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Abstract 

This Drumming Robot thesis demonstrates the design of a robot which can play 

drums in rhythm to an external audio source. The audio source can be either a pre-

recorded .wav file or a live sample .wav file from a microphone. The dominant beats-

per-minute (BPM) of the audio would be extracted and the robot would drum in time 

to the BPM. A Fourier Analysis-based BPM detection algorithm, developed by Eric 

Scheirer (Tempo and beat analysis of acoustical musical signals)i was adopted and 

implemented. In contrast to other popular algorithms, the main advantage of 

Scheirer’s algorithm is it has no prerequisite to decompose the audio information 

into notes beforehand and can therefore be automated. In contrast, the McKinney 

and Breebaart feature set detection and classification method has a result that 

typifies music genre into static features and is not suitable for real time control of a 

robot (Features for Audio and Music Classification)ii. A host computer inputs audio 

from the environment (via microphone) and extracts the BPM data with the Scheirer 

algorithm to be sent to a robot controller. A commercially available robot controller 

was used to control the Drumming Robot servo motors and to interface with the 

host. 

 The robot motion control task and the input audio BPM detection task are purposely 

separated in this implementation. One advantage is that each task could be 

developed independently. However, the main advantage of this approach is to create 

a generic interface between Input Logic and Robot Control functions, so each could 



ii 

be used independently for application to other robots or control systems. Extracted 

BPM data is useful not for just the Drumming Robot but for any robotic system that 

interacts in real time with the sound environment, such as dancing robots. By the 

same token, the Drumming Robot can be controlled by any BPM information source, 

if the control signals are compatible. 

The Robot Theater at Portland State University features animated robots with the 

goal of performing music and acting out scenes for the entertainment of the 

audience passing through the halls of the FAB building. The Robot Drummer idea was 

conceived following the construction of a Handshaking Robot class project involving 

the ‘DIM’ robot located in the PSU Robot Theater. By adding a second arm to the DIM 

torso and powering movement by servo motors and a robot controller, the motions 

of drumming could be performed for the Robot Theater. Audience members could 

play music, clap or otherwise make rhythmic sounds and a microphone would input 

the audio to be processed to control the motion of the Drumming Robot. 



iii 

Table of Contents 

Abstract ................................................................................................................................i 

List of Tables ........................................................................................................................ v 

List of Figures ...................................................................................................................... vi 

List of Equations ............................................................................................................... viii 

Chapter 1 – Introduction ..................................................................................................... 1 

Beat Detection Algorithm steps: ...................................................................................... 6 

Beat Detection Audio Input ................................................................................................. 7 

BPM Algorithm Steps ......................................................................................................... 10 

Step 1: Frequency Filterbank ......................................................................................... 10 

Step 2: Windowing and Envelope Extractor .................................................................. 13 

The Fourier Transform ................................................................................................... 19 

Steps 3 and 4– Differentiate and Rectify Signal ............................................................ 22 

Step 5 – Comb Filter ....................................................................................................... 25 

Chapter 2 – Host Side Software Design ............................................................................. 28 

Algorithm Evaluation and Optimization ........................................................................ 30 

Chapter 3 – Robot Design .................................................................................................. 38 

Robot Design – Software ............................................................................................... 38 



iv 

Robot Design – Servo Control ........................................................................................ 47 

Robot Design – Arms...................................................................................................... 52 

Chapter 4 – Testing and Implementation.......................................................................... 56 

Chapter 5 - Conclusion and Future Work .......................................................................... 59 

REFERENCES ....................................................................................................................... 63 

Appendices ........................................................................................................................ 65 

A. Bill of Materials ...................................................................................................... 65 

B. List of Tools, Programs and Methods .................................................................... 66 

C. Robot Controller Code ........................................................................................... 67 

D. Host MATLAB Code .............................................................................................. 126 



v 

List of Tables 

Table 1 – BPM Granularity for Parameter Testing ............................................................ 31 

Table 2 – Algorithm Parameter Set ................................................................................... 31 

Table 3 – Parameter Set: No Scaling ................................................................................. 33 

Table 4– Optimized Parameter Set................................................................................... 34 

Table 5 - Rice University ‘Beat This’ Project Algorithm Results ........................................ 36 

Table 6 – Loop Delay Calculation ....................................................................................... 46 

Table 7 – Orangutan Robot Controller Specifications ....................................................... 49 

Table 8 – Bill of Materials .................................................................................................. 65 



vi 

List of Figures 

Figure 1 – Beat Detection Diagram ..................................................................................... 5 

Figure 2 – Filterbank Bands 1, 3, 5 .................................................................................... 11 

Figure 3 – Filterbank Bands 2, 4, 6 .................................................................................... 12 

Figure 4 – Step 1: Frequency Filterbank ............................................................................ 13 

Figure 5 - Signal with no Spectral Leakage ........................................................................ 15 

Figure 6 - Signal with Spectral Leakage ............................................................................. 15 

Figure 7 – Hanning and Hamming Windowing Filters ....................................................... 16 

Figure 8 – Windowing Example in MATLAB ...................................................................... 17 

Figure 9 - Signal Amplitude and Envelope ......................................................................... 18 

Figure 10 – Signal Tempo (Frequency) vs. Tempo Energy (Power) ................................... 21 

Figure 11 – Step 2: Smoothing .......................................................................................... 22 

Figure 12 – Half-Wave Rectification .................................................................................. 24 

Figure 13 – Step 3: Differentiation and Step 4: Rectification ............................................ 24 

Figure 14 – Step 5: Comb Filter ......................................................................................... 25 

Figure 15 – Parameter Optimization Results .................................................................... 32 

Figure 16 – Atmel Studio ................................................................................................... 38 

Figure 17 – Robot Controller State Machine. .................................................................... 40 

Figure 18 - Improved BPM granularity. ............................................................................. 41 



vii 

Figure 19 - BPM State Machine Inputs and Outputs. ........................................................ 44 

Figure 20 – Robot Controller and Servo Motor ................................................................. 48 

Figure 21 – Servo Pulse Waveform. .................................................................................. 51 

Figure 22 – Robot Elbow Range of Motion ....................................................................... 53 

Figure 23 – Robot Shoulder Left/Right Motion ................................................................. 54 

Figure 24 – Robot Shoulder Up/Down Motion ................................................................. 55 

Figure 25 – Robot Arm Mounted on Robot Torso ............................................................. 55 

Figure 26 - Professor Marek Perkowski poses with the DIM robot .................................. 58 



viii 

List of Equations 

Equation 1 – Hanning Windowing Filter (Witte) ............................................................... 14 

Equation 2 – Fourier Transform ........................................................................................ 19 

Equation 3 – Discrete Fourier Transform .......................................................................... 20 

Equation 4 – FIR Filter Response ....................................................................................... 23 

Equation 5 – Magnitude Response .................................................................................... 26 

Equation 6 – Local Maxima Unity ...................................................................................... 26 

Equation 7 – Output Signal ................................................................................................ 27 

Equation 8 – BPM Granularity for [a, z] State Machine Implementation ......................... 30 

Equation 9 – Calculated Error ............................................................................................ 32 



1 

Chapter 1 – Introduction 

Music is composed of multiple acoustic elements which combine to be interpreted as 

tempo, melody, beat, etc. The human ear is very adept at psychoacoustic 

discernment of these elements in the music as a whole. Tempo includes 

counterpoint, grouping, and hierarchy which are subtly combined and interpreted by 

the human ear. In electronic decomposition of music or other repetitive audio, it is 

apparent that tempo is complex while the beat or pulse (BPM) is simple. ‘‘The 

experience of rhythm involves movement, regularity, grouping, and yet accentuation 

and differentiation’’ (Handel).iii Handel contends that beat in music is the “sense of 

equally spaced temporal units” and the repeating pattern is a candidate for 

frequency derived mathematical decomposition such as Fourier Transforms.  

