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ABSTRACT Pilot contamination (PC) interference causes inaccurate user equipment (UE) channel estima-
tions and significant signal-to-interference ratio (SINR) degradations. Pilot allocation and multi-base-station
(BS) association have been used to combat the PC effect and to maximize the network spectral efficiency.
However, current approaches solve the pilot allocation and multi-BS association separately. This leads to a
sub-optimal solution. In this paper, we propose a parallel pursuit-learning-based joint pilot allocation and
multi-BS association. We first formulate the pilot allocation and multi-BS association problem as a joint
optimization function. To solve the optimization function, we use a parallel optimization solver, based on
a pursuit learning algorithm, that decomposes the optimization function into multiple subfunctions. Each
subfunction collaborates with the other ones to obtain an optimal solution by learning from rewards obtained
from probabilistically testing random solution samples. A mathematical proof to guarantee the solution
convergence is provided. Simulation results show that our scheme outperforms the existing schemes by
an average of 18% in terms of the network spectral efficiency.

INDEX TERMS Multi-BS association, pilot allocation, pursuit learning, pilot contamination, learning
automata.

I. INTRODUCTION
The performance of downlink time-division duplex (TDD)
wireless multi-cellular networks in massive multiple-input-
multiple-output (MIMO) depends on the accuracy of chan-
nel state information (CSI) [1], [2]. CSI is acquired from
the uplink mutually orthogonal pilot sequences sent by the
user equipment (UE) and is used by a base station (BS)
to perform downlink beamforming [3]–[6]. The uplink pilot
sequences are used at the BS to estimate the CSI of the UE.
As the number of pilot sequences is smaller than the number
of UEs, multiple UEs might use the same pilot sequences,
which causes interference referred to as pilot contamination
(PC). The PC causes error in the CSI estimates and these
estimation errors result in downlink beamforming inaccuracy,

The associate editor coordinating the review of this manuscript and
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which effectively reduces the downlink signal-to-interference
ratio (SINR) for the UEs in a TDD cellular network [7]–[11].

In current works, there are two approaches used to
associate a UE with BSs; 1) Cell-free massive MIMO
approaches [11], [12] where a UE must be associated with
all BSs in the network; and 2) virtual-cell distributed massive
MIMO approaches [13]–[27] where a UE associates with a
subset of BSs to form a virtual cell. In a cell-free massive
MIMO system, there is only a single virtual cell since all
UEs must be served by the same BSs. In a virtual-cell sys-
tem, we can create multiple virtual cells since the UEs are
not necessarily served by the same BSs. In real networks,
the Channel State Information (CSI) of UEs can only be
estimated at a BS if they use different pilot sequences [13].
The number of available pilot sequences is limited by the
length of the coherence interval, and the pilot sequences can
be reused in different virtual cells. Being a single virtual
cell, a cell-free massive MIMO system supports fewer UEs
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compared to a virtual-cell distributed massiveMIMO system.
This leads to a casewhere someUEs do not get pilots, referred
to as UE outage. The use of virtual cells can avoid this prob-
lem; however, in all current virtual-cell distributed massive
MIMO system literature, UE outage can still occur because
multi-BS association and pilot allocation are considered as
separate issues. In a separate process, multi-BS association
is done prior to pilot allocation. In the multi-BS association,
UEs may share the same BSs. After the pilot allocation, UE
outage happens because the number of pilot sequences at the
shared BSs is fewer than the number of UEs. The separation
of these processes also leads to suboptimal network spectral
efficiency.

The optimization solvers for an optimization problem
involving multi-BS association and pilot allocation used
in [11]–[27] can be divided into two groups. In [11]–[17],
the pilot allocation and multi-BS association optimization are
solved via a sequential optimization where the solutions are
optimized alternately. However, the sequential optimization’s
complexity grows polynomially with the number of BSs and
UEs. The second group in [18]–[27] alleviates the complexity
by applying a learning algorithm. The optimization function
is solved by using a learning algorithm in parallel such that the
optimization procedure is scalable for large number of BSs
and UEs. In the learning algorithm, the optimization function
is decomposed into multiple sub-functions at the BS or UE
level. Each sub-function selects a specific system state that
constitutes pilot allocation or BS association configurations
for UEs. From the selected system state, the optimization
function value can be obtained. Then, this value is used to
update the learning function which decides the next sys-
tem state. The learning process is repeated until the system
reaches a stationary state where the learning function satisfies
a certain condition.

Based on the system state optimization, existing learning
algorithms can be categorized into three types. The first
type is Markov decision process (MDP)-based reinforcement
learning (RL) that tracks all system states and their state tran-
sition probabilities [18]–[20]. The weakness of this approach
is the exponential growth of computational complexity due
to tracking all possible system states with the number of BSs
and UEs. The second type is neural network-based learning
that approximates the system states by using a policy function
as a learning function that is generated by a neural network
[21]–[23]. The policy function represents the best configu-
ration for the optimization function. However, the training
of a neural network still requires a large number of sys-
tem states to be tested and stored in the memory. The third
type is learning automata (LA)-based algorithm that uses
a probabilistic function as a learning function to determine
the next system state. LA eliminates the need to track sys-
tem states and memory storage [24]–[26]. The commonly
used techniques are stochastic learning [24]–[26] and pur-
suit learning [27]. Stochastic learning uses instantaneous
reward to update the probabilistic function, whereas pursuit
learning uses the reward history of learning to update the

function, which results in significant performance improve-
ments. Unfortunately, the current pursuit learning tech-
nique uses a binary reward that cannot be applied in
our scenario as the spectral efficiency has a continuous
value.

