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ABSTRACT 
 

Traditional survival models, including Kaplan Meier, 

Nelson Aalen and Cox regression assume a homogeneous 

population; however, these are inappropriate in the presence 

of heterogeneity. The introduction of frailty models four 

decades ago addressed this limitation. Fundamentally, 

frailty models apply the same principles of survival theory, 

however, they incorporate a multiplicative term in the 

distribution to address the impact of frailty and cater for any 

underlying unobserved heterogeneity. These frailty models 

will be used to relate survival durations for censored data to 

a number of pre-operative, operative and post-operative 

patient related variables to identify risks factors. The study 

is mainly focused on fitting shared and unshared frailty 

models to account for unobserved frailty within the data 

and simultaneously identify the risk factors that best predict 

the hazard of death. 

      
  

1. Introduction  
 

Survival analysis is a useful statistical method for answering 

questions that deal with the duration of events. Survival 

models have been used in several research fields to analyze 

data involving time to a certain event such as death, relapse 

and onset of a disease. Essentially the duration of a study 

is treated as the dependent variable and therefore proper 

definition of the investigation period plays a vital role in 

determining the number of deaths. 

 

Although there are several types of non-parametric (Kaplan 

Meier and Nelson Aalen), semi parametric (Cox regression) 

and parametric techniques to analyze the survival times, 

these methods do not cater for unobserved heterogeneity. 

The introduction of frailty models overcomes this limitation. 

Fundamentally the same principles from survival theory 

apply, however a multiplicative term is incorporated in the 

distribution being considered in order to model the impact 

of frailty.   

These models provide a novel approach to survival problems 

and they encompass two main types of models, namely the 

unshared and the shared frailty models. In the unshared case 

a dataset is analyzed assuming that each individual has an 

associated distinct random effect. The shared case assumes that 

persons sharing a common factor, such as children born to the 

same mother or patients with a common health condition, 

may be analyzed group-wise. Entities within each group are 

assigned the same frailty effect, but varying heterogeneity 

levels are expected to subsist among the clusters.  

The word frailty was first coined by Vaupel et al., (1979) 

where it was presented in their research on mortality and 

later extended by Hougaard (1984). They illustrated that 

although individuals appear physically alike, they have 

different threats independently associated to them. In 1984, 

Hougaard further observed that the difference between the 

Gamma and Inverse Gaussian distributions is derived from 

frailty instability among those still alive. In the former case 

frailty remained steady but in the latter case frailty dropped 

as individuals grew older. It was further noticed that the 

random effect had an impact on the hazard equation, which 

led to the concept that frail persons are bound to decline 

faster. This unobserved random effect is discussed by several 

authors in various papers. 

 

Frailty techniques are generally employed to estimate the 

variance of unobserved risks among individuals. In the 

univariate scenario, a frailty is assumed to have a unit mean 

and variance and operates multiplicatively on the baseline 

hazard. Failure times of particular occurrences are the central 

purpose for such analysis, as the interest lies in understanding 

the proneness to some specific occurrence, such as illness. 

For instance one might be concerned with the recurrence 

times of smoking after withdrawal, or the time it takes until 

heart failure sets in. Most often in clinical applications, frailty 

may be regarded as a means of describing the biological age 

rather than the chronological age, due to various factors. 

The utility of shared frailty models was first highlighted by 

Clayton and Cuzick in the 70’s where the authors emphasized 

the added benefit of including frailty when heterogeneity 

impact is common among individuals within a group. Each 

set has a distinct random effect, which in turn causes frailties 

to be interrelated. Furthermore, the distinction between a 

frailty model in the shared and the unshared case lies in the 

hazard function. Hougaard, and Whitmore & Lee enhanced 

developments on shared frailty models by addressing frailty 

by assuming a Weibull baseline hazard function and an 

Inverse-Gaussian frailty distribution. Flinn and Heckman in 

1982 also made use of the lognormal distribution to address 

frailty. 