Fourier Transforms can detect frequency power information to determine the beat of 

an audio sample. This decomposed audio beat information can be used to control 

mechanical output, such as control of the arm movements of the Drumming Robot. 

Edward Large and John Kolen refer to beat as "one of a series of perceived pulses 

marking subjectively equal units in the temporal continuum" and go on to say that 

"beat is a subjective experience" (Resonance and the Perception of Musical Meter).iv 

In his paper Eric Scheirer describes a beat detection algorithm which is effective in 

determining the BPM of an audio sample (Tempo and beat analysis of acoustical 

musical signals).v The use of Fourier Transforms is effective for immediate analysis of 



2 

BPM information, allowing near-real time calculation. Fourier Transforms are 

elaborated in the Algorithm section. 

Other methods exist for determining the beat (and sometimes tempo) of a musical 

signal, of varying complexities and effectiveness. Povel and Essens use the concept of 

an internal clock in the listener and accent distribution matching in the input signal to 

perceive temporal patterns (Perception of Temporal Patterns).vi Large and Kolen 

employ oscillatory resonance calculations to an input signal. Response to phase and 

period is tracked in a filtered form of phase-lock loop. Valtino et. al. use filter banks 

to detect beat in ECG signals (ECG Beat Detection Using Filterbanks),vii and while 

Scheirer uses filter banks in his algorithm, it is only to enhance the Fourier Transform 

+ Comb Filter method employed. This previous work of Sheirer is elaborated on and

continued with in this thesis. 

For this Drumming Robot thesis, the Scheirer Beat Detection algorithm is 

implemented and explored for use in controlling the Drumming Robot. The program 

variables were parameterized using a range of inputs to evaluate the algorithm. A 

more detailed description and results of experiments will be presented in Chapter 2. 

By testing multiple parameter combinations, it was possible to optimize the accuracy 

and speed of the algorithm resulting in improved performance quality for the 

audience. By converting the input signal to the Frequency Domain using the Fourier 

Transform, complex convolution operations are reduced to simple multiplication 

operations. Input signals are multiplied in the Frequency Domain with known Comb 
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Filter frequencies to observe the result. This Scheirer Algorithm method is much 

simpler than the other beat detection methods mentioned above and is employed in 

this thesis. 

Again, for this thesis the logic task of beat detection and the task of robot control 

were separated. A host Input Logic system which extracts and sends BPM data over a 

communication port does not need to know the configuration of the robot which 

implements the drumming motion. A drumming robot listening to a communication 

port for BPM audio control information does not need to know how the BPM 

information is obtained. It only cares about the data and is responsible for 

implementing the resulting BPM-controlled motion. The design and test of such a 

Logic-Control system is thereby simplified. The host Input Logic system is only 

required to accurately extract beat information and send the control data to the 

Robot Controller. 

The innovation is in the application of the BPM information once detected by the 

host system. My contribution is in separating the BPM detection from robot control. 

With my method, any robot could use the host BPM information for a variety of 

unknown tasks beyond drumming; for instance light controllers, stage props, or other 

robots that can implement BPM data. The Robot Control system only needs to be 

able to input the BPM data and accurately implement the drumming or other desired 

actions. Any input, if it is in the correct defined serial format as described in the 
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Robot Control section, can be used with this drumming robot. This includes other 

BPM detection methods approaching real-time data input. 

A drumming robot preferably exhibits human-like motion. As part of my work for this 

thesis it was observed that articulating lamp sections resemble jointed limbs. This 

humanoid resemblance to and the motion range of lamp arms led to my utilizing 

these items. Two jointed lamps were dismantled so that the remaining portion 

hinged like an elbow and swivel connectors were added to the top of the robot arm 

to simulate shoulder rotation and swing. The term “jointed robots” can be applied to 

the assembled robots. See the Robot Design - Arms section for images and details of 

construction and operation. This construction resulted in three degrees of freedom 

for each arm, or six degrees of freedom total. The overall cost was very low (a few 

hundred dollars, see the Bill of Materials section) when compared with commercial 

robots priced in the thousands of dollars. 
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The flow diagram shown in Figure 1 describes the steps used in the Scheirer Beat 

Detection Algorithm. Pseudocode of the operation is followed by a detailed 

explanation of the algorithm steps. 

Figure 1 – Beat Detection Diagram. Showing the data processing flow of an input signal through the 

algorithm (Rice) 
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Beat Detection Algorithm steps: 

o Frequency Filter Bank

 Split frequency range of sample into smaller segments

o Envelope Extraction (Fourier Transform)

 Frequency power is extracted for later comb filter comparison

o Differentiation

 Smoothing of extracted signal

 This improves the accuracy of the results

o Rectification

 Isolation of desired frequency information

o Multiple Comb Filters (Resonant Filterbank)

 Match Step 2 Fourier frequency power to a series of known

comb filter frequencies

 Peak-Picking

 Best Fit to Comb Filter comparison is our best candidate for a

matched BPM output
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Beat Detection Audio Input 

The host-side processing of audio for BPM detection begins with a choice of inputs: 

microphone samples or stored .wav files. MATLAB offers the benefits of built-in 

sound device input functions which access the microphone and sound card on the 

host computer. With MATLAB there is also available built-in matrix manipulation for 

audio data, Fourier processing functions, and serial connection functions. All these 

features were implemented in the BPM algorithm. The host is entirely responsible for 

the algorithm which extracts the BPM from audio input. Then the extracted 

information is sent over a serial connection to the robot controller. In this thesis only 

MATLAB is used to perform the host-side audio input, BPM detection and serial 

output operations. 

For live sound input, a signal from a microphone on the host computer is sampled 

and the corresponding digital data stored as a single channel 8000 Hz 8-bit array in 

MATLAB. Stored .wav files (for example, music or click tracks) are digitized using the 

center of the file. This is accomplished by dividing the number of samples in the file 

by 2 to find the center of the song or music file and sampling before and after this 

center point. This eliminates intro and outro portions of the sample file and focuses 

on the main section. Resulting data arrays both have stored frequency information 

that can be varied as a parameter from 2048 to 16384 samples in powers of 2, which 

is the input format required for Fourier Transforms. Varying this power of 2 

parameter affects the accuracy and the processing time of the algorithm. While it is 
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possible to analyze input data that is not a power of 2, there is little energy 

information beyond the last power of 2 and is therefore inefficient.  

 There is greater accuracy when using a higher power of 2 and a larger input sample 

for the Fourier Transform processing. However, the tradeoff for using a larger sample 

is a resulting increased processing time and output result lag. The implementation for 

this thesis utilizes 10 seconds of audio sampling data in the Beat Detection algorithm. 

Any added time due to processing high sample rate input will increase the lag from 

audio input to Robot Drum output. As discussed in the Algorithm Evaluation and 

Optimization section, the target processing time is less than 5 seconds with a BPM 

error of less than 5 percent. This places the overall algorithm response time to under 

15 seconds. 