In this paper, we propose a PC mitigation technique based
on pursuit learning with a continuous reward value to max-
imize the network downlink spectral efficiency. We assume
that the number of BSs is larger than the number of UEs
and the number of UEs is larger than the number of pilot
sequences. We first formulate an optimization function of
the network spectral efficiency with multi-BS association and
pilot allocation as its variables. We then jointly solve the opti-
mization function by applying a pursuit learning algorithm
with a continuous reward. First, we treat a communication
link between a UE and a BS as an agent whose action is to
either probabilistically select a pilot or not. Here, the agent
is a decision maker that selects the next system state and
an action is one of the possible system states that can be
selected by an agent. The environment that evaluates the
action selection of the agents is based on the above defined
optimization function. The reward, defined as a feedback
from the environment, is the calculated network spectral effi-
ciency value for given actions. Here, the value of the reward is
continuous. The reward is used to update the average reward
history and the action probability. The learning process above
is repeated until the action probability converges to unity.
We then propose a second pursuit learning algorithm with a
heuristic multi-BS association to further improve the speed
of learning convergence in terms of the action probability.
In the second algorithm, we treat each UE as an agent with
an action to select which pilot to be used. Different from
the first algorithm, the agent, the UE, is not linked to a BS
when choosing an action. In this way, we can reduce the
total number of agents and actions from the combination
of UE, BS, and pilot sequences to only the combination of
UE and pilot sequences. Since we can reduce the number of
interacting actions and agents, we can improve the speed of
convergence. To decide which BSs a UE is associated with,
we use a heuristic approach based on the closest available BSs
to UEs. After associating BSs and allocating pilot sequences,
we can calculate the network efficiency from the environment
and obtain the reward. Then, the learning process proceeds
until the action probability converges to unity at each agent.
Simulation results show that our proposed scheme yields
on average 18% network capacity improvement compared
with the best existing schemes. Furthermore, by joining
multi-BS association and pilot allocation we can prevent
UE outage, defined as a case where some UEs do not get
pilots.

The main contributions of this paper are as follows.
1) We propose a joint pilot allocation andmulti-BS associ-

ation optimization. This is unlike [11]–[27], which use
separate optimizations. The advantage of the proposed
joint optimization over the separate optimizations is a
higher spectral efficiency and zero UE outage. In the
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separate optimization, the multi-BS association is done
prior to the pilot allocation. In themulti-BS association,
UEs may share the same BSs. After the pilot allocation,
the UE outage happens because the number of pilot
sequences at the shared BSs is fewer than the number
of UEs.

2) We are the first to develop a parallel pursuit learning
approach with a continuous reward, in contrast to the
existing pursuit learning approaches that use only a
binary reward [27]. Allowing a continuous reward pro-
vides a more accurate estimation of the network spec-
tral efficiency of the environment.

3) We incorporate a heuristic solution in the optimization
solver, i.e. pursuit learning, to solve the joint opti-
mization function in order to reduce the complexity.
By including a heuristic solution in the pursuit learning,
we can maintain a high network spectral efficiency
while keeping complexity low.

4) We provide a mathematical proof to guarantee that the
probabilities of the various actions for the proposed
pursuit learning with continuous rewards converge to
either 1 or 0. Probability convergence to 1 means that
the solution for multi-BS association and pilot allo-
cation is unlikely to change since the probability of
selecting the configuration is close to 1. The existing
proof in [27] works only for a binary reward and thus
cannot be extended to our case.

The remainder of this paper is organized as follows.
In Section II, we describe the system model of joint pilot
allocation and multi-BS association and formulate an opti-
mization function based on the system model. In Section III,
we propose a pursuit learning algorithm as an optimization
solver to the optimization function. In Section IV, we incor-
porate a heuristic solution in the pursuit learning algorithm
to reduce the number of iterations required for the algorithm
to converge. Section V presents and discusses the numerical
results. Section VI concludes the paper.
Notation: Boldface lower and upper case symbols rep-

resent vectors and matrices, respectively. The transpose,
conjugate-transpose, and conjugate operators are given by
(.)T , (.)H , and (.)∗ respectively.

II. SYSTEM MODEL
In this section, we first develop the system model for a
TDD-based joint pilot and multi-BS association problem.
We consider a distributed massive MIMO network where the
number of distributed single-antenna BSs (L) is larger than
the number of single-antenna UEs (N). In our distributed
massive MIMO system, a UE creates its own virtual-cell by
associating it with a subset of BSs in the network. Thus,
we employ a virtual-cell distributed massive MIMO system.
In the system model, the uplink and downlink transmissions
are performed in the same spectrum, but in different time
slots. We also assume that the number of mutually orthogonal
pilot sequences (K) is fewer than the number of UEs.

A. CHANNEL MODEL
We denote hn,l ∈ C1×1, n = 1, · · · ,N , l = 1, · · · ,L, as the
channel gain between BS l and UE n. hn,l is given as

hn,l =
√
βn,lgn,l, (1)

gn,l represents short-term fading, which follows an indepen-
dent and identically distributed (i.i.d) circularly symmetric
complex Gaussian distribution, i.e. CN (0,1). The short-term
fading is also assumed to be constant during one coherence
interval [28]. βn,l is a long-term fading, which changes slowly
and can be learned over a long period of time. βn,l is modeled
as [29]

10log10 βn,l = −117.8− 37 log10(dn,l)+ ψ, (2)

where dn,l represents the distance between UE n and BS l and
ψ represents a log-normal random variable, which has a zero
mean and σ 2

ψ variance.

B. UPLINK PILOT TRANSMISSION
BSs obtain the CSI through the uplink pilot sequences sent by
UEs at the beginning of the coherence interval, representing
a time-frequency plane over which the channel is static [28].
We denote 8 = [φ1, · · · ,φK ] ∈ CK×K as the set of K
orthogonal pilot sequences, e.g.8H8 = IK, available at each
BS, and each pilot has the length of K symbols φk =

[
φk1,

· · · , φkK
]T , k = 1, · · · ,K . We then denote ϕn ∈ CK×1 as

the pilot for UE n, chosen from 8, i.e. ϕn ∈ 8, by UE n.
Then, the association variable for pilot k of BS l to UE n, vkn,l ,
is given as follows

vkn,l =

{
1, if BS l allocates pilot k to UE n,
0, otherwise.

