 1379.831 2 689.916 11.51 0.000 

Marks*Gender*School 130.548 2 65.274 1.089 0.337 

Error 31168.187 520 59.939   
 



 

Table 3 displays the analysis of variance for tests of within-subjects effects when 

the sphericity assumption is satisfied.  The F-statistics for the English main effect 

and the English-school interaction effect are both significant. The non-parallel, 

well-separated line graphs displayed in figure 2 complement this result. Moreover, 

the F-statistic for the English-gender interaction effect is not significant and which 

complements the parallel line graphs displayed in figure 1. 
 

Table 4: Correlation Table 

Year Pearson Correlation P-value 

Year 4 – Year 5 0.811 0.000 

Year 4 – Year 6 0.768 0.000 

Year 5 – Year 6 0.822 0.000 
 

Table 4 displays the correlation matrix for the three sets of English annual marks.  

As expected, the correlations between repeated measures are positive and decrease 

gradually with an increase in time separation.   
 

Table 5: Summary of Information Criteria 

Covariance Structure Deviance No of parameters AIC BIC 

Unstructured 6115.0 6 6127.0 6148.4 

Compound Symmetry 6122.5 2 6126.5 6133.6 

Toeplitz  6121.2 3 6127.2 6137.9 

Autoregressive 6155.1 2 6159.1 6166.2 
 

The Akaike and Bayesian information criteria, displayed in table 5, identify the 

optimal covariance structure.  Both criteria elicit the compound symmetry form as 

the optimal structure. 
 

Table 6: Parameter Estimates for the Repeated Measures Model 

Effect Gender School Year Estimate St Error t-value P-value 

Intercept    55.8272 1.6283 34.29 0.0000 

Gender Female   7.8283 1.9930 3.93 0.0001 

Gender Male   0 . . . 

School  Private  9.5213 5.5284 1.72 0.0862 

School  State  0 . . . 

Year   Year 4 11.8902 0.6847 17.36 0.0000 

Year   Year 5 1.9394 0.6847 2.83 0.0048 

Year   Year 6 0 . . . 

Gender*School Female Private  7.1895 6.9340 1.04 0.3008 

Gender*School Female State  0 . . . 

Gender*School Male Private  0 . . . 

Gender*School Male State  0 . . . 



 

Table 6 displays the parameter estimates for the Repeated Measures model.  The 

coefficient of Gender indicates that the English annual mark for female students is, 

on average, 7.83 higher than for male students.  Moreover, the coefficient of School 

indicates that students attending private schools score, on average, 9.52 more marks 

than students attending state schools.   The mean English annual mark decreases by 

almost 12 points as the students progress from year 4 to year 6. 

4 A Multilevel Model 

An alternative approach for analyzing repeated measures data is to use hierarchical 

models.  Multilevel models are hierarchical linear mixed models or random 

coefficient models that provide an extremely flexible approach to the analysis of  

longitudinal data by dropping the assumption of independence between the 

responses.  These models facilitate the analysis of hierarchical data when 

observations are nested within higher levels of classification.  Linear mixed models 

are linear in the parameters and the independent variables involve a mix of  fixed 

and random effects.  In general, linear mixed models for Normal responses can be 

expressed in the form:  
 

                          y Xβ Zη ε                                                 (4.1)                 
 

where β  is a vector of fixed effects whereas, η  and ε  are vectors of random effects.  

In addition, y  is a vector of responses whereas, X  and Z  are both design matrices.  

The columns of X comprise the main effects and interactions that are included in the 

fixed part of the model whereas the columns of Z comprise the main effects and 

interactions that are included in the random part of the model.   Xβ  is the fixed 

component and Zη  is the random component of the model.  Both η  and ε  are 

assumed to be independent and normally distributed random variables. 
 

 ~ ,Nε 0 Σ  and  ~ ,Nη 0 Ψ                                     (4.2) 

 

The mean vector and the variance-covariance matrix for y are: 
 

 E y = Xβ  and  Var y ZΨZ'+Σ                                (4.3) 

 

Linear regression models are special cases of mixed models with 0Z   and 

n 2
Σ I .  The parameters of interest are the elements of β  and the variance and 

covariance elements in Ψ  and .Σ  For Normal models, these can be estimated using 

either maximum likelihood or REML estimation. 