Shared proportional hazard techniques were introduced 

primarily through the works of Therneau et al. (2000) and 

Ripatti and Palmgren (2000). These researchers implemented 

the penalized partial likelihood (PPL) method to elicit results 

on frailty models using either a Gamma or an Inverse Gaussian 

distribution. Subsequently in 2003, Klein and Moeschberger 
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presented an alternative approach to the PPL method by 

proposing the application of the expectation-maximization 

(EM) algorithm. The idea was to determine the variances of 

the maximum likelihood estimates from the information 

matrix. Moreover Therneau et al. (2003) proved a very 

important result, namely that the EM and PPL methods 

produce equivalent results for the gamma distribution. In fact 

this was confirmed in their studies which were implemented 

both in SAS and R. 

In 2008, Jenkins developed an algorithm for STATA that 

allowed the inclusion of a univariate frailty term for discrete 

event times. He showed that despite the fact that the data 

comprises discrete event times it is possible to obtain reliable 

results similar to the continuous parametric techniques. A 

weakness of this method is that the heterogeneity term is only 

assumed to have a gamma or a normal distribution. Hence it 

is only possible to compare between discrete and continuous 

gamma frailty models. Some of the outstanding works on 

frailty used in this paper include Wienke (2011), Duchateau 

and Janssen (2008), Hanagal (2011), and Kleinbaum and 

Klein (2005).  

 

2. Theory of unshared frailty models 
 

The seminal work of Clayton and Cuzick in the late 70’s 

highlighted the utility of shared frailty models and stressed the 

added benefit of adding frailty when examining associations 

between models. As highlighted in the introduction, there are 

two types of frailty models to analyze survival data in the 

presence of unobserved heterogeneity. In unshared frailty 

models, the frailty is introduced at the observation level as an 

unobservable multiplicative effect, α on the baseline hazard 

function 0 ( )h t  such that: 
 

( ) ( )0
h t h tα α=                              (1) 

 

In this context, α is a non-negative random mixture variable 

where ( ) 1E α =  and 
2var( ) .α σ=  When 2σ is small, the 

values of α are located close to 1; however the values 

ofα are more dispersed when 2σ is large, inducing larger 

heterogeneity in the individual hazards 
0
( ).h tα  

 

Let ( )S t α  denote the survival function of a life conditional 

on the frailty α and let 
0 0

0
( ) ( )

t

h s ds M t=∫ then 

 

( ) ( ) ( )00 0 0 ( )
t t
h s ds h s ds M t

S t e e e
α α αα − − −∫ ∫= = =         (2) 

 

If observed covariates X  are available then the hazard is 

proportional to the baseline hazard, where the constant of 

proportionality is the exponential term exp( ' ).β X  So model 

(1) becomes: 

 

( ) ( )0
, exp( ' )h t h tα α=X β X                      (3) 

 

where
1

( , , )
p

=X x x… and 
1

( , , )
p

β β=β … is the vector of 

regression parameters. 

The two distributions that are normally considered for the 

probability density function ( ),f α  of α are the gamma and 

inverse Gaussian distributions.  

 

Given the simple Laplace transform of the Gamma distribution 

( , ),k λΓ it is easy to derive the closed-form expressions of the 

survival and hazard functions. The exponential distribution is a 

special case of the Gamma distribution when the shape 

parameter 1.k =  If α  has a Gamma distribution and 0,α >  

0,λ >  0k >  its probability density function is given by: 
 

( ) ( )
1

k
k

f e
k

λαλα α − −=
Γ

                            (4) 

 

By setting 21/k λ σ= =  ensures that the model is identifiable 

and ensures that ( ) 1E α =  and 
2var( )α σ= . Moreover, the 

unconditional survival and hazard functions are given by: 
 

( ) 2

1
2

0

1
( )

1
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Moreover, if observed covariates ix  are available for life i 

then the mean frailty and frailty variance for a life dying 

beyond time t are given by: 
 

( )2

0

1
( , )

1 exp( ' )
E T t

M t
α

σ
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+
X

β X
             (7) 
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        (8) 

 

The Inverse Gaussian distribution is also considered as a 

frailty distribution because similar to the Gamma distribution, 

simple closed-form expressions exist for the unconditional 

survival and hazard functions. If α  has an Inverse Gaussian 

distribution and 0,α >  0,λ >  0µ >  its probability density 

function is given by: 
 

( )
2

23

( )
exp

22
f

λ λ α µα
µ απα

 −= − 
 

             (9) 

 

By setting 1µ =  and 21/λ σ=  guarantees that the model is 

identifiable and ensures that ( ) 1E α =  and 
2var( )α σ= . The 

unconditional density function, the unconditional survival and 

hazard functions are given by: 
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If observed covariates ix  are available for life i then the 

mean frailty and frailty variance for a life dying beyond time 

t are given by: 
 

( )2

0

1
( , )

1 exp( ' )
E T t

M t
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σ
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+
X
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          (12) 
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Possible choices for baseline hazard include the exponential, 

Weibull, Gompertz, log-normal and log-logistics distributions. 