(3)

BS l receives the uplink pilot k as, ypl,k ∈ CK×1. It is given
by

ypl,k =
√
ρp

L∑
ľ=1

N∑
n=1

hn,lvkn,ľϕn + zl, (4)

where zl ∈ CK×1 i.i.d CN (0, 1) is the additive white Gaus-
sian noise at BS l and

√
ρp is the uplink pilot power from UE

n. BS l first multiplies ypl,k with the pilot sequence of UE n,
i.e. ϕn, to obtain ỹkn,l , which denotes the CSI of UE n when
using pilot k,

ỹkn,l = ϕ
H
n y

p
l,k

=
√
ρphn,lvkn,l +

√
ρp

N∑
ń=1
ń 6=n

L∑
ĺ=1
ĺ 6=l

hń,lv
k
ń,ĺ
ϕHn ϕń + z̃l . (5)

The first-term of (5) is the channel gain of UE n to BS l using
pilot k. On the other hand, the second-term of the equation
represents the channel gain from other UEs using the same
pilot k assigned by other BSs. This term is referred to as the
pilot contamination (PC). The last term is the product of the
BS receiver noise and the pilot sequence, i.e. z̃l , ϕHn zl .
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The minimum mean square error (MMSE) of UE n at BS l
when using pilot k for a given ỹkn,l is expressed by [30]

ĥkn,l = κ
k
n,l ỹ

k
n,l, (6)

where κkn,l is given as follows

κkn,l =
E
{
ỹk

H

n,l hn,l
}

E
{∣∣ỹkHn,l ∣∣2} ỹkn,l

=

√
ρpβn,lvkn,l

ρp
∑N

n=1

∑L
ľ=1

βn,lvkn,ľϕ
H
n ϕń + σ

2
zl

ỹkn,l (7)

C. DOWNLINK DATA TRANSMISSION
In the downlink data transmission, we adopt the linear max-
imum ratio transmission (MRT) due to its simplicity and
robustness compared to other precoding schemes in large-
scale antenna systems [31]. We denote by ηkn,l ∈ C1×1 the
transmitted downlink signal to UE n that uses pilot k of BS l.
ηkn,l is given by

ηkn,l =

√
αkn,l ĥ

kH
n,l v

k
n,lqn, (8)

where qn is the symbol sent to UE n from BS l, which is
independent from noise and channel gain, and αkn,l is the
allocated downlink transmit power at BS l for UE n when
using pilot k, given as

αkn,l =
pdl v

k
n,l

N∑
n=1

K∑
k=1

E
{∣∣ĥkn,l ∣∣2} . (9)

The total transmitted signal at l in (8) is allocated proportion-
ally to UEs according to the channel strength and must not
exceed the total transmitted downlink power at BS l, pdl , given
as

E{
∣∣ N∑
n=1

K∑
k=1

ηkn,l

∣∣2} ≤ pdl . (10)

Finally, the received signal for each UE n is given by

ydn =
K∑
k=1

L∑
l=1

N∑
ń=1

√
αkn,l ĥ

kH
ń,l hn,lqńv

k
ń,l + wn. (11)

We assume that UE n is only aware of the statistics of the
estimated channel, i.e. E{|ĥkn,l |

2
} =
√
ρpβn,lκ

k
n,l , [11], [28],

[32]. Thus, (11) can be written as

ydn =
K∑
k=1

L∑
l=1

√
αkn,lE{ĥ

kH
n,l hn,lv

k
n,l}qn︸ ︷︷ ︸

SA

+

K∑
k=1

L∑
l=1

√
αkn,l

(
ĥk

H

n,l hn,lv
k
n,l − E{ĥk

H

n,l hn,lv
k
n,l}
)
qn︸ ︷︷ ︸

SC

+

K∑
k=1

N∑
ń=1
ń 6=n

L∑
l=1

√
αkń,l ĥ

kH
ń,l hn,lv

k
ń,lqń

︸ ︷︷ ︸
SB

+wn (12)

The received signal in (12) consists of the desired signal,
the interference and noise [11], [33]. SA represents the desired
signal from BSs that serves UE n in pilot k and SB represents
a multi UE interference. The second term, SC is treated as
the self-interference and resulted from the lack of channel
realization knowledge at the UE’s receiver.

Based on (12), SINR of UE n is given as follows [11]

γn =
E{
∣∣SA∣∣2}

E{
∣∣SB∣∣2} + E{

∣∣SC ∣∣2} + σ 2
wn

, (13)

where σ 2
wn is the variance ofUE’s noisewn. E{

∣∣SA∣∣2},E{∣∣SB∣∣2},
and E{

∣∣SC ∣∣2} are given as follows

E{
∣∣SA∣∣2} = ρp( K∑

k=1

L∑
l=1

√
αkn,lκ

k
n,lβn,lv

k
n,l
)2
, (14)

E{
∣∣SB∣∣2} = ρp N∑

ń=1
ń 6=n

( K∑
k=1

L∑
l=1

√
αkń,lκ

k
ń,lβn,lv

k
ń,l

)2

×
∣∣ϕHń ϕn∣∣2 +√ρp K∑

k=1

N∑
ń=1
ń 6=n

L∑
l=1

αkń,lκ
k
ń,lβń,l

×βn,lvkń,l, (15)

E{
∣∣SC ∣∣2} = √ρp K∑

k=1

L∑
l=1

αkn,lκ
k
n,lβ

2
n,lv

k
n,l . (16)

The first term of (15) is from PC interference and the second
term is from the other UE’s channel interference. (14)-(16)
are derived based on the product rules of Gaussian multiple
random variables in [34] and [11], given as follows

E{|gn,l |2f } = f !(E{|gn,l |2})f , f = 1, 2, 3, · · · (17)

E{(gn,lgń,l)} = 0, (18)

E{(gn,lgń,l)
2
} = 1. (19)

The complete proof of (14)-(16) is given in Appendix A-C.

D. PROBLEM FORMULATION
Based on (13), the SINR depends on the variable vkn,l , which
represents the pilot allocation and BSs association with a UE.
Subsequently, we can formulate an optimization function that
aims to maximize the network spectral efficiency as follows

maximize
vkn,l

U =
N∑
n=1

log2

(
1+ γn

)
(20)

subject to vkn,l = {0, 1}, (21)
K∑
k=1

ṽkn ≤ 1, ∀n, (22)

N∑
n=1

vkn,l ≤ 1, ∀l, ∀k, (23)

K∑
k=1

N∑
n=1

vkn,l ≤ K , ∀l, (24)
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K ,L∑
k,l=1

vkn,l ≥ 1, ∀n, (25)

where ṽkn is given by

ṽkn =

{
1, if

∑L
l=1 v

k
n,l 6= 0, ∀n, ∀k,

0, otherwise.
(26)

(26) indicates whether pilot k is used by UE n. If pilot k is
used by UE n, the value of ṽkn will be 1 and it is obtained by
doing a summation of vkn,l over L BSs, i.e.

∑L
l=1 v

k
n,l . Based

on (26), (22) restricts UE n to use a maximum of one pilot
sequence only when it is associated with any BS. (23) means
that pilot k at BS l can only be used by a maximum of one UE
and (24) denotes a constraint that only allows a BS to serve a
maximum of K UEs. Finally, (25) denotes that all UEs must
at least be served by one BS and allocated a pilot.