Below is pseudo code for implementing the Beat Detection Algorithm in MATLAB: 

1) Input audio from file or microphone

a. .wav file or 10 seconds of microphone sample

b. Sample is digitized and stored for BPM processing

2) Follow BPM Algorithm

a. Scripts perform the BPM Algorithm Steps

i. Result is BPM value

3) Send BPM control value using Serial connection to Robot Controller
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a. Controller receives input

b. Change speed and tempo of robot drumming arms according to inputs

A full printout of MATLAB scripts and Atmel C code is included in Appendix B. The 

input file to the algorithm is the digital audio matrix. 
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BPM Algorithm Steps 

Step 1: Frequency Filterbank 

The input audio sample is split into several frequency ranges, and each range is 

passed through the BPM algorithm. This is targeted for audio samples such as music, 

which varies in frequency range according to the variety of instruments used. 

Different instruments use different frequency bands, and a frequency Filterbank 

allows for instruments in these varying frequencies to be detected in the BPM 

algorithm. Most rhythm instruments such as drums or bass use a lower frequency 

spectrum (0-200 Hz). Some audio samples exhibit only a small frequency range. An 

example of these audio samples is so-called ‘click track’ signal files. Click tracks are 

audio files created to have a specific BPM by repeating a pulse signal for the duration 

of the file. 

For this algorithm the Filterbank split is: 

0-200Hz, 200-400Hz, 400-800Hz, 800-1600Hz, 1600-3200Hz

Each passband filter is implemented using a sixth-order elliptical filter and cuts off 

frequencies below and above the desired range. Active filters such as elliptical 

frequency filters offer sharp defined ranges of filtering (Witte). By allowing only 

frequencies in a specific range to “pass” this type of filter has become known as a 

band-pass or passband filter. The passband filter implemented in this thesis results in 
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3dB of ripple in the passband and 40 dB of rejection in the stopband, with sharply 

defined ranges for each frequency band. This low-pass characteristic, when 

combined with a half-Hanning window (see the Windowing algorithm step), results in 

a -15 dB response with a 6-dB per octave roll off. The filter is implemented with 

MATLAB functions using a digitized input sample. Most BPM information for audio 

tracks is in the 0-200Hz band (correlating with rhythm instruments such as drums and 

bass). Melody, vocal and harmony elements in music tend to be in the higher band 

frequencies but are also less likely to follow the beat as closely (Scheirer). In Figure 2 

and Figure 3 are plots of the bands, separated to show the drop-offs: 

Figure 2 – Filterbank Bands 1, 3, 5 (Scheirer) 

Figure 2 shows Bands 1, 3, 5 of the 6 band Filterbank. Bands 2, 4, 6 are graphed 

separately in Figure 3 allowing each band to be clearly distinguished for Magnitude 

Response (dB) characteristics. 
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Figure 3 – Filterbank Bands 2, 4, 6 (Scheirer) 

Figure 4 shows an input signal in the Time Domain in the top frame. The bottom 

frame shows the same signal after using the Fourier Transform to convert it to the 

Frequency Domain, showing the frequency and magnitude response.  
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Figure 4 – Step 1: Frequency Filterbank. Algorithm step showing the output of a sample after 

passing through the filter (Rice) 

Step 2: Windowing and Envelope Extractor 

After using the filterbank the signal is transformed using a Hanning Window to clean 

up the frequency range and improve signal clarity. Windowing the input signal in the 

Time Domain before processing in the Frequency Domain can improve the accuracy 

of the resulting signal as shown in Equation 1. Time record samples are weighted by 
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Equation 1 – Hanning Windowing Filter (Witte) 

where n = bin number and N = number of bins. Bin refers to integer values 

corresponding to digitized frequency samples from the input source. 

An input signal may have extraneous frequencies that are outside the desired 

periodic frame if a waveform does not fit precisely in a time period. Leakage in the 

frequency domain can occur, the transient noise of which can negatively impact the 

accuracy of Fourier analysis. By specifying a period ‘window’ much of the extra 

frequency information (acting as noise) can be trimmed off.  In Figure 5 we see the 

Fourier result of a signal which has had windowing applied (Witte). The frequency 

and power representation is clearly represented with no spectral leakage of other 

frequencies outside the main frequency spike. Figure 6 shows a signal which was not 

windowed. The spectral leakage is apparent after applying the Fourier transform, in 

the form of power and frequency ‘noise’ around the signal. 
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Figure 5 - Signal with no Spectral Leakage. Fourier analysis shows a discrete Frequency/Power 

spectrum (Witte). This signal is the desired result of a clean signal after windowing has been 

applied. 

Figure 6 - Signal with Spectral Leakage. Note the frequency elements around the original signal 

which act as noise in this Fourier analysis of the original signal (Witte). 

Two of the most popular windowing functions are Hamming and Hanning (Hann) 

windows. The main difference between these methods is how sharply the resulting 

signal slope changes when the input signal is multiplied by the windowing function. 
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Hamming windowing offers a sharper center frequency; Hanning windowing reduces 

the side lobe amplitude away from the center frequency (see Figure 7). 

For BPM detection as presented in this thesis, it is desired to lower the non-center 

frequency amplitude. The subsequent effect is to improve the result when later 

multiplying the signal with comb filter signals. Therefore, because it suppresses lower 

and higher frequencies, the Hanning window was chosen as a better implementation: 

Figure 7 – Hanning and Hamming Windowing Filters (National Instruments) 

Windowing limits the inclusion of partial-period waves which can skew the FFT. This 

is also known as ‘spectral leakage’. With windowing the signal is zero outside a 

chosen interval. This improves the result in the desired range of the FFT. Using the 

MATLAB Window Visualization Tool, the effects of windowing on a signal can be 

observed by amplifying the center frequency and suppressing the lower and higher 

frequency response. This is shown with an example in Figure 8 of a generated signal 
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using N = 64. On the left is shown a windowed input pulse in the Time domain and its 

Frequency domain representation on the right. 

Figure 8 – Windowing Example in MATLAB 

In the next step an Envelope Extractor is used to filter each of the signal segments. 

The audio sample segments are converted from the Time Domain to the Frequency 

Domain using a Fast Fourier Transform (FFT) derived formula. Since the samples are 

already in digital form, a Discrete Fourier Transform (DFT) is performed. The Fourier 

Transform separates the frequency and magnitude components of the signal. In the 

Time Domain the signal would be convolved to extract the audio input data, but this 

is inefficient since the invention of the FFT. Convolving a signal in the Time Domain 

corresponds to multiplication in the Frequency Domain. 
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Converting the sample to the Frequency Domain and multiplying the signals is the 

same operation but much simpler to perform (and faster, which is always a 

consideration for real-time signal processing calculations).  Without first converting 

the signal from the Time Domain to the Frequency Domain using the Fourier 

Transform, the signal must be convolved to extract the frequency information. 

Convolving a signal was once faster than converting the signals to the Frequency 

Domain using DFT, multiplying them, and converting back using an inverse DFT. 

However, with the advent of FFT in 1965 convolving was the slower method (Smith). 

Figure 9 shows an example of an input signal before Envelope Filtering (left) and after 

(right); notice that the data shape is retained, duplicated signal information is 

removed, and noise is reduced: 

Figure 9 - Signal Amplitude and Envelope (Scheirer) 
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The Fourier Transform 

The Fourier Transform greatly simplifies Signal processing by performing these 

complex Time Domain operations in the Frequency Domain. Fast Fourier Transform 

operations are faster than convolving in the Time Domain, even with the DFT 

conversion operations into and back out of the Frequency Domain. The transformed 

signal is then converted back to Time Domain using an inverse Fourier Transform. 

