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ABSTRACT 

 
The EM algorithm is a popular method for computing 

maximum likelihood estimates.  It tends to be numerically 

stable, reduces execution time compared to other 

estimation procedures and is easy to implement in latent 

class models.  However, the EM algorithm fails to provide 

a consistent estimator of the standard errors of maximum 

likelihood estimates in incomplete data applications.  

Correct standard errors can be obtained by numerical 

differentiation.  The technique requires computation of a 

complete-data gradient vector and Hessian matrix, but not 

those associated with the incomplete data likelihood.  

Obtaining first and second derivatives numerically is 

computationally very intensive and execution time may 

become very expensive when fitting Latent class models 

using a Newton-type algorithm.  When the execution time 

is too high one is motivated to use the EM algorithm 

solution to initialize the Newton Raphson algorithm.  We 

also investigate the effect on the execution time when a 

final Newton-Raphson step follows the EM algorithm after 

convergence.  In this paper we compare the standard errors 

provided by the EM and Newton-Raphson algorithms for 

two models and analyze how this bias is affected by the 

number of parameters in the model fit.   

 

 
1. INTRODUCTION 

 
A limitation of the EM algorithm is that the estimated 

information matrix, in contrast to the case for gradient 

methods such as Newton-Raphson, is not a direct by-

product of maximization.  Procedures for obtaining the 

information matrix within the EM algorithm have been 

suggested by several authors.   

 

An approach for computing the Fisher information matrix 

within the EM framework was suggested by (Louis 1982).  

His methodology is based on a result by (Fisher 1925) that 

showed that, given the incomplete data, incomplete data 

scores are conditional expectations of the complete data 

scores. The author derives a procedure for extracting the 

observed information matrix when the EM algorithm is 

used to find maximum likelihood estimates in incomplete 

data problems.  The technique requires the computation of 

the complete data gradient vector and the Hessian matrix 

but does not require those associated with the incomplete 

data log- likelihood function.   A criticism of this approach 

is that the procedure is often computationally demanding 

and hard to implement because it requires the computation 

of both a complete-data score vector and second derivative 

matrix.   

 

An alternative approach for computing the Fisher 

information matrix using gradients only was suggested by 

(Meilijson 1989).  Methods that only require gradients are 

easier to compute analytically and less demanding to 

compute numerically.  An appealing advantage of this 

procedure, in contrast to the approach suggested by (Louis 

1982), is that once the individual scores have been 

identified there is no additional analysis to perform.  

Meilijson’s methodology is based on a result by (Fisher 

1925) in which the evaluation of individual score vectors 

of the incomplete data is a by-product of the application of 

the E-step of the EM algorithm.  The Fisher information 

matrix may be consistently estimated by the empirical 

variance-covariance matrix of these individual score 

vectors and the M step may be replaced by a Newton-type 

step.  This permits a unification of EM methodology and 

Newton methods.  A demerit of Meilijson’s technique is 

that it applies only to specialized cases in which the 

observed data are independent and identically distributed 

samples.   

 

Another approach for computing the observed information 

matrix is the well-known supplemented EM (SEM) 

algorithm, suggested by (Meng and Rubin 1991). The 

SEM algorithm numerically differentiates the EM operator 

( )M φ  and uses a result by (Dempster, Laird and Rubin 

1977) that relates the Jacobian of ( )M φ  to the Hessian 

matrix ( )H φ , both evaluated at φ̂ .  The authors claim that 

their algorithm can be applied to any problem to which 

EM has been applied, assuming that one has access to the 

complete-data asymptotic variance-covariance matrix.  

(Segal, Bacchetti and Jewell 1994) point out that the SEM 
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algorithm requires very accurate estimates of φ̂  and so 

they can be much more expensive to obtain than the EM 

estimates.  (McCulloch 1998) remarks that for many 

problems the method of obtaining standard errors using 

the SEM algorithm can be numerically unstable.   

(Jamshidian and Jennrich 2000) point out that, algorithms 

that numerically differentiate ( )M φ  may suffer from the 

error magnification problem when the EM algorithm is 

slow.  The authors remark that algorithms that numerically 

differentiate the score vector ( )g φ  are appropriate for all 

maximum likelihood applications and they do not suffer 

from the error magnification problem.  

