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Abstract 

Alzheimer’s disease (AD) has recently been labelled the ‘twenty-first century plaque’ and it 

has been estimated that more than 40 million people around the world suffer from this 

progressive disease. Within the amyloid hypothesis in Alzheimer’s disease, current focus has 

shifted to earlier stages of amyloid beta (Aβ) peptide assembly, involving soluble oligomers 

and smaller aggregates that are more toxic to cells compared to their morphological distinct 

fibril forms. Critical to the Aβ field is unlocking the molecular-level kinetic pathways or 

mechanisms of oligomerization, leading to the culprit subset or specific species of Aβ oligomer 

populations responsible for the disease etiology. However, since the protein aggregation is 

highly dynamic, involving temporally and kinetically controlled processes, and also very 

difficult to monitor in the early stages, a key challenge is understanding dynamic Aβ at the 

single molecule level under physiologically relevant conditions such as liquid. 

Therefore, to probe the combined structural-dynamics of Aβ peptides, High-Speed 

Atomic Force Microscope (HS-AFM) was used, as it enables direct observation of single 

molecules at sub-molecular spatial resolution and with time resolution of up to 50milliseconds. 

For example, the main inventors of HS-AFM, Toshio Ando and his co-workers, produced real-

time videos of the walking mechanism of a single Myosin V along an actin filament. Such 

movies existed before only as animations, but have now become reality due to the advent of 

HS-AFM. The thesis comprises 5 chapters, including introduction, 3 experimental and 

conclusion/future work.  

In Chapter 1, we introduce and provide background to Alzheimer's disease and the 

evolution of hypothesis explaining the disease pathogenesis, including current hypothesis 
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focusing on the role of amyloid fibrils versus oligomers. This is followed by descriptions of 

the mechanisms and kinetics underlying the nucleation and growth of amyloid fibrils and 

oligomers, and a brief overview of current and treatments and therapies in Alzheimer's disease. 

Finally, we highlight current approaches for molecular level characterization of amyloid and 

its importance in understanding the disease. 

In chapter 2, the molecular structures and dynamic diffusion of Aβ42 peptides were 

characterized using HS-AFM and corresponding classification based on their structural 

dimensions demonstrated the presence of oligomer and larger aggregate species. In addition, 

based on HS-AFM movies, an analysis method was developed to quantify the kinetic 

parameters for interactions between the different Aβ species. The interactions between 

oligomers occurred more frequently, with binding consisting of a single exponential decay of 

lifetime at 0.55 ± 0.22s for Aβ15–20nm and 0.72 ± 0.28s for Aβ36nm, respectively. In contrast, the 

larger aggregates exhibited kinetic heterogeneity and could form long-lived, stable complexes. 

Inevitably, the latter may lead to the formation of different complexes or alloforms, which is 

known to contribute to difficulties in identifying Aβ oligomer toxicity and has implications for 

mechanisms underlying neuronal death accompanying Alzheimer’s disease.   

In chapter 3, the effect of different environmental factors such as peptide concentration, 

solution pH and incubation time on the Aβ morphology, dimensions and dynamics were 

investigated using samples prepared ex-situ. The effects of concentration and incubation time 

were minimal, whereas a decrease in solution pH was found to significantly accelerate the 

formation of intermediate aggregates. In-situ HS-AFM experiments involving changing the 

solution pH, i.e. changing from neutral to acidic conditions, during imaging to directly observe 

the real-time nucleation and growth of the Aβ oligomers and aggregates. A single molecule 

analysis approach based on HS-AFM was applied to quantify rate determining kinetic constants 
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of the different nucleating forms of Aβ. The findings revealed that assembly mechanisms of 

newly formed and existing peptides exhibited separate pathways during the nucleation 

processes. 

In chapter 4, having characterized the morphology and dynamics of the Aβ peptides, their 

interactions with nanoparticles were investigated on the basis that the use of nanomaterials is 

an emerging approach to control the aggregation process, or even sequester the toxic species. 

Thus, as a model system, the dynamics and structural analysis of silica nanoparticles were 

characterized followed by a co-deposition with Aβ peptides to investigate silica nanoparticle- 

Aβ peptide interactions. Kinetic analysis showed that an increase in nanoparticle size caused a 

significant decrease in diffusion, which in turn led to an increase binding lifetime. The 

implications for the effect of nanoparticle size and diffusion on the kinetic analysis are 

discussed.  Finally, Chapter 5 provides conclusions together with recommended directions for 

future work. 
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Chapter 1: Introduction 

1.1 Neurodegenerative and Alzheimer’s disease   

Neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease and 

Huntington’s disease are major threats to human health and welfare in the modern world [1-5]. 

Aberrant folding and abnormal accumulation of proteins in the brain are increasingly being 

realised as the major pathological hallmarks of these neurodegenerative disorders [6, 7]. 

Alzheimer’s disease (AD) is an irreversible, progressive neurodegenerative disorder that 

destroys people’s memory, reduces their ability to perform daily activities and even affects 

their personality. It represents the most common progressive disease and is the leading cause 

of dementia in the elderly, currently affecting more than 40 million people around the world 

[8]. It was first identified by Dr. Alois Alzheimer more than 100 years ago, with common 

clinical symptoms including memory loss and cognitive and functional abilities decline that 

are believed to contribute to the cause of death in AD.  

1.2 Pathogenic Hallmarks of AD 

1.2.1 Senile plaques and neurofibrillary tangles 

In AD, the accumulation of amyloid-beta (Aβ) peptide outside of neurons is believed to 

contribute to the formation of senile plaques and accumulation of unusual protein tau inside 

neurons, referred as the tangles. These protein structures were first observed in 1901 by Dr. 

Alois Alzheimer who detected neurofibrillary tangles and senile plaques in the brain of a 

patient by using the silver impregnation method [9-13]. However, it was only after the late 

1960s when newly emerging tools of research, i.e. electron microscopy (EM), were developed 
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that the observation of these proteins in the brain of patients with AD started to progress further. 

For example, Kidd et al. [14] visualized the ultrastructure of neurofibrillary tangles formed by 

paired helical filaments in 1963 and Terry et al. [15, 16] captured the senile plaques with a core 

of amyloid fibrils in 1964 as shown in Figure 1. 1. Quantitative measurements regarding the 

relationship between the degree of dementia and the number of plaques or tangles in each 

cortex were also examined by comparing the brains of diseased and healthy patients in vivo 

[17, 18]. These early studies provided a clear identification for the two abnormal proteins (Aβ 

and tau) and basis for the development of the molecular pathogenesis of AD. The brain changes 

associated with AD mentioned above significantly affect the communication between neurons 

and lead to the neuron cell death [19-21]. In these cases, eventually, the brains of people with 

advanced AD dramatically shrink due to the cell loss and corresponding synaptic loss, which 

is believed associating with the toxic species of Aβ peptide. 
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Figure 1. 1. Ultrastructure of neurofibrillary tangles formed by paired helical filaments. (A) Longitudinal sections 

of filaments.1.5㎛*1.0㎛ (B) filaments cut in cross section.3.75㎛*2.50㎛ [15]. 

 

Together with the emerging role of the cholinergic system (i.e. neurotransmitter 

acetylcholine signalling in neurons) in memory and learning, the first cholinergic hypothesis 

of AD was established more than thirty years ago according to findings of a strong correlation 

between cholinergic abnormalities and the numbers of plaques and tangles [22-26]. According 

to this hypothesis, the cognitive dysfunction behaviour related to AD is attributed to the decline 

in cholinergic neurotransmission [27], which indicated that drugs like cholinesterase inhibitors 

could potentially be used for treatment against the disease, however, the therapeutic treatments 

were proven to only be able to relieve temporary symptoms in AD [28-31].  
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Since these early observations, the field has largely been built on a few main hypothesis. 

Over the years, the amyloid cascade hypothesis has been pursued extensively though this has 

been more recently challenged by the hypothesis involving soluble Aβ protein assemblies such 

as Aβ-derived diffusible ligands (ADDL’s) [32, 33].  

1.2.2 Aβ cascade hypothesis 

Progress in the diagnosis of AD during the last 30 years has culminated in the amyloid-cascade 

hypothesis that describes the etiologic and pathogenic mechanisms of AD. This hypothesis is 

explained by the excessive deposition of Aβ peptides in the form of extracellular plaques, as 

well as neurofibrillary tangles in the brain. To initially produce the abhorrent Aβ peptide, the 

modification of the Aβ precursor protein (APP) is thought to occur via 2 pathways (Figure 1. 

2) [34]. In the first pathway, the APP is cleaved by β-secretase and then followed by γ-secretase 

cleavage though this pathway does not result in formation of amyloid. Alternatively, cleavage 

by lysozyme in the endosomal-lysosomal compartment results in formation of Aβ peptide that 

is believed to accumulate to form the amyloid plaques and tangles. 

 

Figure 1. 2 Early amyloid cascade hypothesis. The APP produced mainly via 2 ways: (i) APP is first cleaved at 

residues 15-17 by the APP ‘secretase’. This cleavage event produces fragments that can not form to amyloid 

deposition. (ii) Several studies suggested that APP can also processed by the endosomal- lysosomal pathway, in 

which the entire AβP sequence and in further the amyloid deposition are formed. Eventually these deposition lead 

to the neurofibrillary tangles and cell death [34].  
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Amyloid beta peptide (Aβ) comprises 39–43 amino acids and amyloid fibrils are the 

dominant structures in senile plaques (SPs). The fibrils and plaques can physiologically induce 

the neurotoxicity directly, or indirectly by the formation of neurofibrillary tangles (NFTs), 

resulting in the formation of intracellular paired helical filaments (PHFs) and ultimately 

neuronal cell death. A growing number of genetic studies revealed that the identified mutants 

are highly correlated with the increased formation of total Aβ or fibrils. Specifically, the 

fibrillogenic Aβ42, a 42 amino acid proteolytic product from APP, is postulated as the main 

component in the pathogenic process, leading to the formation of insoluble oligomers or fibrils. 

(Figure 1. 3)  

 

Figure 1. 3. TEM (Transmission Electron Microscopy) and AFM (Atomic Force Microscopy) images of 

oligomeric and fibrillar Aβ40, Aβ42. TEM images of Aβ40, Aβ42 fibrils were acquired through prolonged incubation 

in PBS under stagnant conditions. Scale bar is 200nm. AFM Images were recorded in 2 μm*2 μm contact mode 

with oligomers formed in Tris-buffered saline (TBS) after 24 h and tapping mode with fibrils formed in 10 mM 

HCl after 24h [35, 36]. 
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In recent times, the amyloid cascade hypothesis has been debated on several aspects, 

largely concerning the implication that Aβ oligomers and other pre-fibrillary assemblies, and 

not the plaques and tangles per se, are primarily responsible for AD. The caveats for the 

amyloid cascade hypotheses include the 1) lack of correlation between neurofibrillary amyloid 

burden and neuronal dysfunction [37],  2) neurotoxicity of soluble Aβ peptide assemblies can 

also explain an amyloid plaque-independent pathology [38], 3) oligomer-induced functional 

memory loss that occurs before the neuronal death, and 4) concentration of soluble Aβ 

oligomers in the brain plasma as opposed to the concentration of fibrils [39]. Over time these 

observations have led to renewed suggestions that soluble Aβ oligomers and pre-fibrillary 

assemblies, rather than mature fibril deposits comprised in plaques, hold the clues to 

understanding the mechanisms of neurotoxicity in AD [39-45]. Several studies have since 

confirmed that Aβ oligomers are potent neurotoxins [45-47]. Aβ pre-fibrillary assemblies are 

also associated with many other protein-misfolding diseases like Parkinson’s disease, 

Huntington's disease and Systemic Amyloidosis [41, 48, 49]. 

1.2.3 ADDL’s hypothesis 

Increasing evidence suggested that oligomeric and pre-fibrillary structures are key neurotoxic 

effectors in AD [38, 46, 50-53]. The complexity of their Aβ assembly is apparent due the 

existence of several prototypes, forms and structures. Studies have confirmed various Aβ  

assemblies (Figure 1. 4), each given their own terminology, including monomeric Aβ 

conformers [54],  oligomers [46, 53, 55-58], ADDLs [59], protofibrils (PF) [60, 61], Aβ*56 

[62], paranuclei [63-65], amylospheroids [66] , annular assemblies [67], amyloid pores [46, 67, 

68], and Aβ balls [69]. Owing to this diversity and complexity, elucidating their relevance to 

AD pathogenesis remains a challenge. Nevertheless, a growing number of studies 
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demonstrating their toxicity has seemingly caused a shift towards developing therapeutic 

strategies based on these pre-fibrillary Aβ assemblies. Henceforth, the longstanding hypothesis 

that amyloid fibrils are considered as the only active molecular pathogen has given way to a 

new paradigm associating with small toxins and we use the term ADDL to describe these small 

soluble oligomeric structural Aβ aggregates. 

 

Figure 1. 4. Different Aβ42 assemblies. (A) TEM images of Amylospheroids formed in Aβ42 solution (0.1 μM in50% 

PBS) after an 8h slow rotation, scale bar 20nm. (B) AFM images of Aβ42 annular structured assemblies, the inset 

represents a 50*50nm topography image of annular assemblies. (C) AFM image of toxic globular oligomers of 

Aβ42 (ADDLs) [32, 70, 71]. 

 

In 1995 Oda et al. [72] proposed that soluble aggregated Aβ complexes rather than Aβ 

fibrils were the molecular pathogens of AD. They demonstrated that the complexes of Aβ42 

formed in the presence of clusterin have a significant suppression effect on the Aβ aggregation 

and surprising enhancement of the neurotoxicity [73, 74]. Subsequent studies on the neurotoxic 

effect of ADDLs in synaptic loss and associated memory dysfunction, particularly the action 

in the neural signal transduction pathway, as well as cultured hippocampal neurons were first 

described by Lambert et al. [46, 75]. In addition, ADDLs were also found to be responsible for 

the long-term potentiation (LTP) inhibition and consequential neurological dysfunction, which 

was believed to directly cause the memory loss of AD [76-78]. Characterization of ADDL’s in 

both in-vitro and in-vivo studies have not only revealed the detailed biological structure of these 

toxic oligomers but also provided a fundamental basis for understanding their role in AD, 

which is schematically outlined in Figure 1. 5 [38, 46, 59, 76, 79-83]. Although ADDLs have 
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been defined as a neurotoxic subset of Aβ42 oligomers, knowledge of their precise structure 

and definitive conclusion on their cytotoxic assemblies is still limited. 

 

Figure 1. 5. Diagram of ADDLs hypothesis shows all the elements involved with AD [79]. 

 

As such, although Aβ is commonly believed to be a causative factor in AD, the role of 

mature fibrils and non-fibrillar structural Aβ species in the pathogenesis of AD remains unclear. 

Recently, however, in vivo studies demonstrated that these oligomeric species of Aβ42 are 

highly correlated with the severity of neurodegeneration in AD while some in vitro studies also 

confirmed the neurotoxicity of these non-fibrillar structures such as oligomers, ADDL’s and 

proto-fibrils [84]. Karie et al. [85] reported that oligomers can inhibit neuronal viability 10 

times more than mature fibrils and the toxicity increased 40-fold compared to non-aggregated 

peptides, indicating oligomers are the active species of the Aβ peptide that ultimately cause the 

synaptic loss and AD related degenerative disease. 
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1.3 Pathways of Aβ assembly 

1.3.1 Kinetics of oligomer and fibril formation  

The mechanisms by which Aβ monomers aggregate to form oligomers and fibrils have been 

extensively studied, as identifying the pathways leading to toxic species is viewed as critical 

for targeting with therapies. One of the well-known pathways is called nucleation-dependent 

polymerization reactions (shown in Figure 1. 6) [6]. In this reaction, a slow nucleation step 

initially occurs, producing a ‘lag phase’ during assembly, followed by a rapid fibril elongation 

step. To prove this transition, extensive X-ray diffraction and electron microscope studies have 

shown that the end product consists of characteristic, β-sheet-rich fibrils [39]. However, the 

polymerization processes revealed unexpected complexity in the numbers, types and structures 

of these aggregates. For example, a defined ‘on-pathway’ assembly required self-assembly of 

monomers into a nucleus, which is essential for the fibril elongation phase. On the other hand, 

an ‘off-pathway’ during fibril formation is associated with formation of distinct structural 

aggregates such as Annulus or Amylospheriod [86, 87] that represent globular assemblies. 

Related studies have confirmed that these globular assemblies will not form fibrils but they do 

have rich β-sheet structure content, which is believed to exist at the C terminus [88-90]. 

Compared to amylospheroids, which have spheroid structures with diameter around 15 nm, 

amyloid balls are larger spheroid species formed only by Aβ40 at high concentrations (300–600 

μM) [60]. It is believed that this high concentration of soluble Aβ might be associated with an 

interesting model of amyloid plaques, which is discovered in some brain disorders like 

Parkinson’s and Huntington diseases [57]. 



35 
 

 

Figure 1. 6. Schematic of the nucleation-dependent polymerization model of Aβ aggregation. It reveals two phases 

are revealed during the amyloid aggregation: (i) the nucleation phase/lag phase, in which monomers undergo 

conformational changes/misfolding and consequently form oligomeric nuclei, (ii) the elongation phase/ growth 

phase, in which the nuclei rapidly grow by additional monomers to form larger aggregates or fibrils eventually 

[6]. 

 

As mentioned above, peptides can form various structural and types of soluble 

aggregates through the nucleation-dependent polymerization and one distinct feature of this 

process is the lag time before these aggregates are detectable, in which the dimers, trimers and 

eventually the nucleus (n-mers) will be formed [91]. However, this nucleation phase/lag phase 

is thermodynamically unfavourable and processes step by step while the elongation 

phase/growth phase is much more favourable and occurs quickly, which means the kinetic of 

amyloid formation can be well represented by the sigmoidal curve with a lag phase followed 

by the elongation phase (Figure 1. 6 green curve). In addition, the rate of formation of nuclei 

will be significantly determined by the seed concentration and additional seeds/nuclei will 

gradually increase the rate of aggregation by reducing the lag time (Figure 1. 6 red curve). 

Although this lag time is extremely concentration dependent, the effects on the formation of 

nucleus such as the structure, size of oligomers and the transition mechanisms are still not clear 
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[92-94]. A simple schematic example is shown in Figure 1. 7 to illustrate the general stages of 

Aβ fibrillation.  

 

Figure 1. 7. A simple scheme shows the kinetic curve for amyloid formation above barely the crucial concentration 

CR [91]. 

 

1.3.2 Nucleation mechanisms of amyloid formation              

Aβ aggregation is a complicated process, involving various structural conformation changes 

and self-assembly of Aβ monomers to form rich β-sheet structural intermediates, protofibrils 

and mature filaments [66]. During the early stage of Aβ aggregation, two important 

microscopic steps involved in the nucleation-dependent polymerization are referred to as the 

primary and secondary pathways [95-97]. The primary pathway, such as homogeneous 

nucleation [95], is defined as a spontaneous process in which new soluble monomers can 

associate into existing aggregates or fibrils at a rate only dependent on the concentration of 

monomers (As shown in Figure 1. 8a, where kn is the nucleation rate constant, [m] is monomer 

concentration and nC is represented as length of the smallest growth component fibril) and 

subsequent addition of the monomers will eventually elongate the fibrils (As shown in Figure 

1. 8b, where [f] is the fibril number concentration) [98]. The secondary pathway, where the 

concentration of existing fibrils is the determining factor, can be classified into monomer-

dependent secondary nucleation and monomer-independent fragmentation (As shown in Figure 

1. 8c and 8d, where [M] refers to the total fibril mass concentration) [99-102]. In the monomer-
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dependent secondary nucleation, several monomers combine to form a fibril by the presence 

of another fibril, the rate equation represented here is analogous to that for primary nucleation 

while the [M] accounts for the fact that longer fibrils have more sites for the reaction. The 

fragmentation is defined by the fibrils break into two separate shorter fibrils and the rate 

equation is associated with fragmentation rate constant and individual fibril concentration. 

Figure 1. 8 below show theses different kinetic pathways of amyloid fibril formation [103].  

 

 

Figure 1. 8. Kinetics of different pathways underlying the amyloid formation. (a)Primary nucleation from 

monomers, (b) Elongation by addition of monomers to existing aggregates. The secondary nucleation shows the 

combination of both monomeric and aggregated species and finally the fibrils formed at fragmentation stage. (c) 

Monomer-dependent secondary nucleation from monomers on surface of fibrils or aggregates. (d) monomer-

independent fragmentation. All the monomers are coloured in green while the aggregates or fibrils are coloured 

blue [103]. 

 

Determining the fundamental steps in the structural evolution of fibrils and associated 

kinetics during these nucleation processes is important for therapeutic targets. Recently,   

Cohen et al. [104] suggested that monitoring and control of the secondary nucleation pathway 

during the Aβ aggregation is potentially an effective strategy to sequester the neurotoxic 

oligomers. For example, depending on the monomer concentration, the rate of both oligomer 

and fibril formation and the resulting cytotoxic effects can be directly detected by selective 

radiolabelling methods and cell viability assays, which is shown in Figure 1. 9. In addition, a 

critical concentration of Aβ fibrils determined the pathway or assembly mechanism of Aβ 

aggregation is also emphasised in the study, suggesting a potential approach to target precisely 
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certain structural species and control the amyloid pathways by adjusting the additional fibril 

concentration. Lomakin et al. [105] also reported the concentration-dependence of fibril 

elongation rate and the correlated fibril length from the quantitative analysis of different Aβ 

nucleation stages including pre-nucleation, nucleation and elongation process by quasielastic 

light scattering spectroscopy (QLS). The size of fibril nuclei and Aβ oligomers with 

corresponding rate constant of formation for fibrils are also determined. Thus, the complexity 

and diversity of factors influencing the nucleation of fibrils and kinetic parameters of growth 

could be essentially solved by these proposed models and technical examination.  

 

Figure 1. 9. Measurement of oligomers populations with radiolabling method and cell viability assays. (A) 

Samples of monomers and monomers mixed with preformed fibrils were incubated followed by size-exclusion 

chromatography and liquid scintillation counting. The numbers of oligomers fractions are shown below. (no fibrils 

for light blue bar and added fibrils for dark blue bar ) (B)Probing the chromatography fractions with antibodies 

further confirms the enhanced production of small oligomers in the presence of fibril. Time Δt1=24mins. 

