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ABSTRACT Sensitive data would be encrypted before uploading to the cloud due to the privacy issue.
However, how to compare the encrypted data efficiently becomes a problem. Public Key Encryption with
Equality Test (PKEET) provides an efficient way to check whether two ciphertexts (of possibly different
users) contain the same message without decryption. As an enhanced variant, Attribute-based Encryption
with Equality Test (ABEET) provides a flexible mechanism of authorization on the equality test. Most of the
existing ABEET schemes are only proved to be secure in the random oracle model. Their security, however,
would not be guaranteed if random oracles are replacedwith real-life hash functions. In this work, we propose
a construction of CP-ABEET scheme and prove its security based on some reasonable assumptions in the
standard model. We then show how to modify the scheme to outsource complex computations in decryption
and equality test to a third-party server in order to support thin clients.

INDEX TERMS Attribute-based encryption, equality test, outsourced decryption, standard model,
deduplication.

I. INTRODUCTION
The rapid development of cloud computing has brought a
variety of convenient services to enterprises and individuals,
including cloud storage. Users can upload massive data to
the cloud, saving storage overhead while effectively avoid-
ing data loss. Considering the privacy of the data, users
generally prefer to encrypt private data and store it in the
cloud instead of storing it directly in plaintext form. This
also makes it inconvenient for users to search for the data
they want in the traditional method. An easy way to address
it is to download the files locally, decrypt them, and then
search over them. However, it is not practical because it
requires a large computation and storage cost. In order to
solve the above problems, searchable encryption [1], [2]
emerged.

As time goes by, the more files the users upload, the greater
possibility of data redundancy is in the cloud, i.e. the
encrypted version of the data uploaded by the user may be

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiafeng Xie.

the same. This kind of data redundancy will bring a great
storage burden to cloud computing. Therefore, it is necessary
to find and delete duplicated files to optimize the cloud
storage. Encrypted data deduplication has attracted many
researchers’ attention. The technique of checking whether
two ciphertexts contain the same message is a key to this
problem. In addition, new data management requirements
arise when considering enterprise data storage. Access con-
trol for (encrypted) data also needs to be considered in the
enterprise. In a large company, access control of (encrypted)
data can be staggered. It is necessary that users with different
responsibilities (that is, attributes) have access to the corre-
sponding encrypted data.
Public Key Encryption with Equality Test (PKEET),

introduced by Yang et al. [3], is a variant of Public Key
Encryption with Keyword Search (PEKS) [1]. It allows the
server to checkwhether two ciphertexts generated under (pos-
sibly) different public keys contain the same message with-
out decryption, which is not supported by PEKS. However,
[3] allows anyone to execute the equality test, which runs the
risk of privacy leakage. To solve this issue, Tang [4]–[6] and
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FIGURE 1. System model of CP-ABEET.

Ma et al. [7] designed different PKEET schemes supporting
different kinds of authorization mechanisms.

It is well known that Attribute-based Encryption (ABE)
enjoys the advantage of flexible access control. The
combination of ABE and PKEET simplifies the key
management of PKEET and makes its authorization more
flexible. Recently, Zhu et al. [8] introduced the notion of
Key-policy Attribute-based Encryption with Equality Test
(KP-ABEET). Wang et al. [9] and Cui et al. [10] studied the
ciphertext-policy counterpart and presented their construc-
tions of Ciphertext-policy Attribute-based Encryption with
Equality Test (CP-ABEET). Take CP-ABEET as an example,
it embeds an access policy in the encryption of a message,
so that only the authorized receiver whose attribute set satis-
fies the embedded policy could successfully decrypt and test
the ciphertexts.

CP-ABEET can effectively solve the aforementioned prob-
lems. Figure 1 illustrates the system model of CP-ABEET.
The company sets different attributes (such as financial data,
warehouse data), and assigns the private key to each employee
according to their responsibilities in form of a set of attributes.
Data is encrypted with an access policy embedded. When
the attribute set satisfies the access policy, the employee can
decrypt the data and process it. (For example, if the attributes
of Receiver 2 only match files 2 and 3, he can only decrypt
files 2 and 3, but not files 1 and 4.) This also means that there
is no need to re-encrypt the data if the attributes of employees
change as a result of a job change. New employees can also
directly process the data which has been encrypted before
they entered the company. The third-party server periodically
checks the encrypted data, deletes duplicate data and frees up
storage space. In this process, the server cannot extract the
information contained in the encrypted data, and encrypted
data deduplication does not affect the use of data.

A. RELATED WORKS
The notion of PKEET was introduced by Yang et al. [3]
in 2010 as a new variant of searchable encryptionmechanism.
A fascinating feature of PKEET is that users could check
whether two ciphertexts contain the same message without
decryption. In [3], any entity can perform the equality test
on ciphertexts. Due to the lack of access control, there is a
risk of information leakage on users’ private data. Therefore,
Tang [4] proposed the notion of Fine-grained authorization
policy PKEET (FG-PKEET) to realize the accurate autho-
rization, which only allows two authorized users to perform
the equality test. Furthermore, Ma et al. [11] proposed Pub-
lic key encryption with delegated equality test (PKE-DET),
which only allows the delegated party to test. To make the
authorization more flexible, Ma et al. [7] proposed a flexible
PKEET scheme, which supports four types of authorization.
Subsequently, a variety of enhanced schemes [12]–[14] have
been proposed to improve security. Zhang et al. [12] proposed
an efficient PKEET scheme under a specific cryptographic
assumption in the standard model.

To solve the problem of complex certificatemanagement in
the PKI setting, Ma [15] combined Identity-based Encryption
(IBE) with PKEET and introduced the notion of Identity-
based Encryption with Equality Test (IBEET). Users in
IBEET scheme use their identity-related keys to generation
the trapdoor, which thereby achieves the equality test on
its ciphertexts. However, if the server is curious, it may
illegally benefit from launching a brute force attack against
the encrypted data, because ciphertexts can be generated
publicly. To solve this problem, Wu et al. [16] presented an
IBEET scheme against insider attacks. Later, Wu et al. [17]
proposed another efficient IBEET scheme which reduces
the use of time-consuming Hash-to-Point function. In their
scheme, it is restricted that only particular keywords can be
tested in order to improve the security level.

As an extension of IBE, ABE [18] supports a more flexible
authorization mechanism. There are two variants of ABE:
Key-policy Attribute-based Encryption (KP-ABE) [19]–[21]
and Ciphertext-policy Attribute-based Encryption (CP-ABE)
[22]–[24]. In the former, each user is associated with an
access policy, and encryption is done w.r.t. an attribute set;
in the latter, each user is associated with a set of attributes,
and encryption is done w.r.t. an access policy. In each variant,
only if the attribute set satisfies the access policy will the
decryption succeed. However, ABE schemes suffers from
the problem of complex computation. Complexity of ABE
schemes usually increases along with the access policy.
Green et al. [25] suggested securely outsourcing the heavy
computation in decryption of an ABE ciphertext to a
third-party server, and proposed a concrete scheme, which
significantly reduces the overhead of users.