Note that we could use our virtual-cell distributed massive
MIMO system to model a cell-free massive MIMO system,
where each UE must be served or connected to all available
BSs. This is done by including the following constraint in the
optimization problem given by (20),

K ,L∑
k,l=1

vkn,l = L, ∀n, (27)

where, vkn,l , K and L denote the association variable for UE
n to pilot k at BS l, the number of pilot sequences and
distributed BSs, respectively

III. PURSUIT LEARNING WITH CONTINUOUS REWARD
In this section, we formulate a pursuit learning algorithmwith
a continuous reward to solve (20) and provide a convergence
proof for the algorithm.

A. PURSUIT LEARNING ELEMENTS AND ALGORITHM
In this subsection, we first define the pursuit learning ele-
ments that construct the pursuit learning algorithm. Then,
we show how to solve (20) by using the defined pursuit
learning elements.

1) AGENT
An agent is a decision maker that selects the next action
through a feedback from the system. We treat the com-
munication link n, l between UE n and BS l as agent
n, l, n ∈ {1, · · · ,N }, l ∈ {1, · · · ,L}.

2) ACTION
An action is one of the possible system states that can be
chosen by an agent. We denote a = {a1,1(t), · · · , aN ,1(t),
· · · , aN ,L(t)}, where an,l(t) = k, k = 0, 1, · · · ,K , is an
action by agent n, l at step t to either not select pilot,
k = 0, or select a pilot, k = 1, . . . ,K . an,l(t) translates into
optimization variable vkn,l given as follows

vkn,l =

{
1, if k = an,l(t), an,l(t) 6= 0,
0, otherwise

(28)

3) PROBABILITY VECTOR
A probability vector consists of the probabilities of all
actions to be selected by agent n, l at step t, denoted by
pn,l(t) = {p0n,l(t), p

1
n,l(t), · · · , p

K
n,l(t)}. The sum of all proba-

bility elements in pn,l(t) must be equal to one,

K∑
k=0

pkn,l(t) = 1. (29)

4) ENVIRONMENT
The environment is a place where vkn,l configurations in (20)
are evaluated. (21)-(25) are the environment for agents in the
optimization problem.

5) REWARD
The reward is the feedback from the environment as a
response to an,l(t),∀n, l. The reward at step t, R(t) is given
by

R(t) = U (t)× J (t) (30)

whereU (t) is the value ofU in (20) based on the value of vkn,l ,
according to actions an,l(t) above. J (t) is an indicator function
if the constraints in (21)-(25) are satisfied for given vkn,l ,

J (t) =

{
1, if (21)-(25) are satisfied
−A, otherwise

, (31)

where A is a positive number, i.e. A > 1. Note that R(t) has
a continuous reward as it is a function of U (t). This is in
contrast to the binary reward in [27].

6) AVERAGE REWARD HISTORY
The average reward history is defined as the mean of the
rewards of selecting actions until step t. The average reward
history is a unique feature of a pursuit learning algorithm.
This feature is not used in the stochastic learning algorithm
in [24]–[26]. The average reward denotes the average reward
of action k by agent n, l at step t and it can be represented as
rkn,l(t) ∈ rn,l(t) = {r0n,l(t), r

1
n,l(t), · · · , r

K
n,l(t)},

rkn,l(t)=

r
k
n,l(t − 1)+

R(t)−rkn,l(t − 1)

ckn,l(t)
, if k = an,l(t),

rkn,l(t − 1), if k 6= an,l(t)

,

(32)

where ckn,l(t) ∈ cn,l = {c0n,l, c
1
n,l, · · · , c

K
n,l}, is the occurrence

or the number of times action k is selected by agent n, l at
step t. ckn,l(t) is given as follows

ckn,l(t) =

{
ckn,l(t − 1)+ 1, if k = an,l(t),
ckn,l(t − 1), if k 6= an,l(t)

(33)

The action that gives the maximum reward history in rn,l(t)
is denoted by mn,l and is given as

mn,l = argmax
k∈{0,1,··· ,K }

{rn,l(t)}. (34)
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(34) is then used to update the probability vector pn,l(t),

pn,l(t) = (1− θ )pn,l(t − 1)+ θemn,l (t), (35)

where θ is a learning step and its value has a range
0 < θ < 1. emn,l (t) is a binary vector whose length is the
same as the length of the probability vector pn,l and mn,l-th
entry is 1 (the other entries are 0).

In the first line of Alg. 1, we initialize the values of R(t),
pkn,l(t), r

k
n,l(t), and ckn,l(t). Inside the loop, at step t, agent

n, l first selects its action based on probability vector pn,l(t).
The selected action by agent n, l at step t is represented by
an,l(t) = k . vkn,l is then obtained from (28) and used to
calculate U (t) (e.g., the value of U at step t). The reward and
subsequently the average reward history are obtained from
(30) and (32). The action probability of agent n, l is updated
by using (35). The learning process is repeated until there is
an action probability of each agent that is larger than 0.99.

Algorithm 1 Pursuit Learning Algorithm

1: Initialization: set t = 0, R(0) = 0, pkn,l(0) =
1

K+1 ,
rkn,l(0) = 0, ckn,l(0) = 0.

2: Loop for t = 1, 2, 3, · · · ,
3: At step t, agent n, l selects their action, based on

the probability vector as in pn,l(t), i.e. an,l(t) = k,
k ∈ {0, 1 · · · ,K }.

4: The selected action in previous step sets vkn,l into one
or zero as given in (28) and then the value in (20) is
obtained.

5: The reward for all agents are calculated in (30)
by substituting U (t) with the value in (20) and
calculating (31).

6: Then, each agent updates their own average reward his-
tory by using (32) and (33).

7: Agent n, l finds the action that yields the maximum value
in rn,l(t) by using (34).

8: Then, the probability is updated by using (35).
9: Stop if there is a probability pkn,l(t) in pn,l(t),∀n, l that is

larger than 0.99.