Converting a signal from the Time Domain to the Frequency Domain is performed 

mathematically with the Fourier Transform Pair where X(f) is the Frequency Domain 

signal and x(t) is the Time Domain signal as shown in Equation 2. Note that the 

algorithm used in this Thesis does not convert the signal back into the Time Domain; 

once the signal is multiplied with the comb filter and the result captured, the original 

signal is discarded: 

Equation 2 – Fourier Transform 

It is assumed that the input signal x(t) is periodic when considered from negative 

infinity to positive infinity. For digital audio sampling in this thesis our sound sample 
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is not infinite but finite. The sample is already stored as discrete data points, so it is 

desired to use the Discrete Fourier Transform for digital signals as shown in Equation 

3: 

Equation 3 – Discrete Fourier Transform 

After the original signal is converted to the Frequency Domain by using the Fourier 

Transform the data is represented in a power-frequency spectrum as a measure of 

power for the range of frequencies in the 60-120 BPM range. The BPM Algorithm 

assumes that the beat frequency of a music sample corresponds with FFT frequencies 

that have the most power. In a later stage of the algorithm, comb filters with known 

frequencies are used to determine the best BPM candidate. 

In Figure 10 is an example of an FFT of an input signal, showing highest frequency 

power at 150 BPM and a slightly less power peak at 75 BPM.  
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Figure 10 – Signal Tempo (Frequency) vs. Tempo Energy (Power) - (Scheirer) 

This harmonic effect can be expected at multiples of BPM values for given audio 

input samples. In this thesis it was decided to limit the BPM range from 60 to 120 

BPM because most music samples are in this range. The example in Figure 10 would 

be considered to be 75 BPM even though it has slightly less power than the harmonic 

at 150 BPM. 
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Figure 11 – Step 2: Smoothing (Rice) 

Figure 11 shows the input signal after smoothing has been performed using a 

Hanning Window and Full-Wave Rectification (see Step 4 of algorithm). 

Steps 3 and 4– Differentiate and Rectify Signal 

We now implement differentiation and rectification to process the signal for 

improved accuracy of the final BPM determination. The differential of each digital 

sample to the sample next to it is calculated. The signal is retained only in the case of 
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positive results, giving a half-wave rectified output signal (Figure 12). Differentiating a 

signal in MATLAB is accomplished in Equation 4 with the diff function, which is a first 

order finite impulse response (FIR) filter with a response of: 

Equation 4 – FIR Filter Response 

The input signal is processed with a half-wave rectify step. This helps accentuate the 

sound changes in the signal, which corresponds to beats. Rectifying a signal is trivial 

in MATLAB. For half-wave processing the positive wave portion is kept and the 

negative wave set to zero. In MATLAB the difference from one sample to the next of 

the input signal is derived. The result is retained only if the difference is positive, and 

the signal is now half-wave rectified. Figure 12 below illustrates the input sine wave 

(red) and the resulting half-wave output (blue): 
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Figure 12 – Half-Wave Rectification (Analog Devices) 

Next is a MATLAB example of the input signal which has been differentiated and then 

half-wave rectified.  

Figure 13 – Step 3: Differentiation and Step 4: Rectification (Rice) 
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In Figure 13 we can see that the higher power peaks are isolated, allowing for better 

accuracy when using comb filters in the next step. The comb filter step gives a 

determination of the best-fit BPM of the input signal (Figure 14). 

Step 5 – Comb Filter 

Figure 14 – Step 5: Comb Filter (Rice) 

The final algorithm step determines the best estimate of BPM for an input signal. 

Convolution of the signal in the Time Domain with successive comb filters of 

increasing, known BPM values results in power products of the signal and comb 

filters. The best fit BPM is simply the product that has the highest power product. 

Derivation of convolution is complex in the Time Domain, which is why the signal is 
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converted to the Frequency Domain using the FFT, changing the convolution 

operation to a simple multiplication operation.  

In Step 2 the Beat Detection Algorithm the Fourier Transform of the signal was 

derived, resulting in a power spike at one or more frequencies, according to the 

frequency energy. This is multiplied by comb filters of increasing BPM. A Comb Filter 

(Equation 5) is used to find tempo maxima. For delay T and gain α the magnitude 

response is 

Equation 5 – Magnitude Response 

Local maxima are wherever 𝛼𝑒−𝑗𝜔𝑇 is near 1 at the Tth roots of unity, expressed in 

Equation 6 as 

Equation 6 – Local Maxima Unity 

If we stimulate a comb filter with delay T and gain α with a right-sided pulse train of 

height A and period k we get reinforcement (resonance) if T=k. Let 𝑥𝑡 and 𝑦𝑡 be the 

input and output signals at time t and signal α then Equation 7 is written as 
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Equation 7 – Output Signal 

For our purposes, if a comb filter energy response is higher than a previous ‘best fit’ 

comb filter (when compared to the input sample) we discard the previous result and 

keep the new comb filter as our ‘best fit’. This final value is our BPM determination 

and the Beat Detection Algorithm is complete. Next is a discussion of implementing 

the algorithm in software. 
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Chapter 2 – Host Side Software Design 

The Scheier BPM Algorithm was implemented on the host using MATLAB scripts. A 

group from Rice University developed a related project to detect the BPM from input 

files, and the code for this thesis uses core functions to perform the BPM evaluation 

(Beat This, Rice University). Due to its solid support of matrix manipulation (useful for 

signal processing) MATLAB was chosen for developing the host-side processing of the 

Beat Detection Algorithm. MATLAB also offers built in functions for accessing audio 

input using computer microphones which was a core goal of this thesis for use in the 

PSU Robot Theater. MATLAB also has functions for establishing serial communication 

links. The host provides the BPM detection logic and uses MATLAB serial 

communication to send the robot controller BPM information for control of the 

drumming arms. 

In the thesis planning stages the decision was made to develop the host BPM 

detection feature separately from the Robot Controller development. This decision 

was made in part because the host was developed using MATLAB scripts but the 

Orangutan Robot Controller is developed in C code with the Atmel Studio. The major 

benefit, however, of separating the host and controller by a serial connection is that 

each can be used in a modular ‘black box’ scenario. The Robot Controller is agnostic 

to the method used to extract the BPM information from an audio source and only 

listens to the coded control byte information provided by the serial input. Similarly, 

the host sends the BPM control information over the serial output to the Robot 
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Controller but the control bytes could be used by any end device which is connected. 

This allows for the Robot Theater to control the BPM of the Drumming Robot with 

any BPM detection method or desired control. 

The Beat Detection Algorithm steps are implemented in several corresponding 

MATLAB files, with a main script calling the others. This is all wrapped in a user input 

script that establishes a serial connection and determines whether the audio source 

is from a file or the input will be from the system microphone. In the microphone 

input mode the microphone audio input is processed for BPM information, the 

control byte sent over the serial connection, and then loops back to repeat these two 

steps until the user exits the MATLAB script. In this way the Robot Controller is 

continually receiving the most current BPM information available to the microphone. 

The byte value of a-z which is sent to the Robot Controller over the serial connection 

corresponds to the output of the BPM algorithm. 