Zhu et al. [8] first proposed the construction of KP-ABEET
scheme, which is a combination of KP-ABE and PKEET,
which provides amore flexible authorizationmechanism than
previousworks. Later,Wang et al. [9] proposed a construction
of CP-ABEET scheme. Recently, Cui et al. [10] proposed
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another CP-ABEET scheme, which enhances the security
of [9]. Then, Cui et al. [26] provided another CP-ABEET
scheme, which supports to outsource the dominating com-
putations of decryption and equality test to a third-party. Its
security is proved in the random oracle model. However,
real-life hash function is a deterministic algorithm, which
cannot guarantee that the output of the algorithm is com-
pletely random and uniformly distributed. If we replace the
random oracles with real-life hash functions, the security
may no longer be guaranteed. How to construct a secure and
efficient ABEET scheme in standard model remains an open
problem.

B. OUR CONTRIBUTIONS
In this paper, we study the construction of CP-ABEET in the
standard model.

• We propose a new CP-ABEET scheme, which is
inspired by Zhang et al. [12] and adopts the technique
of Lai et al. [27] in constructing CCA-secure PKE
scheme to eliminate the rely on the random oracle
heuristic. Specifically, to encrypt a message, we use a
linear secret sharing scheme to share a secret random
value s, and use s to hide both the message and its
hash. Then we use Lai et al.’s technique to ensure the
ciphertext’s integrity. In both the decryption and the test
algorithm, one should first use the decryption key or
the trapdoor to reconstruct (an exponentiated form of)
the random s, and then recover the message or its hash
value.

• We prove the security of our CP-ABEET scheme in the
standard model based on some reasonable mathematical
assumptions. Namely, an unauthorized adversary could
not distinguish which message is encrypted for a given
ciphertext, while an authorized adversary should not be
able to recover the message from a given ciphertext.

• In order to support thin clients (and resource-limited
devices), we modify the scheme to outsource com-
plex computations in decryption and equality test
to a third-party server, and present an outsourced
CP-ABEET scheme.

• We implement our schemes using Java Pairing-Based
Cryptography (JPBC) library. Experiment results show
that they have comparable and even better efficiency
than their counterparts in the random oracle model.

C. PAPER ORGANIZATION
We introduce some necessary preliminaries in Sect. II, and
give the definition of CP-ABEET scheme and its security
models in Sect. III. We describe our concrete construction
of CP-ABEET scheme in Sect. IV, and prove its secu-
rity in Sect. V. The outsourced construction of CP-ABEET
scheme is given in Sect. VI. We provide a comparison of our
schemes with some typical related schemes in the literature
in Sect. VII. Experiment results are also given here. Finally,
we conclude the paper in Sect. VIII.

II. PRELIMINARIES
A. ACCESS STRUCTURE
Definition 1 (Access Structure [28]): Let P = {Pi}ni=1 be

a set of n parties, and A be a subset of 2P. We say A is
monotone if ∀S1, S2, (S1 ∈ A) ∧ (S1 ⊆ S2) → (S2 ∈ A).
A monotone collection A ⊆ 2P\{∅} is called a monotone
access structure. Sets in A are authorized, and those outside
of A are unauthorized.

In this paper, we consider monotone access structures.
We use attributes to represent parties, and represent the autho-
rized set of parties in access structure A sets of attributes.
Definition 2 (Linear Secret Sharing Scheme [29]): We say

a secret sharing scheme 5 over a set of parties P is linear
(over Zp) if the following conditions hold.

1) For each party in P, the secret shares form a vector
over Zp.

2) There exists a share generating matrixM of size `× n.
We use a map ρ(·) to connect each row of M with its
corresponding party in P. Let s ∈ Zp be the secret to
be shared, and r2, · · · , rn be random elements of Zp.
The vector Mv, where v = (s, r2, · · · , rn), contains
the shares of s according to 5, and (Mv)i is the share
belonging to party ρ(i).

There is an efficient linear reconstruction algorithm which
can find a set of constants {wi} for recovering the secret s,
e.g.

∑
i∈I wiλi = s, where I is the set of indices of parties

in an authorized set and {λi} are valid shares of s generated
by 5 [29].

Same as [28], we use (1, 0, · · · , 0) as the target vector for
LSSS. For any satisfying set of rows I in M , there exists a
vector w s.t. w · (1, 0, · · · , 0) = −1 and ∀i ∈ I ,w ·Mi = 0.

B. BILINEAR PAIRING
Given cyclic groupsG,GT of prime order p and a generator g
of G, we say e : G × G → GT is a bilinear pairing if
(1) ∀g1, g2 ∈ G, ∀x, y ∈ Zp, e(g1x , g2y) = e(g1, g2)xy;
(2) e(g, g) 6= 1GT ; and (3) ∀g1, g2 ∈ G, e(g1, g2) can be
computed in polynomial time.

C. MATHEMATICAL ASSUMPTION
Decisional q-parallel Bilinear Diffie-Hellman Exponent
(Decisional q-BDHE) assumption [28] is defined as follows.
Suppose G is a group of prime order p, and g is a generator.
Randomly choose s, a, b1, · · · , bq ∈ Zp. If an adversary is
given

y :=
(
G, p, g, gs, ga, · · · , g(a

q), , g(a
q+2), · · · , g(a

2q),

∀1≤j≤q, gs·bj , ga/bj ,· · ·, g(a
q/bj), g(a

q+2/bj),· · ·, g(a
2q/bj),

∀1≤j,k≤q,k 6=j, g(a·s·bk/bj), · · · , g(a
q
·s·bk/bj)

)
,

it could not distinguish e(g, g)a
q+1s from a random element

R ∈ GT .
Definition 3 (Decisional q-BDHE Assumption): We say

that the Decisional q-BDHE assumption holds if for any
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probabilistic polynomial-time (PPT) adversary A, we have:

|Pr[A(y, e(g, g)a
q+1s) = 0]− Pr[A(y,R) = 0]| ≤ negl(1k ).

III. CIPHERTEXT-POLICY ATTRIBUTE-BASED
ENCRYPTION WITH EQUALITY TEST
A. DEFINITION
Definition 4 (CP-ABEET): A CP-ABEET scheme is

defined by the following PPT algorithms.
• Setup(1k ,U ): It takes as input a security parameter 1k

and the maximal number U of attributes in the system,
and returns the system parameters SP and a master
secret key Msk.

• KeyGen(SP,Msk, S): It takes as input SP , Msk and a
set S of attributes, and returns a private key SkS .

• Enc(SP, (M , ρ),m): It takes as input SP , an access
structure (M , ρ) and a message m, and returns a
ciphertext Ct.

• Dec(Ct,SkS ): It takes as input a ciphertext Ct and a
private key SkS , and returns a plaintext m or a special
symbol ⊥ indicating decryption failure.

• Trapdoor(SP,Msk, S): It takes as input SP , Msk and
a set S of attributes, and returns a trapdoor TdS .

• Test(CtA,TdSA ,CtB,TdSB ): It takes as input a cipher-
text CtA and a trapdoor TdSA of user A, and a ciphertext
CtB and a trapdoor TdSB of user B, and returns 1 if CtA
and CtB contain the same plaintext, and 0 otherwise.