B. PROBABILITIES CONVERGENCE PROOF
The pursuit learning algorithm as constructed in (35) shows
that if there is an action mn,l for agent n, l, for which its
average reward history, rmn,ln,l (t), stays maximum after step t,
pmn,ln,l (t) converges to 1.
Theorem 1: After step t, t > t0, there is an action mn,l that

yields the maximum average reward history rmn,ln,l (t) in rn,l(t),
such that

rmn,ln,l (t) > rkn,l(t), k 6= mn,l, (36)

rmn,ln,l (t) ∈ R, (37)

then,

lim
t→∞

pmn,ln,l (t)→ 1. (38)

Proof: Action mn,l of agent n, l has the largest reward
history as given in (34). Thus, based on (35), the probability
of agent n, l selecting action mn,l at step t + 1 and step t can
be expressed as

pmn,ln,l (t + 1) = (1− θ )pmn,ln,l (t)+ θ. (39)

We then define the difference of value between the probability
of choosing actionmn,l by agent n, l at step t+1, p

mn,l
n,l (t+1),

and the probability of choosing action mn,l by agent n, l at
step t , pmn,ln,l (t) as

1pmn,ln,l (t + 1) = pmn,ln,l (t + 1)− pmn,ln,l (t). (40)

By using (39) and (40), we can obtain

1pmn,ln,l (t + 1) = θ (1− pmn,ln,l (t))+ p
mn,l
n,l (t)− p

mn,l
n,l (t)

= [1− pmn,ln,l (t)]θ. (41)

As 0 ≤ pmn,ln,l (t) ≤ 1, t = 1, · · · ,∞, therefore:

1pmn,ln,l (t + 1) ≥ 0. (42)

By applying (42) to (40), we then get

pmn,ln,l (t + 1) ≥ pmn,ln,l (t). (43)

(43) guarantees condition in (38). This completes the proof.

C. CONVERGENCE BEHAVIOR
In this section, we show the probability convergence behav-
ior of actions of an agent by using a numerical simulation.
For this simulation, we have 2 UEs, 2 BSs, and 1 pilot
sequence. We also set the value of A in (31) to be 10. The
probability convergence behavior for the example above is
shown in Fig. 1 for different values of θ . In the figure,
the subscript of p denotes an index for agent n, l and the
superscript denotes an index for action k of agent n, l. For
instance, p11,2(t) denotes the probability of agent 1, 2 selecting
action 1. Initially, all action probabilities of an agent are
equal to 1/2, i.e. p11,1(0) = 1/2 and p01,1(0) = 1/2. As the
iteration step increases, one action probability of each agent
converges to 1. The probability convergence results in Fig. 1
support the proof of Theorem 1 for different values of θ . Note
that the trade-off between the speed of convergence and the
optimization value for different θ will be discussed further in
Section V.

IV. HEURISTIC SOLUTION
In this section, we aim to reduce the number of iterations
required for the action probability to converge to 1. To do
this we introduce a heuristic method to associate UEs with
BSs in the proposed pursuit learning algorithm. In computing
the association between UEs and BSs, the heuristic method
assumes each UE has chosen a pilot sequence and selects
BSs to associate with based on long-term channel gain βn,l
and constraints (21)-(25) shown in (20). The selected pilot
sequences and BSs are used to obtain the optimization vari-
able vkn,l which is then used to compute (20). The reward is
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FIGURE 1. Evolution of action selection probabilities for
N = 2, L = 2,K = 1.

obtained from this step and it is used to update the average
reward history and the probability vector. The next action of
the UE to select a pilot sequence is based on the updated
probability vector. We explain now in detail how we mod-
ify the pursuit learning algorithm in Section III to do the
above.

First, we reduce the number of agents and actions. We treat
UE n ∈ {1, · · · ,N } as agent n. Note that the agent is changed
from the link between UE n and BS l (agent n, l) in Alg. 1
to UE n (agent n). We can then drop index l in an,l(t) and
denote an(t) = k as an action by agent n to select pilot
k ∈ {1, · · · ,K } at step t. By doing the above, the total number
of agents and actions is reduced from NL(K + 1) to NK .
Reducing the number of interacting actions and agents then
improves the speed of convergence of the action probability
to unity.

Note that the mentioned heuristic method for UEs to select
BSs to associate with, requires information onwhich pilot UE
uses. Therefore, in the beginning, we need to set initial pilot
selections for UE. To do this, agent n selects pilot k according
to the probability vector. The pilot selection sets an = k and
it means that agent or UE n will use pilot k.
Once the pilot assignment for each UE is obtained, we per-

form the proposed heuristic method to obtain the association
configurations of UEs to BSs. To do this, we start with the
first BS, i.e. l = 1. At the BS, we begin with agent n̂1
that denotes the agent with the lowest average long-term

Algorithm 2 Heuristic-Pursuit Learning Algorithm

1: Set t = 0, R(0) = 0, pkn(0) = 1/K , rkn (0) = 0, ckn(0) = 0,
vkn,l = 0.

2: Loop for t = 1, 2, 3, · · · ,
3: At step t, agent n selects an action according to probabil-

ity vector pn(t), i.e. an(t) = k .
4: for l = 1 to L do
5: for n∗ = 1 to N do
6: if

∑K
k=1

∑N
n=1 v

k
n,ln̂n∗

< K and
∑N

n=1 v
an̂n∗
n,ln̂n∗

= 0
then

7: v
an̂n∗
n̂n∗ ,ln̂n∗

= 1.

8: else if l = 1 then
9: agent n selects the next closest BS, e.g. ln̂n∗ +

1, that satisfies
∑K

k=1
∑N

n=1 v
k
n,ln̂n∗

< K and∑N
n=1 v

an̂n∗
n,ln̂n∗

= 0. It thus modifies v
an̂n∗
n̂n∗ ,l

∗

n̂n∗
= 1

with l∗n̂n∗ is the selected BS.
10: else
11: continue
12: end if
13: end for
14: end for
15: vkn,l is used to calculate (20) and (30) is obtained.
16: Then, each agent updates their own average reward his-

tory by using (32) and (33).
17: Agent n finds an action that yields a maximum value in

rn(t) by using (34).
18: Then, the probability is updated by using (35).
19: Stop if there is a probability pkn(t), k ∈ {1, · · · , k},∀n,

larger than 0.99.

channel gain, i.e.
∑L

l=1 βn̂1,l
L <

∑L
l=1 βn̂2,l
L < · · · <

∑L
l=1 βn̂N ,l
L ,

n̂n = 1, · · · ,N . Agent n̂1 then verifies the first BS
in ln̂1 , where ln̂n = {1n̂n , · · · ,Ln̂n} and ln̂n satisfies
βn̂n,1n̂n

> βn̂n,2n̂n
> · · · > βn̂n,Ln̂n

, whether it can sat-
isfy

∑K
k=1

∑N
n=1 v

k
n,ln̂1

< K , which relates to (23), and∑N
n=1 v

an̂1
n,ln̂1

= 0, which means whether the particular
selected pilot k at BS ln̂1 has been associated with other
agents or not. Then, the selection sets vkn,l = 1 for n = n̂1,
l = ln̂1 , k = an̂1 . When agent n̂1 cannot satisfy the previous
constraint and ln̂n is its first BS, it selects the next BS, e.g.
ln̂1 + 1, that still serves less than K UEs and is not associated
with other UEs for a selected pilot k. It also sets vkn,l = 1
for n = n̂1, l = l∗n̂1 , k = an̂1 , where l

∗

n̂1
is the selected BS.