(C)Measurement of reduced cell viability for reactions without (light blue bars) and with (dark blue bars) a small 

concentration of added fibrils under the same conditions as in A and after filtration through a 200-nm filter. Values 

are averages over nine measurements at Δt2 =5, 6, 7 mins. Grey bars represent initial monomers and end fibrils 

reaction time points.(D) Comparason of kinetic measurement between two conditions. The rapid increase in the 

slope with added fibrils (dark blue) and consequent shorter lag time suggest the rapid formation of new aggregates 

through secondray nucleation [104]. 
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1.3.3 Effect of Aβ state on the pathway of aggregation  

The multiplicity of Aβ state, in which the polypeptide chains adopted to form a well-defined 

structure, can be generally classified into native state with functional structures, misfolded state 

with disordered or partially ordered conformations and various structural intermediate 

aggregates. Proteins can biologically adopt various other conformation states in addition to the 

native structure. Tuomas P.J. Knowles and his co-workers demonstrated the amyloid state and 

its association with protein misfolding disease [106]. For example (as shown in Figure 1. 10), 

particularly for those large or folded proteins functioning in native state, they can adopt 

intermediate conformations before becoming fully folded. In addition, some partially folded 

proteins may also adopt misfolded structures or aggregates, which is essential for specific 

functional reasons such as the intracellular translocation requirements. Therefore, it was 

proposed that formation of amyloid structures is not only associated with a small number of 

diseases, but also that it suggests that the typical form of molecular structure should be related 

to its functional state or the stages where they will be adopted [107]. To fully elucidate the 

details on the relationship between Aβ states and their corresponding preferred protein 

structures, it is important to characterize the nature and properties of different Aβ states in 

which these particular structural molecules can be found [7, 107]. From another point of view, 

the study on the amyloid state can also provide unique insights into the nature of the functional 

forms of peptides and proteins, as well as understanding the conversion and the manner in 

which the peptides tend to aggregate or maintain the specific state [108-110].   
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Figure 1. 10. Amyloid state and its relationship with the structure and conformation of the proteins. The amyloid 

structure is highly affected by the amyloid state. It is believed that peptides or some large fragments are natively 

unfolded structure and eventually formed amyloid fibrils that are rich in β‑ sheet structure. During the whole 

aggregation process, the different states corresponds to various structures [106]. 

 

Amyloid structures have different features from the native conformation, in which the 

property of kinetic and thermodynamic stability will become a key factor to determine [111, 

112]. It has been recognized that measurements of kinetics and thermodynamics are 

fundamentally important not only for analysing experimental measurements in terms of 

reaction mechanisms but also for predicting aggregation behaviour under conditions in which 

such parameters cannot be measured [113]. While thermodynamics of various amyloid states 

describes whether or not a transition from one state to another is spontaneous, the analysis of 

kinetics will mainly emphasize how fast a transition could take place [113, 114]. 
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1.3.4 Effects of environmental conditions 

Kinetic processes of amyloid aggregation are not only dependent on the concentrations of the 

protein but also associated with some other factors such as the temperature, incubation time, 

metal ions or liquid pH. For example, Kusumoto et al. showed that the fibril elongation rate 

constant (Ke) is increased significantly by two orders of magnitude as the temperature increases 

from 4℃  to 40℃ . This temperature dependent Ke follows the Arrhenius equation: 

Ke=Aexp(−EA/kT), where A is the pre-exponential factor, EA is the activation energy for the 

reaction and T is the absolute temperature, resulting in higher activation energy and indicating 

a possible conformational transition activity (Figure 1. 11) [115]. Ann Tiiman et al. [116] 

similarly reported that fibril formation is accelerated at higher temperature and lag time 

decreased from 10℃  to 45℃ , however, at lower temperatures (4℃) and at physiological pH 

oligomers were formed, revealing the conditions suitable for the production of the oligomeric 

neuro-toxic species in AD [117-120].  

 

Figure 1. 11. Arrhenius plot shows the temperature dependent fibril formation [115]. 

 

A growing number of studies revealed that the fibrillation process is independent of pH 

in the range from 7 to 9, whereas the rate constant of fibril formation dramatically decreases at 

lower pH, indicating an effect of protonation of histidine groups [121-123]. In acidic solution, 

the protonated histidine will not be able to form salt bridge with aspartic acidic residues, as 
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suggested in fibrillogenesis, rather the positively charged histidine will repel each other in the 

structure of the forming fibrils, resulting the inhibition of the fibril formation. Further addition 

of different mutants (H6A, H13A and H14A) were investigated to identify essential histidine 

for the Aβ fibrillation and reveal inhibition mechanisms, which is shown in Figure 1. 12 [116]. 

It has been shown that the pH dependence of the fibrillation rate of H6A is similar to the wild 

type Aβ42 while the fibrillation rate of H13A and H14A mutants are constant in the whole pH 

range, suggesting that the protonation of H6A will not affect the fibril formation and both 

histidine H13A and H14A inhibit the fibril formation. The pH dependency of Aβ aggregation 

under acidic conditions sheds light on the peptide oligomerization and the corresponding 

cytotoxicity issues of oligomeric Aβ. Yeu Su et al. [124] examined the structure and neurotoxic 

effects of aggregates formed in different pH conditions and revealed that only aggregates that 

formed at pH 5.8 induced a significant inhibition of 3-(4,5-dimethylthiazol-2-yl)2,5-

diphenyltetrazolium bromide (MTT) reduction, which is a colorimetric assay for assessing cell 

metabolic activity, resulting in the death of PC12 cells (Figure 1. 13). Additional results from 

a reliable neuronal cells detecting assay, annexin-V staining assay, further confirmed that the 

aggregates formed at pH 5.8 contributed to the apoptosis of PC12 cells. These findings, along 

with many current in vitro studies have been done in accordance with the finding that cell 

organelles are filled with acidic components of senile plaques in the brain of patients with AD 

[125]. 
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Figure 1. 12. The effect of pH on the fibril formation of Aβ42, as a function of rate constant of fibril formation. 

The aggregation of 5 µM wild-type (•), H6A (⸰), H13A (⸰) or H14A (∆) mutant of Aβ42 in 20mM ammonium 

acetate, 100mM NaCl with continuous agitation in the presence of 3.3 µM ThT at 25℃  at different pH values 

[116]. 

 

Figure 1. 13. Effects of pH 5.8 and pH 7.4 Aβ42 aggregates on the viability of PC12 cells. Aliquots from pH 7.4(▴) 

or pH 5.8(•)Aβ42 aggregates or the non-aggregates (⸰) were incubated with PC12 cells for 48h and the cell 

viability assay was conducted by MTT inhibition method [124]. 

Fundamental knowledge of the Aβ42 assembly process in terms of comprehension of 

both the kinetics and mechanisms of the Aβ42 aggregation, combined with the understanding 

of popular pathways and various effectors in the progress. It is realizable to maintain the 

specific structural protein species by regulating the protein concentrations at different 

aggregation phases and by controlling the rates of the conversion between them. This will be 

highly meaningful for various strategies proposed to suppress the production of the toxic 

oligomeric species [126-129]. Therefore, the controllable process between different 
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aggregation stages can be achieved by either disrupting the process of their formation or 

promoting the pathways of their moving [130, 131]. The development of drugs that reduce the 

risk of aggregation by decreasing the concentration and formation rates of the toxic protein 

species has been an area of interest in recent times. Herein, an overview of the treatments and 

strategies involved are presented below. 

1.4 Current treatments and clinical therapies 

1.4.1 Cholinesterase inhibitor treatments 

The neuropathology of AD is characterized by early cholinergic neuronal loss, resulting in 

decreased cholinergic transmission [132, 133]. Therefore, various cholinesterase inhibitors 

have been introduced firstly by delaying the breakdown of acetylcholine, which is important 

for the nerve cell communication and memory neurotransmission [134]. In addition, a recently 

developed drug, Memantine, belonging to the N-methyl-d-aspartate (NMDA) receptor (and 

one of the three types of ionotropic glutamate receptors), is shown to be capable of blocking 

excess glutamate that can damage or kill nerve cells [135]. However, these treatments can only 

provide symptomatic relief or delays in the progression state and cannot reverse the course of 

the disease.  

In addition to the Memantine mentioned above, at present only four cholinesterase 

inhibitors (CheIs), Tacrine, Donepezil, Rivastigmine, and Galantamine are recognized and 

approved by the U.S. Food and Drug Administration for treatment of AD [136]. Depending on 

the different stage of the disease, these drugs all exhibit reasonable neuroprotective activity 

and work by blocking the enzyme acetylcholinesterase so that the levels of acetylcholine in the 

synaptic cleft can be maintained or elevated. Table 1. 1 [137] provides a brief summary of these 

drugs. The success in symptomatic treatments led to the alternative development of functional 
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drugs. For example, Phenserine, an inhibitor of acetylcholinesterase and capable of improving 

cognitive function in dogs and rodents, was clinically tested in AD patients and showed 

successful results to attenuate the progression of AD [138]. Other therapeutic targets such as 

M1 muscarinic receptor agonists AF102B, AF150(S) and AF267B have also been investigated 

and reported as cognitive enhancers with potential to modify AD [139, 140]. The effect of 

nicotinic receptor agonists on cognitive functions of AD patients have also been investigated 

for many years and currently most of them are in preclinical stages [141, 142]. 

Table 1. 1. Current treatments and approved therapies available for AD [137].  

 

1.4.2 Anti-amyloid therapies 

1.4.2.1 Prevent Aβ aggregation 

Although the pathology of AD and identification of toxic species from diverse Aβ structures, 

forms and aggregates are still unclear, targeting the neurotoxic activity of Aβ oligomers has 

provided a fundamental basis for the development of compounds and drugs that aim to 

purposefully suppress the Aβ oligomerization [39].  

Tramiprosate, a glycosaminoglycan (GAG), was developed as the first generation of 

anti-amyloid aggregation drugs designed to interfere with soluble monomeric Aβ species,  

maintaining it in non-fibril form, and thus preventing oligomerization and aggregation [143]. 
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Clinical trials of patients with mild to moderate AD demonstrated promising efficacy in the 

treatment for cognitive function improvement and stabilization of neurologic deficits [144]. 

The beneficial effects of those anti-amyloid aggregations compounds have also attracted some 

clinical investigation such as the longitudinal Volumetric Magnetic Resonance Imaging 

(VMRI) measurements of the decreasing atrophic hippocampus in patients with mild to 

moderate AD, revealing their significant capabilities of improvement for cognition [145]. 

However, due to the low bioavailability and the side effect of toxicity issue associated with  the 

tau aggregation, the development of tramiprosate still requires further clinical evaluation and 

recently some related projects have been terminated [146]. Some other inhibitors of Aβ 

aggregation such as scyllo-inositol and Epigallocatechin-3-gallate (EGCg) worked via a similar 

mechanism to prevent and even disassociate aggregates by binding to initially forming Aβ 

species. These drugs were well tolerated and showed significant benefits in clinical trials [147, 

148].  

1.4.2.2 Promote Aβ clearance 

An alternative approach to therapy in AD is to directly reduce the levels of Aβ in the brain, 

which can be theoretically manipulated or balanced by the levels of Aβ degrading enzymes. 

Therefore, many small molecule activators that function to ultimately reduce the Aβ levels 

have been investigated. For example, the inhibitors of plasminogen activator inhibitor-1 have 

proven to increase the Aβ catabolism and may constitute a reliable therapeutic approach to 

lower the levels of Aβ in brain [149]. Recently, neprilysin was also implicated as a promising 

Aβ degrading enzyme target since it can significantly reduce the levels of Aβ deposits in 

transgenic mouse models [150]. However, further evaluation of these compounds and 

characterization of the delivery approaches are poorly understood and require further testing. 
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1.4.3 Metal ions 

Accumulating evidence shows that transition metal ions and generated oxidative stress are 

involved in the pathogenesis of AD [151-154]. In vitro studies indicate that physiological 

concentrations of zinc and copper can accelerate Aβ aggregation and increase Aβ toxicity [155-

157]. As shown in Figure 1. 14a and 14b, the analysis of fibril growth kinetics, metal-free Aβ 

preparation takes more than 70 ± 2 h to reach half maximal fluorescence while the fibril 

formation time is nearly halved at 38 ± 2 h for the same preparation with Cu2+ ions. The 

increased cytotoxicity induced by copper ions was also emphasized in Figure 1. 14c. The 

concentration of iron in the brain of AD patients is also elevated [158]. Aβ peptide has a strong 

positive reduction potential and displays high-affinity binding for Zn2+, Cu2+ and Fe3+ ions 

[159]. Therefore, various metal chelating agents are potentially effective in attenuating the 

effects of Aβ. PBT-2, one of the analogues of 8-hydroxyquinoline, has distinct chelating 

properties, with good blood brain barrier (BBB) permeability, and widely used to inhibit zinc 

and copper ions from binding to Aβ to accelerate clearance of Aβ oligomers. Subsequent 

clinical trials with PBT-2 also confirmed its improvement in the memory and cognition in AD 

animal models though further clarification of the safety, tolerability and efficacy are still 

needed [160, 161]. Another metal ion-based system, Met35, participates in redox reactions and 

has potential to modulate oxidative stress. Hou et al. [162] have reported that oxidation of 

Met35 to Met35(O) significantly reduces the rate of amyloid formation and alters fibril 

morphology. Bitan and Teplow [55] reported similar findings when Met35(O) Aβ42 does not 

form pentamer/hexamer (paranuclei) which self-associate to form larger oligomers, but rather 

oligomerizes similarly to Aβ40, indicating the role of Met35(O) in blocking the formation of 

paranuclei and in controlling the pathway of Aβ oligomerization. However, the high affinity 

property of these chelators may pose harmful effects when undesirable metal binding occurs in 
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other tissues. Thus, an effective delivery approach for chelation combined with precise 

targeting methods will provide significant therapeutic options for clinical treatment. 

 

Figure 1. 14. Cu2+ accelerates Aβ growth and increases the cytotoxicity. (a) Average of 9 growth curves recorded 

Apo in red and Cu2+ in blue. The fluorescence ThT signal is normalized at maximal intensity. Aβ40 concentrated 

at 5μM, HEPES buffer 50mM, 160mM NaCl at 30°C. (b) Time to reach half-maximal fluorescence (t50) in two 

experiments with 0 (red), 1 (mid-blue) or 0.5 (dark blue) mole equivalents of Cu2+ ions. The presence of Cu2+ 

typically halves the time taken to form fibrils. Error bars are for standard from nine traces. (c) Cell viability 

comparison [155]. 

 

1.4.4 Multi-target directed compounds 

The complexity of pathology in AD has inspired researchers to develop multifunctional drugs 

for various central nerve system (CNS) targets [163]. These multifunctional compounds will 

interact via different mechanisms so that the specific benefits or symptomatic improvements 

can be achieved [164]. For instance, a novel neuroprotective drug called TV3326 [(N-

propargyl-(3R) aminoindan-5-y1)-ethyl methyl carbamate] possesses both cholinesterase and 

monoamine oxidase inhibitory ability, thus can clinically increase the cholinergic 

neurotransmission, levels of dopamine, serotonin and adrenaline in the brain, and provide 

cognitive benefits [164]. TV3326 also has antioxidant properties and can modulate APP 

processing and cellular signalling pathway, preventing cell death [165]. Similar acting 

compounds of M-30 and Memoquin are also believed to be promising drugs for the anti-AD 

[165, 166].  
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Despite the symptomatic relief that has been achieved using the aforementioned 

therapies and drugs in AD, which provided a promising basis for the development of clinical 

treatments, in particular those targeting Aβ oligomerization and aggregation, unfortunately 

none of them have made it successfully through clinical trials and approved for use at present. 

One of the issues posed is that such drugs may be ineffective in treatment of patients diagnosed 

with AD, as current diagnosis may represent late-stage or post-AD where the pathogenic 

mechanisms of Aβ oligomerization and aggregation have already passed. In addition, another 

challenge as mentioned is the current lack of understanding of ADDL’s in AD, particularly 

their role in early stages and failure to identify which Aβ oligomers/aggregates are responsible 

among their many diverse forms [167]. Alternatively, some emerging approaches to antibodies 

or chemical compounds targeting Aβ oligomers will be further summarized below. 

1.5 Alternative strategies 

1.5.1 Nanoparticles (NPs) 

Currently more than 98% of potential available drugs can’t transfer from blood to brain 

effectively due to the physical barriers and BBB which is actually a cellular ‘fence’ to protect 

brain from hazardous substances in the blood flow. For example, most of the current potential 

iron chelators, as discussed above, are of relatively high molecular weight and are limited by 

the poor transference across the BBB. Although modified  lower molecular weight chelators 

have shown a better ability to penetrate the BBB, the toxicity issue for the treatment of 

chelation therapy are becoming serious [168, 169]. However, as the development of NPs 

advanced in efficient drug delivery and improved drug targeting ability, nanoparticles 

conjugated with metal ions are demonstrated as a new therapy option [170]. 
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Beyond that, engineered NPs with size around 3-200nm and made of biocompatible 

materials can be proposed to solve the problem of enhancing transport of drugs from blood to 

brain [171]. Advancement in the encapsulation and surface modification of NPs also guarantee 

the pharmaceuticals against degradation as well as increase their half-life time since most of 

the NPs will be rapidly cleared by the reticuloendothelial system and mainly sequestered in 

liver and spleen [172]. In order to make the particles suitable for BBB crossing to allow their 

diffusion within the brain, it is also crucial to control the size of NPs below 200nm diameter 

which is estimated as the largest pores present in extracellular spaces in the human brain tissue 

[173]. Some functionalized NPs with potential drugs proposed for the treatment of AD are 

listed below. (See Table 1.2) 

 

 

 

Table 1. 2. Some NPs proposed for the treatment of Alzheimer’s disease [172]. 
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While there is a growing interest in the application on the NPs in biomedical field, many 

issues remain to be considered, including the critical questions of the potential toxic effect of 

NPs to human health. Current research data has only shown that NPs’ size, size distribution, 

purity, shape, composition, surface coating, surface charge and surface reactivity result in a 

different distribution, accumulation and transport of NPs to different organs, as well as across 

the BBB [174-176]. It should be noted that most neurotoxicity studies performed so far have 

focused on metal and carbon-based NPs. Thus it is difficult to apply a general rule regarding 

brain toxicity of NPs and the benefits of NPs must be weighed against their potential toxic 

effects. So far, in fact, the toxicity of NPs has not been fully understood and a complete 

understanding of the molecular and pathogenic events of AD is also desired. However, drug-

loaded multi-functionalization NPs remain a viable option for the effective treatment of AD 

[172, 177].  It should also be noted that the current nano-medicine treatments for AD therapy 

are still limited to preclinical studies. 

1.5.2 Nanomaterials  

With the development of nanotechnology, and the emergence of a range of nanomaterials and 

NPs for use in a variety of biomedical applications, the development of anti-AD therapies based 

on nanotechnologies is seen as a promising avenue for investigation. For example, Zaixing 

Yang et al. [178]revealed that graphene and graphene-oxide nano-sheets can significantly 

inhibit Aβ peptide monomer fibrillation and extract a large number of peptides from preformed 

amyloid fibrils. In this study, the results from AFM imaging studies showed that mature 

amyloid fibrils can be disassociated into small pieces, further removed by graphene oxides, and 

cell viability assays demonstrated that graphene oxide can significantly decrease the Aβ 

cytotoxicity. These findings provided a fundamental basis for understanding the mechanisms 

of graphene-Aβ protein interactions and Nano-therapies for AD [178]. 
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1.5.3 Photoexcitation Effects 

Environmental factors play an important role in the progression of AD. Joon Seok Lee [179] 

found that photo-excited Rose Bengal (RB) strongly inhibits Alzheimer’s Aβ42 aggregation 

compared to RB exposed under dark conditions (Figure 1. 15). RB under green LED 

illumination interfered with an early step in the pathway of Aβ42 self-assembly and inhibited 

the conformation transition from monomers into toxic β-sheet-rich structure. Therefore, 

utilizing photo-excited RB provide another potential strategy for effective suppression of Aβ 

aggregation and cytotoxicity. 

 

Figure 1. 15. Schematic illustration of the inhibition of Aβ aggregation by photo-excited RB [179]. 

 

1.5.4 Electrical Stimulation: A new paradigm for therapy 

As we have witnessed, more electronic devices have been successfully developed in medical 

area nowadays, especially in the bionics such as the bionic ear [180] , cardiac pacemakers [181] 

and devices that provide electrical stimulation for bone regrowth [182]. Not only huge money 

invested trying to find suitable drugs for treatment, but also people have to consider the side-

effect or toxicity of the conventional pharmaceuticals. Therefore, a new therapy that involving 

deep brain stimulators for treatment of protein-aggregation disorders are potentially exciting 

options in the future. 
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Recently, Innocent Bekard et al. [183] and his group propose a model whereby the 

electrophoretic motion of the proteins leads to a frictional force that results in protein unfolding 

(Figure 1. 16). They measured the effect of a low strength oscillating electric field on the 

conformation of Bovine serum albumin (BSA) and Lysozyme and confirmed that electric force 

applied during electric field exposure was significant to perturb the tertiary structure of both 

BSA and Lysozyme. They establish intrinsic protein fluorescence as a sensitive tool to study 

the dynamics of the tertiary structure of native proteins in response to stress. Circular dichroism 

is used to quantitatively explore the solution conformation of peptides and poly-peptides.  In 

addition, prolonged electric field exposure resulted in significant frictional energy dissipation 

in the proteins. This observation that weak electric fields have the ability to dissipate energy in 

proteins, and then result in the unfolding of the proteins, provides for potential health 

implications. 

 

Figure 1. 16. Schematic of the electro-cell. This purpose build cell is used to measure the real-time auto-

fluorescence and circular dichroism of the protein solution exposed to electric fields of differing strength and 

frequency [183]. 

 

1.6 Molecular characterization of Aβ 

Unravelling the molecular structures of Aβ species and the process of amyloid aggregation are 

thought of as two key aspects for revealing the molecular mechanisms of AD. In the following 
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section, the different approaches used to characterize Aβ and their dynamic interactions are 

summarized.  

1.6.1 Structural measurements 

Structural analysis of individual Aβ peptides, including aggregates, has been extensively 

elucidated using techniques such as Fourier transform infrared (FTIR) spectroscopy, Circular 

Dichroism (CD), Solid-state nuclear magnetic resonance (ss-NMR) spectroscopy and X-ray 

crystallography [184, 185]. These methods will normally provide fundamental data regarding 

the secondary structures of Aβ peptides and corresponding morphologies. For example, Liping 

Yu et al. applied NMR to characterize the soluble Aβ oligomers and identified a mixed parallel 

and antiparallel β-sheet structure in these soluble Aβ forms, which is different from the fibrils 

that only contains β-sheet structure [186].  

1.6.1.1 FTIR spectroscopy 

FTIR has been widely used to detect the presence of β-sheet secondary structure, which is a 

specific type of β-sheet fragment detected by X-ray diffraction (XRD) encompassed in the 

amyloid fibrils [187]. This β-sheet secondary structure is detected by the presence of a band 

near 1620cm-1 when examining the amide I region (1600-1700cm-1) of the spectrum of Aβ 

fibril samples. Zandomeneghi et al. [188] distinguished amyloid fibrils and native β-sheet 

proteins from the amide I region of their infrared spectra. They revealed a common group of 

fibrillary structures, derived from various aggregates, which were distinct from the native β-

sheet proteins (Figure 1. 17). Moreover, this study suggested a potential therapeutic strategy 

by inhibiting or disrupting the formation of structures associated with toxicity.  
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Figure 1. 17. Structure of native protein transthyretin (TTR) and TTR amyloid fibrils.(A) Amide  I region from 

the FTIR spectrum of native TTR. (B) Ribbon diagram of native TTR tetramer.(C) Amide I region from the FTIR 

spectrum of TTR fibrils. (D)Electron Microscopy (EM) images of TTR fibrils [188]. 