 

 

3. Theory of shared frailty models 
 

A generalization of the unshared frailty model is the shared 

frailty model, where the frailty is assumed to be group-

specific. Basically shared frailty arises when the heterogeneity 

impact is common among individuals within a group, yet 

each set has a distinct random effect, which in turn causes 

frailties to be interrelated.  

 

Suppose there exist n groups and that group i comprises in  

observations associated with the unobserved frailty 
i

α for  

1 i n≤ ≤ .  Their hazard functions are given by: 

 

( ) ( )0i i
h t h tα α=                              (14) 

 

Let ( )iS t α  denote the survival function of a life conditional 

on the frailty iα and let 
0 0

0
( ) ( )

ijt

ij
h s ds M t=∫ then 

 

( )1 0

1

,..., exp ( )
i

i

n

i in i i ij

j

S t t M tα α
=

 
= − 

  
∑              (15) 

 

If observed covariates iX  for 1 i n≤ ≤  are available then 

the hazard is proportional to the baseline hazard, where the 

constant of proportionality is the exponential term exp( ' ).β X  

Assuming that the survival times in group i are independent, 

then model (16) becomes: 
 

( ) 0
, ( ) exp( ' )

i i i i
h t h tα α=X β X                  (16) 

 

where 1( , , )
ii i in=X x x… and 

1
( , , )

p
β β=β … is the vector of 

regression parameters. The conditional survival function 

on frailty 
i

α which is shared by all individuals in group i is 

given by: 
 

( ) '

1 0

1

,..., , exp ( ) 
i

ij

i

n
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j
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∑

β x
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The Gamma and Inverse Gaussian frailty models are often 

used mainly for their nice properties, particularly their simple 

Laplace transform. Popular choices for the baseline hazard 

include the Weibull and Gompertz distributions. 

4.  Application 
 

The dataset used for the frailty model application comprised 

365 Maltese patients who underwent aortic valve replacement 

from 1995 to 2014 at the cardiothoracic centre in a Maltese 

hospital.  Although the ages of the patients ranged from 15 

to 87, the vast majority were over 60. In fact it is well 

known that the risk of requiring heart surgery increases with 

age. All the patients were followed up after the operation. 

For those who died, the time of death was recorded in order 

to compute their survival duration. The majority of the 

patients were still alive by the end of the investigation period, 

and their survival times were set equal to the duration 

between the operation and the end of the investigation period. 

This type of censoring is non-informative, where observations 

are right censored.  
 

The data for each patient was recorded by the surgeon 

conducting the operation. The predictors involved included 

pre- and post-operative factors, demographic and other patient 

related explanatory variables. Essentially, the dependent 

variable, Time is the survival duration after surgery recorded 

on a continuous scale. The variables Status is categorical 

indicating whether the patient died or survived by the end of 

the investigation period. This variable will be used to identify 

the censoring status of each patient. 
 

The Logistic Euroscore estimates the predicted operative 

mortality for patients undergoing cardiac surgery. This risk 

measure of death has a metric scale. Mechanical+Graft is a 

categorical variable indicating the presence or absence of a 

mechanical valve during surgery with concomitant coronary 

artery bypass grafting. Xeno+Graft is a categorical 

variable indicating the presence or absence of a biological 

valve with artery grafting. The variable Bleeding records 

the blood volume, in millilitre, lost post-operatively until 

removal of chest drains. The variable Transfusion records 

the number of blood units transfused, where 1 unit corresponds 

to 250ml of blood.  IABP is a categorical variable indicating 

whether an intra-aortic balloon pump was required to 

assist the heart to pump. Dialysis is a categorical variable 

indicating whether the patient was on dialysis due to 

kidney failure after the operation and the patient’s Age is 

measured in years. CTS records the duration of patients in 

the central treatment suite after heart surgery. It is a 

categorical variable (1-4, 5-10, 11-16, 17 days or more) and 

will be used as the grouping variables in the shared frailty 

models. 