The MATLAB code describes the user interface for calling the Scheirer BPM Algorithm 

functions and calls the BPM functions in MATLAB with the audio data stored in a 

matrix. This audio data is passed from function to function in the BPM algorithm until 

the output result is an integer value from 60-120. The wrapper code then sends a 

control byte of a-z over the serial connection, to be handled by the Robot Controller 

(see Chapter 4). Since the BPM range in this thesis is 60-120 inclusive (61 BPM values) 

and there are 25 control bytes (a-y, z is only used as a PAUSE command) the 

granularity of BPM accuracy is calculated in Equation 8 as 
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Equation 8 – BPM Granularity for [a, z] State Machine Implementation 

Algorithm Evaluation and Optimization 

Once the software was working it was important to optimize the BPM function. The 

performance of the beat detection algorithm varies with the given parameter set. 

Two goals were determined to be essential for this thesis: BPM accuracy, as 

determined by percent error deviation from a known BPM; and time, as determined 

from when an audio sample was entered and the resultant BPM value. This thesis 

utilizes MATLAB to input the audio, calculate the BPM value, and send the data over 

a serial connection to the Orangutan robot controller. A set of ‘click tracks’ were 

created using Audacity with known BPM values. See Appendices for tools and 

programs used. The range of 60-120 BPM was included, in 5 BPM granularity, and a 

few outlier BPMs were added to test robustness. The set is listed in Table 1: 
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Beat: 
35 

BPM 

55 

BPM 

60 

BPM 

65 

BPM 

70 

BPM 

75 

BPM 

80 

BPM 

85 

BPM 

90 

BPM 

95 

BPM 

100 

BPM 

105 

BPM 

110 

BPM 

115 

BPM 

120 

BPM 

125 

BPM 

145 

BPM 

Table 1 – BPM Granularity for Parameter Testing. Click Tracks were created for each BPM value for 

use in testing. 

For each set, parameters were varied and the resultant time per BPM and averaged 

error from the known BPM were measured and graphed. Generic parameters used 

are listed in Table 2: 

Range 

Band Limits None to [0 200 400 800 1600 3200] 

Sample Rate [2048, 4096, 8192, 16384] 

Scaling [0.75, 1.0, 1.25, 1.5] 

Table 2 – Algorithm Parameter Set. Variables were modified for combinations of values and the 

results were graphed for analysis. 

This experiment resulted in 20 different Time vs. Error data points. These were 

graphed for comparison in Figure 15. The goal for calculation time was to be under 

10 seconds, and for error it was less than 10% as in Equation 9: 
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Equation 9 – Calculated Error 

Figure 15 – Parameter Optimization Results. Allows for clear interpretation of results and best 

combination of speed and error. 

With the dual goals of less than 5 seconds processing and less than 5% error the 

results have been color coded in the tables. Looking at the graph in Figure 15, the 
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data point with the best result and using a filterbank was with 6.6 seconds calculation 

time and 6.18% average error for the BPM as presented in Table 3. Red results show 

both goals have been exceeded and green indicates both goals have been met. The 

red color for both goals shows the result out of range with the default parameters. 

(6.6s, 6.18%) Range 

Band Limits 

None to [0 200 400 800 1600 

3200] 

Sample Rate [2048, 4096, 8192, 16384] 

Scaling [0.75, 1.0, 1.25, 1.5] 

Table 3 – Parameter Set: No Scaling. This run used filterbanks and a low sampling rate of 4096 but 

omitted the scaling parameter. Results of (6.6s, 6.18% error) are outside the speed and error targets 

of this thesis. 

Using the parameter values in Table 4 as the final parameter set, we can be confident 

that our input algorithm is both fast and accurate. This result highlights 4.5 seconds 

calculation time and 4.51% average error for the BPM were within our error and time 

goals. This data point is illustrated in Table 4. This parameter set surprisingly 

eliminates a major feature of the Handel algorithm, which is the splitting up of the 

band into smaller band limits. Rather, having a single Band Limit produced more 
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accurate results. This parameter set meets our time and error goals, while using no 

band limits (per the Handel Algorithm), medium-high sample rate and 1.5 scaling. 

(4.5s, 4.51%) Range 

Band Limits 

None to [0 200 400 800 1600 

3200] 

Sample Rate [2048, 4096, 8192, 16384] 

Scaling [0.75, 1.0, 1.25, 1.5] 

Table 4 – Optimized Parameter Set. Surprising that omitting a main feature of the Scheirer 

algorithm, the filterbank, contributed to the best result of calculation time and error. 

The time and error results for the (6.6s, 6.18% error) parameter set in Table 3 are 

near to the goals of this thesis. However, for the operation of the robot speed and 

accuracy are desired, and our goal is less than 5 seconds and 5% error. Given this 

restriction, the parameter configuration used will be the (4.5s, 4.51% error) 

parameter result from Table 4. Using a wide range of parameter variations and 

combinations, along with graph decomposition, has enabled a comparator scale for 

choosing the best performing program tuning. Again, by performing this analysis we 

have the unexpected conclusion that a key part of Scheirer’s algorithm, splitting the 

input signal into multiple frequency bands, was not present in the best performing 
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parameter configuration. Next we will compare my results with those in Table 5 from 

the Rice group which did not use parameterization. 

Song 

Human-

Detected 

Tempo 

(BPM) 

Machine-

Detected 

Tempo 

(BPM) 

Harmonics-

Normalized 

Tempo 

(BPM) 

Error (%) 

100*abs(exp. –

meas.)/meas. 

Beverly Hills Cop 

Theme 
119 80.06 80.06 48.64 

Lil Jon - Bia Bia 78 59.51 59.51 31.07 

Venga Boys - Boom 139 140.16 140.16 0.83 

Corelli 91 185.98 92.99 2.14 

Copland - Fanfare 

for the Common 

Man 

118 118.13 118.13 0.11 

Green Acres Theme 119 62.68 125.36 5.07 

Stan Getz - Girl 

from Ipanema 
137 136.73 136.73 0.20 
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Will Smith - Getting 

Jiggy With It 
110 109.5 109.5 0.46 

Jurassic Park 

Theme 
110 109.89 109.89 0.10 

Green Day - 

Longview 
152 77.67 155.34 2.15 

Limp Bizkit - Rollin' 185 186.19 186.19 0.64 

Table 5 - Rice University ‘Beat This’ Project Algorithm Results. Right column Error was added to 

allow comparison with Beat Detection Algorithm performance. Rice used subjects to determine 

BPM song values which were compared to machine-detected outputs. Many Rice results are 

comparable to those of this thesis but the first two have sizable detection errors. 

A comparison can be made with the results from Table 3, which shows my Beat 

Detection optimized results for this thesis are within the 5% error and 5 second 

calculation goal. Parameterized input variables in multiple runs with graphed results 

clearly highlighted the best combinations (Figure 15). Results from the Rice 'Beat 

This’ project are shown in Table 5. The Rice authors estimated the BPM of various 

popular songs and used them as inputs to their BPM algorithm. Their results vary 

from 0.10% to 48.64% error and no mention is made regarding calculation time. 
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Disregarding the large errors of 31.07% and 48.64% their results are within the range 

of the optimized results of this thesis from Table 3. This is perhaps not a surprise 

given that the same code base is derived from Rice for this thesis. Rice was not 

calculating BPM with the goal of real-time or near-real-time operation but rather for 

a static output file. The Rice results are therefore missing the constraint of optimizing 

for speed of calculation time. Also note that the samples used in this thesis were of 

known BPM from audio click tracks and were not required to be human-detected as 

the samples were by the authors of the Rice project. 
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Chapter 3 – Robot Design 

Figure 16 – Atmel Studio 

Robot Design – Software 

The Orangutan Robot Controller is designed to be compatible with Atmel Studio 

Development Software, a free development program available for download via links 

from the www.pololu.com website. After installing the program and starting a new 

Atmel project the desired target device is chosen (Orangutan with the ATMega1284P 

processor in this case) and a C programming environment is opened. Many sample 

Atmel software projects are available for controlling the features of the Orangutan 

robot controller, as well as the rich API features available in the project libraries. For 
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this thesis the Servo, LED, LCD and Serial sample Atmel projects were extremely 

useful as code references. 