 

1.6.1.2 Atomic Force Microscopy (AFM) 

Atomic Force Microscopy (AFM) has been widely applied to characterize the structures and to 

distinguish soluble oligomeric Aβ peptides from highly aggregated fibrils. As shown in Figure 

1. 18A, Hepler et al. [189]successfully captured the ADDLs in a globular structure with 

approximately 3-5nm in height while the long strand accumulated fibrils were observed in 

Figure 1. 18B. Interestingly in Figure 1. 18C, a highly magnified image of an isolated subunit, 

which is referred as the globular oligomer, was observed next to a fibrillary strand that consist 

of nine of these globular subunits arranged in a helically twisted bundle [189]. 

 



56 
 

Figure 1. 18. Atomic Force Microscopy images of standard prepared ADDLs (A), mature fibrils (B)and highly 

magnified part of the fibrils along with an ADDL subunit (C). All the samples were imaged in air using tapping 

mode [189]. 

 

More Recently, Iris A. Mastrangelo et al. [190] investigated the structure and formation 

of these assemblies using AFM. By taking AFM images of various Aβ forms at early incubation 

times (<1h), they revealed that the assembly from monomers, to soluble oligomers and proto-

fibrils, subsequently with observations resulting in a stacking mode of assembly has been 

proposed (Figure 1. 19). In this study, based on the molecular weight (MW) and associated 

dimensions such as length, width and height, low MW oligomers consisted of two to four 

monomeric units as shown in Figure 1. 19a, while the oligomers in Figure 1. 19b and 19c 

appear to be twice as large as the structure in Figure 1. 19a. The proposed models presented 

below in Figure 1. 19(d)-(f) are referred to the Aβ42 monomer, dimer and tetramer.  

 

Figure 1. 19.  (a)-(c) AFM images of Aβ42 peptides and (d)-(f) proposed models of the Aβ42 monomer, dimer and 

tetramer [190]. Image scan size: 150 nm *150 nm 

 

Furthermore, the unique capacity of AFM to provide high-resolution images of single 

molecules over time has led to this technique becoming one of the main methods to follow the 

dynamics of amyloid fibril formation. AFM imaging has shown that Aβ fibril formation is a 

multistage process and indicates 4 main stages of assembly comprising diverse structures 

including the 1) earliest proto-fibrils that exist in the form of unstructured Aβ monomers, 2) 

subsequent proto-fibril elongation along with reversible disassociation, 3) proto-fibril to fibril 
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transition, which is not a reversible stage and finally 4) fibril elongation [191]. Additionally, 

the rate of elongation was dependent on the peptides concentration, temperature and ionic 

strength of the medium in a comparable experiment. As the AFM images show below, 

significant increases have been observed in the protofibril length with increasing incubation 

time at 2 days, 7 days and 18 days (Figure 1. 20a), and increasing temperature at 3℃ , 18℃  and 

37℃  respectively (Figure 1. 20b). The statistical analysis further revealed a decrease in the 

numbers of the protofibrils with the increasing time and temperature, indicating that 

coalescence of smaller protofibrils contributes to the protofibril elongation. In addition, 

statistical result of an averaged shorten length of protofibrils with the decreasing numbers in 

diluted condition suggested an irreversible assembly progress [191].  

 

 

Figure 1. 20.  (a) AFM images of time dependence of Aβ 40 proto-fibril assembly at(scale bar:500nm*500nm) 2, 

7 and 18 days. (b) AFM images show the temperature dependence of Aβ40 proto-fibril assembly. Scale bar: 

1000*1000nm [191]. 

The first in-situ AFM visualization, which means the fibrils formation is occurring 

locally without isolating it from other systems, of proto-fibril formation from single aggregate 

units of Aβ peptides that were 83.3 ± 18.2  nm wide with height at 4.5±2.8)nm was reported 

by H.K.L Blackley et al. [192]. In addition to observing the growth of the proto-fibrils (Figure 

(b) 

(a) 
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1. 21 (i)) and based on these findings, the authors proposed a mechanism for fibrillization of 

Aβ (Figure 1. 21 (ii)). Importantly, this work demonstrated the possibility of observing the 

binding of two single molecular aggregates during the early stages of proto-fibril formation 

and understand the conditions that either activated or inhibited the aggregation processes [193]. 

 

  

 

Figure 1. 21.  (i) A series of AFM images depicting the development of multiple Aβ proto-fibril from a common 

core. Imaging scan size 2.5um*2.5um.(ii) A schematic outlining a possible mechanism for the fibrillization of Aβ 

[192]. 

 

(i) 

(ii) 
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1.6.2 Fluorescence spectroscopy 

1.6.2.1 Internal Reflection Fluorescence Microscopy (TIRFM) 

In histological detection and microscopic observations, Congo red dye has been extensively 

used for staining in amyloidosis. However, this method is too cumbersome for routine use due 

to the time-consuming nature and low efficiency and reproducibility of the preparation. In 

contrast, fluorescent stains such as ThT (Thioflavin T), a benzothiazole dye, (Figure 1. 22a) 

only shows fluorescence upon binding to a specific molecular entity (e.g. amyloid misfolded 

aggregates or fibrils). It is commonly used as a diagnostic tool for mature amyloid fibril 

structures both in vitro and in vivo and Vassar et al. was the first to demonstrate this feature in 

1959 [194, 195]. They reported that ThT will selectively bind to amyloid deposits, leading to 

a significant increase in fluorescence brightness as shown in Figure 1. 22b and 22c.Further 

investigations of the characterization of binding properties and fluorescence provided 

fundamental support for the importance of the ThT spectroscopic measurement. As the 

example shows in Figure 1. 22e, Lindgren et al. [196]demonstrated the dye thioflavin T 

spectroscopic as an efficient method to monitor in situ process of amyloid aggregation with 

different concentration conditions. In this study, a dramatic increase in the emission 

fluorescence spectrum upon binding to amyloid fibrils was firstly identified as shown in Figure 

1. 22d, then the fibrillation kinetics was measured as the concentration increased [196]. 
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Figure 1. 22. Experimental techniques employing ThT. (a) Structure of ThT (top). The two planer segments of 

ThT whose mutual rotation defines its chirality (bottom). (b) Early histology using Thioflavin-T to stain primary 

kidney amyloid. (c) Total Internal Reflection Fluorescence microscopy (TIRFM)  image of branched glucagon 

fibrils stained with ThT. (d) Characteristic increase in ThT fluorescence upon binding to amyloid fibrils.(e) Protein 

concentration effects on the fibrillization kinetics measured by ThT fluorescent. The rapid onset of fibrillization 

induced through seeding is also shown [194-197]. 

 

In addition, Ban et al. [198] (Figure 1. 23) employed total TIRFM combined with the 

thioflavin T (ThT) to observe and track the growth of individual fibrils directly. The ability to 

follow the process of fibril growth provided the great opportunity to not only analyse the 

kinetics of the reactions, but also for the testing and evaluation of potent inhibitors or 

therapeutic targets. 
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Figure 1. 23.  (A)Time-course of fibril formation at pH 7.5 and 37°C monitored using ThT fluorescence. (B) 

Observation of Aβ(1-40) amyloid fibril growth by TIRFM [198]. 

 

1.6.2.2 Fluorescence Lifetime Imaging Microscopy (FLIM) 

Intrinsic fluorescence spectroscopy has been suggested as another method capable of directly 

detecting the amyloid formation by specific spectral changes. Recently, Esbjorner et al. [199] 

employed fluorescence lifetime imaging microscopy (FLIM) to monitor amyloid formation and 

study the kinetics of aggregation of Aβ40 and Aβ42 during their cellular uptake and the following 

trafficking activity in live neuronal cells. In this work, the changes in the fluorescence lifetime 

of covalently linked dye label HF488 was sensitively recorded during the amyloid aggregation, 

and this method was proved useful in determining the existence of β-sheet structures, which is 

highly correlated with such lifetime. Figure 1. 24 below shows an example of kinetic 

measurement of HF488-labeled amyloid fibril formation. The decreased fluorescence lifetime 

is consistent with the deeper extent of the amyloid formation and the broader lifetime 

distribution, and the further aggregation progress is in good agreement with the increasing 
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population of aggregates. Moreover, the investigation of Aβ aggregation in the neuronal cells 

provided vital clues for understanding the role of Aβ aggregation in pathogenesis of AD. 

 

Figure 1. 24. Kinetics of HF488-labled Aβ40 Fibril Formation Monitored by Fluorescence Lifetime Imaging. The 

colour coding of images and histograms relate to the colour bar on the right. The HF488-labeled Aβ40 

concentration was 5μM, and the peptide was diluted into 50 mM phosphate buffer sodium at pH 7.4 [199]. 

 

1.7 High-Speed AFM: Combined Structural-

Dynamics of Aβ Interactions  

Since proteins are dynamic and the process of their misfolding or refolding are frequently 

associated with different transient intermediates, such as partially folded aggregates and 

spherical oligomers, very little is known about the mechanisms underlying these processes [107, 

200, 201]. The difficulties in monitoring various structural Aβ forms or aggregates and lack of 

understanding on the dynamics of these transition interactions have further hindered related 



63 
 

research progress. While the development of bulk kinetics measurements such as ThT 

spectroscopy and fluorescence spectroscopy have provided significant insight into protein 

dynamics, they do not address the lack of understanding at the single molecule level. Even 

though single molecule fluorescent studies have been utilized successfully for detecting and 

tracking the amyloid formation process, there are still limitations in capturing structural 

information. Alternatively, AFM has been extensively used for providing structural 

information of single molecules, however, owing to its slow imaging speeds, i.e. several 

minutes per scan, the real-time dynamic information of single molecules is not realized.  This 

is where the emergence of High-Speed Atomic Force Microscopy (HS-AFM) provides an 

exciting opportunity to contribute to an integrated approach with the aforementioned 

techniques; to enable the visualization of protein structural-dynamics. HS-AFM is beginning 

to bridge the gap by decreasing structural imaging times from minutes to milliseconds. It 

massively surpasses the capabilities of current AFM systems by enabling acquisition times of 

~50 milliseconds per image (~ 20 frames/second). This takes AFM into the realm of video rate 

imaging that is defined as achieving speeds of ~ 12-13 frames/sec; the human eye needs to 

visualize a sequence of images at this speed in order to perceive motion. 

To study the dynamics of proteins, single-molecule fluorescence microscopy [202, 203] 

and optical trapping apparatus [204] have been created and widely used over the last 20-30 

years. These methods are reliant on recording the dynamic behaviour of optical biomarkers 

attached to the protein molecule of interest. Owing to this indirect measurement, one has to 

infer how the protein molecules are actually behaving behind the recorded data. Thus, a 

technique capable of directly observing both structure and functioning protein molecules in a 

“label-free” manner has long been desired. And to meet this desire, high-speed atomic force 

microscopy has been developed [205-207]. (Figure 1. 25) 
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Figure 1. 25. Schematic illustration showing HS-AFM system and devices. (a) All devices contained in the HS-

AFM system and main devices like different functional scanners, the stage designed for sample and cantilever, 

and piezo control platform. (b) SEM image of a small cantilever for HS-AFM. The inset shows an electron beam 

deposited tip grown on the original tip. (c) An advanced scanner designed for narrow scanning area imaging [207]. 

 

Over the past decade various developments in HS-AFM, including small modified 

AFM cantilevers (Figure 1. 25b), sample-stage advanced scanners (Figure 1. 25c) and 

optimised electronics shown in HS-AFM system (Figure 1. 25a), e.g. dynamic PID controller 

[208] and cantilever deflection detection system, have seen the practical use of HS-AFM come 

to fruition and used to address biological questions that have been difficult or impossible to 

address by other methods [209]. For example, a feedback control system has been implemented 

to maintain weak tip-sample interactions and an active damping method was introduced to 

eliminate scanners’ mechanical resonant vibrations [210], which is responsible for the imaging 

rate, however, perhaps the most critical development was the fabrication and ability to 

accommodate the optical detection of very small cantilevers of ~6-12μm in length and 2μm 

wide to achieve high resonant frequencies of ~400 kHz to 1.2MHz in water (1.5MHz to 

3.5MHz in air) yet retaining small spring constants (~0.1-0.2N/m) that are suitable for imaging 

biomolecules. In addition, an electron beam deposited sharp tip (~1μm long and apex radius of 

~0.5nm in best case) can be post-fabricated by scanning electron microscopy (SEM) at the top 
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end of the original cantilever to acquire high resolution images. Imaging speed of HS-AFM is 

determined by various parameters, including the bandwidth of feedback control, scan range, 

scan lines, the spatial frequency and maximum possible phase delay. At present, the imaging 

rate has been greatly improved to over 20 frames per second (fps) without any significant 

disturbance to the biological function (e.g. tip force action on the sample) [207, 211, 212]. 

Because of the high imaging rate and low invasiveness to the sample, HS-AFM enables the 

directly visualization of dynamic structural changes and dynamic interactions occurring in 

individual molecules, which contribute directly to a wide development of single molecule 

dynamics visualization and major studies are list below [209].  (Table 1.3)  

 

 

 

 

 

 

 

 

 

 

Table 1. 3. Studies on the dynamic events of proteins by using HS-AFM 

 

 

Conformational 

Changes 

-Photo-activated bacteriorhodopsin [213, 214] 

-Visualization of the motion of the Ca2+-pump  [215] 

-Rotary catalysis of rotorless F1-ATPase [216] 

-Agonist-induced height change of NMDA receptor [217] 

 

Diffusion and 

interactions in 

membranes 

-Diffusion and fusion of vacancy defects in streptavidin 2D 

crystals formed on SLB [218] 

-Membrane-mediated interaction between ATP-synthase c-

rings [219] 

-Interaction of bR trimers with bR crystal edges in purple 

membranes [220] 

 -Amyloid-like fibril formation by lithostathine [221] 
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Self-assembly 

processes 

-Real-time visualization of assembling of a sphingomyelin-

specific toxin on planar lipid membranes [222] 

Dynamics occurring 

in intrinsically 

disordered proteins 

-Visualization of intrinsically disordered regions of proteins 

[223] 

-Wiggling and shortening motion of a disordered region in 

CENP-T [224] 

DNA–protein 

interactions 

-Cleavage of DNA by type IIF restriction enzyme [225] 

Diffusion and 

interactions on live 

cell surfaces 

-Single molecule imaging of diffusion of crowded porin 

molecules on live bacterial outer surface [226] 

 

One of the first striking results obtained by HS-AFM images was the direct 

visualization of myosin V molecules walking along actin filaments. The ability to capture 

molecular, dynamic behaviours (e.g. unidirectional movement of myosin V molecule with 

hand-over-hand manner, unfolding of the coiled-coil tail, foot stomp events in ATP and the 

lever-arm swing motor action) with different conformational structural transitions (Figure 1. 

26) provided unprecedented insight [227].  

 

Figure 1. 26. Visualization of walking M5-HMM molecules. (a) HS-AFM film strip showing unidirectional 

processive movement of M5-HMM in 1μM ATP. Scan size: 130 * 65 nm2, scale bar: 30 nm. (b) Schematic of two-

headed bound M5-HMM (c) Schematic of the movement explanation in d and e.(d)(e) HS-AFM film strips 

showing the hand-over-hand movement in1μM ATP. (d) Scan size: 150 * 75 nm2, scale bar: 50 nm (e) Scan size: 

130 * 65 nm2, scale bar: 30 nm. All the images showing here are captured at scan rate: 146.7ms per frame [227]. 
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The application of HS-AFM to study amyloid fibril dynamics has also appeared 

recently, with Watanabe et al. [228] revealing the structural features and assembly kinetics of 

Aβ42 (Figure 1. 27). They revealed two different pathways of the fibril growth, including 

straight fibrillation and spiral growth. In addition, the findings of initial fibril nuclei structure 

dependent pathway and the bidirectional switching property between two growth models are 

also presented for the first time. This finding is consistent with the two distinct steps 

mechanisms named as dock-lock growth mechanism [229]: monomers will initially bind (dock 

to) to the fibrils surface in a fast timescale and followed by a slower timescale step associated 

with the lock process, which is involved with structure rearrangement.  

 

Figure 1. 27. HS-AFM imaging of Aβ42. (A) Schematic diagram of HS-AFM measurement including HS-AFM 

cantilever, sample (Aβ42 fibrils and intermediates) and substrate mica. (B) Clipped HS-AFM images at different 

time point during the fibrils growth. (Scale bar, 300nm) (C) Height profile of selected part of the fibrils as labelled 

(A to B) at 1800s [228]. 

 

S. Banerjee et al.[230] also successfully captured different forms of Aβ42 oligomers 

with distinct structures and highlighted the dynamic significance of isolated cross-linked 

dimers, pentamers and heptamers. In this study, they found out that oligomers as large as 

heptamers are in a dynamic equilibrium with dimers and trimers, indicating the important role 
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of these two key types of oligomers in targeting and further sequestering higher order oligomers, 

which are considered possibly the most neurotoxic agents. 

 

 

 

 

 

1.8 Overarching Aims 

Within the amyloid hypothesis in Alzheimer’s disease, current focus has shifted to earlier 

stages of amyloid beta (Aβ) peptide assembly, involving soluble oligomers and smaller 

aggregates which are more toxic to cells compared to their morphological distinct fibril forms. 

However, due to the diverse, parallel molecular interactions between various species at this 

earlier stage, (referred to the lag time stage shown in Figure. 1.7) along with associated 

monomer-dependent nucleation, elongation and fragmentation mechanisms, it become critical 

to unlock the molecular-level kinetic pathways involved with these transition mechanisms. 

Although the Aβ42 peptide has been extensively studied, the detail on their dynamic interactions 

and associated kinetic analysis at the single molecule level is essentially void. This is due to 

the challenge acquiring high resolution structural information while simultaneously measuring 

the dynamics. For this reason, directly visualizing the first moments of Aβ nucleation and 

subsequent growth into oligomeric forms or other amyloid assemblies has not been achieved 

despite it being a critical step (in the lag phase) underlying the amyloid aggregation process. 

Lastly, a growing number of nanomaterials have been introduced to modulate the Aβ42 

interactions, with a view for potential applications in diagnostics and treatment of disease.  
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 Therefore, to gain a better understanding of the fundamental mechanisms of amyloid 

interactions responsible for the Alzheimer’s disease, the thesis aims to use High-Speed AFM 

to: 

 

Aim 1: Characterize the structure and dynamics of single molecule Aβ42 peptides in liquid, 

including the intermolecular interactions occurring between the different assemblies of the 

peptide. 

 

Aim 2: Directly visualize the real-time nucleation and growth mechanisms of single Aβ42 

peptides by applying in-situ HS-AFM whereby the sample condition is modified during 

imaging to initiate the growth mechanisms. Numerous factors confirmed to either inhibit or 

promote the aggregation such as metal ions, temperature and pH will be investigated.   

 

Aim 3:  Investigate the interactions between single nanoparticles, namely silica nanoparticles, 

and Aβ42 peptides and to establish HS-AFM methodology and analysis for general 

characterization of protein – nanoparticle interactions at the single molecule (nanoparticle) 

level.   
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Chapter 2: Dynamics of Inter-Molecular 

Interactions between Single Aβ42 

Oligomeric and Aggregate Species by 

HS-AFM 

2.1 Introduction 

Recent theory for pathogenies in Alzheimer’s disease (AD) implicate the accumulation of 

soluble amyloid beta (Aβ) oligomers [32, 231], generally consisting of low molecular weight 

monomeric, dimeric, tetrameric Aβ peptides [232], or higher molecular weight (~20 – 40 

monomers) oligomers [190]. Due to their small size, high diffusion rate and permissivity to 

biological interactions, they are evidently more highly toxic, particularly with high-affinity for 

cellular ligands [233] e.g. neurosynapses. They are defined as basic proteins transformed into 

toxic forms that are structurally very distinct from their insoluble amyloid fibril successors 

found in plaques synonymous with AD [234, 235]. Their increasing discovery in patients [236], 

along with a growing number of in-vitro and animal studies demonstrating their toxicity [237, 

238], has seen a shift from earlier amyloid ‘cascade’ hypotheses [239, 240], based on plaque 

and fibril  neurodegeneration, toward understanding the protagonists of Aβ oligomer toxicity 

[235], including effects of size, morphology, homeostasis and biodistribution, leading to 

emergence of Aβ immunotherapies in clinical trials [137]. A fundamental challenge is 

identifying which subset or specific species of Aβ oligomers, amongst the apparent structural 
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diversity and polymorphism with transient states, are responsible for AD. Equally as important 

to more broadly elucidate potential targets for AD therapies will be understanding the 

molecular interaction kinetics that ultimately define the oligomerization pathway(s) leading to 

the toxic populations.  

Thioflavin T-based fluorescence kinetic studies on Aβ revealing classical sigmoid 

growth kinetics [241-243], including initial lag, followed by nucleation and fibril formation 

phases, enable quick interrogation of amyloid or fibrillation blockers, e.g. antibodies, or the 

effects of amyloidogenic biological conditions such metal ion concentration [244, 245] and pH 

[245, 246]. The lag phase and slope of the nucleation phase partially indicates the rate at which 

oligomerization proceed however the kinetic contribution from specific, individual oligomer 

species are not differentiated. From a structural perspective, x-ray crystallography, electron 

microscopy and atomic force microscopy show that the oligomer species range from 2-50 nm 

in size [245, 247], displaying diverse structures and assemblies. Emerging techniques such as 

ion mobility coupled with mass spectroscopy enable measurement of Aβ oligomer population 

distributions, revealing potential assembly pathways and specifically dodecamers as terminal 

species that are yet to rearrange into a β-sheet structures and thus may represent toxic forms in 

AD [247-249]. Single molecule fluorescence measurements can probe oligomers present 

during the lag phase, showing they constitute a highly heterogeneous ensemble of species (~ 

40 molecules) indicative of having undergone a stochastic polymer-like assembly process [250]. 

Up until now, only single molecule force spectroscopy (SMFS) based on atomic force 

microscopy (AFM) is used to experimentally determine single molecule kinetics parameters 

(e.g. dissociation constants) of intra-molecular Aβ interactions [251]. However, this is 

currently only configured for the interaction between two monomers [252, 253], effectively 

limiting measurements to dimerization kinetics. Exploring kinetics of very early stages of 
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oligomerization, with seemingly fast transition states, are investigated by theoretical and 

computational simulations [254-256] in the absence of molecular-level experimental data.  

To date, a significant mismatch exists between high resolution structural imaging with 

poor temporal resolution versus inherently fast dynamic spectroscopy but which lacks the 

ability to directly visualize molecular structure. This is where the use of high-speed AFM (HS-

AFM as shown in Figure. 1.25) provides a unique opportunity to study the molecular structural 

determinants of kinetics by decreasing structural imaging times of single molecules from 

minutes to millisecs, i.e. ~15-20 images per second [212, 257, 258]. Related to amyloid 

peptides, HS-AFM studies report on the structural flexibility of α-synuclein monomers and 

dimers associated with Parkinson’s disease [259], dynamic formation of Aβ protofibrils [228], 

and structural dynamics of Aβ oligomers, including specified trimers, pentamers and heptamers 

[230]. Here, we develop a new analysis based on HS-AFM movies to produce lifetime traces, 

enabling the first extraction of kinetics assigned to inter-molecular interactions between 

different types of single molecule Aβ42 oligomers and aggregate forms. In doing so, we 

discover interesting kinetic phenomenon once the Aβ42 species reach dimensions associated 

with larger aggregate species.   
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2.2 METHODS 

2.2.1 Preparation of Aβ solutions and reagents 

Amyloid-beta protein fragment 1-42 (Aβ42 peptide) was purchased as a lyophilized solid and 

more than 95% purity was guaranteed by HPLC from Sigma-Aldrich (High Performance 

Liquid Chromatography). ADDL’s from Aβ42 peptide were prepared according to previous 

methods of [190, 260]. Firstly, 1mg lyophilized solid peptides were dissolved in HFIP 

(1,1,1,3,3,3-hexafluoro-2-propanol) to prevent aggregation and then aliquoted into 50 small 

microcentrifuge tubes. After 30-minutes incubation at room temperature in a chemical fume 

hood, the HFIP was allowed to evaporate for 60 minutes and the re-lyophilized peptides stored 

at -20°C. Aqueous solutions were prepared by dissolving peptides into PBS (pH 7.4) at 

concentration of 20 μg/ml and then vortex mixing for 20 sec prior to use.  