 

 

5. Results of the unshared frailty models 

 

All the fitted models in this section are implemented as 

proportion hazard models and assume a Gompertz baseline 

hazard function given by:  
 

( )0 = jt

jh t e
γλ                            (18) 

 

where ( )0 1 1=exp ...j p px xλ β β β+ + +  and γ  is an ancillary 

parameter. Table 1 displays the parameter estimates, standard 

errors and p-values of the non-frailty model. 



Table 1: Estimates of non-frailty model 

Parameter Coef. S.E. Z P z>  

Constant -4.694 3.462 -1.356 0.175 

Age 0.059 0.024 2.458 0.014 

Logistic Euroscore 0.059 0.045 1.311 0.190 

Mechanical+Graft 0.700 0.910 0.769 0.442 

Xeno+Graft 0.788 0.913 0.863 0.388 

Transfusion 0.192 0.029 6.621 0.000 

Bleeding 0.001 0.003 0.333 0.739 

IABP 1.358 0.419 3.241 0.001 

Dialysis 1.392 0.351 3.966 0.000 

Gamma γ  0.069 0.042 1.643 0.100 

Log-Likelihood -225.988 

BIC 510.975 

 

The non-frailty model identifies four significant predictors of 

survival duration. The parameter estimate of Age (0.059) 

indicates that for every 1-year increase in age the hazard of 

death increases by 6.1%; the parameter estimate of Transfusion 

(0.192) indicates for every 1-unit increase in transfused blood 

the hazard of death increases by 21.1%. The parameter 

estimate of IABP (1.358) indicates that for patients requiring 

an intra-aortic balloon pump after heart surgery the hazard of 

death is 3.89 times in patients who do not require this device. 

The parameter estimate of Dialysis (1.392) indicates that for 

patients on dialysis due to kidney failure the hazard of death 

is 4.02 times in patients who do not have this condition. The 

parameter estimates of Logistic Euroscore, Mechanical+Graft, 

Xeno+Graft and Bleeding are not significant because their 

p-values exceed the 0.05 level of significance. The log-

likelihood of the non-frailty model is -225.99 and the estimate 

of the ancillary parameter  (0.069) is not significantly different 

from 0. 
 

Table 2: Estimates of unshared Gamma frailty model 

Parameter Coef. S.E. Z P z>  

Constant -2.839 5.142 0.552 0.581 

Age 0.096 0.043 2.233 0.025 

Logistic Euroscore 0.048 0.077 0.623 0.533 

Mechanical+Graft 1.574 1.427 1.103 0.270 

Xeno+Graft 1.873 1.872 1.001 0.317 

Transfusion 0.200 0.091 2.198 0.028 

Bleeding 0.011 0.008 1.375 0.169 

IABP 3.895 1.066 3.654 0.000 

Dialysis 3.239 1.076 3.010 0.003 

Gamma γ  0.317 0.089 3.562 0.000 

Log (var )α  1.957 0.355 5.513 0.000 

Log-Likelihood -218.505 

BIC 501.910 
 

Table 3: Estimates of unshared Inv. Gaussian frailty model 

Parameter Coef. S.E. Z P z>  

Constant -2.918 5.928 -0.492 0.623 

Age 0.113 0.045 2.511 0.012 

Logistic Euroscore 0.093 0.077 1.208 0.227 

Mechanical+Graft 0.862 1.567 0.550 0.582 

Xeno+Graft 0.995 1.568 0.635 0.525 

Transfusion 0.297 0.058 5.121 0.000 

Bleeding 0.003 0.006 0.500 0.617 

IABP 2.650 0.743 -3.567 0.000 

Dialysis 2.722 0.651 -4.181 0.000 

Gamma γ  0.331 0.067 4.940 0.000 

Log (var )α  4.484 0.976 4.594 0.000 

Log-Likelihood -216.260 

BIC 497.419 

 

To apply the theory described in section 2, unshared Gamma 

and Inverse-Gaussian frailty models were fitted using Stata 

streg directives. Table 2 and Table 3 show the parameter 

estimates, standard errors and p-values of these two unshared 

frailty models.  For both models, the parameter estimates of 

Age, IABP, Transfusion and Dialysis are significantly positive 

complementing the results of the non-frailty model. Moreover, 

the estimates of the frailty variance of the Gamma (5.24) and 

Inverse Gaussian (88.59) model are both significant, which 

implies that the data exhibits substantial frailty. In fact, the 

BIC of the Inverse Gaussian (497.42) and Gamma (501.91) 

frailty models are considerably lower than the BIC of the 

non-frailty model (510.97).  