Otherwise, v
an̂1
n̂1,ln̂1

= 0. The above process is repeated by

agent n̂2 to n̂N and at l = 2 to l = L. The vkn,l configurations
are now completed.

Once the heuristic method is completed we then calculate
the rewards for the UEs to select the pilots. This is done by
calculating the value of R(t) in (30) with its U (t) in (20)
and J (t) in (31) respectively. R(t) is then used to update
(32)-(35) by replacing rkn,l(t), c

k
n,l(t), mn,l , and pn,l(t) with

58904 VOLUME 8, 2020



N. Raharya et al.: Pursuit Learning-Based Joint Pilot Allocation and Multi-BS Association in a Distributed Massive MIMO Network

FIGURE 2. Deployment of BSs and UEs in the simulation with L = 50 and
N = 20.

rkn (t) ∈ rn(t) = {r1n (t), · · · , r
K
n (t)}, c

k
n(t) ∈ cn(t) =

{c1n(t), · · · , c
K
n (t)}, mn, and pn(t) = {p1n, · · · , p

k
n}, respec-

tively. After updating the above elements, the pursuit learning
is repeated until there is pkn(t),∀n, larger than 0.99. The
heuristic-pursuit learning scheme is given in Alg. 2.

V. NUMERICAL RESULTS
In this section, we evaluate the performance of the proposed
scheme, and compare it to other known schemes.We consider
a square area of length 1000 m where BSs and UEs are
uniformly distributed within the area. Fig. 2 illustrates the
deployment of BSs and UEs in the network in our simulation.
We simulate 300 independent realizations by varying the
positions of BSs and UEs.We also make the square area wrap
around the edges to avoid the boundary effect.

Table 1 summarizes the setup parameters. In addition,
we compare our result with other schemes whose legends are
defined as follows

1) Alg. 1: This scheme refers to the use of Alg. 1 to solve
(20) as described in Section III.

2) Alg. 2: This scheme refers to the use of Alg. 2 to solve
(20).

3) Sch in [15]: Scheme (Sch) in [15] does a separate
optimization between the pilot allocation and themulti-
BS association. The multi-BS association is done prior
to the pilot allocation by using the following equation:

L0,n∑
l=1

β̂n,l∑L
ĺ=1

βĺ,n

≤ δ% (44)

where L0,n ≤ L denotes the number associated BSs
with UE n and {β̂n,1, · · · , β̂n,L} is the sorted (in a
descending order) set of {βn,1, · · · , βn,L}. The value of
δ is chosen such that the network spectral efficiency is
maximized and the UE outage is minimized for given
pilots, BSs, and UEs. Note that, the UE outage happens
because the number of pilot sequences at the associated
BSs is smaller than the number of UEs. In addition,
if UE n cannot satisfy δ%, it is associated with a BS
with the strongest βn,l . After the multi-BSs association,

TABLE 1. Simulation parameters.

TABLE 2. Complexity comparison.

this scheme allocates pilots by using a sequential opti-
mization technique [15].

4) Joint SL (Stochastic Learning): This scheme jointly
solves the pilot allocation and the multi-BS association
by using stochastic learning. The stochastic learning
solves the optimization problemwithout using the aver-
age reward history.

5) Sch in [24]: This scheme separates the pilot allocation
and themulti-BS association. Themulti-BS association
is done by following (44) and the pilot allocation is
done by using stochastic learning.

Note that we are unable to calculate the optimal per-
formance, due to the high complexity computation for a
large number of BSs, UEs, and pilots. Specifically, with
K = 4,N = 20, and L = 50, one independent realization
has 24000 possible combinations.

A. COMPLEXITY AND CONVERGENCE
Figure 3 shows that the network spectral efficiency perfor-
mance of Alg. 1 and 2 differ by on average 5%, albeit the
iteration requirement of Alg. 2 is 100 times less than Alg. 1.
On average, Alg. 1 needs 3 × 104 iterations and Alg. 2
needs 79 iterations. Alg. 2 has a lower number of iterations
because it reduces the number of interacting actions and
agents and uses a heuristic method to associate UEs with BSs.
By reducing the number of interacting actions and agents,
the optimization tasks can be significantly decreased. In addi-
tion, by incorporating a heuristic method in the multi-BS
association, Alg. 2 practically only does the pilot allocation
in the learning algorithm compared to Alg. 1, which allocates
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FIGURE 3. Spectral efficiency and iteration comparison with K = 4 for
several schemes.

pilots and associates BSs during the learning process. As a
result, Alg. 1 needs more iterations to converge. It can also
be observed that Joint SL has the largest number of iterations
among the schemes with 1.5 × 105 iterations on average.
In addition, Sch in [15] has the lowest number of iterations,
albeit a lower network spectral efficiency compared to Alg. 2,
and Sch in [24] has the lowest spectral efficiency with a
relatively higher number of iterations compared to the num-
ber of iterations in Alg. 2. On average, Sch in [15] needs
66 iterations and sch in [24] needs 370 iterations. A further
analysis of spectral efficiency performance is discussed in
Subsection V-D. To conclude, we can improve the spec-
tral efficiency by solving the pilot allocation and multi-BS
association and further reduce the number of iterations by
incorporating a heuristic solution in the multi-BS association.