2.2.2 Remodification of HS-AFM Cantilever Tips 

High resonance frequency (0.8-1.2MHz) cantilevers with low spring constants (0.1-0.2Nm-1) 

specially designed for High-Speed AFM (HS-AFM) imaging were obtained from Olympus 

(BL-AC10DS). The silicon nitride cantilevers consisted of a beak-like tip upon which we 

further deposited a carbon-based tip by electron-beam deposition (EBD) [261, 262]. The 

carbon tip was sharpened by argon or oxygen plasma etching to produce a significantly smaller 

tip radius of ~3 nm compared to the original tip (25-100 nm) of the commercial cantilever, 

which enabled improved imaging stability and resolution [263, 264]. After imaging, the carbon 

tip could be completely removed by plasma etching and the cantilever remodified for reuse.  
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2.2.3 High-Speed Atomic Force Microscopy (HS-AFM) imaging in 

liquid 

To prepare samples for imaging, 2ul of 20 µg/ml Aβ42 peptide in PBS was pipetted onto a 1.5 

mm diameter freshly cleaved mica disk on a glass slide (Cat No. 7101) and incubated for 2 

mins. 2ul of fresh PBS was then added and pipetted in/out of the sample solution, and this was 

repeated several times to exchange the sample solution in order remove excess Aβ42 peptides 

that had not adsorbed onto the mica surface. The sample was then placed into the liquid cell 

for HS-AFM imaging. HS-AFM imaging was performed using an ANDO-model (Research 

Institute of Biomolecule Metrology Co., Ltd., Japan) in tapping mode with high frequency, 

small cantilevers (BL-AC10, Olympus) remodified with the carbon-tip, as described above. 

During imaging, the free oscillation amplitude of the cantilever was set to ~2 nm and the set 

point amplitude was kept to  90% of the free amplitude. An XY scanner with range of 4 μm 

* 4 μm and z scanner (700 nm) with scan speeds of normally 2-4 frames/sec for 500 nm scans 

was used. For higher resolution scans of 200 nm 5-10 frames/sec was applied.  for 200 nm * 

200 nm or smaller area imaging. During imaging, a relatively large gain force can be applied 

without any effects to the interactions to improve the quality of image owing to the short time 

of force action (~100 ns). Thus in the experiment, different types of dynamic events occurring 

in the biological environment can be visualized. 

2.2.4 Data analysis of HS-AFM images 

A Matlab computer program was developed to segment molecules in HS-AFM images. The 

program had four main stages: 1) background image estimation; 2) background subtraction and 

contrast enhancement; 3) image segmentation using the Otsu’s algorithm; 4) connected 

component labelling and object measurement.  
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In Stage 1, the background image was estimated by applying image erosion followed 

by image dilation. Let 𝐼(𝑥, 𝑦) be an input HS-AFM image, where 𝑥 and 𝑦  are the horizontal 

and vertical coordinate, respectively. To compute the eroded image 𝐼𝑒, the pixel at location 

(𝑥, 𝑦) was set as the minimum of all pixels in a local neighbourhood of image 𝐼:  

𝐼𝑒(𝑥, 𝑦) = 𝐦𝐢𝐧 𝐼(𝑅(𝑥, 𝑦)) 

In our experiments, the local neighbourhood 𝑅 was selected as a circular region of radius 15 

centred at pixel location (𝑥, 𝑦). Next, to compute the dilated image 𝐼𝑏, the pixel at location 

(𝑥, 𝑦) was set as the maximum of all pixels in a local neighbourhood of image  𝐼𝑒: 

𝐼𝑏(𝑥, 𝑦) = 𝐦𝐢𝐧 𝐼𝑒(𝑅(𝑥, 𝑦)) 

The dilated image 𝐼𝑏(𝑥, 𝑦) was considered as estimation of the image background. 

  In Stage 2, the background image was subtracted from the input image:  𝐼𝑑 = 𝐼 −  𝐼𝑏 . 

The difference image  𝐼𝑑 contained mostly the foreground (i.e. the molecules). To improve the 

contrast of the foreground and consequently the segmentation accuracy, the difference image 

𝐼𝑑 was scaled linearly to the full intensity range [0, 255]. 

In Stage 3, the enhanced difference image was segmented using the Otsu’s algorithm. 

In this algorithm, a threshold is applied to separate the image into two classes: foreground and 

the image background. This threshold is selected to minimize the intra-class variance and 

maximize the inter-class variance and. In other words, this algorithm increases the similarity 

between pixels belonging to the same class, while decreases the similarity between pixels 

belonging to different classes. 

In Stage 4, connected component labelling was applied to each group of connected 

pixels into a single region (molecule). For each region, several properties were measured, 

including width, height, bounding-box coordinates, centroid, perimeter, area, and eccentricity. 
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In addition, the length and width of peptides were validated using the cross-section analysis in 

the Igor Pro software. Using the above properties, molecules were also tracked across multiple 

frames of a HS-AFM video sequence.  

However, we also applied the function of filter to some videos, especially for the height 

measurement, to better observe the individual molecules and their dynamic interactions. Owing 

to this, some darker regions may appear in these snapshot images and slightly affect the real 

height value of peptides that adsorbed in these darker areas, then we did manually analysis 

using line height profile in Igor (HS-AFM software) with the filter on versus off to calculate a 

correction factor for the height data. 

All the data collected from the experimental results were repeated more than three times 

and the reproducible results were shown as representative group.  
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2.3 Results/Discussion 

2.3.1 Structural Dimensions of Different Aβ42 Species 

HS-AFM images with scan sizes of 500 nm taken at imaging rates of 2 frames/sec were used 

to characterize the structure and dimensions of the Aβ42 peptide. A representative snapshot of 

a single frame at time = 10s revealed adsorbed peptides with surface density of  30-40 

molecules/µm2, primarily comprising small, globular-like structures of different sizes (Figure 

2. 1a). Corresponding movies with duration of 500 secs show the differently sized peptide 

species with varying surface diffusion speeds (Supplementary Movie S1). For statistical 

analysis of structural dimensions, Matlab software algorithms were firstly used to desegment 

imported avi movies into individual frames followed by automatic threshold detection of frame 

objects to obtain parameters such as area (nm2), width (nm), length (nm) and height (average 

pixel intensity) (See Methods Section). In addition, tip broadening effects are expected to occur 

when the object’s size is below the radius of tip curvature and therefore the lateral dimensions 

still represent an overestimation [42]. Histogram analysis of the area showed three distinct peak 

distributions at 180 nm2, 400 nm2 and 700nm2 (Figure 2. 1b), indicating the existence of at least 

three different forms of Aβ42 peptide(s). From the width and length histograms (Figure 2. 1d 

and e), the main peak distributions occurred at 15 nm and 20 nm, respectively, indicating the 

size of the most abundant Aβ42 peptide species. In addition, a second peak distribution occurred 

at higher values of 36 nm, particularly for the width (Figure 2. 1d) and a similar range of higher 

values is observed in skewed (non-normal; right tail) histogram of length (Figure 2. 1e). Two 

other main observations included a much smaller peak distribution between 6-12 nm (Figure 

2. 1e, arrow) specifically for length and sampling of significantly higher values of ~ up to 100 

nm but with no clear distribution (Figure A1). For the height, two clear peak distributions are 

observed at ~ 2.8 nm and another at 9.2 nm (Figure 2. 1c).  
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Figure 2. 1. Morphology and dimensions of Aβ42. (a) Representative HS-AFM image of Aβ species on mica 

surface in PBS (Scan size: 500nm, imaging rate: 2frames/second). (b-e) Histograms of dimensions, area (b), height 

(c), width (d) and length (e). (f) Representative HS-AFM images (from left to right) of Aβ15-20nm, Aβ36nm, AβAgg 

and disordered or unstructured Aβ monomer.  

 

The existence of different Aβ42 peptide species based on their size distributions indicate 

that the preparation of samples from lyophilized solid peptides dissolved in 1,1,1,3,3,3-

hexafluoro-2-propanol (HFIP) does not result in pure monomers but instead leads to associated 

oligomers and larger aggregates [265, 266]. This is somewhat contrary to the use of HFIP that 

constitutes a method typically used to minimize peptide aggregation. Once the peptides are 

resuspended in phosphate buffer saline they are immediately deposited onto the mica substrate 

for HS-AFM imaging (approximately after 20-30 min) and subsequently rinsed to remove 

excess free peptide. This sample preparation also does not allow sufficient time for the 

formation of amyloid fibrils [267], which was intentionally undertaken to only focus on the 
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interactions and dynamics of Aβ42 monomers, oligomers and larger aggregates as opposed to 

the processes of fibril formation as done by several others in AFM studies [192, 268]. 

Similar rounded structures of Aβ42 peptide species with dimensions on the order of a 

few nanometres up to tens of nanometres are routinely observed in Aβ40 and Aβ42 samples in 

AFM studies [269, 270]. Without the use of any solvent in the sample preparation, Prabhu et 

al. [271] similarly reveal a height range of 1.5-2.5 nm for Aβ42 to explain the presence of either 

monomers or small oligomers. Using super sharp tips for AFM imaging, Mastrangelo et al. 

[190] refer to low molecular weight (LMW) soluble Aβ42 oligomers mostly with height of ~ 1-

2 nm and diameters ranging from 5-15 nm attributed to monomers or dimers (5-7 nm) and 

tetramers (~10-15 nm). In the same study based on the HFIP method, higher molecular weight 

(HMW) oligomers of 15-25 nm in diameter (reduced value after tip correction) with heights 

ranging from 3-6 nm indicated stacking of 2-3 monomers/dimers units. The HMW oligomers 

could also retain heights of 2nm, suggesting the formation of planar structures [190]. More 

recently, Banerjee and Siddhartha et al using HS-AFM show similar Aβ oligomer structures 

and distribution of sizes, including compact (5-7 nm), bilobed (20 nm) and larger aggregate 

structures, though are differently assigned to specific trimers, pentamers and heptamers, 

respectively [230]. A point of difference in this study is that a photochemical cross-linking 

method is used to enable isolation of Aβ according to their size and purity, giving a priori 

knowledge of the sample distribution.   

Theoretical and experimental measurements give a size of ~ 1 – 1.5 nm for single Aβ 

monomers [255, 272, 273], thus our HS-AFM observations clearly represent several monomers 

and what appear to be mostly oligomers and larger aggregates. Previous AFM studies have 

shown that the lateral dimensions of Aβ, often up to tens of nanometers, exceeds the most 

probable height of 2 nm and which is also the case in this study. Specifically, the lateral 

dimensions were shown to vary linearly with the height, suggesting that the latter is actually a 
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true representation, i.e. the Aβ is not perfectly spherical but more closely resemble oblate 

spheroids [274, 275]. As mentioned above, similar sizes of Aβ42 measured by AFM have 

previously been attributed to various forms, including pentamers, tetramers, and HMW 

oligomers. Here, we refer to the most abundant distribution of Aβ species with peak 

distributions of 2.8 nm and 15-20 nm (length-width) (and correlating to an area of 180 nm2), 

as Aβ15-20nm, since defining an exact number of monomer units is difficult.  For example, in this 

compact structure (Figure 2. 1f, far left image) the individual monomers cannot be resolved 

due to insufficient AFM tip resolution. The larger-sized species of 36-40 nm are referred to as 

Aβ36nm and effectively relate to a doubling of size compared to Aβ15-20nm. The Aβ36nm form 

corresponds to images showing a bilobed structure, consisting of two rounded, compact 

structures lying planar on the mica surface (Figure 2. 1f, middle left image). Interestingly, 

similar 20 nm bilobed structures were recently observed by Banerjee and Siddhartha using HS-

AFM and identified as pentamers produced using a photochemical cross-linking method 

[230].We interpret Aβ36nm as consisting of significantly greater number of monomers, which 

also retain a height of 2.8 nm, indicating a planar structural configuration. Aβ36nm may however 

orientate themselves perpendicular to the substrate, giving a doubling in height of ~ 4nm but 

the same footprint area as the Aβ15-20nm (Figure 2. 1f). This is responsible for a broadening of 

the height distribution in the histogram (Figure 2. 1c) and evident in further analysis of height 

values described below in Figure. 2.1c. The largest structures, presumably giving a peak area 

distribution of 700 nm2, length/width values of ~ > 40 nm and up to 100 nm, and very distinct 

height distribution at 9.2 nm are clearly larger aggregates and referred to as AβAgg (Figure 2. 1f, 

middle right image). Furthermore, a small peak between  6 -12 nm for length (Figure 2. 1e, 

arrow) combined with heights of ~1 nm is more closely indicative of structures equivalent to 

dimensions of lower molecular weight (LMW) oligomers such as dimers, trimers or tetramers, 

as described in previous AFM studies [276, 277]. To date, a range of Aβ42 oligomer structures, 
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generally referred to as amyloid-beta derived diffusible ligands (ADDLs), globulomers and 

protofibrils, are described in several reviews [278-280]. Contrary to early theories on Aβ42 

existing in only stable monomeric or dimeric states, Teplow et al and others [73, 281] reveal a 

mixture of monomers, dimers, tetramers, and HMW oligomers, specifically ‘paranuclei’ 

(planar hexamers), stacked hexamers and dodecamers.  

Additional less-well, structurally defined Aβ42 species, as opposed to the rounded 

conformations of Aβ15-20nm, Aβ36nm , AβAgg , are observed transiently appearing in the HS-AFM 

movies (Supplementary Movie S1) and a representative snapshot given in Figure 2. 1f (far right 

image). However, due to their significantly lower heights of < 1 nm, they were not easily 

identified by automated threshold detection for analysis. In fact, they were most noticeable 

when observing movies as they appeared transiently, e.g. flickering of the height contrast, in a 

scan area for < 1-2 sec, indicating their fast surface diffusion (Supplementary Movie S1). 

Supplementary Movie S2 more clearly indicates the appearance of these species by freezing the 

relevant frames. Separate AFM cross-sectional analysis show these Aβ42 forms to be  25-30 

nm in size and ~ 1 nm in height (Figure A2). We suggest that these forms are associated with 

significantly smaller, soluble Aβ42 monomers that are known to be largely disordered or 

unstructured in solution [190], although exact details of their transient conformational states or 

dynamics is unclear. Recent studies using FRET analysis show that both Aβ40 and Aβ42 

comprise an ensemble of rapidly reconfiguring unfolded states, with no long-lived 

conformational states [282]. Molecular dynamics simulations support that the peptides have 

configurations consistent with random polymer chains, with the vast majority of conformations 

lacking significant secondary structure [273, 283]. When considering tip broadening effects, 

the measured size of 25-30 nm correlates to an estimated contour length of an unfolded Aβ42 

monomer (i.e. 42 amino acids ~ 20 nm).  
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Figure 2. 2. Scatter plots of different dimensions, width (a) length (b), height (c), versus area of Aβ species.  

 

The relationship between the dimensional parameters (length, width, height, area) is 

shown in Figure 2.2 to better understand the structural configurations of the different Aβ42 

species. Importantly, it is noted that Figure 2.2 represents the preformed Aβ42 species arising 

from the sample preparation, i.e. lyophilized peptide from HFIP followed by resuspension in 

PBS, as opposed to their formation after deposition on the mica surface. Herein, the length 

versus width shows a linear relationship (Figure A3), indicating the different peptide species 

generally retain a spherical structure as their size increases, which is also qualitative evident in 
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the HS-AFM images in Figure 2. 1. Two different linear trends for width (or length) versus 

area values are observed (Figure 2. 2a and b); the first trend (i) shows that as expected a change 

in both width (or length) is proportional to the area. In contrast, the second trend (ii) shows a 

significantly smaller, or negligible increase in width (length) as a function of increasing area. 

This is due to the analysis method whereby the width and length are defined as increasing in 

value in the y-scan and x-scan directions, respectively. Thus, the effective width or length 

approaches zero if measured in the opposing scan direction. A height versus area plot reveals 

a region (1) where the height remains constant at ~ 2.5 nm with increasing area up to 800 nm2 

(Figure 2. 2c). This indicates preformed aggregates can exist as planar structures with constant 

height and presumably form by the lateral addition of monomers. In contrast, regions (2) and 

(3) show an increase in height, firstly to 4.8 nm and then 7.8 nm, respectively. Specifically, the 

increase to 4.8 nm, while retaining the area of ~ 200 nm2, suggests this may be related to 

perpendicular reorientation of the larger Aβ42 species, e.g. Aβ36nm, on the mica surface. At 

heights of 4.8 nm, further increases in the area to 400 nm2, indicates the preformed aggregates 

can increase in size in both 2D and 3D. However, no further height increases are observed for 

areas of 200 nm2 and 400 nm2. This interestingly leads to a ‘jump’ in height and area to7.8 nm 

and area 600-800 nm2, respectively, for the AβAgg. These discrete changes in height as a 

function of area (Figure 2. 2c), suggests that there is likewise a formation of discrete, preformed 

Aβ42 species, as opposed to randomly sized oligomers and aggregates, during the sample 

preparation of peptides. 
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Figure 2. 3. Filmstrip from HS-AFM movies showing the diffusion of individual Aβ15-20nm (a), Aβ36nm (b), and 

AβAgg (c) molecules. In each filmstrip, the solid coloured circle delineates the current frame position of the 

individually tracked Aβ42 species, while dashed circles denote the series of positions from the previous frames. 

(Imaging rate: 2frames/second) 

 

2.3.2 Surface Diffusion and Interactions of Different Aβ42 Species 

Matlab software was used to automatically track the motion of the different Aβ42 forms in 

movies (2 frames/sec) for a duration of 20 secs. In addition to Matlab software analysis, 

representative filmstrips showing their diffusion are given in Figure 2. 3 and further 

corresponding movies in Supplementary, Movies S3, S4, S5. In each filmstrip, the solid 

coloured circle delineates the current frame position of the individually tracked Aβ42 species, 
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while dashed circles denote the series of positions from the previous frames. The distance 

moved by the Aβ42 species decreases as their size increases from the Aβ15-20nm, Aβ36nm to Aβ70nm 

(Figure 2. 3). Slopes of distance versus time plots of individually tracked Aβ15-20nm, Aβ36nm and 

Aβ70nm further emphasizes the differences in diffusion speed (Figure 2. 4). Interestingly, ‘steps’ 

are found in the slopes of Aβ15-20nm and this occurs to a lesser extent for Aβ36nm but is not 

observed for Aβ70nm (Figure 2. 4a). The steps are due to a significant increase in the distance 

moved by the Aβ15-20nm, i.e. up to 40-50 nm, within the period of a few frames. Following these 

steps, the Aβ15-20nm resumes its normal rate of diffusion. Reasons for the sudden bursts in 

diffusion speed are not fully clear though may relate to changes in surface-absorption [284]. 

Quantitative analysis of the average mean square displacement (n = 10) is shown in Figure 2. 

4b, corresponding to diffusion coefficients of 3.51±0.72nm2 sec-1, 0.77±0.38nm2 sec-1 and 

0.39±0.22nm2 sec-1, respectively. Further analysis of the fast diffusing monomers in Figure 2. 

1f (far right image) and Supplementary Movie S2 was not undertaken because these peptides 

only existed in the scan area for a period of 12 frames, as mentioned above  In this case, the 

monomers are able to traverse an entire scan area of 500 nm within a few seconds, giving an 

estimated speed of > 2500 nm sec-1. (See Table 2.1) It is worth mentioning that those unique 

activities with increased sizes can be also explained by the AFM imaging artifacts that normally 

caused by tracking a moving object [285]. 
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Figure 2. 4. MSD versus time plot of individually tracked Aβ15–20 nm (black), Aβ36 nm (red) and AβAgg (blue) 

molecules. MSD = <| r(t) − r(0)2 |> ,where < > means the average, r(t) is the position of each molecule in 

determined time t, r(0) is the reference position of each molecule. (b) Average diffusion coefficient of 8.7 ± 0.44 

nm2 s−1 (Aβ15–20 nm), 1.1 ± 0.06 nm2 s−1 (Aβ36 nm) and 0.4 ± 0.01 nm2 s−1 (AβAgg) obtained by fitting slopes in panel a. 

Errors are standard deviation, n = >10 molecules. 

 

 Representative filmstrips show examples of commonly observed interactions between 

the different preformed Aβ species, i.e. once deposited on the mica surface, namely where there 

was either 2D formation of elongated structures or addition of species in the z-direction giving 

increases in height (Figure 2. 5). For example, after 0.8 sec, an Aβ15-20nm (2) moves closer to 

an AβAgg (3) until they undergo binding at 1.4 sec and remain as a complex (2+3) for the 

remainder of the filmstrip (Figure 2. 5a). In this case, the complex (2+3) increases in width-

length (and area). At 1.6 and 3.4 sec, further interactions within the complex (2+3) show the 
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Aβ15-20nm “rebinding” to the top of the AβAgg, causing an increase in height (stacking in Figure 

2. 5a) but no significant change in the area. Following this in Figure 2. 5b, Aβ15-20nm (1) and a 

new Aβ15-20nm (4) enter the scan area and both interact with complex (2+3) (4.0 secs), resulting 

in elongation and formation a small, protofibril-like structure. To visualize the dynamics of the 

entire process, see Supplementary Movie S6. These collective interactions involve interactions 

occurring in the z-direction (2  3) and x-y direction (1  complex (2+3)  4), demonstrating 

a combined growth process to form new Aβ species. In general, these types of interactions are 

dynamic and qualitatively could be either short-lived or long-lived, for example, the proto-

fibril structures were only transient compared to more stable HMW oligomer/aggregate 

complexes.  