 



 

It is often convenient to specify a linear mixed model in terms of an explicitly 

defined hierarchy of simpler models, which correspond to the levels of a clustered 

or longitudinal data set.  When linear mixed models are specified in this way, they 

are referred to as hierarchical linear models or multilevel models.  Let i  be the 

indicator for the level-1 units within the level-2 units, let j  be the indicator for the 

level-2 units and let M be the number of random effects.  A two-level random 

coefficient models is of the form: 
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(2)

mj  is a random coefficient at level 2 that allows the effects of (2)

mijz  to vary between 

clusters  j . η  is a vector of random coefficients and has a multivariate normal 

distribution with mean 0  and variance-covariance matrix Ψ   

5 Results of the Multilevel Model 

Growth curve or random coefficient models are used for the analysis of longitudinal 

data when the analyst is interested in modeling the effects of time at level 1 on a 

continuous dependent variable, and wishes to investigate the amount of between-

subject variance in the effects of the variables across level 2 units.  In this 

application, we fit a random coefficient model that examines the effect of age on 

student performance in English and simultaneously allows the student-specific 

coefficients describing individual trajectories to vary randomly.   This hierarchical 

model has two levels of nesting, reflecting the contribution of the age level (level 1) 

and the student level (level 2).  The student level 2 variables are gender and the type 

of school. 
 

The level-1 model is: 

0 1 Aij j j ij ijy b b                                               (5.1) 

 

0ijA   (Year 4 student), 1ijA   (Year 5 student) and 2ijA   (Year 6 student)  

  

The level-2 model is: 
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0jG   (Male student) and 1jG   (Female student) 

0jS   (State school) and 1jS   (Private school) 



 

The combined model is given by: 
 

0 1 2 3 4 5 0 1

Fixed Part Random Part

G S A G .A S .A Aij j j ij j ij j ij j j ij ijy                          (5.3) 

 

The parameters 0  through 5  represent the fixed effects associated with the 

intercept, the main effects and interaction terms in the model. 0  is the mean 

predicted English mark for a male student in year 4 attending a state school.   The 

fixed effects
1  and 2  respectively represent the difference in the intercept for the 

levels of gender and the levels of school. The fixed effect
3  represents the rate of 

change of the mean English mark with age.  The fixed effects 4  and 5  respectively 

represent the differences in the linear effect of age between the levels of gender and 

the levels of school. The terms 0 j  and 1 j  represent the random effects associated 

with the student-specific intercept and linear effect of age for student j.  The term 

ij  represents the residual associated with the observation at time  i on student j.  It 

is assumed that these residuals are independent of the random effects. 
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    Figure 3: Mean English marks categorized by year, student gender and type of school  



 

Figure 3 displays the observed English marks for individual students within each 

gender - school category. The plots show substantial variation in attainment between 

the students.  Moreover, the between-student variability in the English marks tends 

to increase at each successive year of age, particularly for students attending private 

schools. The random coefficient model (5.3) accommodates these variations by the 

inclusion of the random effects 0 j  and 1 .j   In addition, the marks of some students 

tend to decrease, as the students get older, whereas the marks for other students 

remain relatively constant.  The between-student variability in the English marks 

differs considerably within each gender - school category.  This is most evident 

when contrasting students attending state and private schools.  The mean profiles 

displayed in Figure 3 show that the mean English mark generally decrease linearly 

with age. 
 

Table 7: Estimated fixed effects for the Random Coefficient Model 

 Estimate St Error z P-value Lower Limit Upper Limit 

0  66.83926 1.474709 45.3 0.000 63.94888 69.72963 

1  8.536799 1.763042 4.84 0.000 5.081301 11.99230 

2  7.389658 2.158862 3.42 0.001 3.158365 11.62095 

3       -7.695683 0.584691        -13.2 0.000    -8.841655 -6.549711 

4       -0.233419 0.704745        -0.33 0.740    -1.614695 1.147856 

5  6.011440 0.884542 6.80 0.000 4.277770 7.745110 

 

Table 8: Variance-covariance parameter estimates 

 Estimate St Error 
2  70.227 4.064 

00  167.86 17.96 

01  -3.009 4.925 

11  0.054 0.173 

 

Tables 7 displays the parameter estimates for the fixed effects and table 8 shows the 

variance-covariance parameter estimates.  The level 1 variance (70.227) is a 

measure of the variation in the English marks throughout the years within students; 

whereas the level 2 variance (167.91) is interpreted as the variation in the English 

marks between students.  The total variance is 238.14.  The proportion of the total 

variance, which arises due to differences between student attainments, is 70.51%; 

whereas the remaining 29.49% of the total variance arises from year to year 

fluctuations of student performance in English. 

 

 



 

6 A Logistic Regression Model 

A further task is to examine a number of explanatory variables that predict the 

outcome of the Eleven-Plus English examination by fitting a Logistic regression 

model. A Logistic regression model is a probability model that relates a 

dichotomous response variable to a number of predictors.  The model assumes a 

Bernoulli error distribution and a logit link function. 
 