 

The variance-covariance matrix can be obtained by other 

techniques that do not use numerical differentiation.  

Bootstrapping uses computer intensive resampling and 

treats a given sample as the population.  An empirical 

probability distribution is constructed from the sample of 

size n in which the probability of each observation is 1/n.  

K random samples each of size n are drawn with 

replacement from this empirical distribution where some 

of the observations in a sample may be duplicated.  The 

EM algorithm is then performed on each sample to 

calculate the vector of parameters ˆ
kφ . Hence a probability 

distribution is constructed from all the resampled 

parameter estimates in which the probability of each ˆ
kφ  is 

1/K.  This distribution is the bootstrapped estimate of the 

sampling distribution of φ̂  which can be used to provide 

estimates for the standard errors.  The primary advantage 

of bootstrapping is that no assumptions about the shape of 

the sampling distribution are made.  Jackknifing is a 

different resampling technique in which a single 

observation is omitted at a time.  Thus, each sample 

consists of n-1 observations formed by deleting a different 

observation from the sample.  A jackknifed estimate of the 

sampling distribution of φ̂  can be obtained in a similar 

way to the bootstrap procedure.  (Agresti 2002) remarks 

that bootstrap and jackknife procedures are useful tools for 

estimating standard errors when samples are small or data 

is sparse.   

 

 
2. A GENERAL MODEL 

 
A latent class model relates a set of observed multivariate 

categorical variables to a latent variable which is discrete.  

Latent class analysis, unlike cluster analysis, uses a model-

based approach that combines conventional statistical 

estimation methods to classical clustering techniques.  In 

this methodology latent classes are defined by the criterion 

of conditional independence where the observed variables 

within each segment are statistically independent. The 

assumption of conditional independence has been widely 

used in latent class modelling.  It is directly analogous to 

the assumption, in the factor analysis model, that observed 

variables are conditionally independent given the factors.  

This implies that the observed correlations between the 

items are due to the clustered nature of the population, 

whereas within a cluster, the items are independent. 

 

To illustrate the procedure, we fit a latent class model to a 

data set as suggested by (Camilleri and Green 2004) using 

the EM algorithm and a Newton-type algorithm.  The aim 

is to assess the bias of the standard errors between these 

maximization procedures.  The EM algorithm for fitting 

latent class models is implemented using GLIM software 

(Generalized linear interactive models).  The Newton-type 

algorithm is implemented using the facilities of GLLAMM 

(Generalized linear latent and mixed models).  GLLAMM 

software uses numerical first and second derivatives of the 

log-likelihood and produce standard errors by maximizing 

the marginal log-likelihood using Raphson algorithm.  The 

GLLAMM framework accommodates a large class of 

models including structural equation, multilevel, latent 

class and longitudinal models.   

 

Let ( , , )φ α  β π  be the vector comprising the parameters 

of the latent class model with K segments. The thn density 

function is of the form  
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k  are the unconditional probabilities that sum to 1 and 

represent the proportion of respondents that are allocated 

to each segment.  The marginal or conditional probability 

( , )jn kP y r α β  follows the Proportional Odds model 

suggested by (McCullagh 1980) 
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In this model jny  is a rating response elicited by the thn  

respondent for the thj item; α  is a vector of threshold 

parameters; β  is a vector of regression parameters and 

jx are item covariates. The choice of (.)F  is the Logistic 

distribution which leads to the logit link.   

 

The likelihood function of the data set is obtained by 

taking the product of the N density functions. 
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The log-likelihood function is given by: 
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Maximum likelihood estimation can be carried out via 

standard numerical optimization routines such as the 

Newton Raphson method or alternatively using the EM 

algorithm. The popularity of the EM algorithm arises from 

its computational elegance, particularly for latent class 

models.  The idea behind the EM algorithm is to augment 

the observed data by introducing unobserved data, nk  

indicating whether the thn  respondent belongs to the thk  

segment.  