 

Figure 2. 5. Filmstrip from HS-AFM movies showing (a) sequence of interactions between Aβ15-20nm (1 and 2) 

and and AβAgg (3) involving binding of Aβ15-20nm (2) on top of AβAgg (3) (stacking to form complex 2 + 3). (b) 

Continuation of sequence in (a) showing formation of elongated structure due to interactions of Aβ15-20nm (1 and 

4) with complex (2 +3). Scale bar:25nm. Imaging rate: 5frames/s 
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2.3.3 Kinetic Parameters of Single Molecule Aβ42 Binding   

The ability to directly ‘watch’ single molecule interactions in action between the different Aβ42 

species provides a unique opportunity to quantify kinetics underlying the process of 

oligomerization. Here, we quantify the binding kinetics by measuring the amount of time two 

molecules spend in physical contact, which is defined by the formation of image contrast 

between the two molecules. Significantly, we extract kinetic parameters, e.g. mean lifetime <t> 

and dissociation rate constant, koff (1/<t>), for specific interactions between the Aβ15-20nm  

Aβ15-20nm, Aβ15-20nm  Aβ36nm, and Aβ15-20nm AβAgg (Figure 2. 6a-c). An important distinction 

for this type of HS-AFM-based analysis is involvement of the peptide-surface (mica) 

interaction and its role in diffusion-limited effects on the intrinsic association/dissociation rates 

of the Aβ species. For instance, the Aβ species can come in contact via diffusion, after which 

they undergo binding at a rate governed by their intrinsic association rate constant. Conversely, 

the Aβ species dissociate with an intrinsic rate constant, after which they move apart via 

diffusion. Therefore, the time spent in contact between two species is may be influenced by 

diffusion, which as shown in Figure 2. 3 differs depending on the size of the Aβ species. 
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Figure 2. 6. Single molecule kinetics data analysis based on HS-AFM. (a-c) HS-AFM filmstrips showing 

interactions between (a) Aβ15-20nm-AβAgg, (b) Aβ15-20nm-Aβ36nm, and (c) Aβ15-20nm- Aβ15-20nm. Molecules in contact 

(green ‘on) are in the bound state. Imaging rate: 5frames/s. (d-e) Representative traces of single molecule lifetimes. 

(g-i) Life-time distributions for the bound state of (g) Aβ15-20nm-AβAgg, (h) Aβ15-20nm-Aβ36nm, and (i) Aβ15-20nm- Aβ15-

20nm. Distributions in (h) and (i) are fit to a single exponential decay. 

 

For this analysis, the binding is directly visualized as being ‘on’ or ‘off’ (Figure 2. 6a-

c) to produce single-molecule lifetime traces (Figure 2. 6d-f) that are analogous to those 

commonly obtained using fluorescence techniques, e.g. single molecule FRET [286, 287]. 

Supplementary Movies S7, S8, S9 show corresponding movies of the different Aβ interactions 

represented in filmstrips in Figure 2. 6a-c. Life-time distributions for the bound state show a 

single exponential decay law for the Aβ15-20nm  Aβ15-20nm and Aβ15-20nm  Aβ36nm (Figure 2. 

6h-i), indicating a single step binding process that yields one characteristic lifetime for these 

types of interactions. A mean lifetime <t> = 0.55 ± 0.22 sec, with dissociation rate constant 

koff (1/<t>) = 1.82 sec-1, for the Aβ15-20nm  Aβ15-20nm compared to the Aβ15-20nm  Aβ36nm 

with a mean lifetime = 0.72 ± 0.28 sec (koff = 1.39 sec-1), indicating the latter to some extent 

forms more tightly bound complexes due to its slower dissociation rate. It could also be that 

the slower dissociation rate is partially governed diffusion, whereby with the order of the 

magnitude slower diffusing Aβ36nm on the mica surface, even weaker interactions are sufficient 

to keep them in contact for measurable periods of time. In contrast, lifetime distributions for 

the Aβ15-20nm  AβAgg show a randomized histogram of shorter-lived through to longer-lived 

complexes (Figure 2. 6g), indicating a distribution of interactions energies or barriers that the 

Aβ15-20nm  AβAgg complex must overcome in order to dissociate. When considering the 

effects of diffusion, the AβAgg   is also an order of magnitude slower compared to the Aβ15-20nm 

and effectively static on the mica surface, with the an Aβ15-20nm acting as a faster diffusing 

ligand. Under these conditions, the Aβ15-20nm diffusion may influence the dissociation rate, 

however, it is not expected to significantly alter the energy landscape of the unbinding 

pathway(s). Thus, the randomized histogram is suggested to be intrinsic to the Aβ15-20nm  
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AβAgg interaction and is different to an exponential decay of lifetimes, indicating all molecules 

undergo the same process with a single well defined energy barrier, as the case for the Aβ15-

20nm  Aβ15-20nm and  Aβ15-20nmAβ36n complexes in Figure 2. 6h-i.  

Kinetic parameters for single molecule Aβ peptide interactions have only previously 

been determined by another AFM-based technique, single molecule force spectroscopy 

(SMFS). For the SMFS, a monomeric peptide is attached to a substrate, for example via a 

heterobifunctional cross-linker molecule such as N-hydroxysuccinimide-polyethylene glycol-

maleimide [288], and the opposing monomer is bound to the AFM cantilever tip [289]. By 

bringing the peptide functionalized tip into contact with the substrate, the measurement of 

single molecule unbinding forces as function of loading rate, referred to as dynamic force 

spectroscopy (DFS), enables kinetic and thermodynamic parameters to be extracted, yielding 

a useful comparison of koff  and bond lifetimes. Yu et al. [253]carried out DFS measurements 

to understand the amyloid related misfolding and aggregation of -synulein in Parkinson’s 

disease. At pH 5, a single energy barrier to unbinding of single -synuclein monomers, or 

dimer dissociation, gave koff  of  3.74 ± 1.99 sec-1 with lifetimes of 0.27 sec. More weakly 

bound Aβ40 monomer-monomer interactions give koff  of  9.4 ± 1.50 sec-1 with shorter 

lifetimes of 0.1 ± 0.01 sec at pH 7 [290]. Lv et al. [251] compared both Aβ40 and Aβ42, giving 

koff  of  9.0 ± 2.4 sec-1 (0.11 ± 0.03 sec) and 5.7 ± 0.3 sec-1 (0.18 ± 0.01 sec), respectively, 

revealing stronger inter-peptide interactions for Aβ42 than for Aβ40. Specifically for Aβ42 

monomer-monomer unbinding, Hane et al. [291] tested multiple DFS models (Bell-Evans and 

Friddle-De Yoreo), giving koff of  7-12 sec-1 with lifetimes of 0.14 – 0.09 sec, while 

comparable koff  of  12.5 ± 9.62 sec-1 and lifetimes of 0.09 ± 0.7 sec were obtained in a further 

study on the effect of copper ions [292]. From these SMFS studies, it is now understood that 

Aβ dimeric complexes have high stability, dissociating over a period of seconds, i.e. ~5 – 12 

sec-1, due to the monomers adopting antiparallel binding structures as shown in MD simulations 
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[293]. This is very different to intramolecular interactions of monomers that occur on much 

shorter micro-to-nanoseconds timescales [294], suggesting that the dimerization process 

measured in SMFS may be an important protagonist in the early aggregation process. To date, 

the peptide functionalization in SMFS studies is only configured for the interaction between 

two monomers [252, 253] i.e. dimerization, though it is expected that clever functionalization 

strategies in future will enable SMFS on a range of Aβ oligomer structures. Using our HS-

AFM-based analysis theoretically allows for kinetic information on multitude of combinatorial 

Aβ interactions, including those consisting of multiple monomer units.  

Table 2. 1. Summary of properties of different Aβ species 

 

 

 

 

 

 



92 
 

2.4 Conclusions 

Significantly, the HS-AFM analysis suggests that the formation of aggregates such as Aβagg  

are driven by kinetic heterogeneity, indicating a shift in the mechanism of oligomerization. We 

attribute this “opportunistic” or permissive binding to the presence of different conformation 

states of the Aβagg, resulting in a variety of accessible interacting groups. Inevitably, this is 

likely to lead to the formation of different complexes or alloforms, which is known to 

contribute to the complexity and challenges in identifying Aβ oligomer toxicity. Equally for 

ensemble kinetic measurements, nucleation-limited aggregation of Aβ40 peptide is shown to 

be controlled by a stochastic factor inherent in the nucleation process, leading to substantial 

macroscopic heterogeneity [295]. More recently, Nag et al. [296] refer to ‘metastable’ Aβ40 

oligomers that are thermodynamically unstable but show a large kinetic barrier, which is mostly 

entropic in origin. The monomers are said to be entangled in the initial oligomeric state, with 

multiple intra- and intermolecular hydrophobic interactions aiding in their entanglement. At 

the single molecule level, Orte et al. [297] recently report on stochastic behaviour in early 

stages of oligomer fibril formation by the SH3 domain from bovine phosphatidylinositol-3_-

kinase (PI3–SH3). Using two-color single-molecule fluorescence they show that although the 

size distribution of detected SH3 oligomers remains virtually constant with increasing 

aggregation time, they constitute a highly heterogeneous ensemble of species, which is 

explained by a stochastic polymer-like assembly process [297]. Molecular dynamics 

simulations of the early steps of aggregation provide evidence that the associating and initially 

monomeric polypeptide chains can sample and stabilize early aggregates of considerably 

different structures [298], with considerable conformational flexibility, thereby enabling the 

formation of very different conformational arrangements [299]. Such observations are 

testament to oligomers showing a high degree of polymorphism, as a result of stochastic 
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fluctuations in polypeptide chain dynamics. Evidence is increasingly pointing to heterogeneity 

as a protagonist in aggregation. For example, variations in oligomer conformation and 

associated interactions, and not just specificity in oligomer size, may be responsible for 

biological toxicity, as demonstrated for HypF-N protein [300]. Our study contributes to this 

emerging narrative by quantifying the kinetic parameters of different Aβ species consisting of 

oligomers and aggregate forms, in particular confirming a distinct change in the energy 

(binding) landscape occurring at the onset of interactions with aggregate species, i.e. AβAgg.  

In conclusion, single molecule kinetic data can make significant contributions to 

‘kinetic’ distribution models that depict aggregation pathways, but which still lack the 

assignment of fully quantitative kinetic constants to their various pathways. The sizes and 

distribution of Aβ42 species presented here agree with previous AFM studies but in particular 

the HS-AFM movies emphasizes the dynamic and transient states that exist within and between 

the different species. In assimilating to current models, the findings show that interactions 

between smaller Aβ species (Aβ15-20nm and Aβ36nm) present a single exponential decay of 

lifetimes, while interactions with larger aggregates is driven by a type of kinetic heterogeneity. 

The latter enables the formation of long-lived, stable Aβ aggregates. It is necessary in future 

HS-AFM studies to investigate the influence of peptide-surface interactions and diffusion 

parameters on quantitative analysis of kinetic parameters; though such studies are also relevant 

to the effects of cell membrane surfaces and other intracellular substrates that may play a role 

in the formation of Aβ oligomers/aggregates. In addition, implementing well-defined Aβ 

peptides, e.g. comprising recombinant peptides or those with structures known a priori, will 

assist in rationalizing AFM characterization of peptide dimensions and together with new 

insights on Aβ dynamics from HS-AFM, exciting advances in understanding Aβ42 interactions 

can be explored. 
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Chapter 3: Visualizing Real-Time 

Nucleation and Growth Mechanisms of 

Single Aβ42 Oligomers 

3.1 Introduction  

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the presence of 

senile plaques and neurofibrillary tangles [301-305]. Recent studies on the conformational 

structure and aggregation of Aβ species have revealed that a subset of soluble, non-fibrillar Aβ 

[46, 72], referred to as amyloid β-derived diffusible ligands (ADDLs) [58, 68], are primarily 

responsible for neurotoxicity instead of fibril-induced neuronal death described by the earlier 

“amyloid cascade hypothesis” [34]. Several studies have shown that soluble oligomeric Aβ 

species may be the initial effectors of neurodegeneration rather than Aβ fibrils [306-309]. 

Similarly, for all types of Aβ peptide assemblies, the soluble oligomers and larger aggregates 

formed during the Aβ aggregation are reportedly more toxic than some initial species such as 

monomers [59, 104, 310]. 

Evidently, the molecular mechanisms and kinetics associated with the formation of 

pathological Aβ oligomers and aggregates, involving monomer-dependent nucleation 

processes is of significant interest. In primary nucleation, the growth of individual nuclei only 

involves monomer addition and can occur in bulk solution (homogeneous nucleation) or at a 

surface which is not already made up of the monomer (heterogeneous nucleation). A monomer-

dependent secondary nucleation process, whereby the surface of an existing structure made up 
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of the same monomer, e.g. amyloid fibril, “catalyses” the growth of new nuclei, was more 

recently discovered for Aβ42 and since demonstrated for other proteins such as islet amyloid 

polypeptide and α-synuclein in Parkinson’s disease [103, 311-313]. This secondary nucleation 

mechanism explains the shortening of the lag-phase fibril growth through addition of pre-

formed fibrils, or “seeds”, into a monomer solution. As mentioned, while the general consensus 

is that toxicity is mainly associated with oligomers above the amyloid fibrils, recent in vitro 

studies further reveal a strong toxic effect from Aβ oligomers produced by secondary 

nucleation of monomers on fibril surfaces  [104, 314, 315]. Herein, an understanding of these 

nucleation processes, leading to the formation of toxic oligomers, serves to identify potential 

therapeutics that either control or inhibit their growth process. 

Various studies have shown that an acidic pH environment, higher peptide 

concentration, extending incubation times, and even the presence of a solid substrate are 

important predictive factors in promoting amyloid deposition [316-319]. Moreover, in-vitro 

studies have shown that Aβ is not an intrinsically insoluble peptide and the solubility (and 

toxicity) of Aβ peptide is critically dependent on the aqueous environmental conditions such 

as pH [320, 321]. For example, the α-helical structure of Aβ42 is favoured at pH 1 to 4 while 

the neurotoxic β-sheets as well as fibril formation occur under acidic conditions from pH 4 to 

7 [320, 322-324].  In addition, Aβ42 peptides are shown to self-assemble rapidly from insoluble 

aggregates into fibrils at pH 5.0 in comparison with pH 7.4 [316, 317]. By reducing the pH to 

4.6, the native conformation of Aβ peptides can change into less-ordered structural aggregates 

during the fibril growth stage [325]. Klug et al. [326] also demonstrated that Aβ aggregation 

induced by low pH occurred via a different pathway that is associated with slow aggregation 

process of stable Aβ species.  

Studies on the effect of peptide concentration have reported that Aβ40 formed a stable 

dimer at relatively low concentration of 25 µg/ml, while high concentrations significantly 



96 
 

promoted the formation of helix structures, which are believed to inhibit or slow fibrillogenesis. 

Thus, the latter leads to greater formation of intermediate aggregates [327, 328]. Lomakin et 

al. have demonstrated that there is a critical Aβ concentration for the aggregates to 

spontaneously initiate fibrillogenesis [191, 329]. In addition, the rate of nucleation depends on 

both the aggregate and monomer concentrations [104].  

Monomer interactions with surfaces can also play a role, with two main factors 

(intrinsic and extrinsic) widely reported to affect the monomer-dependent nucleation processes 

and subsequently alter the lag phase [103]. For example, a growing number of mutants in Aβ 

sequence variants in the amyloid precursor protein (APP) gene (e.g. A21G (Flemish), E22G 

(Arctic), E22K (Italian), E22Q (Dutch) and the D23N (Iowa) amino acid substitutions) have 

been identified as beneficial intrinsic agents for clinical relief treatment [330-332]. Extrinsic 

factors generally include other peptides and proteins [333-336], membranes [337, 338], 

nanoparticles and substrates [339-344], smaller molecules [345, 346], pH and temperatures 

[104, 347, 348]. In particular for the effects of surface area, where the catalysis or inhibition of 

aggregation will be determined by the protein to surface area ratio and the strength of surface 

attractive forces [342, 349].  

Theories of Aβ monomer-dependent nucleation processes are based on macroscopic 

kinetic measurements showing classical sigmoid shaped curves that typically consist of three 

different phases, including lag, growth and plateau phase [350, 351]. During the lag phase, 

which generally represents the time that is required for nuclei to grow, there also exists a myriad 

of diverse, parallel molecular interactions occurring between different species, such as the 

nuclei, intermediates, oligomers and aggregates, involving the aforementioned monomer-

dependent nucleation as well as other elongation and fragmentation processes [352-354]. In 

fact, many of these molecular interactions are ongoing during all phases, and the overall 

macroscopic (averaged) measurement cannot distinguish between the different molecular 
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interactions. In particular, the initial nucleus are suggested to form within milliseconds, though 

characterizing such molecular events at short-timescales in bulk analysis where the detection 

sensitivity is limited, e.g. not enough aggregate has formed, is a challenge [355, 356]. The 

concentration of oligomers is also low and they are also highly transient, similarly making it 

difficult to elucidate their role in the growth process and compounded by a lack of experimental 

techniques to directly quantify kinetics of single molecule Aβ species. Therefore, there remains 

the question as to which molecular interactions occur during these phases, particularly at early 

time-points where nuclei, oligomer and aggregate species are produced, as this is important for 

understanding the fundamental mechanisms of amyloid formation.  

Herein, we use High-Speed Atomic Force Microscopy (HS-AFM) to directly visualize 

the formation and growth of nuclei, followed by their subsequent interactions with existing 

seeds and inter-molecular interactions to produce new aggregates. HS-AFM enables the 

visualization of protein structural-dynamics and is beginning to bridge the gap by decreasing 

structural imaging times from minutes to millisecs [357]. It massively surpasses the capabilities 

of current AFM systems by enabling acquisition times of ~50 milliseconds per image (~ 20 

frames/second). This takes AFM into the realm of video rate imaging that is defined as 

achieving speeds of ~ 12-13 frames/sec, coupled with the ability to achieve 1-2 nanometer 

lateral image resolution, this technique has recently been used to visualize dynamics of Aβ in 

‘action’, including the interactions between single oligomeric and aggregated species [358]. 

We specifically investigate Aβ on a solid substrate (mica), where a local concentration of 

diffusing monomers exist at the liquid-solid interface, and through a pH-triggered nucleation 

process are able to directly visualize the growth of single nuclei followed by the formation of 

single oligomers and aggregates in real-time.    
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3.2 Materials and Methods 

3.2.1 Preparation of Aβ42 samples 

Amyloid-beta protein fragment 1-42 (Aβ42 peptide) was purchased as a lyophilized solid and 

more than 95% purity was guaranteed by HPLC from Sigma-Aldrich (High Performance 

Liquid Chromatography). Aβ42 peptide samples were prepared according to previous methods 

of [319, 347]. 1 mg of lyophilized solid peptides were firstly dissolved in (1,1,1,3,3,3-

hexafluoro-2-propanol (HFIP) to prevent aggregation and then aliquot into 50 small 

microcentrifuge tubes. After 30 minutes incubation at room temperature in a chemical fume 

hood, the HFIP peptide solutions were allowed to evaporate for 60 minutes and the re-

lyophilized peptides stored at -20°C. Lyophilized peptides were solubilized using phosphate-

buffed saline (PBS) (pH 7.4) at a concentration of either 20 µg/ml, 50 µg/ml or 100 µg/ml and 

then vortex mixing applied for 20 seconds prior to use. To investigate the effect of pH on 

peptide samples, two different methods were used. The ex-situ method involved either 

maintaining a pH of 7 (i.e. using the peptide samples solubilized in PBS) or adjusting the pH 

to 3 or 11 by addition of HCl or NaOH prior to depositing the peptide solution on a mica 

substrate for HS-AFM imaging, as described below. Alternatively, the in-situ method involved 

firstly depositing the peptide solution in PBS (pH 7) for HS-AFM imaging and then during the 

imaging using a pipette to inject 2 µl of concentrated HCl or NaOH into the sample solution. 

After ‘spiking’ the sample solution, further mixing could be applied by withdrawing/injecting 

the solution via pipetting. 

3.2.2 High-Speed Atomic Force Microscopy 

To prepare samples for imaging, 2 µl of the Aβ42 peptide solution was pipetted onto a 1.5 mm 

diameter freshly cleaved mica disc (Cat No. 7101) and incubated for 2 minutes to allow the 
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peptides to adsorb onto the mica surface. 2 µl of fresh PBS was then added and pipetted in/out 

of the sample solution, and this was repeated several times to exchange the sample solution in 

order to remove excess Aβ42 peptides that had not adsorbed onto the mica surface. The sample 

was then placed into the liquid cell of the HS-AFM. HS-AFM imaging was performed using 

an ANDO-model (Research Institute of Biomolecule Metrology Co., Ltd., Japan) in tapping 

mode with high frequency, small cantilevers (BL-AC10, Olympus) remodified with the 

carbon-tip, as described above. During imaging, the free oscillation amplitude of the cantilever 

was set to ~2 nm and the set point amplitude was kept to  90% of the free amplitude. The 

maximum possible scanning rate is calculated as Rmax= (λƒ)/(2WN), where λ is the amplitude, 

ƒ is feedback bandwidth, W is the scanning size and N is the corresponding number of scan 

lines. A non-electrode wide scanner with range of 4 μm * 4 μm, z scanner with maximum 

height of 700 nm were used with typical scan speeds of 2-4 frames/sec for 500 nm scans.  

Higher resolution scans of 200 nm were taken at 5-10 frames/sec with 550-275 lines/sec. HS-

AFM imaging was performed on samples of different peptide concentrations (20 µg/ml, 50  

µg/ml or 100 µg/ml), incubation times (1h, 2h and 4h) of the peptide in the PBS (pH 7) prior 

to commencing the imaging, and pH of 3, 7, and 11 using either the ex-situ or in-situ method. 

The imaging was performed for a typical duration of 10 minutes to 120 minutes or until it was 

clear that tip quality had reduced, presumably due to adhesion of peptides on the tip. For each 

sample condition at least three separate imaging experiments using new tips were performed. 

The operation of the HS-AFM and collection of the AFM movies was obtained by modified 

software in Igor Pro, Wave metrics. AFM movies were either analysed using Igor Pro or 

exported as an AVI. Movie file for further analysis using Matlab algorithms. 
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3.2.3 Statistics analysis 

Values obtained from the Matlab analysis of HS-AFM movies included the peptide area, 

intensity (height), width and length as mentioned in Chapter 2. All data analysis and histograms 

were produced using Igor Pro, Wave metrics. Multi-peak fitting with Lorentzian or Gaussian 

functions were applied to the histograms. The peak values shown in histograms are 

representative size of each species of peptide (with error bars indicated). Origin was used to 

plot the peptide area versus intensity in Fig.3.1, 3.2, 3.3 (g, h, i).  
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3.3 Results/Discussion 

3.3.1 Ex-situ Aβ: Effect of concentration, incubation time and pH 

3.3.1.1 Concentration 

Ex-situ preparation of samples was used to assess the effect of sample conditions such as Aβ 

concentration, solution pH and incubation time on the formation of oligomer or aggregate 

species. The Aβ42 peptide was resuspended in PBS solution (in Eppendorf tubes) at either 

different Aβ42 concentrations of 20, 50, 100 µg/ml or pH of 3, 7, or 11 (20 µg/ml Aβ42 in PBS 

by addition of HCl or NaOH). After approximately 30 minutes, these samples were deposited 

on the mica surface and imaged with the HS-AFM. To investigate the effect of time, 20 µg/ml 

Aβ42 solutions at pH 7 were incubated for either 1 hr, 2 hr or 4 hr prior to imaging with HS-

AFM. In all samples, HS-AFM imaging commenced ~ 2-5 min after the peptides had been 

allowed to adsorb to the mica, i.e. the time required to align the laser and approach the tip to 

sample surface. Three representative snapshots taken from HS-AFM movies at 1.0 frames/sec 

at time = 1.0 sec of Aβ42 peptides prepared with solution concentrations of 20 µg/ml, 50 µg/ml 

and 100 µg/ml are shown in Figure 3.1A-C. Corresponding movies with duration of 500 secs 

(supplementary Movie S1, S10 and S11) show the peptide dynamics, particularly their surface 

diffusion and, in many cases, physical interactions occurring between the peptides. For 20 

µg/ml samples at pH 7, particulate or globular structures of various sizes were observed with 

surface density of ~30-40 molecules/µm2 and exhibited three area distributions at 170 ± 34nm2, 

410 ± 67nm2 and 645 ± 37nm2 and two height distributions at 3.2 ± 1.2nm and 7.7 ± 0.8nm 

(Figure 3.1a and 3.1b). These different distributions of the Aβ dimensions are in agreement 

with the three main species observed in the previous chapter, referred to as Aβ15-20nm, Aβ36nm 

and Aβagg, and ascribed to the existence of Aβ42 oligomers and larger aggregates that represent 
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pre-formed species arising from the sample preparation, i.e. lyophilized peptide from HFIP 

followed by resuspension in PBS, as opposed to their formation after deposition on the mica 

surface. Increasing the Aβ42 sample concentration to 50 and 100 µg/ml retained the three main 

distributions for area though the peak values appeared to shift to lower values (Figure 3.1a-c), 

while the lower height distribution clearly showed an increase in peak value to the point where 

at 100 µg/ml the two height distributions effectively coalesced to form a single distribution. 