B. SECURITY MODELS
Below we define a security property of CP-ABEET, called
one-wayness against selective access structure and chosen
ciphertext attacks (OW-SAS-CCA) security against autho-
rized adversaries. The adversary cannot recover the message
from a given ciphertext even if it is given the corresponding
trapdoor.

Game-I: Let A be an authorized adversary.
1) Setup: A chooses a challenge access structure

(M∗, ρ∗) and submits it to C. Then C generates SP and
Msk, publishes SP and keeps Msk secret.

2) Query Phase 1: A is allowed to issue the following
queries for polynomially many times.
• Private key Query: Given an attribute set S,
it returns the corresponding decryption key SkS .

• Trapdoor Query: Given an attribute set S, it returns
the corresponding trapdoor TdS .

• Decryption Query: Given an attribute set S and a
ciphertextCt, it returns the corresponding message
m or ⊥ indicating decryption failure.

3) Challenge: C randomly chooses a message m∗ from
the message space, computes the challenge ciphertext
Ct∗ = Enc(SP, (M∗, ρ∗),m∗), and returns Ct∗ to A.

4) Query Phase 2: Same as Query Phase 1.
5) Guess: Finally, A outputs a message m′, and wins

the game if m′ = m∗ and A did not issue an Pri-
vate key query on input any attribute set S satisfying

(M∗, ρ∗) nor a Decryption query on input (Ct∗, S) for
any attribute set S satisfying (M∗, ρ∗).

The advantage of A in the game above, denoted by
AdvOW-SAS-CCA

A (1k ), is defined to be the probability that it
wins the game.
Definition 5 (OW-SAS-CCA Security): A CP-ABEET

scheme isOW-SAS-CCA secure if for any PPT adversaryA,
its advantage AdvOW-SAS-CCA

A (1k ) is negligible.
Next we define another security property of CP-ABEET,

called indistinguishability against selective access structure
and chosen ciphertext attacks (IND-SAS-CCA) security
against unauthorized adversaries. Without the corresponding
trapdoor, the adversary cannot distinguish a given ciphertext
is the encryption of which message.

Game-II: Let A be an unauthorized adversary.

1) Setup: Same as that in OW-SAS-CCA game.
2) Query Phase 1: Same as that inOW-SAS-CCA game.
3) Challenge: A submits two equal-length messages

m∗0,m
∗

1. C then randomly chooses a bit δ ∈

{0, 1}, computes the challenge ciphertext Ct∗ =
Enc(SP, (M∗, ρ∗),m∗δ ), and returns Ct∗ to A.

4) Query Phase 2: Same as that inOW-SAS-CCA game.
5) Guess: A outputs a bit δ′ ∈ {0, 1}, and wins the game

if δ′ = δ and A did not issue any Private key Query
or Trapdoor query on input an attribute set S satisfying
(M∗, ρ∗), nor any Decryption query on input (Ct∗, S)
for an attribute set S satisfying (M∗, ρ∗).

The advantage of A in the game above, denoted by
AdvIND-SAS-CCA

A (1k ), is defined to the difference between the
probability that A wins the game and 1/2.
Definition 6 (IND-SAS-CCA Security): A CP-ABEET

scheme is IND-SAS-CCA secure if for any PPT adversaryA,
its advantage AdvIND-SAS-CCA

A (1k ) is negligible.

IV. OUR CONCRETE CONSTRUCTION
In this part we present our concrete construction of
CP-ABEET scheme. It works as below.

• Setup(1k ,U ): With a security parameter 1k and the
maximal number U of attributes in the system, the setup
algorithm computes as follows:

– Choose the groupsG andGT of prime order p along
with a bilinear pairing e : G × G → GT , and a
generator g of G.

– Choose the random exponents a, α, β, k1, k2,
k3 ∈ Zp and h ∈ G, and compute ga, g1 = gα,
g2 = gβ , u = gk1 , v = gk2 ,w = gk3 .

– Choose U random group elements h1, · · · ,
hU ∈ G that are associated with the U attributes
in the system.

– Choose two collision-resistant hash functions: H1 :

{0, 1}∗→ GT , H2 : G2
T ×G1+2`

→ Zp where ` is
the number of rows of an LSSS matrix.

– PublishSP = (G,GT , p, e,H1,H2, g, ga, e(g1, h),
e(g2, h), u, v,w, h1, · · · , hU ) as the system
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parameter. Set Msk = (hα, hβ , k1, k2, k3) as the
master secret key.

• KeyGen(SP,Msk, S): The key generation algorithm
randomly chooses t, t ′ ∈ Zp, computes and returns the
following private key SkS :

SkS =
(
Kd = hαgat , L = gt , {Kx = htx}x∈S ,

Kt = hβgat
′

, L ′ = gt
′

, {K ′x = ht
′

x }x∈S
)
.

• Enc(SP, (M , ρ),m): Let M be an ` × n matrix. The
encryption algorithm chooses a random vector ω =
(s, y2, · · · , yn)> ∈ Znp, and computes λi = Mi · ω for
i = 1 to `, where Mi is the vector corresponding to the
i-th row of M . Then it randomly chooses r0, r1, · · · ,
r` ∈ Zp, and computes

C1 = m · e(g1, h)s, C2 = H1(m) · e(g2, h)s,

C3 = gs, C4 = r0, C5 = (uT · vC4 · w)s,

C6 = {(ci = gaλih−riρ(i), di = gri )}1≤i≤`,

where T = H2(C1,C2,C3,C6). Then it returns the
ciphertext Ct = (C1,C2,C3,C4,C5,C6), along with a
description of (M , ρ).

• Dec(Ct,SkS ): The decryption algorithm computes
T = H2(C1,C2,C3,C6), and checks whether
e(C3, uT vC4w) = e(C5, g). If the equation doesn’t hold,
it outputs ⊥; otherwise, it computes

X = e(C3,Kd )/(
∏
i∈I

(e(ci,L)e(di,Kρ(i)))wi )

= e(g, h)αse(g, g)ast/(
∏
i∈I

e(g, g)taλiwi )

= e(g, h)αs = e(g1, h)s, and

X ′ = e(C3,Kt )/(
∏
i∈I

(e(ci,L ′)e(di,K ′ρ(i)))
wi )

= e(g, h)βse(g, g)ast
′

/(
∏
i∈I

e(g, g)t
′aλiwi )

= e(g, h)βs = e(g2, h)s.

Then it computes

Ĥ =
C2

X ′
and m̂ =

C1

X
,

and outputs m̂ if Ĥ = H1(m̂).
• Trapdoor(SP,Msk, S): The trapdoor algorithm ran-
domly chooses t̂ ∈ Zp, sets and returns the trapdoor as

TdS = (K̂ = hβgat̂ , L̂ = gt̂ , {K̂x = ht̂x}x∈S ).