For the robot controller facet of this thesis, a looping program initialized the servos, 

serial interface, and LCD display, then set the arms to drum in 60 BPM. Button inputs 

allowed for increase or decrease of BPM. The Orangutan continually monitored the 

serial bus for byte inputs of [0, 9] corresponding to BPM granularity of 6 BPM within 

60-120 BPM with 10 states. The final design used bytes [a, z] resulting in an improved

2-3 BPM granularity. This software state machine controlled the output of the BPM in

the code running on the robot controller for drumming. Buttons can only increment 

or decrement states sequentially from 60 to 120 BPM by levels of granularity. A serial 

input immediately changes the Drumming Robot to the desired BPM mode. Figure 17 

demonstrates a state machine diagram of the initial design showing the button and 

serial inputs, as well as the BPM delay and LCD output. 
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Figure 17 – Robot Controller State Machine. In this initial design, ten states allow for granularity of 6 

BPM. 

Note that this state machine in the robot controller code has been updated to use a-z 

inputs (z is used for a ‘pause’ feature) instead of the 0-9 byte inputs. This allows for 

better granularity of BPM accuracy with 25 divisions between 60-120 BPM rather 

than the original 10 divisions. The previous implementation could result in BPM 

inaccuracy in implementing the serial byte input by as much as 6 BPM due to my 

designed granularity limitation. With the improved a-z implementation the maximum 

inaccuracy was reduced to 2-3 BPM due to the finer divisions between BPM state 

machine levels. An updated flow chart highlighting the design change is illustrated in 

Figure 18. 
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Figure 18 - Improved BPM granularity. The previous implementation used bytes [0, 9] for ten 

possible outputs of BPM. Using [a, z] allows for twenty-five possible BPM outputs with the ‘z’ byte 

(not shown) used for pause/resume. 
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The robot controller program is designed to capture user BPM serial input for setting 

the state machine to the target BPM. This design is implemented in a framework 

similar to many other microcontrollers which target real-time operation. This runs in 

a loop as described in pseudocode below and will be fully explained later. 

Orangutan Robot Controller Pseudocode 

1) Check serial input

a. If serial byte input of ‘a’-‘z’ detected

i. Set state of state machine to BPM value according to serial

input

ii. Use LCD to notify user of serial character detected

2) Check button input

a. If Button1, increment state

b. Else if Button3, decrement state

i. Set state

3) Perform delay for current BPM state

4) Output LCD and LED information regarding BPM and mode
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The serial communication from the host-side BPM detection computer and the robot 

controller is bidirectional. Pressing the middle button on the Orangutan sends a byte 

string message of “Robots Rule” back to the host. A simple feedback operation of 

sending a copy of each received control byte allows the host to verify that the 

Orangutan has the correct byte. Noise on the serial line could lead to incorrectly 

received byte values and thereby incorrect BPM states. To prevent this occurrence a 

code is sent from the host before each control byte. This code is three colons sent 

sequentially then the control byte immediately after. The robot controller code 

identifies and counts the colons as received and only changes the BPM mode after 

successfully receiving the triple-colon code. 

The robot controller code instantiates a state machine to save the BPM mode during 

each loop of the program. Byte characters are input over the serial connection and 

the BPM state is changed to the appropriate value. Also input to the BPM state 

machine is the input information from the physical buttons on the robot controller. 

While the serial bytes jump to the appropriate state based on the a-z values, physical 

buttons (UP, DOWN) move the BPM state incrementally up or down with a floor of 

60 BPM and a ceiling of 120 BPM. Outputs of the BPM state machine are servo 

positions for the arms (up, down), LCD output to the display on the robot controller, 

and the delay value for the program loop to control the BPM cadence of the servo 

arms. See Figure 19 for details. 
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Figure 19 - BPM State Machine Inputs and Outputs. The left columns show the input byte and 

corresponding result for the controller state machine. The right columns show the manual button 

inputs as well as the outputs to the robot controller for each state. 

It is also possible to send other information such as servo position, servo speed, loop 

delay and other desired values using the serial connection. This is not currently 

implemented. The serial connection is used only for control bytes and to program the 

robot controller.  Table 6 shows the input bytes, Robot Controller states and the 

necessary delay needed per loop for the desired BPM cadence. 
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Byte 

Input 

S.M.

Mode 

Effective 

BPM 

Loop 

Delay(ms) 

a 1 60 500 

b 2 62 484 

c 3 65 462 

d 4 68 441 

e 5 70 429 

f 6 72 417 

g 7 75 400 

h 8 78 385 

i 9 80 375 

j 10 82 366 

k 11 85 353 

l 12 88 341 

m 13 90 333 

n 14 92 326 

o 15 95 316 

p 16 98 306 

q 17 100 300 

r 18 102 294 

s 19 105 286 

t 20 108 278 

u 21 110 273 
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v 22 112 268 

w 23 115 261 

x 24 118 254 

y 25 120 250 

Table 6 – Loop Delay Calculation. Each robot controller loop has a delay resulting in the desired BPM 

output. 
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Robot Design – Servo Control 

In examining jointed robots it was observed that many of these robots used servo 

motors (servos) directly as the joints. However, servos can be damaged by excessive 

torque and need to be programmed to limit motion which does not mimic human 

motion. One of the advantages of using lamp arms is the range of motion is very 

human-like, and the joint motion functions whether servos are working or not. In this 

thesis, servo motors were attached externally to the arms and linkages and springs 

were used to provide the powered range of motion. This mimics human arms with 

‘muscles’ (servos) and ‘tendons’ or ‘ligaments’ (springs or brackets). 

Servos are an inexpensive method of implementing motion for robots. For this 

reason, control boards were researched for features that would allow for effective 

servo control. Several types of control boards with Hardware Description Language 

(HDL) programming requirements were researched, including VHDL and Verilog. Both 

HDL languages are useful for simulating low-level circuits and interfacing with 

controller boards. It is also possible to instantiate 8-bit and 32-bit microcontrollers to 

perform advanced programming. Assembly language programming is available for 8-

bit microcontrollers and higher level languages such as C can be used with the 

instantiated 32-bit microcontrollers. 

Some advantages and disadvantages are present with HDL programming, however. 

Hardware control is more direct with HDL, and in fact it is required with most of the 
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controller boards to set up a configuration file to assign all the pins, LEDs, memory 

bus lines, etc. before the controller boards can be operated. Most controller boards 

come with examples describing how to use the features of the board but do not 

usually have the exact fit for the desired project. Some experimentation is required, 

and there are usually many low-level system elements required to be modified. Some 

controller boards can be programmed directly in high-level languages such as C++, 

allowing the designer to take advantage of function libraries to quickly perform 

advanced projects. With this in mind, the Orangutan Robot Controller Board from 

Pololu was chosen for this thesis. Hardware features of the Orangutan can be 

programmed directly, or with the built-in libraries provided, or both. 