Scatter plots of the height (pixel intensity) versus area (Figure 3.1g-i) with identical scales also 

clearly distinguished the 3 main Aβ42 distributions at 20 µg/ml (Figure 3.1g), which were 

increasingly overlapping and less distinct at the higher concentrations of 50 µg/ml (Figure 3.1d) 

and 100 µg/ml (Figure 3.1f). Aβ with concentration range from 20 µg/ml to 100 µg/ml 

deposited on mica surface all exhibited three main populations although a slightly decrease in 

area and increase in height occurred with increased concentration, suggesting an interesting 

trend: the decreasing peptide size is correlated to the increasing height, and the Figure 3.1g-i 

showing relation between these two parameters indicated the tendency toward formation of a 

single population.  
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Figure 3. 1. Morphology and structural dimensions of different concentration Aβ42 peptides. (A-C) Representative 

HS-AFM image of 20 µg /ml, 50 µg /ml and 100 µg /ml concentrated Aβ42 peptides diffuse on the surface of mica. 

(Scan scale: 500*500nm, imaging rate: 1frame/second. (a-f) Histograms of different structural dimensions 

distributions. Area (a, c, e), Height (b, d, f). (g-i) Scatter plots of area and height shows their relationship.  

 

3.3.1.2 Incubation time  

Starting from intact lyophilized solid peptides, and then after 1 h, 2 h or 4 h incubation in PBS 

at neutral pH 7, the peptides were imaged at 1 frame/sec with a scan area of 500nm. 

Corresponding snapshots from movies of peptides after 1 h incubation are equivalent to those 

in Figure 3.1A that were taken under the same conditions (i.e. 20 µg/ml, pH 7 and 1 h 

incubation) and displayed in Figure 3.2A again for comparison with the longer incubation times. 

(Supplementary Movie S1, S12 and S13)  After 2 h and 4 h incubation, three similar peak 

distributions for area were observed in Figure 3.2c and Figure 3.2e, respectively. However, 

there appeared to be no significant difference in the peak values compared to 1 h incubation. 

In contrast, similar to increasing concentration, increasing the incubation time to 2 and 4 h 
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resulted in a comparable increase in height of the peptides (Figure 3.2d and Figure 3.2f). At 2 

h incubation, the main height distribution increased to a peak value of 4.3 nm, with a further 

increase to 4.6 nm occurring at 4 h incubation. Both of the longer incubation times also 

continued to show the secondary distribution at higher peak values of 7.4 (2 h) and 8.6 nm (4 

h) (Figure 3.2d and Figure 3.2f). Similarly, scatter plots of height versus area showed that the 

three main populations became less distinct with increasing incubation time, primarily due to 

the increasing height values. In summary, the effect of peptide concentration and incubation 

time both showed the involvement of the three distinct area, and two height distributions of the 

Aβ, as observed in the previous chapter (and displayed again for comparison in Figure 3.1A 

and 3.2A). These arise from pre-formed structure in the sample preparation. It is observed that 

by increasing either concentration or incubation time of samples prepared ex-situ, there is some 

modification to these preformed structures, namely an increase in size apparent from a 

measured increase in height by approximately 40-50%. 
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Figure 3. 2. Morphology and structural dimensions of different incubation time Aβ42 peptides. (A-C) 

Representative HS-AFM image after 1h, 2h and 4h incubation of Aβ42 peptides diffuse on the surface of mica. 

(Scan scale: 500*500nm, imaging rate: 1frame/second. (a-f) Histograms of different structural dimensions 

distributions. Area (a, c, e), Height (b, d, f). (g-i) Scatter plots of area and height shows their relationship.  

 

3.3.1.3 Effect of Solution pH  

Filmstrip from HS-AFM movies of 20 µg/ml peptide samples at pH 3 (Figure 3.3A), pH 7 

(Figure 3.3B) and pH 11 (Figure 3.3C) showed distinct differences, especially with regards to 

the presence of larger Aβ peptides formed under acidic conditions. (Supplementary Movie S1, 

S14 and S15)  In addition, a significantly lower number of adsorbed peptides with surface 

density ~10-20 molecules/µm2 were observed under alkaline conditions (pH 11) compared to 

neutral and acidic pH, with values of ~30-40 molecules/µm2 and ~55-66 molecules/µm2, 

respectively. Compared to the histogram analysis of the neutral solution condition (plotted in 

Figure 3.3B for comparison), only two peak distributions for area at 251 nm2 and 620 nm2 were 

observed for pH 3 (Figure 3.3a), with the former, main distribution representing almost a 

doubling in size of the peptides. In addition, the two peak height distributions showed an 50-

80 percentage increase in size to 4.3 nm and 13.5 nm (Figure 3.3b), which again was equivalent 

to a ~ doubling in height compared to the pH 7. It is worth mentioning that the observation of 

proto-fibrils and mature fibrils were also achieved after longer incubation time in pH 3, 

(Supplementary Movie S16, S17 and S18) however, no further analysis was conducted due to 

the fact that species formed at early stage are of more interest. In contrast, at pH 11, only one 

peak distribution for area was observed at 108 nm2 (Figure 3.3e), corresponding to a single 

height distribution of 2.5 nm (Figure 3.3f). Scatter plots of the height versus area interestingly 

showed that at pH 3 the peptides from the main distribution for area with peak value of 251 

nm2 were responsible for both height distributions. For example, most of the peptides within 

the main area distribution corresponded to heights of 4.3 nm, but a smaller sub-population 

corresponded to the heights at 13.5 nm, i.e. values > approximately 300 pixels in Figure 3.3g. 
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Furthermore, the larger area peptides at 620 nm2 actually had similar heights to those smaller 

peptides representing the main distribution (Figure 3.3g). Evidently, under the alkaline 

conditions the scatter plots confirmed the existance of only a single distribution of peptides 

(Figure 3.3i). Owing to the huge changes under the acidic conditions, we further pursued the 

effect of low pH for in-situ experiments, as described below. 

 

Figure 3. 3. Morphology and structural dimensions of Aβ42 peptides incubated in different pH solution. (A-C) 

Representative HS-AFM image of Aβ42 peptides diffuse on the surface of mica in different pH solution. (Scan 

scale: 500*500nm, imaging rate: 1frame/second. (a-f) Histograms of different structural dimensions distributions. 

Area (a, c, e), Height (b, d, f). (g-i) Scatter plots of area and height shows their relationship.  

 

3.3.2 In-situ amyloid beta nucleation process 

In the previous chapter and this study, the different Aβ oligomers and aggregates are already 

pre-formed or assembled during the sample preparation and prior to deposition on the mica 

surface.  However, an understanding of their origin and formation directly from the Aβ 

monomer requires observations of early stages such as initial nucleation steps and subsequent 
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growth. Since the range of Aβ concentration and incubation time used in ex-situ sample 

preparation resulted in only pre-formed structures, with relatively small change in their 

dimensions, it was not expected that these sample conditions would enable in-situ HS-AFM 

observation of dynamic nucleation and/or growth processes, at least within the timeframe of 

the HS-AFM experiments. Further to this, the typical duration of the HS-AFM imaging, e.g. 

10mins – 2 hours, is significantly shorter than the general time (~ typically days) for Aβ42 

aggregate or fibril formation, which is also dependent on various environmental factors [359, 

360]. In contrast, low pH, acidic conditions, produced a greater number (~55-66 molecules/µm2) 

of significantly larger oligomers or aggregates within a relatively short period of time, i.e. 2 

hours. In addition, the difference in their morphology and dimensions (Figure 3.4a and 3.6a-b) 

compared to pre-formed structures (Figure 3.3A-C) suggested that the low pH conditions 

produced newly formed species and/or induced significant growth of the existing ones. These 

observations are supported by previous studies that have shown differences in the dynamic 

formation of the aggregates as a function of pH [361, 362]. Henceforth, it was anticipated that 

changing to a low pH solution during HS-AFM imaging of the Aβ42 could enable in-situ 

observations of dynamic pH-dependent processes. To perform these experiments, imaging was 

initially performed at pH 7 for several minutes until the image was optimised. Whilst 

continuing the imaging, 2 µl of a 1mg/ml concentrated HCl solution (or NaOH for comparison) 

was then injected into the liquid cell. After an initial instability resulting in loss of the image, 

the imaging could be resumed within approximately 20 seconds by adjusting the imaging 

parameters. 

A representative filmstrip with different time-points of an in-situ experiments involving 

“spiking” with acidic solution is shown in Figure 3.4a. (Supplementary Movie S19) We were 

able to identify four different phases during the imaging process, including i) pre-spike, ii) pre-

nucleation, iii) nucleation, and iv) equilibrium growth. These are explained by correlating the 
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filmstrip images in Figure 3.4a with quantitative analysis of the particle count (Figure 3.4b) 

and r.m.s surface roughness (Figure 3.4c) versus the time. The particle count is a measure of 

the number of nucleating Aβ peptides on the mica, while the surface roughness measured from 

each movie frame is reflective of both the change in count and size of the particles, i.e. surface 

roughness increases as more particles nucleate and grow. Prior to spiking with HCl, the Aβ 

peptides are observed to be diffusing on the mica surface (Figure 3.4a, frame = 0 sec). During 

this pre-spike phase (i) there was no significant change in the particle count (Figure 3.4b, frame 

= 0-30 sec) and surface roughness (Figure 3.4c, frame = 0-30 sec). After spiking with HCl 

(Figure 3.4a, frame = 30 sec), the perturbation by injecting the solution typically caused the tip 

to lift from the surface, resulting in loss of imaging. In these cases, the set point oscillation 

amplitude of the cantilever was re-adjusted to resume imaging of the surface within 20 secs. 

Qualitative observations of subsequent frames from 30 to 130 sec did not clearly show a change 

in the number of peptides on the mica surface, though some of the existing peptides showed an 

increase in size (Figure 3.4a, frame – 30-130 sec). During this period, which was referred to as 

the pre-nucleation phase (ii), the analysis of particle count showed an increasing fluctuation in 

values between ~ 0-20 (Figure 3.4b(ii)), while the r.m.s. surface roughness showed a gradual 

increase from 0.95 nm to 1.03 nm (Figure 3.4c (ii)). Thus, the pre-nucleation phase was 

characterized by a slow rate of nucleation, involving possible formation of new Aβ and 

increased growth of existing Aβ. Later on at 135 sec, a rapid increase in the appearance of 

smaller peptides was observed, in addition to the continued growth of existing Aβ peptides. 

Analysis of both particle count (Figure 3.4b (iii)) and surface roughness (Figure 3.4c (iii)) from 

this time-point (135 sec) showed an increase in their values until ceasing at approximately 170 

sec. Thus, this period between 135 – 170 sec was referred to as the nucleation phase (iii). 

Beyond this period (Figure 3.4a, frame – 300 - 400 sec), referred to as the equilibrium growth 

phase (iv), a significant number of the smaller peptides remained on the mica surface while 
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both new and existing Aβ peptide continued to increase in size. This equilibrium growth phase 

(iv) correlated to a slower rate of increasing r.m.s. surface roughness (Figure 3.4c (iv)), 

however also showed an unexpected decrease in the particle count (Figure 3.4b (iv)). For the 

latter, it appeared that the decrease in particle count was due to a decrease in those monomers 

covering the mica surface, i.e. the mica appeared “cleaner” in regions during the growth phase 

compared to the nucleation phase, suggesting the consumption of surface adsorbed species 

during the nucleation/growth process.     

Quantitative analysis of the particle height versus time also revealed a similar 

nucleation and growth profile, including i) pre-spike, ii) pre-nucleation, iii) nucleation, and iv) 

equilibrium growth (Figure 3.4d). During the pre-spike (i) and pre-nucleation (ii) phases, 

heights of ~ 3 nm (115 pixel intensity) were observed and rapidly increased to ~ 4 nm (130-

140 pixel intensity) during the nucleation (iii) phase after which the height increase proceeded 

more slowly during the subsequent growth (iv) phase (Figure 3.4d).  Similar analysis of the 

peptide area versus time showed that during the pre-spike phase (i) and pre-nucleation phase 

(ii) the majority of peptides had an area of ~160-200 nm2, which then rapidly decreased (during 

the nucleation phase) before levelling out to ~120-160nm2 in the equilibrium growth phase. 

The latter can be explained by the increasingly number of newly formed species that have 

smaller area, which significantly lowers the average area value per frame, compared to those 

in the earlier pre-spike phase and pre-nucleation phases.   
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Figure 3. 4. In-situ Aβ42 peptides nucleation process at pH 3. (a) HS-AFM Film strip shows the morphology of 

Aβ42 diffusion on mica surface before the Spike (neutral condition, pH 7.4  20 µg/ml), nucleation stage between 

spike and growth stage and the stable growth stage after the rapid nucleation process. Scale bar: 50nm. Imaging 

rate: 2frame/sec. (b) Aβ42 peptide numbers distribution among different stages. (c) Surface roughness of Aβ42 

on mica surface (d) Average height of Aβ42 peptides distribution (e) Average Size of Aβ42 peptides. 

 

For comparison, similar experiments were conducted in alkaline condition at pH 11. 

Figure 3.5a shows a filmstrip of different time points, including prior to the ‘spike’ (0 sec), the 

spike (30 sec) and several subsequent frames out to ~380 sec.(supplementary Movie S20) Prior 

to spike, fewer peptides were observed with a low surface density of ~10 molecules/um2 that 

is consistent with the results shown in the imaging of ex-situ samples. After the spike, the 
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surface density remained the same, with most of the existing peptides (black dash circle at 

=133s) showing minimal surface diffusion. For the remainder of the imaging duration until to 

383 sec, no other significant changes were observed. These observations were confirmed by 

the subsequent analysis of particle count and r.m.s. surface roughness versus time (Figure 3.5b 

and 3.5c). In these analyses, there was not change in their values post spike, referred to as the 

stable phase (ii). The increase in surface roughness during the spike is artefact due to loss the 

loss of imaging.   

 

 

Figure 3. 5. In-situ Aβ42 peptides nucleation process in alkaline condition. (a) HS-AFM Film strip shows the 

morphology of Aβ42 diffusion on mica surface before the Spike (neutral condition, pH 7.4  20 µg/ml),  spike and 

growth stage. Scale bar: 50nm. Imaging rate: 2frame/sec. (b) Aβ42 peptide numbers distribution among different 

stages. (c) Surface roughness of Aβ42 on mica surface. 
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Further analysis of the dynamic nucleation and growth process at the single particle 

level is shown in Figures 3.6 and 3.7. In particular, high resolution images of individual 

molecules were captured and shown in Supplementary Movie S21, S22 and S23. Figure 3.6a-b 

show representative filmstrips before and after spiking with the HCl, with individual particles 

labelled (no.1-6) for the analysis. From 0-12 secs before the spike, three individual peptides 

labelled 1-3 were observed to be diffusing freely on the mica surface (supplementary Movie 

S19). This free diffusion phenomena last for 30 seconds until the spiking process, during which 

the diffusion ability at 8.1 ± 0.5 nm2/s is consistent with our previous work in neutral condition 

(8.7 ± 0.44 nm2/s for Aβ15-20nm). After spiking these existing peptides (labelled 1-3) are 

diffusing slower at ~5.8 ± 0.36 nm2/s  and during 64 – 84 sec in the pre-nucleation phase, there 

is no significant observation though a few newly formed peptides appeared (Figure 3.6b). 

During the nucleation phase at 154 sec, a significantly greater number of newly formed 

peptides appeared, with those labelled from 4-6 selected for the analysis. Frames at later time-

points of 174 sec and 354 sec indicate that newly formed peptides (dash red circles) and 

previously existing peptides (dash black circles) co-exist on the mica surface. Figure 3.6c-d 

show zoomed in images of existing Aβ (3) and newly formed Aβ (5)  as they increase in size 

after spiking the sample with HCl. Additional analysis on the cross-section of individual 

zoomed in peptides emphasized the dynamic changes on the lateral dimensions as well as the 

height (Figure A4). 
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Figure 3. 6. HS-AFM film strip shows the size and position changes of existing peptides appear all the time (dash 

black circle number 1,2 and 3 as labelled) and newly formed peptides only appeared after the Spike (dash red 

circle number 4,5 and 6 as labelled). 

 

Kinetic traces of the area and height versus time of those individual peptides labelled 

in Figure 3.6, including both newly formed and existing peptides, are shown separately in 

Figure 3.7. For the existing peptides during the pre-nucleation phase (ii), there was significant 

variation in the area growth rates (nm2/s) between the peptides (Figure 3.7a). For example, Aβ 

(3) showed a faster growth rate (~1.50 nm2/s) followed by Aβ (2) (~0.71 nm2/s) whereas Aβ 

(1) did not appear to increase in area. Beyond the pre-nucleation phase, the area of each peptide 

effectively plateaued however some fluctuations in the values were still observed (Figure 3.7a). 

Similarly, for heights of the same existing peptides (Figure 3.7b), equivalent profiles of the 

traces were observed suggesting that the nucleation and growth is proportional in lateral (area) 

and normal (height) directions, i.e. sphere-forming growth. For the newly formed peptides, Aβ 

(6) appeared after nucleation stage phase (iii) and both the area and height increased during 

equilibrium growth stage phase (iv) (Figure 3.7c and 3.7d). For the other two peptides, Aβ (4), 
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Aβ (5), it was difficult to observe their initial growth during the nucleation phase (iii) though 

small increases were observed in the height trace (Figure 3.7d). In the later growth phase (iv) 

the traces plateaued though again showed fluctuations that we interpret as secondary nucleation 

process. 

  

 

Figure 3. 7. The tracking size and height of existing peptides and newly formed peptides. (a)(b) Representative 

existing peptides of number 1,2 and 3 shows the size and height changes with the time growing. (c)(d) 

Representative newly formed peptides of number 4, 5 and 6 shows the size and height changes with the time 

growing. 
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3.4 Conclusion 

3.4.1 Factors in ex-situ: concentration, pH and incubation time 

govern the aggregation of Aβ peptides 

One of the key environmental factors believed to influence the Aβ aggregation process, leading 

to toxic β-sheet rich oligomeric structures, is the pH [124, 320]. It is also proposed that Aβ 

aggregation in the brain may occur in the lysosomal compartments where the pH is about 5.5 [363-

368]. Brain injury can also lower the local pH, which in turn may lead to AD [369]. Therefore, 

understanding the effect of solution pH on the ability to initiate formation of oligomers and 

aggregates is imperative. Previous AFM studies show that the amyloid aggregation and proto-

fibrils formation are very pH-dependent. At neutral pH, Aβ peptides have limited solubility 

and produce only spherical aggregates with predominantly β-sheet secondary structure, 

whereas at acidic pH 4.9 formation of mature amyloid fibrils and proto-fibril can be observed 

[370, 371]. Similarly, both the ex-situ and in-situ HS-AFM imaging shows that acidic 

conditions significantly accelerate the peptide aggregation as opposed to alkaline conditions 

that appears to have a minimal effect. In particular, in-situ imaging revealed that almost 

immediately after spiking with HCl, the growth of existing peptides occurs followed by a rapid 

nucleation event that produced mostly newly formed peptides.  

These observations relate to a pH-driven protonation/de-protonation of Aβ residues, 

previously shown to lead to a change in the net molecular charge from ~ -3 at pH 7 to 0 at 

acidic pH [372]. Lowering the pH from 7.4 to 6.6 is also shown to reduce the zeta potential of 

Aβ42 from -35 mV to -25 mV, respectively. Aβ1-40, has a pI at approximately pH 5.3 [320] 

though is suggested to be only weakly charged until pH 9 (based on pKa analysis of individual 

peptides) and becomes strongly charged at pH 12. For closely related Aβ42, the higher pH 
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condition likewise increases charge on the monomer, resulting in the presence of stabilized, 

soluble Aβ42 nanoparticles of size ∼50 nm [373]. Due to the presence of the mica surface, its 

pH-dependent surface charge will also play a role in the nucleation and growth observed in the 

in-situ HS-AFM imaging. Silanol groups of mica are assumed to control the pH-dependent 

surface charge [374], giving a reduction in zeta surface potential [375] and weak attractive 

forces at low pH (as opposed to long-range repulsive forces at higher pH) [376].  

Therefore, we suggest that two general pH-drive mechanisms, based on the monomer 

and mica substrate, enable visualization of nucleation and growth of the Aβ42 in Figure 3.4a. 

Firstly, minimisation of mica surface charge at low pH will facilitate surface adsorption of the 

monomer, which is interpreted as the appearance of the initial surface covering of Aβ42 at the 

onset of the nucleation phase (Figure 3.4a, at 135 sec). In this and previous chapters, this effect 

may also explain why monomers are not clearly observed at neutral pH, with only the pre-

formed larger oligomers and aggregates present on the mica surface. The inability for the 

monomer to adsorb to the surface at neutral pH would make them difficult to image and may 

relate to the observation in the chapter 1 of the less well, structurally defined Aβ42 species that 

transiently appeared in the HS-AFM movies and exhibited very fast diffusion (> 100nm/sec). 

Once the monomer has adsorbed to the surface, minimization of its surface charge too, will 

then facilitate the binding of additional monomers diffusing toward the surface, leading to 

nucleation and growth. In addition, the charge minimization of the existing oligomers also 

facilitate their continual growth during the pre-nucleation phase through to the subsequent 

nucleation and growth phases.    

3.4.2 In-situ amyloid nucleation process Aβ 

Some of the earliest studies on nucleation and growth of amyloid beta fibrils describe that a 

key factor in fibrillogensis was the spontaneous self-assembly of Aβ monomers into what were 
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described as “micelles” of ~ 14 nm in size [374], or perhaps now more commonly referred to 

as oligomeric structures. Specifically at low pH, these early models proposed mechanisms of 

homogenous (primary) nucleation involving the self-assembly of monomers at a critical 

concentration, or alternatively the heterogeneous (secondary) nucleation where the nucleation 

process occurred on non-Aβ seeds, i.e. a substrate [374]. The homogenous (primary) nucleation 

is a relatively simple model, intuitively providing a physical description of the aggregation 

pathway and for most part is able to explain the macroscopically observed kinetics [375]. 