We calculate the complexity of the simulated schemes and
the exhaustive search in Table 2. The complexity in Table 2 is
defined as the computational cost of an algorithm in terms of
the combinations that need to be searched. In Alg. 1, to solve
(20) we decompose the optimization function into NL agents.
Each agent has to update (K + 1) actions in parallel. Thus,
the total complexity is (K + 1)i1, where i1 is the number
of iterations required for the action probability to converge
according to Line 10 of Alg. 1. Alg. 2 decomposes the opti-
mization function to N agents and has to update K actions.
The additional multi-BS association by the heuristic method
yields a complexity ofNL. Thus, the total complexity is (NL+
K )i2, where i2 is the number of iterations in Alg. 2. We also
compare the proposed scheme with other schemes. Table 2
shows that the total complexity of Joint SL is the highest
when we include i4, which denotes the number of iterations in
Joint SL. The total complexity of Joint SL and Alg. 1 are the
highest among the algorithms. In general, if we incorporate
a heuristic solution in the multi-BS association based on the
long-term channel gain strength, the total complexity will be
lower as done in Sch in [15], [24], and Alg. 2. In addition,
we can calculate the complexity of Sch in [24] with i5 that
denotes the number of its iterations and Sch in [15]with i3 that

FIGURE 4. Spectral efficiency and iteration comparison for different
learning step (θ), K = 4.

denotes the number of its iterations. It shows that the parallel
scheme in [24] has a lower total complexity compared to the
scheme in [15]. Then, we can directly compare Sch in [15]
and [24] with Alg. 2. By including the average number of
required iterations as stated in the previous paragraph, we can
say the complexity of Alg. 2 is approximately 1

NK times that
of Sch in [15] and NL

5K of Sch in [24]. By also observing
the network spectral efficiency result in Fig. 3 and given
K ,L,N , we can conclude that the proposed scheme in Alg. 2
maintains a high network spectral efficiency with a relatively
low complexity.

B. LEARNING STEP
Figure 4 shows the effect of a variable learning step θ on
the downlink network spectral efficiency and the number
of iterations by using Alg. 1 and Alg. 2, respectively. The
y-axis shows the network spectral efficiency and the number
of iterations represented in log10 scale and the x-Axis shows
the learning step. The figure shows that by decreasing θ ,
we can improve the network spectral efficiency at the cost
of having an increase in the number of iterations. This hap-
pens because by decreasing θ , the rate needed by the action
probability to converge to 1 is slower. Therefore, the agents
can explore other available actions, which might increase
the network spectral efficiency. Thus, we select the value
of θ based on the trade-off between the network spectral
efficiency and the number of iterations. Fig. 4 shows that the
network spectral efficiency only increases slightly when the
learning step decreases from 0.1 to 0.05. However, the net-
work spectral efficiency improvement at the learning step
of 0.05 requires almost twice the number of iterations at the
learning step of 0.1. Therefore, we choose the value of θ to be
0.1 for the remaining numerical simulations in this section.

C. UE OUTAGE
Table 3 shows the percentage of UEs that do not get pilots
(e.g., UE outage) over 300 independent realizations for vari-
ous BS densities with K = 2, 4, 10 and N = 20. The values
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TABLE 3. UE Outage for different number of BSs (L), number of pilots (K),
and N = 20.

in the third to fifth column represent the average number
of outages divided by the number of UEs in the network,
N= 20. When the number of pilots and the number of BSs in
Sch in [24] and Sch [15] for a given K increases, UE outage
percentage is decreased. Our proposed Alg. 1 and Alg. 2 and
the Joint SL show no outage for any number of pilots. This is
because we jointly solve the multi- BS association and pilot
allocation. In the joint optimization, the solution of pilot allo-
cation and multi-BS association is obtained together in each
iteration. If there is a solution that leaves some UEs without
pilots (UE outage), we keep searching for the solution, which
does not cause a UE outage. Note that, when the number of
BSs is larger than the number of UEs, all UEs must be able to
get pilots. In contrast, the schemes in [15] and in [24] have at
least one UE that does not get a pilot when K= 2, 4 for every
number of BSs. It can also be observed that the percentage
of UE outages for Sch in [15] is slightly higher compared
to Sch in [24], due to the sequential optimization taking turn
per UE. In the sequential optimization, the next optimized UE
may not get pilots because there are limited pilots available
from the associated BSs; the previously optimized UEs may
select pilots that cause the next optimized UE to be unable
to get any pilot. Sch in [24] has a slightly lower UE outage
because it optimizes the pilot allocation in parallel. In the
parallel optimization, since the pilots for UEs are optimized
at the same time, the possible solutions that may cause a
higher UE outage can be avoided. Nevertheless, a separate
optimization always allows the possibility of a UE outage.
In the separate process, multi-BS association is done prior
to the pilot allocation. In the multi-BS association, UEs may
share the same BSs. After the pilot allocation, the UE outage
happens because the number of pilots at the shared BSs is
fewer than the number of UEs.

FIGURE 5. Network spectral efficiency comparison of different schemes
for K = 2,10,20 and N = 20.

D. NETWORK SPECTRAL EFFICIENCY
In this subsection, we discuss and compare the network spec-
tral efficiency performance of the schemes in the literature
and our proposed algorithm for different numbers of pilots
and BS density as shown in Fig. 5. We exclude some schemes
in both joint optimization and separate optimization. For the
joint optimization scheme, we exclude Joint SL and Alg. 1
because their spectral efficiency is only approximately 5%
better than Alg. 2 but with higher complexity, as shown
in Fig. 3 and Table 2. For the separate optimization scheme,
we exclude Sch in [15] because it has a similar spectral
efficiency with Sch in [24] but with much higher complexity.
Note that, for K = N , Sch in [24] does not have PC interfer-
ence and only associates BSs to UEs according to (27), which
determines the multi-BSs association rule. In Fig. 5, we can
observe that in general the spectral efficiency increases with
the growing BS density and the number of pilots. Moreover,
the network spectral efficiency performance of Alg. 2 only
increases by 4.8839 or 15.13% on average from K = 2
to K = N . This shows that our joint proposed scheme
utilizes multi-BS association and pilot allocation to mitigate
PC effectively even in the severe PC interference case such
as K = 2. This is unlike the separate optimization in Sch
in [24] that has a larger gap between K = 2 and K = N ,
which is 30% on average. For a small number of pilots,
i.e. K = 2, our joint proposed scheme outperforms Sch
in [24] by 31.01% on average. For the higher number of
pilots, i.e.K= 10, 20, our joint proposed scheme outperforms
the separate optimization by 17.45%. For a small number
of pilots, the spectral efficiency performance of Sch in [24]
is highly affected by the UE outage resulting in fewer than
N UEs that can be served. In addition, the performance of
separate optimization also depends highly on the value of δ%
in (27), which explains the multi-BS association rule. Note
that, δ% represents the threshold ratio between the sum of
the long-term fading of the associated BSs to a UE and the
sum of the long-term fading of all BSs to a UE. For instance,
δ = 90 means that the sum of the long-term fading of a UE
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link to the associated BSs must be at least 90% of the total
long-term fading of a UE link to all BSs. For δ = 90, a UE
is served by all BSs. Thus, it affects the SINR value of a UE.
In this case, the value of the desired signal is determined by
the associated BSs and the interference comes from the BSs
that serve other UEs.Moreover, δ is obtained by trial and error
and it has different results for different configurations of BSs
and UEs.