Figure 20 – Robot Controller and Servo Motor 

Orangutan boards are cheap and can be purchased at www.pololu.com for about 

$100. The website also has downloads available with many examples for the 

controller boards. Pololu provides examples of implemented projects for features 

available on the Orangutan family of boards. These include the Buzzer (tone 

generation), Digital control via I/O pins, LCD display, LEDs, Motors, Pushbuttons, 

Serial input and output, SPI (Serial Peripheral Controller) communication, and Servo 
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control. In addition to this, the Atmel programming interface includes libraries of 

functions that do not require direct control of the Orangutan hardware. Atmel library 

functions simplify the implementation of controlling the board features by providing 

the low-level signaling and allowing the use of variables. Someone with no previous 

knowledge of robot controllers (but with some C++ programming experience) can 

quickly implement, compile and flash example designs to the Orangutan board and 

experiment with modifying the behavior. See Table 7 for Orangutan controller board 

features. 

Table 7 – Orangutan Robot Controller Specifications 

The Orangutan is relatively cheap yet it can control 8 servos using C++ API interface 

calls, as well as 8 more using general-purpose IO ports and lower level programming. 
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Since the Orangutan is designed with robots in mind it also includes powerful motors 

suitable for powering wheels, multiple programmable I/O pins for sensors and 

external control, a USB Serial communication port (doubling as a power source for 

low-drain usage), LCD display panel for onboard communication to the user, and 

buttons to interact with, as well as a tone-generator and indicator LEDs. For this 

thesis the Serial port, LCD display, buttons, LEDs and most especially the servo 

controller were essential for implementing the BPM beat information extracted from 

the Scheirer Algorithm on the host. 

Servos are fairly simple to use, just give them 3.3V to 6V and a control signal and the 

arm moves to a position. Most have a range of movement of 180°, with the control 

signal square-wave pulse running at 50 Hz intervals and 1-2ms ‘high’ time (Figure 21). 

Changing the pulse signal changes the arm position. A pulse width of 1ms 

corresponds to one extreme end of the servo motion and a pulse width of 2ms to the 

other extreme. Pulse widths of 1.5ms put the arm about in the middle. Varying the 

interval between square pulses changes the speed at which the servo arm reaches 

the set position. Each servo should be calibrated before use to determine the 

positions. The APIs available in the Atmel-Programmed Orangutan controller easily 

control the position and speed of servo movement. 
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Figure 21 – Servo Pulse Waveform. Square wave width determines the servo position and the 

interval between pulses determines the speed at which the servo moves to the position. The shorter 

the interval, the faster the movement. 

The Orangutan SVP 1284 board has eight onboard hardware servo controllers, two 

motor controllers, three serial interfaces (one USB and two UART) and 3 button 

inputs. Outputs include LEDs and an attached backlit 2x14 character LCD, as well as 

multiple programmable IOs. The Orangutan can be powered and programmed via 

USB, but for servo use a battery pack power supply was necessary. The use of servos 

caused current spikes which reflected back to the robot controller and interfered 

with the logic operation of the board. Orangutan robot controllers with battery packs 

can have issues as the batteries drain. The Orangutan battery pack was eventually 

replaced with an AC power supply which provided enough power to run the board as 

well as the attached servos. The AC power also allowed for a consistent current level 

for the robot controller. 

An issue with servos is current reflection spikes in response to a control signal. When 

the signal is sent and the servo motor responds with movement, it also generates a 
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reflected current to the control board. This can interfere with the operation of the 

control board in the form of power loss, restarts and even corruption of the 

programmed flash image. The Orangutan can run low-power operations such as the 

LCD display, LEDs and beeping noises with just the USB attached for power (although 

the cable can get alarmingly hot). However, servos require more power to operate 

and therefore have the current reflection issue as mentioned. Auxiliary power via 

battery pack (for mobile use) or power supply (stationary use) worked well for the six 

servos used in this thesis. 

Robot Design – Arms 

The Drumming Robot Arms needed an attachment point for operation, and the DIM 

robot (as has been seen in the Robot Theater window) was chosen since it had no 

arms and was in proportion to a human in stature. Part of the goal for the thesis was 

to simulate human movement and form wherever possible. Therefore, in addition to 

lamp arms for the drumming arms, they were attached to the DIM torso so as to 

mimic human shoulders using caster wheels (minus the actual wheels). Hobby plates 

and bolts were attached with nested servos to provide the torque for 1 DOF (Degree 

of Freedom) for the lower arms/elbows, and 2 DOF for the shoulder movement. The 

total DOF was 6 for both arms combined. 
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Another of the goals of the robot arm design was to mimic human drumming motion. 

The lamp arm was a good choice since it was already designed to be limited to a 180° 

range and resembled the range of the human elbow (Figure 22). There was a 

functional advantage in avoiding servos for arm joint attachment. If a servo failed, it 

could easily be replaced without disassembling the joint. Hobby straps were used to 

extend the swing of the servo motion and thus reduce the amount of torque applied 

directly to the arm servo. Even with high-torque metal gear servos (as used in this 

thesis) the load weight of the lower arm was high. Springs, reused from the original 

lamp arm, were used to counter this arm weight. Also, hinged brackets were used to 

move the point of contact for the elbow servo farther from the joint. This reduced 

the torque and force on the servo motor. 

Figure 22 – Robot Elbow Range of Motion. A hinged bracket is attached to the elbow servo arm and 

reduces the torque and power needed to flex and extend the robot drumming arm. 
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The design of the shoulders was more interesting (Figures 23 and 24). The initial 

design included a simple hinge to attach the arms with 1 DOF. While searching for 

parts to construct the drumming robot it was noted that a caster wheel is a 2 DOF 

object. Using a sufficiently large caster wheel frame it was possible to fit a pair of 

servo motors into the frame with the wheel removed (actual wheel not needed). The 

axle holes were drilled out to fit the arm post for left-right arm motion. As seen in the 

picture a combination of hobby brackets, bolts, and a servo accomplishes this 

motion. Using another hobby bracket, heavy wire, and a servo enables up-down 

shoulder rotation to lift the arm up and down. Figure 25 shows the completed arm 

and attachment to the DIM robot. 

Figure 23 – Robot Shoulder Left/Right Motion. The servo arm moves a jointed bracket forward and 

back over a bolt attached to the shoulder. This  translates to left/right shoulder motion. 
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Figure 24 – Robot Shoulder Up/Down Motion. The servo arm moves a wire up and down. This wire is 

connected to the base of the shoulder where attached to the DIM body and moves the entire 

shoulder assembly up and down. 

Figure 25 – Robot Arm Mounted on Robot Torso. A matched arm with reversed construction is later 

attached to the opposite side of the DIM robot torso for a two-armed drumming function. 
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Chapter 4 – Testing and Implementation 

The robot arms were attached to the torso and the servos connected to the 

Orangutan robot controller for initial testing. This was initially performed using the 

controller-side software and buttons. The host and controller were designed 

separately and could be tested separately. The plan for testing the controller was 

first to use the on-board buttons to control the BPM states, second to send control 

bytes over the serial connection using a tty terminal (such as PuTTY), then third to 

send control bytes using the host BPM software. 

The servos were required to be calibrated. The drumsticks attached to the arms were 

not striking the drum head in a precise position. This resulted in beat skipping when 

the BPM was in high range and servo motor strain when in low range. These servo 

position values were changed in the robot controller software until the up and down 

distance was correct. This corresponds to changing the interval between servo 

control pulses, as described in the Orangutan Servo Control section previously.  