 
 

6. Results of the shared frailty models 

 
Table 4: Estimates of shared Gamma frailty model 

Parameter Coef. S.E. Z P z>  

Constant -4.395 3.558 -1.235 0.217 

Age 0.053 0.024 2.254 0.024 

Logistic Euroscore 0.043 0.045 0.945 0.344 

Mechanical+Graft 0.646 0.927 0.698 0.485 

Xeno+Graft 0.803 0.935 0.859 0.390 

Transfusion 0.203 0.029 6.855 0.000 

Bleeding 0.002 0.033 0.074 0.941 

IABP 1.120 0.426 2.626 0.009 

Dialysis 1.387 0.351 3.956 0.000 

Gamma γ  0.081 0.040 2.025 0.044 

Log (var )α  1.601 0.643 2.488 0.013 

Log-Likelihood -220.813 

BIC 506.525 
 



Table 5: Estimates of shared Inv. Gaussian frailty model 

Parameter Coef. S.E. Z P z>  

Constant -4.343 3.581 -1.213 0.225 

Age 0.053 0.024 2.255 0.024 

Logistic Euroscore 0.043 0.045 0.955 0.341 

Mechanical+Graft 0.637 0.929 0.686 0.493 

Xeno+Graft 0.791 0.939 0.843 0.399 

Transfusion 0.203 0.030 6.844 0.000 

Bleeding 0.002 0.033 0.083 0.934 

IABP 1.124 0.426 2.636 0.008 

Dialysis 1.389 0.035 3.959 0.000 

Gamma γ  0.081 0.040 2.020 0.043 

Log (var )α  2.803 1.342 2.089 0.037 

Log-Likelihood -218.559 

BIC 502.017 

 

To apply the theory described in section 3, shared Gamma and 

Inverse-Gaussian frailty models were fitted using Stata streg 

directives. The models are implemented as proportion hazard 

models and assume a Gompertz baseline hazard function. 

Table 4 and Table 5 show the parameter estimates, standard 

errors and p-values of these two shared frailty models.  Both 

models, confirm that IABP, Age, Transfusion and Dialysis are 

significant predictors of the hazard of death. Moreover, the 

estimates of the frailty variance are both significant, which 

indicates the presence of substantial frailty. The unshared 

Inverse Gaussian frailty model yields the lowest BIC value 

(497.42) implying that it provides the best fit.  On the other, 

the non-frailty model yields the highest BIC value (510.98) 

implying that it provides the poorest fit.   

 

 

6. Conclusion 
 

This paper presents two shared and two unshared frailty 

models assuming a Gamma or an Inverse Gaussian frailty 

distribution and a Gompertz baseline hazard function.  This 

paper shows that in the presence of heterogeneous data these 

models provide a significantly better fit than non-frailty ones.  

For this data, the Inverse Gaussian assumption for the frailty 

distribution provided a better fit than the Gamma distribution. 

 

An alternative approach to these parametric models is to fit 

semi-parametric frailty models, which do not require any 

assumptions on the baseline hazard function. These models 

can be implemented using the coxph directive in the R 

statistical software, where parameters are estimated using the 

EM (expectation maximization) algorithm, which iterates 

between two steps. The first step estimates the unobserved 

frailties and model parameters based on observed data. 

These estimates are used in the maximization step to obtain 

updated parameter estimates given the estimated frailties. The 

iterative procedure is continued until it converges. The 

likelihood includes both the observed data and unobserved 

frailties, which are assumed to be random. These models can 

also be implemented using the frailtypack in the R package, 

which uses the PPL (penalized partial likelihood) approach. 

However, this estimation method can yield different results 

when compared to the coxph approach. In frailty models 

these techniques work best when the random effects are 

significant. STATA has the facility to fit semi-parametric 

Gamma frailty models but not Inverse Gaussian models.  
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