• Test(CtA,TdSA ,CtB,TdSB ): W.l.o.g. we assume that the
attribute set SA (resp. SB) associated with TdSA (resp.
TdSB ) satisfies the access structure (MA, ρA) embedded
in ciphertext CtA (resp. CtB). Let IA ⊆ {1, 2, · · · , `A} be
defined as IA = {i : ρA(i) ∈ SA}. Then we define the set
{wi ∈ Zp}i∈IA such that if {λi} are valid shares of secret s
according to MA, we have

∑
i∈IA wiλi = s. IB is defined

similarly.

For both A and B, the algorithm computes X ′ as below:

X ′ = e(C3, K̂ )/(
∏
i∈I

(e(ci, L̂)e(di, ˆKρ(i)))wi )

= e(g, h)βse(g, g)ast̂/(
∏
i∈I

e(g, g)t̂aλiwi )

= e(g, h)βs = e(g2, h)s.

Notice that here we omit the subscripts A, B for simplic-
ity. Then it computes

HA =
C2A

X ′A
, HB =

C2B

X ′B
,

and outputs 1 if HA = HB, and 0 otherwise.
Correctness of our scheme could be verified straightforward,
so we omit it here.

V. SECURITY ANALYSIS
In this section, we analyze the security of our CP-ABEET
scheme and prove in the standard model that our scheme is
OW-SAS-CCA secure and IND-SAS-CCA secure under the
security models given in Sect. III-B.

A. OW-SAS-CCA SECURITY
Theorem 1: Suppose that the decisional q-BDHE assump-

tion holds, our CP-ABEET scheme is OW-SAS-CCA secure
against authorized adversaries in standard model.

Proof: Based on the security model defined in
section III-B, we simulate the security game between the
adversary and challenger. Suppose that there exits an adver-
sary A that attempts to break the OW-SAS-CCA security of
our CP-ABEET scheme in standard model. And we define
a simulator B who attempts to solve the decisional q-BDHE
problem (c.f. Def. 3) from the challenger C. Given a random
problem instance (y,Z), B aims to decide whetherZ is equal
to e(g, g)a

q+1s (b = 0) or a random element of GT (b = 1).
This part shows how to build the simulator B.
1) Setup: A chooses a challenge access structure

(M∗, ρ∗) and submits it to B. Then B computes as
follows:
- Choose a group GT of prime order p along with a
bilinear pairing e : G×G→ GT , and a generator g
of G.

- Choose the elements α′, β ∈ Zp, compute
g2 = gβ , and implicitly set α = α′ + aq by setting

e(g1, h) = e(gα, h) = e(g(a
q), h) · e(g, h)α

′

,

where h = ga. Then choose the random elements
xv, xw, yu, yv, yw ∈ Zp and set

u = gagyu = ga+yu ,

v = (ga)xvgyv = gaxv+yv ,

w = (ga)xwgyw = gaxw+yw .

- Choose a random zx ∈ Zp for each attribute Ax
where 1 ≤ x ≤ U . Define X as the set of i where
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ρ∗(i) = x. Set hx as

hx = gzx
∏
i∈X

gaM
∗

i,1/bi · ga
2 M∗i,2/bi · · · ga

nM∗i,n/bi .

Notice that if X = ∅, we have hx = gzx .
- Choose two collision-resistant hash functions H1 :

{0, 1}∗→ GT andH2 : G2
T ×G

1+2`
→ Zp, where

` is the number of rows of an LSSS matrix.
- PublishSP = (G,GT , p, e,H1,H2, g, ga, e(g1, h),
e(g2, h), u, v,w, h1, · · · , hU ) as the system param-
eter. Notice that the master secret key Msk =
(hα, hβ , k1, k2, k3) is unknown to B, except for the
element hβ .

2) Query Phase 1: B answers queries from A as follows.
Here we assume that all the queries submitted by A
would not violate the restrictions specified in the game
(c.f. Def. 5).
• Private key query: Given an attribute set S fromA,
B randomly chooses r, t ′ ∈ Zp and finds a vector
w = (w1,w2, · · · ,wn) ∈ Zpn

∗

with w1 = −1 such
that w · Mi = 0 for all i ∈ I , where I = {i :
ρ(i) ∈ S}. Such a vector exists according to Def. 2.
B implicitly sets t as

t = r + w1aq + w2aq−1 + · · · + wnaq−n+1,

by defining

L = gr
∏

i=1,··· ,n

(ga
q+1−i

)wi = gt .

Then it computes Kd as

Kd = hαgat = hα
′

ha
q
gat = hα

′

ga
q+1
gat

= hα
′

gar
∏

i=2,··· ,n

(ga
q+2−i

)wi .

Next we show how B computes {Kx}x∈S . For each
x ∈ S, if there is no i such that ρ(i) = x, then B
sets

Kx = htx = (gzx )t = (gt )zx = Lzx ;

otherwise, there exists one or more mappings
between the rows of matrix M and x ∈ S. Let X
be the set of i s.t. ρ(i) = x. B sets Kx as

Kx = Lzx
∏
i∈X

∏
j=1,··· ,n

(
g(a

j/bi)r

·

∏
k=1,··· ,n
k 6=j

(ga
q+1+j−k/bi )wk

)Mi,j .

Notice that the terms ga
q+1/bi which cannot be

simulated would all be cancelled out due to the
character that w ·Mi = 0.
Then B computes Kt , L ′ and {K ′x}x∈S using the
method described in Section IV. Finally, B returns
SkS =

(
Kd ,L, {Kx}x∈S ,Kt ,L ′, {K ′x}x∈S

)
.

• Trapdoor query:B computes and returnsTdS using
the method described in section IV.

• Decryption query: Given an attribute set S and a
ciphertext Ct, there two cases:

a) Case 1: S does not satisfy (M∗, ρ∗). B gets SkS
from private key query, and uses SkS to run the
decryption algorithm to decrypt Ct.

b) Case 2: S satisfies (M∗, ρ∗). B runs Trapdoor
to generate TdS = (Kt ,L ′, {K ′x}x∈S ). Parse
Ct as Ct = (C1,C2,C3,C4,C5,C6).
B computes T = H2(C1,C2,C3,C6), and
checks whether

e(C3, uT vC4w) = e(C5, g).

If the equation does not hold, B returns ⊥;
otherwise, it continue to check the equation

T + C4 xv + xw = 0.

If it holds, B aborts, and we denote this event
by E1; otherwise, B computes

X ′ =
e(C3,Kt )∏

i∈I (e(ci,L ′)e(di,K
′

ρ(i)))
wi

=
e(g, h)βse(g, g)ast

′∏
i∈I e(g, g)t

′aλiwi

= e(g, h)βs, and

Ĥ =
C2

X ′
=
H1(m) · e(g2, h)s

e(g, h)βs

= H1(m).

Then B chooses s′ ∈ Zp, and computes

P1,m = g
−
Tyu+C4 yv+yw
T+C4 xv+xw

1 (uT vC4w)s
′

,

P2,m = g
−

1
T+C4 xv+xw

1 gs
′

.

Then it recovers the message by computing

m̂ = C1 ·
e(C5,P2,m)
e(C3,P1,m)

.

If Ĥ = H1(m̂), B returns m̂ to A; otherwise,
it returns ⊥.