An effective procedure to fit a latent class model with K 

segments is to maximize the expected complete log-

likelihood function using the iterative EM algorithm. 
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The complete log likelihood  l φ  Λ  is given by: 
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The complete log-likelihood function ( )l φ Λ  has a simpler 

form compared to ( )l φ  given by (4) and the derivatives 

are easier to compute. 

 

Each iteration is composed of two steps: an E-step and an 

M-step. In the E-step, [ ( )]E l φ Λ  is calculated with respect 

to the conditional distribution of the unobserved data 

1 2( , ,..., )NΛ λ λ λ  given the vector of observed responses 

ny  and using the provisional parameter estimates φ .  This 

is achieved by using Bayes’ theorem to estimate nk . 
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In the M-step, [ ( )]E l φ Λ  is maximized with respect to 

φ .  This is achieved by replacing 
nk  by their expected 

posterior probabilities 
nkp .   So  
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The two terms on the right hand side of the expression can 

be maximized separately.  The maximization of [ ( )]E l φ Λ   

with respect to 
k  is straightforward and can be worked 

directly by differentiation.  The maximum of [ ( )]E l φ Λ   

with respect to 
k , subject to the constraint 

1
1

K

k  , is 

obtained by maximizing the augmented function. 

   

1 1 1

ln ( 1)
K N K

nk k k

k n k

p   
  

                   (9) 

 

  is the Lagrange multiplier.  Setting the derivative with 

respect to k  equal to zero yields 
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    for  1,2,...,k K             (10) 

 

The maximization of [ ( )]E l φ Λ  with respect to α  and kβ  

in GLIM is performed by transforming the polychotomous 

responses as a vector of 0-1 indicators.  This allows the 

use of Poisson likelihood in model fitting by considering 

each term of 
1 1

.ln ( , )
N K

nk n n kp P   Y y α β  a weighted 

Poisson log-likelihood function.  This maximization step 

can be accommodated using the OWN model facilities of 

GLIM4. 

 

Since the probabilities, 
nkp  are unknown then the iterative 

procedure is initiated by setting random assignment to 

these probabilities. The algorithm alternately updates the 

parameters , ,α  β π  and the prior weights, 
nkp  until the 

process converges. 

 

Maximum likelihood estimation in GLLAMM is carried 

out via a Newton-Raphson algorithm.  The algorithm uses 

numerical first and second derivatives of the likelihood 

function, which is computationally demanding and time 

expensive even with few model parameters.  The Newton-

Raphson algorithm can be derived by considering an 

approximation of ( )l φ φ  using a first order Taylor 

series expansion around the parameter m
φ  evaluated at the 

thm  iteration.  
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Gradient methods are iterative and updated parameters can 

be evaluated by setting   l φ φ  to zero. Denoting the 

gradient vector and Hessian matrix by ( )m
g φ  and  ( )m

H φ , 

the updated parameters are given by: 

 

   
1
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If the log-likelihood is quadratic in the parameters, as in 

the case of linear regression models, the equations can be 

solved in closed form and maximum likelihood estimates 

φ̂  are found in a single iteration. 

 

 
3. RESULTS OF THE STUDY 

 
Although the EM algorithm yields maximum likelihood 

estimates of the parameters it fails to provide standard 

errors of these parameter estimates as a by-product of the 

iterative algorithm.  On the other hand, a Newton-type 

algorithm provides correct standard errors; however, there 

is a computing cost associated with our patience in waiting 

for an output.  It is well known that Newton-type methods 

require good starting values and a fast convergence is only 

guaranteed if these starting values are near the solution.  

Another problem is that obtaining first and second 

derivatives numerically is computationally intensive and a 

Newton-type algorithm may become very expensive 

particularly when fitting models with a considerable 

number of parameters. This paper compares the standard 

errors of the parameters provided by the EM and Newton-

Raphson algorithms for two models and contrast execution 

times when using GLIM and GLLAMM software.   