E. PROPOSED SCHEME VS SCH IN [12]
In this subsection, we compare the performance of Alg. 2 and
Scheme (Sch) in [12]. Sch in [12] employs a cell-free massive
MIMO approach, where a UEmust be associated with all BSs
and does a pilot allocation optimization toUEs. Table 2 shows
that the computational complexity of Sch in [12] depends on
the number of UEs (N) and the number of BSs (L). Note that,
the number of iterations used in the ‘‘Tabu Search’’ is set as
N, following [12], resulting in computational complexity of
(N 3L)N . From Table 2, it could be seen that the complexity
of Alg. 2 is approximately i2

N 3 of Sch in [12]. Note that from
Fig. 3, we could conclude that i2 = 79.64 ≈ 80 is the
average number of iterations needed by one action probability
of agents in Alg. 2 to converge to unity, e.g. 0.99, for K = 4,
N = 20, and L = 50,100,250. Thus, by plugging i2 and N in
i2
N 3 , the computational complexity of Alg. 2 is approximately
100 times lower than the one in [12] for this setup. Fig. 5
shows that the network spectral efficiency performance of
Sch in [12] is much lower than Alg. 2 when K < N and
they have similar performance when K = N . This is because
in a cell-free MIMO system, there is only a single virtual-
cell, where all BSs are associated with K UEs. As a result,
the same pilot cannot be reused for different UEs [13], leading
to the UE outage. In contrast, in Alg. 2, where multiple
virtual cells are formed, pilots can be reused, preventing UE
outage, regardless of the number of pilots. In Alg. 2, when
the number of associated UEs at a BS is equal to the number
of pilots, UEs can be associated with other BSs. Note that,
in the case of distributed massive MIMO, where the number
of BSs is larger than the number of UEs, all UEs must be
able to get pilots from BSs. Table 3 validates the above
argument in which the UE outage in Sch in [12] is shown.
To conclude, our proposed scheme yields a better network
spectral efficiency with lower complexity as compared to
Sch in [12].

During the review process, one of the reviewers mentioned
that in a cell-free massive MIMO where all antennas act a
single virtual BS, the same pilot can be reused for differ-
ent UEs. We have simulated Sch in [12] under this setting
in Fig. 5, denoted as Sch in [12] (reuse). Note that although
Alg. 2 has a similar network spectral efficiency performance
with Sch in [12] (reuse), it has 100 times lower computational
complexity. This is shown in Table 2. In reality and also in
real systems, as stated in [13], pilots are used to identify
UEs. Thus, if the same pilots are used by UEs within a
single virtual BS, the BS will not be able to uniquely identify
the UEs.

VI. CONCLUSION
In this paper, we have developed a pursuit learning-based
joint pilot allocation and multi-BS association. We present a
theoretical proof and numerical simulations showing that the
pursuit learning algorithm converges to unity. Furthermore,
we evaluate the performance of the proposed scheme by sim-
ulation. First, we show that by including a heuristic solution
in the pursuit learning algorithm, we can reduce the number
of actions to lower the complexity. Second, we show that
the learning step size can affect both the spectral efficiency
and the number of iterations required for the algorithm to
converge, and it can be selected to achieve a favorable trade-
off between the two parameters. Third, we show that by
using a joint optimization of the pilot allocation and multi-
BS association, we can maintain a high network spectral
efficiency without causing UE outage.

APPENDIXES
APPENDIX A
THE DERIVATION OF (14) OR E{

∣∣SA
∣∣2

}

The MMSE channel estimate ĥn,l consists of the actual chan-
nel and the channel estimation error, i.e. en,l = hn,l − ĥn,l .
By substituting hn,l = en,l + ĥn,l into SA in (12), we have

SA =
√
ρp

K∑
k=1

L∑
l=1

√
αkn,lE{ĥ

H
n,lhn,lv

k
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√
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k
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k
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Thus, E{
∣∣SA∣∣2} is given as

E{
∣∣SA∣∣2} = ρp( K∑

k=1

L∑
l=1

√
αkn,lβn,lκ

k
n,lv

k
n,l)

2 (46)

APPENDIX B
THE DERIVATION OF (15) OR E{|SB|2}

SB can be written as follows

SB =
N∑
n=1
ń 6=n

SB̃nńqń (47)

where SB̃nń is defined as follows,

SB̃nń =
K∑
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L∑
l=1

√
αkń,l ĥ

H
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k
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k
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Then, we take the expectation of the square value of SB̃nń ,
i.e. E{|SB̃nń |

2
}, as shown in (49) at the bottom of this page.

We can proceed to compute SB̃1nń
, SB̃2nń

, and SB̃3nń
as follows

SB̃1nń
= ρp|ϕ

H
ń ϕn|

2
( K∑
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√
αkń,lκ

k
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k
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(50)
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=
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SB̃3nń
=
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l=1

αkń,l(κ
k
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2βn,lvkń,lσ
2
zl (52)

SB̃2nń
and SB̃3nń

in (51) and (52) can be combined as
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By solving (53), we can obtain
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√
ρp

K∑
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k
ń,lβń,lβn,lv

k
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Thus E{|SB|2} is given as
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ń,lβń,lβn,lv

k
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APPENDIX C
THE DERIVATION OF (16) OR E{|SC |2}

E{|SC |2} is given as follows
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|ĥHn,lhn,lv

k
n,l − E{ĥHn,lhn,lv
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E{|ĥHn,lhn,lv

k
n,l |

2
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αkń,l
√
ρpκ

k
ń,lh

H
´́n,l
hn,lvk´́n,ĺϕ
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ń,l z̃

H
l hn,lv

k
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αkń,l
√
ρpκ

k
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+E{|
K∑
k=1

L∑
l=1

√
αkń,lκ
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