Similarly, such models propose that the rate-limiting step, causing the “lag-phase” in kinetic 

growth studies, is due to the initial formation of nuclei that eventually become large enough to 

grow spontaneously [376]. A consequence of adding a nucleus or “seeds” into a monomer 

solution is a rapid aggregation process that can proceed without the need for priori nucleation 

formation [377]. For example, the presence of undissolved small Aβ nanoparticles, or seeds, 

or even a substrate surface, i.e. surface of the sample container, could initiate aggregation. This 

underlies the mechanism of heterogeneous (secondary) nucleation, which was confirmed by 

showing that the addition of “seeds” into a monomer solution caused a shortening of the lag 

phase proportional to the seed concentration [104]. Hence, current descriptions of homogenous 

(primary) nucleation involve the growth of individual nuclei through only monomer addition, 

typically in bulk solution (homogeneous nucleation), while secondary nucleation occurs on the 

surface of an existing amyloid structure, e.g. amyloid fibril, which “catalyses” the growth of 

new nuclei. Elucidating such molecular pathways in which the toxic forms can be sequestered 

or promoted are essential for potential therapeutic treatments. For example, Cohen et al. [315] 

suggested a strong connection between the toxicity and the species produced from secondary 

nucleation of monomers and this correlation further supported by in vitro studies indicating the 

significant role of secondary nucleation in AD pathogenesis [104, 315, 378]. In particular, 



119 
 

Meisl et al. [350, 379] found a saturation phenomenon of secondary nucleation occurred in 

high concentration when the pH switched may also be involved in these combined processes.  

Based on the above definitions, we interpret two processes of nucleation and growth of 

the Aβ42 on the mica surface at low pH. Firstly, the observed growth of the existing oligomers 

and aggregates follows a heterogeneous secondary nucleation process whereby monomers add 

to existing “seeds” in the sample. This can be initiated immediately after a change in the 

solution pH and predominately proceeds during the pre-nucleation phase (ii). Analysis of single 

oligomer kinetics indicates that similar sized seeds can growth at different rates, typically in 

the range of 0.71-1.5 nm2/sec and 0-0.71nm2/sec of area, for a duration of ~ 100 sec before the 

growth plateaus. In addition, there is no observation of new seeds being released, or “budding-

off”, into the solution during this process, as has previously been described for catalysis of 

nuclei from amyloid fibril surfaces [380] (shown in Figure 1.1a (chapter 1)). In contrast, the 

catalysis of nucleating species via the mica substrate is representative of a heterogeneous 

(secondary) nucleation process and appears to be initiated by a significant increase in peptide 

surface adsorption at the beginning of the nucleation phase (iii) which lasts for ~ 30 secs. While 

it is difficult to precisely determine when they first appear (due to resolution limit of AFM), 

their growth rate and final dimensions are equivalent in range to those of the existing seeds. 

Interestingly, many of the newly formed species could be observed diffusing on the surface 

and interacting with each other, similarly to that shown in chapter 1, and in some cases 

eventually form stable complexes. Hence, their diffusion can provide for subsequent 

interactions between the different structural peptides such as peptides binding, elongation and 

aggregation [381].   

Lastly, pH-dependent structural formation of peptides has been revealed by a wide 

range of methods including antiparallel β-sheet structure investigated by Solid state NMR [382] 

and detection of aggregates by ThT [383]. Other emerging high resolution studies such as 
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circular dichroism spectroscopy [384], flourier transform infrared spectroscopy [385] and X-

ray diffraction have also been demonstrated [386, 387]. 

While HS-AFM has previously revealed the dynamic growth of fibrils [221, 228, 388] 

and binding of single oligomers/aggregates in our previous work [358], this is to our knowledge 

the first time that Aβ nucleation and growth processes have been directly visualized at the 

single molecule level. In doing so, we show that various pathways exist within the one system, 

including nucleation of new species, growth of existing seeds, and formation of new species 

through diffusion and binding - emphasizing the complexity of multiple microscopic processes 

that potentially occur during a lag phase and lead to macroscopic differences in bulk 

aggregation kinetics. 
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Chapter 4: Molecular Interactions 

between Aβ peptide and Silica 

Nanoparticles Visualized by HS-AFM 

4.1 Introduction  

The abnormal generation of plaques comprising amyloid fibrils is central to pathological 

diagnosis of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s 

disease, type II diabetes and some types of cancers [389, 390]. For decades, extensive research 

has been undertaken to investigate the underlying causes and explore potential therapies for 

AD, yet unfortunately no effective treatments or drugs have successfully made it through 

clinical trials. One issue is that very little is understood about the molecular mechanisms 

through which the Aβ peptide induces the cytotoxicity. Up until recently, various structurally 

distinct forms of Aβ aggregates, including oligomers and aggregated intermediates, have been 

revealed as the toxic species [391-394]. Therefore, strategies that include the prevention or 

interference of Aβ aggregation have become a significant focus in targeting the toxic species 

and determining their role in the pathology of AD. 

 A large number of aggregation inhibitors have been explored as potential drug 

candidates for directly targeting the Aβ formation. Traditional inhibitors can be generally 

classified in two major groups, small biomolecules as binding partners of Aβ or peptides 

including modified peptides and designer peptides. For example, three different casein kinase 
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protein inhibitors were shown to decrease the amount of Aβ produced when interacting with 

Aβ peptides [395, 396]. Some organic molecules such as the chelator, clioquinol, have also 

been shown to inhibit fibrillization [397-402]. In addition, some designer peptides such as Aβ 

KLVFF, iAβ5 and Aβ16-20e, which are derived from original fragments of protein have also 

shown to inhibit fibril formation, and reduce the toxicity or disassembly of fibrils [403-406]. 

However, few of these inhibitors can be identified as potent clinical drugs due to their strong 

side effects.  

With the rapid development of nanomedicine, nanoparticles (NP’s) are becoming a 

major cornerstone for drug delivery, molecular diagnostics, regenerative medicine and medical 

imaging [407-411]. Thus, the interactions between nanomaterials and biomolecules have been 

widely explored and shed light on how nanomaterials can be utilized in diagnostics and 

treatments of disease. In particular, NP’s have attracted significant interest in AD therapies due 

to their great adsorption capacity, ease of surface modification and ability to cross the blood 

brain barrier [412, 413]. Multiple NPs, including polymeric [339, 341, 414-416], inorganic 

[417-420], magnetic [421-423] and fullerene (carbon-based) [424-430] based particles have 

demonstrated the ability to inhibit Aβ aggregation or fibrillation. Aggregation of Aβ in vitro 

can be photo-thermally ablated through the short irradiation of Aβ peptide bound functionalised 

gold particles [431-433]. Majzik.A et al. [434] revealed chain-like structures of Aβ aggregates 

on gold nanoparticles decorated with cysteine- and LPFFD-OH, indicating that the 

functionalized gold NP’s have significant effects on the conformation and structure of the 

aggregates. Even as early as the late 90’s, fullerene (C60) derivatives were shown to have 

neuroprotective properties by reducing neural cell death caused by Aβ peptide [424]. More 

recently, fullerene nanoparticles were found to strongly inhibit the Aβ aggregation by 

specifically binding to the central hydrophobic motif, KLVFF (16-20 residues, sequence of 

amyloid beta ) of Aβ peptide [425]. Numerous other nanoparticles have been reported to be 
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efficient at preventing Aβ peptide aggregation and reducing their cytotoxicity [414, 418, 432, 

435-437]. For example, Ashwini S.Pai et al. [438] demonstrated the inhibitory effects of 

(Polyethylene glycol) PEGylated phospholipid nanomicelles on the Aβ42 aggregation and 

proposed this conventional nanomedicine carrier as a new potential therapeutic agent [438]. 

Fluorinated nanoparticles were shown to induce an α-helical structure in Aβ40, consequently 

preventing fibril formation, while polymeric nanoparticles are also capable of blocking active 

sites responsible for Aβ aggregation [339, 414]. Conversely, hydrogenated nanoparticles were 

shown to accelerate β-sheet structure formation, leading to fibrillogenesis [439]. Similarly, 

TiO2 nanoparticles have been found to promote Aβ aggregation by exhibiting a strong 

adsorption capacity for Aβ peptide at high concentrations [440].   

The underlying effects of NPs on Aβ aggregation, which is expected to be determined 

by the NP’s composition and surface characteristics such as particle size, shape, surface charge 

and modifications, remains largely unclear. Furthermore, evaluating kinetics of the Aβ-

nanoparticle interactions, particularly at the single molecular level, also represents a challenge 

[435]. For example, it is seemingly insurmountable to experimentally measure the kinetic rate 

constant of a single Aβ-NP interaction within a complex mixture. Largely in the absence of 

experimental data, molecular dynamics simulations have been widely used to reveal the 

molecular mechanisms of interactions between protein and nanoparticles [441, 442]. Ding H 

et al. [443] applied dissipative particle dynamics (DPD) simulations to investigate the effect of 

protein adsorption on the delivery of nanoparticles. Coarse grained molecular dynamics 

(CGMD) simulations have proven to be another powerful tool for the study of nanoparticles 

interacting with biological systems, by which a growing number of simulation approaches 

along with various proposed molecular modelling packages have been introduced. Slaven et al. 

[444] utilized this method to investigate the effects of NPs on amyloid beta aggregation and 
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found that the ratio of NP/proteins plays an important role in determining the aggregation 

inhibition or promotion.   

Despite the aforementioned molecular dynamic simulation approaches, experimental 

tools with the ability to resolve both structure and dynamics at the molecular level are required. 

This is where High-Speed Atomic Force Microscopy (HS-AFM) is beginning to address the 

need for “structural-dynamics” by enabling direct visualization of label-free single molecules, 

with imaging speeds of 10-20 frames per second (fps) in liquid [207, 221]. While HS-AFM has 

previously been used to reveal dynamics of Aβ fibril formation and oligomeric intermediates, 

including our work on intra-molecular binding kinetics between different types of Aβ 

oligomers and aggregates [221, 228, 230, 358], this study to our knowledge is first to report on 

the dynamics of Aβ-nanoparticle interactions, and more generally the nanoparticles themselves. 

HS-AFM was employed to characterize the structural information and dynamics of silica 

nanoparticles (LUDOX HS-40 colloidal silica), followed by a co-deposition with Aβ42 peptides 

to investigate SiNPs-Aβ interactions. We applied the single molecule kinetic analysis 

established in the previous chapter, which is based on image contrast in HS-AFM movies, to 

understand the Aβ-nanoparticle interactions. The applicability and considerations of the 

analysis, particularly when measuring interaction kinetics in the presence of a substrate is 

discussed. 
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4.2 Materials and Methods 

4.2.1 Preparation of Aβ42 and Silica Nanoparticle Samples 

LUDOX HS-40 colloidal silica (12nm diameter), amyloid-beta protein fragment 1-42 (Aβ42 

peptide) were purchased from Sigma-Aldrich. The silica-nanoparticle solution was prepared as 

40wt % in water and then 100ml silica-nanoparticle solution was diluted to 20wt% in 50ml 

PBS solution prior to use. Aβ42 peptide solution was prepared by dissolving 1mg lyophilized 

solid peptides into HFIP to prevent the aggregation and then aliquot into 50 small 

microcentrifuge tubes. After half an hour incubation at room temperature in a chemical fume 

hood, the HFIP was allowed to evaporate for 60 minutes and the re-lyophilized peptides stored 

at -20°C. Aqueous solutions were prepared by dissolving peptides into PBS (PH 7.4) at 

concentration of 20 µg/ml and then vortex mixed for 20 sec prior to use.  

4.2.2 HS-AFM Imaging/ Data analysis 

To prepare samples for HS-AFM imaging, 2 µl of the silica nanoparticle solution was pipetted 

onto a 1.5 mm diameter freshly cleaved mica disc (Cat No. 7101) and incubated for 2 minutes 

to allow the particles to adsorb onto the mica surface. 2 µl of fresh PBS was then added and 

pipetted in/out of the sample solution, and this was repeated several times to exchange the 

sample solution in order to remove excess particles that had not adsorbed onto the mica surface. 

The sample was then placed into the liquid cell of the HS-AFM and imaging was performed 

(Research Institute of Biomolecule Metrology Co., Ltd., Japan) in tapping mode with high 

frequency, small cantilevers (BL-AC10, Olympus) remodified with the carbon-tip, as 

described above. For experiments involving co-deposition and imaging of both the silica 

nanoparticles and Aβ42, stable HS-AFM imaging of the silica nanoparticles was firstly 

achieved, as described above. Following this, 10 µl of a 1 µg/ml Aβ42 peptide solution was then 
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injected into the liquid cell and further mixed by pipetting in/out whilst continuing imaging of 

the silica nanoparticles. This injection of the Aβ42 solution and mixing typically perturbed or 

caused a loss of the imaging, e.g. the tip lifts of the surface, though stable imaging could easily 

be reattained after optimization of the feedback gains, set point and amplitude. During imaging, 

the free oscillation amplitude of the cantilever was set to ~2 nm and the set point amplitude 

was kept to ~ 90% of the free amplitude. The maximum possible scanning rate is calculated as 

Rmax= (λƒ)/(2WN), where λ is the amplitude, ƒ is feedback bandwidth, W is the scanning size 

and N is the number of corresponding scan lines. A non-electrode wide scanner with range of 

4 μm * 4 μm and z scanner (700 nm) with scan speeds of normally 1-4 frames/sec for 500 nm 

scans was used. For higher resolution scans of 200 nm, 5-10 frames/sec with 550-275 lines/sec 

was applied.  

Data analysis of the values obtained from the Matlab software was investigated as mentioned 

in Chapter 2. 
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4.3 Result and Discussion 

4.3.1 Silica nanoparticles (SiNP) 

HS-AFM movies were taken at 1 frame/sec with 500nm scan size to visualize the silica 

nanoparticles in phosphate buffer solution on a mica substrate. A representative single frame 

reveals the silica nanoparticles exhibit a degree of size variation (e.g. some larger aggregates 

are present), with surface density of ~100-120 NP’s/µm2 (Figure 4.1a). Corresponding movies 

show the surface diffusion of these nanoparticles, including dynamic, physical interactions 

occurring between individual NP’s where they are observed to come into contact for various 

periods of time (typically on the order of seconds) and then separate or diffuse away 

(Supplementary Movies 24 and 25). High resolution images show the NP’s mostly have a 

spherical morphology though also appear to assemble or aggregate into various string-like 

morphologies (Figure 4.1f). Statistical analysis of the NP dimensions was obtained from 

Matlab software designed to segment imported (movie) AVI.file into individual frames, 

automatically detect all objects, and analyse parameters such as XY coordinates, eccentricity, 

perimeter, area, height (pixels intensity), width and length. Histograms of the area showed two 

distinct peak distributions (Figure 4.1b), including the most abundant NP’s with area of 105 ± 

36.8 nm2 and a smaller distribution at 520 ± 48.4 nm2 that is indicative of aggregated NP. 

Histograms of the length and width (Figure 4.1d, e) showed peak distributions of 12.9 ± 3.2 

nm and 11.0 ± 2.7 nm, respectively, confirming spherical NP with effective diameters 

correlating to the nominal size of ~12nm for these commercially available SiNPs (Ludox HS 

40). A smaller sampling of larger widths at ~30 nm was observed (Figure 4.1e), presumably 

related to the aggregated NPs. Similarly, analysis of the height gave two peak distributions at 

2.1 ± 0.9 nm and 5.8 ± 1.1 nm correlating to the main and aggregated NP’s (Figure 4.1c). 

However, the NP height was significantly lower than the expected NP size (12 nm) [445, 446], 
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indicating an imaging artefact causing an underestimation of the actual height. Normally tip 

broadening can overestimate the lateral dimensions though anomalies in z-height are also 

reported and previously shown to be due to frequency shift in response to tip-sample interaction 

when imaging nanoparticles in tapping mode [447].   

 

 

 

Figure 4. 1.  Morphology and structural dimensions of Silica Nanoparticles. (a) Representative HS-AFM image 

of Silica Nanoparticles diffuse on the surface of mica. (Scan scale: 500*500nm, imaging rate: 1frame/second) 

Histograms of different structural dimensions distributions Area (b), Height (c), Width (d) and Length (e) of Silica 

Nanoparticles.(f) Spherical and string morphology of various structural silica nanoparticles. 

  

4.3.2 Imaging of Co-deposited SiNP - Aβ42  

HS-AFM imaging was performed on samples comprising both SiNP and Aβ42 on the mica 

surface in PBS. In these experiments, SiNP were first deposited on the surface and stable 

imaging achieved at 1 frame/sec, as performed above for their analysis in Figure 4.1, prior to 
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then injecting a small volume (10 µl) of a 1ug/ml Aβ42 solution. Two representative examples 

of movie filmstrips show the time-course of the experiments from 0-500 sec, including the 

initial frame of only SiNPs (defined as 0 sec), injection or ‘spiking’ with Aβ42  at 170 sec, 

followed by imaging of SiNP and Aβ42 coexisting on the surface until 500 sec (Figure 4.2). 

Corresponding movies are given in Supplementary Movies 26 and 27. Immediately after 

spiking with Aβ42 peptide, the perturbation caused by injecting the solution caused instability 

in the imaging, i.e. lifting up of the cantilever tip from the surface, resulting in loss of imaging 

(Figure 4.2, at 170 sec). In this case, the imaging set-point was readjusted to resume stable 

imaging typically within < 30 sec. Beyond this point from 200 – 500 sec duration, it was evident 

that an increasing number of Aβ42 peptides appeared on the surface. 

 

 

Figure 4. 2. HS-AFM film strips shows the morphology of silica nanoparticles diffusion on mica surface before 

the Spike and the co-existing phase of nanoparticles and peptides after Spike. Scale bar: 50nm. Imaging rate: 

1frame/sec. 

 

To confirm the qualitative observations in Figure 4.2, analysis of both the object count 

in each frame and root mean square (r.m.s.) surface roughness versus imaging time is shown 

in Figure 4.3. Prior to spiking with Aβ42, the object count only represented the number of SiNPs 

in each frame, which reached a constant value ~20-25 NP’s per frame (Figure 4.3a, NP’s (i)). 
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After spiking, the object count significantly increased to a combined ~30-40 NP’s-Aβ42 per 

frame (Figure 4.3a, NP’s + Aβ42 (ii)), indicating the addition of the Aβ42 on the mica surface. 

Similarly for the r.m.s. roughness, an increase in value from 0.7 nm before spiking to 0.9 after 

spiking indicated an increasing number of Aβ42 adsorbing to the mica surface (Figure 4.3b and 

4.3c). Despite confirming the co-existence of the SiNP- Aβ42, qualitatively distinguishing them 

from each other directly from the movies was difficult due to their similar morphology and size. 

Hence, further analysis was undertaken to compare their size dimensions and diffusion speed.  

 

Figure 4. 3. In-situ spiking process that silica nanoparticles interacting with Aβ42 peptides. (a) Numbers 

distribution of Silica nanoparticles co existing with Aβ42 peptides among different stages. (i) Only silica 

nanoparticles, (ii) silica nanoparticles and Aβ42 peptides.(b) Surface roughness of silica nanoparticles on mica (c) 

Surface roughness of silica nanoparticles with injected Aβ42 peptides. 

 

Histogram analysis of area, height, length and width was performed on the co-deposited 

SiNP- Aβ42 samples on frames within the first 5 min and also after 30 min of spiking with Aβ42 

(Figure A5 and A6). From these histograms, the peak distribution values (represent the values 

of main species at different stages) with errors (e.g. width of Gaussian fit) are compared (Figure 
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4.4d-g) along with their representative images at 0 sec (NP’s only), and 5 min and 30 min after 

spiking, in Figure 4.4a-c. Firstly, object detection from the images (Figure 4.4a-c) indicated an 

increasing number of Aβ42 after spiking, with values reaching ~30-45 NP’s/ Aβ42 per frame 

and ~45-70 NP’s/ Aβ42 per frame after 5 min and 30 min, respectively (Figure A5 and A6). 

After 5 min, the peak value for area (Figure 4.4g, blue bar) reduced to 80 nm2 compared 

to 105 nm2 for the NP’s only, while a slight decrease in values also occurred for length (12.1 

nm) and width (10.1 nm) however these decreases in the dimensions of the co-deposited SiNP-

Aβ42 were not statistically significant. In contrast, a corresponding increase in height to 2.8 nm 

(Figure 4.4f, blue bar) suggests that interactions such as possible adsorption of Aβ42 onto SiNP 

and/or rearrangement of their conformation may be involved. After 30mins, the peak 

distribution values for area, length and width, show an increase in values (Figure 4.4, magenta 

bar) compared to both the NP’s only and NP’s-Aβ42 after 5 min. The exception was height 

which remained equivalent and was not statistically different. For comparison, the dimensions 

of the most abundant Aβ (Aβ15nm) obtained previously in Chapter 2 are also included in  Figure 

4.4 (red bar) and indicate that the Aβ15nm oligomer is similar in height but has significantly 

greater lateral dimensions. This analysis shows that individual Aβ and SiNP have a distinct 

size difference, with the Aβ of ~ 15-20 nm and SiNP of ~ 12 nm that closely matches its 

commercially reported value. However, analysis of co-deposited NP’s-Aβ42 reveals the size is 

more equivalent to the SiNP, with no distinct separate distributions observed in the histograms. 

Thus, distinguishing between the two NP and Aβ immediately after co-deposition was difficult.  

After 30 min, there appeared to be an increase in NP’s-Aβ42 size, suggesting either their binding 

or aggregation though the size remained smaller than the Aβ only.   
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Figure 4. 4. Statistical analysis before and after the spike. (a)(b)(c)Representative snapshots of HS-AFM showed 

pure silica nanoparticles on mica and silica nanoparticles co existing with amyloid-beta peptides. Dimensions 

comparison among peptides, silica nanoparticles and co existing complexes. (d)(e)(f)(g) represent for Length, 

Width , Height and Area respectively, errors are standard deviation. The numbers of molecule calculated for the 

bar graphs are at least 25 molecules each frame for single measurement, though the numbers will reach to around 

75 for the total three separate measurements. 

 

4.3.3 Diffusion of SiNP and Aβ Comparison 

To quantify surface diffusion, individual SiNPs were tracked (n=30) in Matlab software and 

analysis of mean square displacement (MSD) of single SiNPs as a function of time was plotted 

(Figure 4.5a). In addition, the different sizes of the SiNPs are indicated in Figure 4.5a to assess 

the effect of particle size on the surface diffusion, revealing that surface diffusion decreased 

(lower MSD slopes) with increasing SiNP size (Figure 4.5a). (Table 4. 1) In the calculated 

diffusion coefficient, this effect was observed as an exponential decrease in the diffusion 

coefficient with increasing particle size, indicating a particle-size dependency that may be due 

to a direct effect (molecular size) or indirectly by influencing the particle-surface interactions, 

e.g. due to change in particle-surface contact area. In particular, it was found that, irrespective 

of particle size, the diffusion range of ~0.6 – 5.8 nm2/s for SiNP was significantly slower than 
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the diffusion of similar sized Aβ42 oligomers (~8.3 - 9.2nm2/s) but faster than the larger Aβ42 

aggregates (~0.4 nm2/s) measured in the previous chapter 2.  