GLLAMM software can fit proportional odds models by 

specifying the family to be binomial and the link to 

be ologit.  This link corresponds to the logit link functions 

appropriate for ordinal data.  The syntax nrf specifies the 

number of latent variables; the syntax nip specifies the 

number of latent classes (segments) and the syntax ip(fn) 

yields non-centred latent classes.  Some of the terms in the 

GLIM output were intrinsically aliased.  In order to get a 

similar solution using GLLAMM we had to constrain 

these parameters to zero using the constraint define 

command in GLLAMM.   

 

It was noted that estimation with GLLAMM using a 

Newton-type algorithm took about fifty times longer 

compared to GLIM using an EM algorithm.  For problems 

with large numbers of parameters and latent variables, 

Newton-type methods can become infeasible and 

computationally demanding.  When the computer cost is 

too high one is motivated to use GLIM’s EM algorithm 

solution to initialize GLLAMM’s Newton Raphson 

algorithm.  This reduces considerably the execution time 

for GLLAMM.  It was noted that when a final Newton-

Raphson step was applied to GLIM’s EM solution after 

convergence the algorithm always converged in at most 

three iterations yielding a solution which was concave.  In 

spite of this improvement, estimation with GLLAMM still 

took about five times longer compared to GLIM. 

 

In the first illustration a Latent class model was fitted to a 

data set (Camilleri and Green 2004) that provided rating 

scores to a number of items (profiles) described by three 

car-attributes.  The linear predictor included brand as a 

sole main effect with four categories.  The latent variable, 

segment, was interacted with each level of brand and the 

model was estimated with two latent classes, four latent 

variables and a logit link function.  A 7-point scale was 

used for the rating scores yielding 6 threshold (cut-point) 

parameters.  The GLIM solution required 34 iterations and 

took 3 minutes to converge.  The log-likelihood of this 

solution was 9807.98.  The parameter estimates elicited 

from the EM algorithm were then used as starting values 

for the Newton-Raphson algorithm. GLLAMM required 

three iterations and took 9 minutes to converge.  The log-

likelihood of the GLLAMM solution was 9807.62.   
 

 

Table 1: Parameter estimates and standard errors elicited    

 the EM and EM+NR algorithms. 

Another interesting observation is that GLIM provided 

deflated standard errors where the deflation for each 

standard error varied from 24% to 47%. The cause for this 

deflation is that the EM algorithm has to estimate KN 

missing or unobserved values 
nk  together with the model 

parameters.  

 

In the second illustration another Latent class model was 

fitted to the same data set.  The linear predictor includes 

brand and a two-level door attribute as main effects and 

the interaction of brand with a quadratic function of price.  

The latent variable, segment, was again interacted with 

each term.  The model was estimated with two latent 

classes, thirteen latent variables and a logit link function.  

The GLIM solution required 34 iterations and took 10 

minutes to converge.  The log-likelihood of this solution 

was 9004.64.  Using GLIM’s parameter estimates as initial 

values, GLLAMM required 3 iterations that took 36 

minutes to converge.  The log-likelihood of the GLLAMM 

solution was 9003.24 and the amount of deflation of 

GLIM’s standard errors compared to GLLAMM’s varied 

from 0% to 19%. 
 

 

Table 2: Parameter estimates and standard errors elicited    

 the EM and EM+NR algorithms. 

 