3) Challenge: In this phase, B randomly chooses
a message m∗ from the message space, and
computes

C∗1 = m∗ · Z · e(gs, h)α
′

,

C∗2 = H1(m∗) · e(gs, h)β ,

C∗3 = gs.

ThenB randomly chooses y′2, · · · , y
′
n ∈ Zp and shares s

using the vectorω = (s, sa +y′2, sa
2
+y′3, · · · , sa

n−1
+

y′n). Define Ai as the set of all k 6= i but ρ∗(k) = ρ∗(i).
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B chooses r ′1, · · · , r
′

` ∈ Zp and generates
C∗6 = {(ci, di)}1≤i≤` as follows:

ci = h
r ′i
ρ∗(i)

 ∏
j=2,··· ,n

(ga)M
∗
i,jy
′
j

 · (gbi·s)−zρ(i)
·

∏
k∈Ai

∏
j=1,··· ,n

(ga
j
·s·(bi/bk ))M

∗
k,j

 ,
di = g−r

′
i g−sbi .

Then B computes T ∗ = H2(C∗1 ,C
∗

2 ,C
∗

3 ,C
∗

6 ) and sets

C∗4 = −
T ∗ + xw

xv
,

C∗5 = (gs)T
∗yu+C∗4 yv+yw .

Finally,B sendsCt∗ = (C∗1 ,C
∗

2 ,C
∗

3 ,C
∗

4 ,C
∗

5 ,C
∗

6 ) toA.
4) Query Phase 2: In this phase, B answers queries in

the same way as in Query Phase 1 with the following
restriction:
• Given a decryption query (Ct∗, S), while S satisfies
(M∗, ρ∗), B returns ⊥, as A is not allowed to this
query.

• If Ct = (C1,C2,C∗3 ,C
∗

4 ,C
∗

5 ,C
∗

6 ) 6= Ct∗ but T =
H2(C1,C2,C∗3 ,C

∗

6 ) = T ∗, we get a collision of
hash function H2. In this case B aborts. We define
this event by E2.

• If T + C4 xv + xw = 0 holds, where T =
H2(C1,C2,C3,C6), B aborts. We define this event
by E3.

5) Guess: Finally, A outputs a message m′. B outputs
b′ = 0 if m′ = m∗, indicating that Z = e(g, g)a

q+1s,
and a random bit b′ otherwise.

Analysis: In this part, we analyse the events that makes the
simulation fail or abort.
• The failures caused by hash functions: Firstly, we pay
our attention to the one-wayness ofH1. In the simulation
process, adversary A has the authorization to query the
trapdoor for challenge access structure so that it can
obtain the hash value of challenge message H1(m∗).
Adversary A may learn some information about mes-
sage m∗ from H1(m∗). In other words, the simulation
fails if adversary A breaks the one-wayness of hash
function H1. We define this event as E4 and we have

Pr[E4] ≤ εOW ,

where εOW is the probability that adversary A success-
fully breaks the one-wayness of H1.
Then we turn to the collision resistance of hash func-
tion H2. When E2 occurs during the decryption queries
in Query Phase 2, there exits a hash collision such that
T = H2(C1,C2,C∗3 ,C

∗

6 ) = T ∗ = H2(C∗1 ,C
∗

2 ,C
∗

3 ,C
∗

6 ).
We have

Pr[E2] ≤ εCR,

where εCR is the probability that adversary A success-
fully breaks the collision resistance of H2.

• The failures caused by simulation limits: During the
whole simulation process, some events will make it abort
in which simulator B cannot give a logical answer to
decryption queries from A.
E1 and E3 occur when the elements of queried ciphertext
satisfy the relation: T + C4xv + xw = 0. Because that
element T depends on the submitted ciphertext and xv,
xw are fixed, the probabilities of E1 and E3 depend on
the randomness of C4 = r0 chosen from Zp. It means
that equation T +C4xv+ xw happens with probability at
most 1/p in a single query. We have

Pr[E1 ∨ E3] ≤ Pr[E1]+ Pr[E3] ≤ qD/p,

where q means A is allowed to issue Decryption query
for q times.

We obtain the final failure and abortion probability Pr[F] as

Pr[F] = Pr[E1 ∨ E2 ∨ E3 ∨ E4]

≤ εOW + εCR + qD/p.

Below we analyze the probability that B successfully guess
the value of b. If T = e(g, g)a

q+1s, the simulation provided
by B is perfect, and the in view ofA, the challenge ciphertext
is the same as a real ciphertext. We have that Pr[b′ = 0|b =
0] = AdvOW-SAS-CCA

A (1k ) ·Pr[¬F]; otherwise, which means
T is a random element of GT , the challenge ciphertext hides
the message perfectly, and the probability that A outputs the
correct message is thus negligible, e.g. Pr[b′ = 1|b = 1] =
1− negl(1k ) · Pr[¬F]. Therefore, we have:

Pr[b′ = b]

= Pr[b′ = 0 ∧ b = 0]+ Pr[b′ = 1 ∧ b = 1]

=
1
2
(Pr[b′ = 0|b = 0]+ Pr[b′ = 1|b = 1])

=
1
2

(
AdvOW-SAS-CCA

A (1k )·Pr[¬F]+(1−negl(1k )·Pr[¬F])
)

=
1
2
+
(1
2
AdvOW-SAS-CCA

A (1k )−
1
2
negl(1k )

)
· Pr[¬F]

≥
1
2
+
(1
2
AdvOW-SAS-CCA

A (1k )−
1
2
negl(1k )

)
· [1− (εOW + εCR + qD/p)],

where [1− (εOW + εCR + qD/p)] is non-negligible.
IfA breaks the OW-SAS-CCA security of our CP-ABEET

scheme with non-negligible advantage, the probability that B
solves the decisional q-BDHE problem is thus non-negligibly
larger than 1

2 , which contradicts the decisional q-BDHE
assumption. This completes the proof of Theorem 1.

B. IND-SAS-CCA SECURITY
Theorem 2: Suppose that the decisional q-BDHE assump-

tion holds, our CP-ABEET scheme is IND-SAS-CCA secure
against unauthorized adversaries in standard model.

Proof: Based on the security model defined in
section III-B, we simulate the security game between the
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adversary and challenger. Suppose that there exits an adver-
saryA that attempts to break the IND-SAS-CCA security of
our CP-ABEET scheme in standard model. And we define a
simulator B who attempts to solve the decisional q-BDHE
problem from the challenger C. Given a random problem
instance (y,Z), B aims to decide whether Z is equal to
e(g, g)a

q+1s (b = 0) or a random element of GT (b = 1).
This part shows how to build the simulator B.
1) Setup: A chooses a challenge access structure

(M∗, ρ∗) and submits it to B. Then B generates the
system parameters SP basing on the q-BDHE chal-
lenge instance y. Firstly, B randomly chooses elements
α′, β ′ ∈ Zp. Then it implicitly sets α = α′ + aq,
β = β ′ + aq by setting

e(g1, h) = e(gα, h) = e(g(a
q), h) · e(g, h)α

′

,

e(g2, h) = e(gβ , h) = e(g(a
q), h) · e(g, h)β

′

,

where h = ga. Besides, B chooses random elements
xv, xw, yu, yv, yw ∈ Zp and sets

u = gagyu = ga+yu ,

v = (ga)xvgyv = gaxv+yv ,

w = (ga)xwgyw = gaxw+yw .