 

Figure 4. 5. (a) Mean square displacement (MSD)verse time plot of individual tracked nanoparticles with different 

size. MSD=<|r(t)-r(0)|2>, where <> means the average, r(t) is the position of each particle in determined time t, 

r(0) stands for the reference spot of each particle. n=> 30.  Black line represents for the size of particles is less 

than 12nm, red line shows particles range with 12-18nm and blue line stands for particles larger than 18nm. (b) 

Diffusion Co-efficient scatters of different size particles fitted by nonlinear curve fit (red line for Asymptotic1 

fitting). 

 

Based on previous analysis established in Chapter 2 for quantifying single molecule 

kinetic parameters for Aβ - Aβ binding, we applied the same analysis to single SiNP–SiNP 

interactions in samples with SiNP only. A representative filmstrip (5 frame/sec) showing the 

analysis process is shown in Figure 4.6a and 4.6b, with the corresponding movie given in 

Supplementary Movie S28. Starting at time = 0 sec, three SiNPs of varying size (labelled 1, 2 

and 3) are observed to be freely diffusing on the mica surface. After 0.2 sec, SiNP (1) attaches 

to a larger SiNP (2) and both remain as a complex (1+2) until time point 1.0 s. During this 

period, the complex (1+2) increases in both width and length, and exhibits slower surface 

diffusion. SiNP(1) then dissociates from SiNP (2) and diffuses away at 1.0 sec but then 

undergoes binding (SiNP(1+2) at 1.4s) and dissociation again (1.6s). Subsequent SiNP-SiNP 

interactions did not occur again until timeframe 8.8 - 34.4s (Figure 4.5b). During this period, a 

new SiNP (4) entered the scan area (8.8s) and interacted with SiNP (3) (10 sec), undergoing 
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initial ‘binding’ and then unbinding until 32.6s. By measuring the amount of time the two 

SiNPs spent in physical contact, as demonstrated by ‘on’ or ‘off’ in Figure 4.6c, lifetime 

distributions could be produced to extract kinetics parameters such as mean lifetime<t>, 

binding rate Kon and dissociation rate Koff (Figure 4.6d). Exponential decay functions fitted to 

lifetime distributions gave a mean lifetime of <t>=4.55 sec, with Koff of 1/<t>=0.22s for the 

interaction between SiNPs (Figure 4.6d). Importantly, the relationship between the SiNP size 

and the time ‘on’ for binding is shown in Figure 4.5e, (Table 4.2) which indicates an increasing 

exponential-like relationship. Hence, the latter is inversely correlated to the size-dependence 

of the diffusion coefficient in Figure 4.5b, indicating that the kinetic parameters are directly 

influenced by the surface diffusion of the SiNP. The implications of this on the HS-AFM 

analysis of interactions are discussed further below.  

 

Figure 4. 6. Dynamics and Interactions between silica nanoparticles.(a)HS-AFM film strip showed binding 

processes between a small particle (no.1) and a relative large one(no.2).(b)HS-AFM filmstrip showed 

representative interaction processes between two similar size particles. Scale bar:25nm, 5frames/sec. (c) A 

representative figure showing the time ‘on’and ’off’ state, where number 1 refers to a binding state while number 

0 refers to an unbound state. (d)Lifetime distributions for the bound state of particles with size range around 

12nms. Distribution is fit to a single exponential decay (e) The binding time ‘on’ within the interactions versus 

the size of active nanoparticles. Distribution is fit to a polynomial order 2 curve. 
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4.3.4 Interactions and Kinetics of Co-deposited SiNP - Aβ42  

As demonstrated from the previous chapter, the Aβ42 peptides were observed to diffuse 

significantly faster than the SiNP (cf. ~8.3 - 9.2nm2/s versus ~0.6 – 5.8nm2). To confirm this 

observation in samples comprising the co-deposited SiNP and Aβ42, individual objects with 

sizes ranging from ~ 10nm to 20 nm were individually tracked for > 200s to calculate their 

diffusion coefficients. The average coefficient was found to be 2.05 ± 0.04nm2/s (Figure 4.7a), 

which was higher than the pure SiNP (0.46 ± 0.01nm2/s) but much lower than the Aβ42 only 

(7.95 ± 1.99nm2/s (Figure 4.7a). Importantly, two different distributions of diffusion coefficient 

were observed within the same size range (Figure 4.7b), suggesting that delineation of separate 

SiNP and Aβ42 diffusion speeds within the co-deposited sample. Therefore, despite their similar 

dimensions, it was possible to identify either SiNP or Aβ42 based on their diffusion speed, 

especially since the diffusion of Aβ42 exhibited close to 16 times faster speeds than SiNP. 

Having the ability to identity the SiNP and Aβ42, the same kinetic analysis was used to quantify 

single molecule kinetics of SiNP-Aβ42 interactions, with a representative filmstrip at 2 

frame/sec shown in Figure 4.7a. (Supplementary Movie S29) At time 0 sec, a single Aβ42 (1) 

(green circle) was observed to freely diffuse and then bind to a SiNP labelled (2) (red circle) at 

2.5 sec to form a complex (1+2) that increases in height. In subsequent frames, the complex 

(1+2) undergoes repeated dissociation and rebinding. Table 4. 3 shows a list of 20 different 

SiNP-Aβ interactions that were analysed from the HS-AFM movies, with corresponding values 

of size and diffusion coefficient given for each SiNP and Aβ participating in the interaction. 

Analysis of time ‘on’ for binding and exponential decay fit to lifetime distribution in Figure 

4.7d gave a mean lifetime<t> at 1.15s and Koff of 0.87s, indicating that affinity between Aβ42 

– SiNP interactions was significantly weaker than the interaction between two SiNPs. However, 
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as mentioned above, due to the apparent dependence of binding lifetimes on the particle size 

and/or diffusion the implications of this analysis are discussed further below.      

 

Figure 4. 7. Dynamics and interactions between silica nanoparticles and peptides.(a)Representative HS-AFM 

filmstrip shows the process between single Aβ42 peptide and nanoparticle. Scale bar: 25nm. Scan 

rate :2frames/sec. (b) Diffusion Co-efficient of silica nanopartilces and Aβ42 peptides with similar size. Green 

(Aβ42)and red (Nps)lines are fit by nonlinear curve fit (Asymptotic1).(c)Comparison of the diffusion ability 

among single nps, Aβ42 peptides and the mixture of both. Average diffusion co-efficient of 0.46±0.1 nm2/s 

(nps),7.95±1.94 nm2/s (Aβ42)and 2.05±0.4 nm2/s (mixture).Errors are standard deviation. N=>20 

molecules.(d)Lifetime distributions for the bound state between particles and Aβ42 peptides with similar size 

around 12nms. Detailed information is shown in Table 4. 1. 
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4.4 Conclusion 

Understanding the diffusion of nanoparticles in fluids is important for a wide range of 

therapeutic applications, for example in drug delivery, with typical diffusion coefficients for 

nanoparticles on the order of 10e-12 m2/s (1000 *104 nm2/s) . Ellina A. M et al. [448] have 

detailed the effects of particle size, medium viscosity and components of the liquid medium on 

nanoparticle diffusivity. For example, silica nanoparticles coated with polyethylene glycol 

exhibit an enhanced diffusion of 906 ± 89 *104 nm2/s in water, while thiolated nanoparticle 

diffusion decreases to 731 ± 40*104 nm2/s, even though their particle sizes are similar. This 

nanoparticle diffusion is however very different to those conditions under which the HS-AFM 

is operated, namely due to the presence of a solid substrate that clearly hampers the nanoparticle 

diffusivity. In the vicinity of the mica substrate, the calculated diffusion coefficients of both 

Aβ42 and SiNP in this study and previous chapters are on the order of 1-10 nm2/sec, 

approximately six orders of magnitude lower than nanoparticles allowed to “freely” diffuse in 

liquid [448, 449]. Previous work on single particle tracking of individual proteins (RAD54) on 

mica and MSD analysis using HS-AFM have revealed similar coefficients of ~ 2 nm2/sec and 

likewise noted the discrepancy with reported diffusion coefficients of 96 ± 89 *106 nm2/s for 

globular proteins in water. Accordingly, reduced diffusion associated with surface interactions 

can be explained by physical adsorption theory [450] whereby weak adhesion forces, such as 

the Van der Waals forces between the particle and surface, affects the surface driven Brownian 

motion. 

In the previous chapter 1 Aβ15-20nm  Aβ15-20nm interactions gave a mean lifetime <t> 

= 0.55 ± 0.22 sec (koff (1/<t>) = 1.82 sec-1) compared to the Aβ15-20nm  Aβ36nm with a mean 

lifetime = 0.72 ± 0.28 sec (koff = 1.39 sec-1), indicating that interactions with the larger-sized 

Aβ36nm form a more tightly bound complex due to the slower dissociation rate (lower koff ). 
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Nevertheless, it was clarified that a slower dissociation rate could be partially governed by 

diffusion, as the slower diffusing Aβ36nm on the mica surface may influence the time it spends 

in contact with another peptide, i.e. it take longer to diffuse away and hence a longer time “on” 

will be recorded in the HS-AFM analysis. Similarly, in the previous chapter 1, the largest Aβ 

aggregate, AβAgg, had an order of magnitude lower diffusion coefficient than both the Aβ15-20nm 

and Aβ36nm, and hence so too may influence the binding lifetime. Furthermore, in this chapter, 

it was clearly evident that increasing SiNP particle size caused a decrease in diffusion (Figure 

4.6e) but also conversely an increase the binding lifetime (time “on) (Figure 4.7d), suggesting 

that differences in particle size influence diffusion which in turn affects the measured time “on” 

or binding lifetimes. 

When considering the aforementioned effect of diffusion, we conclude that caution 

must be taken when assessing kinetic parameters based on the HS-AFM analysis. For example, 

the lower Koff  value of the SiNP-SiNP interaction indicates a longer bound-state compared to 

the SiNPs-Aβ42 peptide interaction. However, the slower diffusivity of the SiNPs could 

contribute to their lower Koff, as explained above. Similarly, the lower Koff of both SiNP-SiNP 

and SiNP- Aβ42 interactions compared to Aβ42- Aβ42 interactions measured in the previous 

chapter (with the exception of the larger Aβ42 aggregate) possibly result from the slower SiNP 

diffusion and/or faster Aβ42 diffusion. One other observation is that while the time “on” 

exponentially increases with particle size, the effect did not occur until the particle size reached > 

12-13nm, suggesting that analysis of smaller particles in Figure 4.6e may differ from larger 

aggregates. Despite this, at this early stage in development of HS-AFM for analysis of single 

molecule or nanoparticle interactions the effect of particle diffusion on the kinetic analysis 

needs to be further investigated.   

In light of above, there are still aspects of the kinetics analysis that cannot be explained 

by diffusion. For example in the previous chapter, while the diffusion ability of different sized 
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Aβ15-20nm and Aβ36nm  species was significantly different by ~8 times, the binding lifetimes were 

similar, e.g. 0.55 ± 0.22 sec and 0.72 ± 0.28 sec for Aβ15-20nm and Aβ36nm, respectively. 

Additionally, as mentioned above, the AβAgg diffuses significantly slower compared to the 

Aβ15-20nm and equivalent to the Aβ36nm. Yet under these conditions, the AβAgg shows a 

“stochastic” lifetime of binding that cannot be explained by its lower diffusion. From these 

findings, further investigation is required to validate the HS-AFM analysis of binding kinetics. 

It is suggested through appropriate experimental design that binding kinetics could be analyzed 

by 1) keeping one particle fixed and the other freely diffusing, 2) using a nanoparticle substrate 

rather than freely diffusing nanoparticles and 3) controlling the surface diffusion of particles 

by modifying the surface. 
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Table 4. 1. Individual silica nanoparticles interactions 
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Table 4. 2. Table for silica nanoparticle binding associated with size 
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Table 4. 3. Table for interaction between peptides and silica nanoparticles 
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Chapter 5: Conclusion and Outlook 

5.1 Conclusions 

The structural characterization and dynamics interactions between Aβ42 peptides were 

investigated by High Speed Atomic Force Microscopy, which is capable of directly 

visualization of single molecules and proteins at sub-nanometre structural level with 

millisecond temporal resolution in liquid. Analysis of dimensions revealed up to three main 

Aβ42 species distributions, Aβ15-20nm, Aβ36nm and Aβagg, in addition to the appearance of fast 

diffusive monomers when compared to the larger Aβ42 species. Prior to the peptides interaction 

analysis, quantitative measurement of molecular diffusion was also conducted by tracking 

individual molecules with the designed software Mat-lab and the results showed the mean 

square displacement (MSD) have a linear dependence relation with the molecule size, with 8.7 

± 0.44 nm2/s, 1.1 ± 0.06 nm2/s and 0.4 ± 0.01 nm2/s for Aβ15-20nm, Aβ36nm and Aβagg respectively. 

Additionally, the relationship between different parameters also suggested a potential model 

for the peptide assembly, which is termed as combined lateral additional elongation step with 

height stacking process.  

Significantly, we established a new platform based on image contrast in the captured 

videos to quantify reaction rate determining kinetics constants for interactions between 

different Aβ42 species. The results showed that interaction between smaller Aβ15-20nm to Aβagg 

followed by a type of kinetic heterogeneity with the lifetime at 2.04s while the lifetime for 

Aβ15-20nm -Aβ15-20nm and Aβ15-20nm to Aβ36nm are very short and both fit to a single exponential 

decay, with 0.55s and 0.72s respectively, indicating significant different pathways for 

interactions between different species to overcome the energy barrier and the complexity of 
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various structural aggregates will hinder the advancement on the Aβ toxicity identification and 

proper targeting.   

 Different environmental factors such as peptide concentration, incubation time and 

solution pH were investigated under ex-situ conditions by HS-AFM. The results indicated that 

the effect of peptide concentration and incubation time on the structural morphology and 

diffusion of peptides was minimal, however, a decrease in solution pH accelerated the 

formation of toxic β-sheet rich oligomeric structures. Further in-situ HS-AFM imaging of this 

pH-induced aggregation process was able to observe the real-time nucleation and growth of 

single Aβ, including elucidating distinct separate pathways leading to formation of Aβ 

oligomers.    

 Having characterized the Aβ42 peptide, silica nanoparticles were introduced to 

investigate their interactions with the peptide. The silica nanoparticles (SiNPs) were found to 

be 12nm in diameter and exhibited significantly slower diffusion (coefficient at 0.46 ± 0.1 

nm2/s) compared to similar sized Aβ42 peptides (7.95 ± 1.94 nm2/s). In samples co-deposited 

with SiNP and Aβ42 it was difficult to distinguish them based on size, though clear difference 

in their diffusion enabled their identification for further analysis. Subsequently, kinetic analysis 

of real-time interactions between SiNPs and peptides showed that the particle size had a 

significant effect on diffusion, which in turn influenced determination of binding lifetimes in 

the kinetic analysis. Hence, further investigation on the effects of diffusion on the kinetic 

analysis at single molecule level is still needed. 
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5.2 Outlook 

Protein aggregation is believed as a highly complex problem at molecular level, with little 

clarity around the kinetic mechanisms [451]. Despite the extensive literature, currently there is 

much more to be understood on the processes of aggregation, including nucleation, 

polymerization, elongation and fibrillation [452]. Also, many hypothesises of the amyloid beta 

aggregation lacks a precise definition on molecular kinetic equation due to the mathematical 

complexity [112]. Therefore, there is a disconnect between the fundamental parameters such 

as the transient rate constants or structural dimensions and corresponding species due to these 

confused nomenclature. 

 It has been widely demonstrated that prefibrillar assemblies of amyloid peptide, such 

as soluble oligomers or protofibrils, instead of mature end-stage amyloid fibrils are the main 

toxic species in protein misfolding diseases [59]. However, the pathway(s) by which normal 

monomeric forms of the peptide become intermediates or fibrils that are associated with 

toxicity is still uncertain. In this case, approaches based on in vivo cell culture experiments to 

assess the toxicity of structural intermediates, for example the oligomers and aggregates 

identified by HS-AFM could be useful. Similarly, assessing toxicity of samples based on a 

priori characterization of molecular forms of Aβ could also be applied more generally to the 

problem of protein aggregation. Elucidating the structure and associated toxicity will provide 

a fundamental basis for development of potential targeting via therapeutic drugs. 

Lastly, as an alternative to antibodies and other chemical compounds [453, 454], nanomaterials 

such as the carbon nanomaterials [455, 456] have been shown to have inhibitory/promoting 

effects on the protein aggregation. In addition, the combination of these two classes of materials 

is believed as a compromising way to assess or control the cytotoxicity due to their 

dispersibility in liquid. Therefore, the diversity of these nanomaterials and protein forms may 
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bring a tremendous potential for both structural and dynamic characterization requirements. 

The application of HS-AFM imaging with single molecule dynamic analysis will then provide 

unprecedented opportunity to elucidate a wide range of molecular interactions [457]. 
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Chapter 6: Appendix 

 

 

 

 

 

Figure A1. Length histogram of the Aβ peptides. we have an inset figure specifically for the length 

greater than 40nm to illustrate that some unstructured species normally have transient structure with 

unique higher values of ~up to 100nm. 
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Figure A2. AFM cross-sectional analysis show how we track the dynamics and measure the structural 

dimension of these less well structured Aβ42 species. 
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Figure A3. Relationship between length and width shows a linear correlation. 
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Figure A4. Image line profile of cross-section on individual molecules. Represent three single peptides 

appearing on mica surface and present dynamic changes on the lateral dimensions as well as the height. 
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Figure A5. Morphology and structural dimensions of Silica Nanoparticles and amyloid-beta42 peptides 

injection during the first five minutes. (a) Representative HS-AFM image of Silica Nanoparticles and 

peptide diffusion on the surface of mica. (Scan scale: 500*500nm, imaging rate: 1frame/second) 

Histograms of different structural dimensions distributions Area (b), Height (c), Width (d) and Length 

(e) of Silica Nanoparticles and peptides. 

 

 

 

 

 

Figure A6. Morphology and structural dimensions of Silica Nanoparticles and amyloid-beta42 peptides 

injection after 30 minutes. (a) Representative HS-AFM image of Silica Nanoparticles and peptides 

diffuse on the surface of mica. (Scan scale: 500*500nm, imaging rate: 1frame/second) Histograms of 

different structural dimensions distributions Area (b), Height (c), Width (d) and Length (e) of Silica 

Nanoparticles and peptides 
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S 1. HS-AFM movie of Aβ42 species diffusing on the mica surface. Scan size 500*500nm, scan rate 2frame/sec. 

*5 video playing speed. 

S 2. HS-AFM movie of Aβ42 species fast diffusing and capturing transient structured species. 

S 3. HS-AFM movie of Aβ15-20nm diffusing and tracking processes. Dash line refers to the original position and 

solid line represent the current position. 

S 4. HS-AFM movie of Aβ36nm diffusing and tracking processes. Dash line refers to the original position and solid 

line represent the current position. 

S 5. HS-AFM movie of Aβagg diffusing and tracking processes. Dash line refers to the original position and solid 

line represent the current position. 

S 6, HS-AFM movie of whole processes of dynamic interactions between different Aβ species. The mechanism 

that elongation and stacking of the peptides assembly also revealed during the process. 

S 7. HS-AFM movie of interaction process between Aβ15-20nm and Aβagg. Dash line refers to the original position 

and solid line represent the current position. 

S 8. HS-AFM movie of interaction process between Aβ15-20nm and Aβ36nm. Dash line refers to the original position 

and solid line represent the current position. 

S 9. HS-AFM movie of interaction process between Aβ15-20nm and Aβ15-20nm. Dash line refers to the original 

position and solid line represent the current position. 

S 10. HS-AFM movie of 50 µg/ml Aβ42 species diffusing on the mica surface. Scan size 500*500nm, scan rate 

2frame/sec. 

S 11. HS-AFM movie of 100 µg/ml Aβ42 species diffusing on the mica surface. Scan size 500*500nm, scan rate 

1frame/sec. 

S 12. HS-AFM movie of 20 µg/ml Aβ42 species diffusing on the mica surface after 2hours incubation in pH 7. 

Scan size 500*500nm, scan rate 1frame/sec. 

S 13. HS-AFM movie of 20 µg/ml Aβ42 species diffusing on the mica surface after 4hours incubation in pH 7. 

Scan size 500*500nm, scan rate 1frame/sec. 

S 14. HS-AFM movie of 20 µg/ml Aβ42 species diffusing on the mica surface after 1hours incubation in pH 3. 

Scan size 500*500nm, scan rate 1frame/sec. 

S 15. HS-AFM movie of 20 µg/ml Aβ42 species diffusing on the mica surface after 1hours incubation in pH 11. 

Scan size 500*500nm, scan rate 1frame/sec. 

S 16. HS-AFM movie of 20 µg/ml Aβ42 species diffusing on the mica surface after 2hours incubation in pH 3. 

Scan size 500*500nm, scan rate 1frame/sec. 

S 17. HS-AFM movie of 10 0µg/ml Aβ42 species diffusing on the mica surface after 4hours incubation in pH 3. 

Scan size 500*500nm, scan rate 1frame/sec. 

S 18. HS-AFM movie of 100 µg/ml Aβ42 species diffusing on the mica surface after 20hours incubation in pH 3. 

Scan size 500*500nm, scan rate 1frame/sec. 

S 19. HS-AFM movie of 20 µg/ml Aβ42 species diffusing on the mica surface after spike, inducing decreased 

solution pH from 7.0 to 3.0. Scan size 500*500nm, scan rate 1frame/sec. 

S 20. HS-AFM movie of 20 µg/ml Aβ42 species diffusing on the mica surface after spike, inducing increased 

solution pH from 7.0 to 11.0. Scan size 500*500nm, scan rate 1frame/sec. 

S 21. HS-AFM movie of no.3 peptide nucleation processes after spike. Scale bar 20nm. Scan rate 5frames/sec. 

S 22. HS-AFM movie of no.4 peptide nucleation processes after spike. Scale bar 22nm. Scan rate 5frames/sec. 
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S 23. HS-AFM movie of no.5 peptide nucleation processes after spike. Scale bar 18nm. Scan rate 5frames/sec. 

S 24. HS-AFM movie of silica nanoparticles diffusing on mica. Scan size 500*500nm, scan rate 1frame/sec. 

S 25. HS-AFM movie of silica nanoparticles diffusing on mica. Scan size 500*500nm, scan rate 1frame/sec. 

S 26. (1)(2) HS-AFM movie of in-situ interactions between silica nanoparticles and injected Aβ42 peptides. Scan 

size 500*500nm, scan rate 1frame/sec. 

S 27. HS-AFM movie of in-situ interactions between silica nanoparticles and injected Aβ42 peptides. Scan size 

500*500nm, scan rate 1frame/sec. 

S 28. HS-AFM movie of single molecular interactions between silica nanoparticles. Scan size 250*150nm, scan 

rate 5frames/sec. 

S 29. HS-AFM movie of single molecular interactions between silica nanoparticles and Aβ42 peptides. Scan size 

100*100nm, scan rate 2frames/sec. 
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