Let Y be a discrete random variable with two possible outcomes 
 

1 if outcome is a success

0 if outcome is a failure
Y
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Y has a Bernoulli distribution with  1P Y p  .  If there are N independent random 

variables 1 2, , , nY Y Y  with  1i iP Y p  ,  then the likelihood function is given by: 

 

   
1

1 11

1 = exp  log log 1
1

ii

N N N
yy i

i i i i

i ii i

p
L p p y p

p



 

  
     

  
              (6.2) 

 

The above distribution belongs to the exponential family, which is given by: 
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log  is the natural parameter and    ii ppc  1log  is the cumulant 

function.  The Logistic regression model that relates the proportion of successes ip  

to a number of predictors is given by:  
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β  is a vector of parameters, ix  is a vector of explanatory variables and i  is the 

linear predictor.  Since iY  has a Bernoulli distribution with parameter ip  then  
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For generalized linear models, maximum likelihood estimates can be obtained by an 

iterative weighted least squares procedure using the iterative equation 
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X is the design matrix and W is a diagonal matrix containing iterative weights iiw . 
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The working variate z has elements 
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                  (6.9) 

  

W, z and β̂  are updated at the each iteration using results of the previous iteration.  

 ˆ m
β  is taken as the maximum likelihood estimate when the difference between the 

successive approximations  1ˆ m
β  and  ˆ m

β  is sufficiently small. 

7 Results of the Logistic Regression Model 

The response variable for the Logistic regression model is the outcome of the 

Eleven-Plus English examination.  The categories of this dichotomous variable are 

pass or fail.  The three explanatory variables that were included to predict the 

Eleven-Plus English examination outcome were the Year 6 annual English mark 

(x1), type of school attended by student (x2) and student gender (x3). 
 

Table 9: Summary of the results using a forward procedure for model building 

Model Deviance Change in 

Deviance 

Change in d.f Pseudo 

R-square 

0  334.797    

110 x   141.084 193.714 1 0.697 

22110 xx    138.555 2.529 1 0.704 

3322110 xxx    136.724 1.831 1 0.708 

 

Table 9 displays the deviance and the Nagelkerke pseudo R-square value for each 

model fit.  It is evident that 1x  contributes significantly in explaining variation in 



 

the responses; however, the contribution of 
2x  and 

3x  in improving the model fit is 

very small. The inclusion of these two predictors in the model fit results in a change 

in deviance that is less than  2

0.05 1 3.84  , implying that the parsimonious model is 

a one-predictor model. 
 

Table 10: Parameter estimates, Odds Ratio and 95% Confidence Limits 

Term Parameter 

Estimate 

 St. Error Wald df P-value Exp(B) Lower 

Bound 

Upper 

Bound 

Intercept -14.321 1.660 74.397 1 0.000    

x1 0.220 0.025 77.770 1 0.000 1.246 1.187 1.308 

 

The odds ratio implies that the odds of passing the Eleven-plus English examination 

increases by 24.6% for every one-mark increment in the Year 6 English annual 

mark.   Moreover, we are 95% confident that this odds ratio can vary between 

18.7% and 30.8%. 

 

 

Figure 4: Probability curves for passing/failing the Eleven-Plus English examination 

The probability curves show that students are more likely to pass, rather than fail, 

the Eleven-plus English examination if their Year 6 English annual mark exceeds 

65.  This indicates that Eleven-plus examinations are more stringent than the Year 6 



 

annual examinations.  To examine the predictive power of the logistic regression 

model the predicted outcome of the Eleven-plus examination was generated for each 

student using the estimated response probabilities.  A predicted probability less than 

0.5 correspond to an expected fail, whereas a predicted probability of at least 0.5 

corresponds to an expected pass.  Table 11 displays a crosstab of the classification 

by actual and predicted outcomes.  
 

Table 11: Summary of the results using a forward procedure for model building 

 Predicted Outcome Total 

Pass Fail 

Actual Outcome Pass Count 163 19 182 

Percentage 51.9% 6.1% 58.0% 

Fail Count 24 108 132 

Percentage 7.6% 34.4% 42.0% 

Total Count 187 127 314 

Percentage 59.6% 40.4% 100% 

 

The entries in the leading diagonal of table 11 correspond to a correct classification.  

The Logistic regression model correctly classifies 86.3% of the students. 
 

Table 12: Correct/Incorrect classification by Year 6 English mark categories  

 Classification Total 

Correct  Incorrect 

Year 6 English annual 

mark categories 

Less than 50 Count 42 1 43 

Percentage 97.7% 2.3% 100% 

50 - 59 Count 42 6 48 

Percentage 87.5% 12.5% 100% 

60 - 69 Count 46 28 74 

Percentage 62.2% 37.8% 100% 

70 - 79 Count 70 8 78 

Percentage 89.7% 10.3% 100% 

80 - 100 Count 71 0 71 

Percentage 100.0% 0.0% 100% 

Total Count 271 43 314 

Percentage 86.3% 13.7% 100% 

 

The highest percentage of misclassified students correspond to that category of 

students whose Year 6 English annual mark is in the range 60 to 69.  This range 

includes the cut-off mark (65) which determines whether a student is expected to 

pass or fail the Eleven-plus English examination.  Of the misclassified students all 

the students, except one, got a pass in the Year 6 annual exam but failed the Eleven-

plus exam.  
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