Then we show how to obtain the group elements
h1, · · · , hU by B. Firstly B chooses a random value Zx
for each x where 1 ≤ x ≤ U . We define X as the set of
i where ρ(i) = x. Then B programs hx as

hx = gzx
∏
i∈X

gaMi,1/bi · ga
2Mi,2/bi · · · ga

nMi,n/bi .

Notice that if X = ∅, hx = gzx . Then it chooses
two cryptographic hash functions: H1 : {0, 1}∗ →
GT , H2 : GT × GT × G1+2`

→ Zp where ` is
the number of rows in LSSS matrix. Finally, it pub-
lishes SP = (G,GT , p, e,H1,H2, g, ga, e(g1, h),
e(g2, h), u, v,w, h1, · · · , hU ) as the system param-
eter. Notice that the master secret key Msk =

(hα, hβ , k1, k2, k3) is unknown to B.
2) Query Phase 1: In this phase, Trapdoor query executes

as same as that in the proof of Theorem 1 with another
restriction that all the submitted attribute sets cannot
satisfy the challenge access structure (M∗, ρ∗).
• Private key query: Given an attribute set S fromA,
B randomly chooses r, r ′ ∈ Zp and finds a vector
w = (w1,w2, · · · ,wn) ∈ Zpn

∗

with w1 = −1 such
that w · Mi = 0 for all i ∈ I , where I = {i :
ρ(i) ∈ S}. Such a vector exists according to Def. 2.
B implicitly sets t as

t = r + w1aq + w2aq−1 + · · · + wnaq−n+1

by defining

L = gr
∏

i=1,··· ,n

(ga
q+1−i

)wi = gt .

Then it computes Kd as

Kd = hαgat = hα
′

ha
q
gat = hα

′

ga
q+1
gat

= hα
′

gar
∏

i=2,··· ,n

(ga
q+2−i

)wi .

Next we show how B computes {Kx}x∈S . For each
x ∈ S, if there is no i such that ρ(i) = x, then
B sets

Kx = htx = (gzx )t = (gt )zx = Lzx ;

otherwise, there exists one or more mappings
between the rows of matrix M and x ∈ S.
Let X be the set of i s.t. ρ(i) = x. B sets Kx as

Kx = Lzx
∏
i∈X

∏
j=1,··· ,n

(
g(a

j/bi)r

·

∏
k=1,··· ,n
k 6=j

(ga
q+1+j−k/bi )wk

)Mi,j .

Notice that the terms ga
q+1/bi which cannot be

simulated would all be cancelled out due to the
character that w · Mi = 0. To generate the second
part of SkS , B implicitly sets the value t ′ as

t ′ = r ′ + w1aq + w2aq−1 + · · · + wnaq−n+1

by defining

L ′ = gr
′
∏

i=1,··· ,n

(ga
q+1−i

)wi = gt
′

.

The elements Kt and {K ′x}x∈S could be generated
using r ′, t ′ in a similar way. Finally, B returns SkS .

• Decryption query: In this phase, B will answer the
decryption queries fromA. Given an attribute set S
and a ciphertext Ct, there two cases:
a) Case 1: S does not satisfy the challenge access

structure (M∗, ρ∗). B can firstly obtain the cor-
responding private key SkS . Then it uses the
SkS to decrypt the queried ciphertext as the
Dec algorithm does.

b) Case 2: S satisfies the challenge access struc-
ture (M∗, ρ∗). B cannot directly decrypt the
queried ciphertext using the corresponding
SkS . Besides, it has no authorization for
the Td. Suppose the submitted ciphertext is
Ct = (C1,C2,C3,C4,C5,C6). First of all,
the ciphertext validity should be verified as
follows.
B computes T = H2(C1,C2,C3,C6). Then,
it checks whether

e(C3, uT vC4w) = e(C5, g).

If the equation doesn’t hold, the system output
⊥; otherwise, B continue to check the follow-
ing equation:

T + C4xv + xw = 0.
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If it holds, B aborts and we denote this event
as E1; otherwise, B obtains the corresponding
Ĥ and m̂ using the similar method described in
the proof of OW-SAS-CCA security above.
B chooses a random element s′ ∈ Zp. Then it
computes

P1,h = g
−
Tyu+C4yv+yw
T+C4xv+xw

2 (uT vC4w)s
′

,

P2,h = g
−

1
T+C4xv+xw

2 gs
′

.

Then the message can be recovered as follows

Ĥ = C2 ·
e(C5,P2,h)
e(C3,P1,h)

= C2 · e(gas, (g2)−1)

= H1(m) · e(g2, h)s · e(gas, (g2)−1)

= H1(m).

If the submitted ciphertext Ct is valid and m is
the message encrypted in this ciphertext Ct, Ĥ
is the hash value of m. Then B computes

P1,m = g
−
Tyu+C4yv+yw
T+C4xv+xw

1 (uT vC4w)s
′

,

P2,m = g
−

1
T+C4xv+xw

1 gs
′

.

Then the message can be recovered as follows

m̂ = C1 ·
e(C5,P2,m)
e(C3,P1,m)

= C1 · e(gas, (g1)−1)

= m · e(g1, h)s · e(gas, (g1)−1)

= m.

Correctness of this process can be proven
in the same way described in the proof of
OW-SAS-CCA security above. If the submit-
ted ciphertext Ct is valid and m is the massage
encrypted in Ct, the message can be recovered
through this process. If the equation Ĥ =

H1(m̂) holds, B output m̂ to A.
3) Challenge: A randomly chooses two messages

m0,m1 ∈ M and sends them to B. Then B randomly
chooses a bit δ ∈ {0, 1} and generates the correspond-
ing challenge ciphertext Ct∗ = Enc(mδ) as follows:
Firstly, B computes

C∗1 = mδ · Z · e(gs, h)α
′

,

C∗2 = H1(mδ) · Z · e(gs, h)β
′

,

C∗3 = gs.

Secondly, B randomly chooses y′2, · · · , y
′
n ∈ Zp and

shares the secret using the vector ω = (s, sa+y′2, sa
2
+

y′3, · · · , sa
n−1
+ y′n). Then, B chooses random values

r ′1, · · · , r
′

` ∈ Zp. Besides, for 1 ≤ i ≤ n, we define Ai

as the set of all k 6= i where ρ(i) = ρ(k). B generates
C∗6 = {(ci, di)}1≤i≤` as follows:

ci = h
r ′i
ρ(i)

 ∏
j=2,··· ,n

(ga)M
∗
i,jy
′
j

 · (gbi·s)−zρ(i)
·

∏
k∈Ai

∏
j=1,··· ,n

(ga
j
·s·(bi/bk ))M

∗
k,j

 ,
di = g−r

′
i g−sbi .