An interesting observation is that when complex models 

are fitted the discrepancy between GLIM’s standard errors 

compared to GLLAMM’s was smaller. An explanation for 

this occurrence is that the proportion of model parameters 

Term GLIM Output GLLAMM Output 

Estimate St Error Estimate St Error 

Cutp1 -4.061 0.134 -4.063 0.177 

Cutp2 -2.816 0.127 -2.814 0.171 

Cutp3 -1.858 0.124 -1.856 0.169 

Cutp4 -0.927 0.122 -0.925 0.168 

Cutp5 0.118 0.121 0.119 0.167 

Cutp6 1.362 0.126 1.364 0.168 

Brand(1).Seg(1) -2.871 0.177 -2.870 0.274 

Brand(1).Seg(2) -1.149 0.140 -1.148 0.191 

Brand(2).Seg(1) -0.636 0.174 -0.636 0.270 

Brand(2).Seg(2) -0.603 0.139 -0.603 0.189 

Brand(3).Seg(1) -2.628 0.176 -2.629 0.332 

Brand(3).Seg(2) -1.360 0.140 -1.360 0.190 

Brand(4).Seg(1) -2.541 0.177 -2.541 0.273 

Brand(4).Seg(2) Aliased Aliased Aliased Aliased 

Term GLIM Output GLLAMM Output 

Estimate St Error Estimate St Error 

Cutp1 -0.631 0.843 -0.634 0.877 

Cutp2  0.043 0.843  0.045 0.877 

Cutp3  0.604 0.843  0.602 0.877 

Cutp4  1.181 0.843  1.180 0.877 

Cutp5  1.802 0.843  1.803 0.877 

Cutp6  2.513 0.843  2.513 0.877 

Door(1).Seg(1) -1.295 1.135 -1.297 1.214 

Door(1).Seg(2) -0.314 0.044 -0.312 0.053 

Door(2).Seg(1) -0.799 1.135 -0.798 1.214 

Door(2).Seg(2) Aliased Aliased Aliased Aliased 

Brand(2).Seg(1) -0.436 1.079 -0.434 1.090 

Brand(2).Seg(2)  1.082 1.188  1.080 1.213 

Brand(3).Seg(1) -0.275 1.078 -0.273 1.090 

Brand(3).Seg(2)  0.625 1.189  0.623 1.215 

Brand(4).Seg(1) -0.569 1.083 -0.567 1.104 

Brand(4).Seg(2)  1.597 1.186  1.597 1.233 

Brand(1).Price.Seg(1)  0.410 0.213  0.411 0.218 

Brand(1).Price.Seg(2)  0.406 0.234  0.405 0.244 

Brand(2).Price.Seg(1)  0.598 0.212  0.598 0.218 

Brand(2).Price.Seg(2)  0.319 0.233  0.317 0.244 

Brand(3).Price.Seg(1)  0.515 0.212  0.515 0.216 

Brand(3).Price.Seg(2)  0.246 0.234  0.246 0.241 

Brand(4).Price.Seg(1)  0.494 0.212  0.494 0.218 

Brand(4).Price.Seg(2)  0.133 0.233  0.131 0.244 

Brand(1).PriceSq.Seg(1) -0.017 0.014 -0.017 0.014 

Brand(1).PriceSq.Seg(2) -0.043 0.016 -0.043 0.016 

Brand(2).PriceSq.Seg(1) -0.030 0.014 -0.030 0.014 

Brand(2).PriceSq.Seg(2) -0.037 0.015 -0.037 0.016 

Brand(3).PriceSq.Seg(1) -0.026 0.014 -0.026 0.014 

Brand(3).PriceSq.Seg(2) -0.033 0.016 -0.033 0.016 

Brand(4).PriceSq.Seg(1) -0.023 0.014 -0.023 0.014 

Brand(4).PriceSq.Seg(2) -0.023 0.015 -0.023 0.016 



compared to the proportion of missing values increases 

when more terms are included in the model fit.  It was also 

noted that when complex models are fitted a higher 

proportion of the posterior probabilities approach 0 or 1.  

This is due to the fact that complex models explain the 

heterogeneity in the data better than simple models. 

 

 
4   CONCLUSIONS 

 
Newton-type algorithms are essential to elicit correct 

standard errors for the parameter estimates; however, these 

algorithms are extremely slow since they use numerical 

first and second derivatives of the log-likelihood.  This 

execution time problem becomes more severe when the 

number of latent variables in the latent class model is 

increased.  Estimation with a Newton-type algorithm may 

take fifty times longer compared to estimation with an EM 

algorithm.  The study proposes using the EM algorithm 

solution as an initialization step.  Equipped with very good 

starting values the final Newton-Raphson step converges 

quickly.  This procedure guarantees correct standard errors 

of the parameters estimates and reduces execution times 

considerably.  Another interesting finding is that the bias 

between the correct and incorrect standard errors obtained 

respectively by Newton-type and EM algorithms becomes 

less conspicuous as the model complexity increases. 
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