Then, B computes T ∗ = H2(C∗1 ,C
∗

2 ,C
∗

3 ,C
∗

6 ) and sets

C∗4 = −
T ∗+xw
xv

,

C∗5 = (gs)T
∗yu+C∗4 yv+yw .

Finally, B returns Ct∗ = (C∗1 ,C
∗

2 ,C
∗

3 ,C
∗

4 ,C
∗

5 ,C
∗

6 )
to A.

4) Query Phase 2: In this phase, B answers Private
key query and Trapdoor query in the same way as
Query Phase 1. And B answers decryption query with
the following restriction:
a) If the submitted ciphertext is equal to the chal-

lenge ciphertext Ct∗, B returns ⊥.
b) If Ct = (C1,C2,C∗3 ,C

∗

4 ,C
∗

5 ,C
∗

6 ) 6= Ct∗ but
T = H2(C1,C2,C∗3 ,C

∗

6 ) = T ∗, which means
there exits a hash collision of hash function H2,
B aborts. We define this event as E2.

c) Otherwise, if the equation T + C4xv + xw = 0
holds where T is as described before, B aborts.
We define this event as E3.

5) Guess:A outputs a guess δ′ ∈ {0, 1}. B outputs b′ = 0
if δ′ = δ, indicating that Z = e(g, g)a

q+1s, and a
random bit b′ otherwise.

Analysis: In this part, we analyse the events that makes the
simulation fail or abort.
• The failures caused by hash functions: Firstly, we pay
our attention to the one-wayness ofH1. In the simulation
process, A has no authorization to query the trapdoor
for challenge access structure so that it cannot obtain the
hash value of challenge message H1(mδ). So adversary
successfully breaking one-wayness of H1 won’t reveal
any information of challenge message.
Then we turn to the collision resistance of hash func-
tion H2. When E2 occurs during the decryption queries
in Query Phase 2, there exits a hash collision that T =
H2(C1,C2,C∗3 ,C

∗

6 ) = T ∗ = H2(C∗1 ,C
∗

2 ,C
∗

3 ,C
∗

6 ).
We have

Pr[E2] ≤ εCR,

where εCR is the probability that A successfully breaks
the collision resistance of H2.

• The failures caused by simulation limits: During the
whole simulation process, some events will make it abort
in which B cannot give a logical answer to decryption
queries from A.
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E1 and E3 occur when the elements of queried cipher-
texts satisfy the relation: T + C4xv + xw = 0. Because
that element T depends on the submitted ciphertext and
xv, xw are fixed, the probabilities of E1 and E3 depend
on the randomness of C4 = r0 chosen from Zp. It means
that equation T +C4xv + xw happens with a probability
which is at most 1/p in one round query. We have

Pr[E1 ∨ E3] ≤ Pr[E1]+ Pr[E3] ≤ qD/p,

where qD meansA is allowed to issue Decryption query
for qD times.

We obtain the failure and abortion probability Pr[F] as

Pr[F] = Pr[E1 ∨ E2 ∨ E3] ≤ εCR + qD/p.

Belowwe analyze the probability thatB successfully guess
the value of b. IfZ = e(g, g)a

q+1s, the simulation provided by
B is perfect, and in view of A, the challenge ciphertext is the
same as a real ciphertext. We have that Pr[b′ = 0|b = 0] =
( 12 +AdvIND-SAS-CCA

A (k)) ·Pr[¬F]; otherwise, which means
Z is a random element of GT , the challenge ciphertext hides
the message perfectly, and the probability that A correctly
guesses the bit β is 1

2 . Thus, the probability that B correctly
guesses the bit b is (1− 1

2 ·Pr[¬F]), e.g. Pr[b
′
= 1|b = 1] =

1− 1
2 · Pr[¬F]. Therefore, we have the followings.

Pr[b′ = b]

= Pr[b′ = 0 ∧ b = 0]+ Pr[b′ = 1 ∧ b = 1]

=
1
2
(Pr[b′ = 0|b = 0]+ Pr[b′ = 1|b = 1])

=
1
2

(
(
1
2
+AdvIND-SAS-CCA

A (1k ))·Pr[¬F]+(1−
1
2
·Pr[¬F])

)
=

1
2
+

1
2
AdvIND-SAS-CCA

A (1k ) · Pr[¬F]

≥
1
2
+

1
2
AdvIND-SAS-CCA

A (1k ) · [1− (εCR + qD/p)],

where [1− (εCR + qD/p)] is a non-negligible probability.
From the probability analysis above, we know that ifA can

break the IND-SAS-CCA security of CP-ABEET scheme
with a non-negligible advantage, then B has a non-negligible
advantage in solving the decisional q-BDHE problem. This
completes the proof of Theorem 2.

VI. AN OUTSOURCED CONSTRUCTION IN THE
STANDARD MODEL
The construction in Section IV addresses the aforemen-
tioned problems, but if Dec and Test algorithms are exe-
cuted locally, the computational overhead is too high for
resource-constrained clients; if these algorithms are executed
by the server, there is a risk of data leakage.

To optimize the computation efficiency of our CP-ABEET
scheme, we give an improved construction calledOutsourced
CP-ABEET (OCP-ABEET) that can be proven secure in
standard model. We take advantage of outsourcing technique
whichwas firstly proposed byGreen et al. [25] and combine it
with above basic CP-ABEET scheme. This new construction

includes eight algorithms. Setup and Enc algorithms are
defined as the same with the former construction defined
in Section IV. KeyGen, Transform1, Transform2, Dec,
Trapdoor and Test algorithms are defined as follows.
• KeyGen(SP,Msk, S): The key generation algorithm
takes as input the system parameters SP , the master
secret key Msk and a set S of attributes. Then it chooses
random elements z, z′, t, t ′ ∈ Zp and computes:

SkZ =
(
z, z′

)
,

SkS =
(
Kd = hα/zgat/z,L = gt/z, {Kx = ht/zx }x∈S ,

Kt = hβ/z
′

gat
′/z′ ,L ′ = gt

′/z′ , {K ′x = ht
′/z′
x }x∈S

)
.

• Transform1(Ct,SkS ): Given a ciphertext Ct and a pri-
vate key SkS , it partially decrypt Ct by the recon-
struction property of LSSS. Suppose the attribute set S
can satisfy the access structure (M , ρ) of Ct. Let I ⊆
{1, 2, · · · , `} be defined as I = {i : ρ(i) ∈ S} where ρ
belongs to (M , ρ). We define the set {wi ∈ Zp}i∈I such
that if {λi} are valid shares of any secret s according to
M of (M , ρ), then we have

∑
i∈I wiλi = s. It computes

X = e(C3,Kd )/(
∏
i∈I

(e(ci,L)e(di,Kρ(i)))wi )

= e(g, h)αs/ze(g, g)ast/z/(
∏
i∈I

e(g, g)aλiwit/z)

= e(g, h)αs/z = e(g1, h)s/z,

X ′ = e(C3,Kt )/(
∏
i∈I

(e(ci,L ′)e(di,K ′ρ(i)))
wi )

= e(g, h)βs/z
′

e(g, g)ast
′/z′/(

∏
i∈I

e(g, g)aλiwit
′/z′ )

= e(g, h)βs/z
′

= e(g2, h)s/z
′

.

Then it outputs (X ,X ′).
• Dec(Ct,SkZ ,SkS ): The decryption algorithm com-
putes T ′ = H2(C1,C2,C3,C6), and check whether
e(C3, uT

′

vC4w) = e(C5, g). If the equation doesn’t hold,
output⊥; otherwise, it runs Transform1(Ct,SkS ) to get
(X ,X ′). Then it computes

Ĥ =
C2

(X ′)z′
and m̂ =

C1

(X )z
,

and outputs m̂ if the following equation hold:

Ĥ = H1(m̂).

• Trapdoor(SP,Msk, S): The trapdoor algorithm takes
as input the system parametersSP , themaster secret key
Msk and the set S of attributes. Then it chooses random
elements ẑ, t̂ ∈ Zp, computes and outputs trapdoor
(TdZ ,TdS ) as:

TdZ = ẑ,

TdS = (K̂ = hβ/ẑgat̂/ẑ, L̂ = gt̂/ẑ, {K̂x = ht̂/ẑx }x∈S ).

• Transform2(Ct,TdS ): It takes a ciphertextCt and a trap-
door TdS as input. Suppose the attribute set S can satisfy
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FIGURE 2. Flowchart of OCP-ABEET.

the access structure (M , ρ) of Ct. Let I ⊆ {1, 2, · · · , `}
be defined as I = {i : ρ(i) ∈ S} where ρ belongs to
(M , ρ). We define the set {wi ∈ Zp}i∈I such that if {λi}
are valid shares of any secret s according toM of (M , ρ),
then we have

∑
i∈I wiλi = s. Then it computes

X̂ = e(C3, K̂ )/(
∏
i∈I

(e(ci, L̂)e(di, K̂ρ(i)))wi )

= e(g, h)βs/ẑe(g, g)ast̂/ẑ/(
∏
i∈I

e(g, g)aλiwi t̂/ẑ)

= e(g, h)βs/ẑ = e(g2, h)s/ẑ.

• Test(CtA,TdZA ,TdSA ,CtB,TdZB ,TdSB ): It runs
Transform2(CtA,TdSA ) and Transform2(CtB,TdSB ) to
get X̂A and X̂B. Then it computes

HA =
C2A

(X̂A)TdZA
=

C2A

(X̂A)ẑA
,

HB =
C2B

(X̂B)TdZB
=

C2B

(X̂B)ẑB
.

Finally it outputs 1 if the equation HA = HB holds,
and 0 otherwise.

In our construction, users generate trapdoors based on their
attribute sets and send them to the outsourced server for trans-
forming ciphertexts. As a result, most of the computational
costs of DEC and TEST are transferred to the outsourced
server. Concretely, the main operations in Dec algorithm and
Test algorithm are split into two algorithms, Transform1
and Transform2, respectively, which are outsourced to the
third-party servers. After the outsourced server returns the
transformation result, the user can quickly complete the final
steps of decryption or equality test. It is ensured that the out-
sourced server does not learn information about themessages.
Figure 2 shows the outsourcing framework of CP-ABEET.

Our OCP-ABEET scheme also achieves OW-SAS-CCA
and IND-SAS-CCA security in standard model. The correct-
ness and security can be proven by combining corresponding
proofs of the CP-ABEET scheme above.

VII. EFFICIENCY EVALUATION
We compare our CP-ABEET scheme with some related
schemes in Table 1, in terms of computational complex-
ity, functional properties, assumptions, security level and
etc. In the comparison we mainly consider the dominant
computation, e.g. bilinear pairing evaluation and exponentia-
tion operation, in encryption, decryption and test algorithms.
The second to the fourth columns show the computation
costs of Enc, Dec and Test algorithms. The fifth column
indicates whether the scheme is attribute-based. The sixth
column shows the authorization type of each scheme. The
following two columns indicate the underlying assumptions
and security levels of the related schemes. The last column
showswhether the scheme is proven secure in ROM (Random
oracle model) or SM (Standard model).

From Table 1, we can know that our CP-ABEET and
OCP-ABEET schemes enjoy the highest level of security
guarantee among all the attribute-based encryption schemes
supporting equality test. And our OCP-ABEET scheme pro-
vides almost the best efficiency among all the ABEET
schemes.

To better show the practical performance of our new
CP-ABEET, we strictly simulated our scheme system and
made a practical comparison with the last CP-ABEET
[10] scheme which is proven secure in random oracle.
Wemainly used the Java Pairing-BasedCryptography (JPBC)
library and the Bouncycastle library to realize our system.
And all of these experiments were executed by Intel(R)
Core(TM) i5-4460 CPU @ 3.20GHz on Windows 7 64-bit
system with 8GB memory. We ran the complete system and
obtained the running time of main algorithms: KeyGen,
Enc, Dec and Test algorithms. To make the result more
universal and credible, we independently set the test times
as 500, 1000, 2000 and 4000. Figure 3(a), 3(b), 3(c),
3(d) show us that our CP-ABEET is more efficient than
scheme in [10] in Test algorithm, and the efficiency of
KeyGen, Enc and Dec algorithm is similar with that in [10].
As the number of tests increases, the running time increases
linearly.

To illustrate the efficiency of our OCP-ABEET scheme,
we also implemented it and compared the computational cost
between our first CP-ABEET scheme and our OCP-ABEET
scheme. As shown in Figure 4(a), 4(b), 4(c) and 4(d),
the black line represents the computational cost of our
OCP-ABEET scheme, the red line represents local com-
puting portion in our OCP-ABEET scheme and the blue
line represents outsourcing portion in our OCP-ABEET
scheme (mainly the computational cost of Transform1 and
Transform2 algorithms). To support outsourced comput-
ing, KeyGen algorithm of our OCP-ABEET scheme has
a slightly higher computational cost, while the two Enc
algorithms have equivalent computational cost. Surprisingly,
since most of the computations are outsourced to the out-
sourced server, the result of Dec algorithm and Test algo-
rithm can be obtained by performing simple calculation
locally. While ensuring security, it is convenient for devices
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TABLE 1. Performance comparison with related schemes.

FIGURE 3. Computational costs of KeyGen, Enc, Dec and Test algorithms in [10] and our scheme.

FIGURE 4. Computational costs of KeyGen, Enc, Dec and Test algorithms in our schemes.

with limited computing power, such as mobile phones, to exe-
cute our OCP-ABEET scheme.

VIII. CONCLUSION
In this paper, we propose a new construction of CP-ABEET
scheme which is proven secure in standard model. Our
CP-ABEET scheme supports flexible authorized equality test
on ciphertext. One-wayness is achieved if the adversary is
given trapdoor and indistinguishability is achieved if the
adversary is not given trapdoor. This scheme can be applied
to delete the flexible authorized deduplication on encrypted
data, which means users can optimize the storage space in
cloud by delegating their equality test. By the comparison
with related works, we achieve a more secure CP-ABEET
scheme in standard model. In addition, our OCP-ABEET

scheme in standard model is more efficient for users with low
computing capability and mobile devices.
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