After increasing the BPM values it was also observed that at higher BPMs the arms 

were no longer striking the drum head. The drumsticks did not have enough time at 

higher BPMs to strike the head before the loop ended and the servos began to move 

to the up position. This was corrected by increasing the servo speed value so that at 

higher BPM loops the servos moved faster to their up or down position. As described 

in the  ‘Robot Design-Servo Control’ section this is achieved by increasing the width 
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of the servo control pulses to change the position of the servo. The robot arms were 

now accurately striking the drums with the drumsticks for the entire target 60-120 

BPM range. 

The calculated loop delay values were tested (counted over the space of a minute) 

for BPM accuracy and found to be correct. However, since each arm moved in the 

loop, the perceived BPM was twice the desired value. Also, the sound of the 

drumsticks quickly became monotonous after hours of testing. Both of these issues 

were addressed by making a single change to the robot control software: the left arm 

randomly chooses up or down servo arm positions for each loop, while the right arm 

continues to steadily alternate between up and down. This allows the right arm to 

always strike the correct BPM, while the left arm gives a random accompaniment to 

the performance of the Drumming Robot. The resulting rhythm is varied and 

changing, yet stays within the target BPM. This varied rhythm adds an enjoyable 

random beat experience for the audience. 

Next, host control was added to the test scenario. A serial connection was 

established with the drumming robot and known control byte values were tested 

through the BPM state machine states. The response time was under 0.5 seconds 

from keyboard strike to state change. Next, the host BPM algorithm software was 

successfully used to input sound from a microphone and send the BPM control byte 

over the serial connection to the robot controller. Finally the host software was 

modified to run in a loop so that it is continually capturing audio, extracting the BPM 



58 

using the Scheirer Algorithm, and sending the control byte to the robot controller. 

The Robot Drummer was complete! See Figure 26 for a proud Professor posing with 

the DIM robot. 

Figure 26 - Professor Marek Perkowski poses with the DIM robot 
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Chapter 5 - Conclusion and Future Work 

A strong framework of matrix manipulation, Fourier function support and hardware 

interfacing made MATLAB a good medium for implementing the Scheirer BPM 

Algorithm. By parameterizing the inputs to the BPM functions it was possible to 

perform multiple variations of bandwidth and precision. After examining these 

results it was observed that one of the core aspects of the Scheirer Algorithm, 

filterbanks, aligned with the poorest performing parameter sets. Omitting filterbanks 

also greatly reduced the computation time. This in turn allowed the use of higher 

audio sample rates, improving the overall accuracy of the BPM results and a better 

user experience. The error percentage is less than 5% while the calculation time is 

less than 5 seconds. 

The results obtained by the Rice group had high accuracy for many of theirs test but 

some of the samples had a high error gap. By parameterizing the inputs to the BPM 

functions it was possible to perform multiple variations of bandwidth and precision. 

This resulted in a number of data result sets that could be compared for speed and 

accuracy in BPM detection.  After examining these results it was observed that one of 

the core aspects of the Scheirer Algorithm, filterbanks, aligned with the poorest 

performing parameter sets. Omitting filterbanks also greatly reduced the 

computation time. This in turn allowed the use of higher audio sample rates, 
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improving the overall accuracy of the BPM results and a better user experience. The 

error percentage is less than 5% while the speed is less than 5 seconds. 

My contribution consisted of separating the beat detection and robot control tasks of 

this Thesis.  My approach used the Scheirer Beat Detection algorithm and 

parameterized the inputs to find the best results for speed and accuracy.  This result 

was used to control the movements of a drumming robot in time with input audio. 

Other groups, such as Rice, used the Scheirer algorithm with its Fourier Transform 

method to detect BPM. My innovation was in using that calculated BPM result for the 

immediate control of robot drumming. The BPM information could be used to 

control any physical robot or system, and the robot could be controlled by any 

provided BPM information via byte information over the serial connection. 

The Pololu Orangutan robot controller is a good choice for implementing the 

movement and logic of the Drumming Robot. Robot controllers differ from other 

development boards such as Raspberry Pi. The Raspberry Pi 3 processor is a quad-

core 64-bit Cortex A53 at 1.2 GHz and 1 GB of memory is onboard, as well as wired + 

wireless LAN and video output. While these features are useful for some applications, 

the Raspberry Pi is missing key components for robot development. Orangutan 

boards in comparison include onboard motor power controllers, motor channel 

connectors and servo controllers. External boards may be added to the Raspberry Pi 

for these functions but may not have built in API support such as the Orangutan 
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provides with the Atmel programming integration. Orangutan boards are designed to 

be a complete solution for logic, control and movement of robots in a single package. 

The Orangutan robot controller uses an Atmel Studio C language development 

environment with a rich library of API functions to control the servo motors, buttons, 

LEDs and other features available with the robot controller. It is useful as a 

standalone manually controlled device, but also allows remote BPM input and 

control from the host over the serial connection. An audience can control the 

Drumming Robot using the buttons for a specific BPM, or the system can run in a 

continual loop where microphone audio BPM data is extracted and is controlling the 

Drumming Robot BPM. 

Also, audio extraction would be a problem on the Orangutan since it has no onboard 

microphone. Maybe a future solution would be to use a different controller with the 

inputs and processing capabilities to input audio and perform Fourier operations in a 

reasonable amount of time. The development and testing process of this thesis leads 

to these conclusions: 1) MATLAB host processing is a viable method of beat 

detection; 2) the Pololu Orangutan robot controller is satisfactory for receiving serial 

BPM data and implementing beat output on a drumming robot. 

Currently the Drumming Robot has six degrees of freedom between the shoulder and 

elbow control for the two drumming arms. In future work, the robot could be 

improved by adding more limbs (legs or more arms) and varying the percussion 

instruments. A bass drum, cowbell, floor tom or cymbal would give the audience a 
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better experience. Also, the Scheirer BPM Algorithm could be implemented on the 

robot controller by developing functions to perform the Fourier Transform. However, 

there is no guarantee that this would be an improvement in speed. It is possible and 

even likely that the greater power of a host-based processor and memory outweigh 

the performance of the Orangutan. There is also the aforementioned problem of lack 

of microphone on the robot controller and the need to somehow interface an audio 

input system to the device and digitize the input signal. This is trivial on the host-side 

using MATLAB scripts. 

This has been a satisfying Masters Thesis topic. The goal of a functional Drumming 

Robot system has been accomplished. On the host side the laptop microphone inputs 

external audio, and accurate BPM information is extracted using MATLAB and the 

Scheirer Algorithm. This information is sent to the controller, which performs a 

percussive drumming pattern using servo-powered robot arms and a drum head. By 

separating the development of detection and execution the thesis results are useful 

for various timekeeping robots (not just drumming) as well as any project requiring 

BPM information in real time. Both the Beat Detection and Robot Controller portions 

of this thesis would be useful for Perkowski’s Robot Theater at Portland State 

University. 
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Appendices 

A. Bill of Materials

Item Image Description Cost Quantity Subtotal 

Metal Straps - Pack 
of 20 

 $   12.98 1 
 $  

12.98 

5" Rubber Swivel 
Caster 

 $   22.96 2 
 $  

45.92 

Machine Screws + 
Nuts Kit 

 $    3.97 1  $   3.97 

Tower Pro MG995 
High Torque Metal 
Gear Servo 

 $    9.99 6 
 $  

59.94 

Orangutan SVP-
1284 Robot 
Controller from 
Pololu 

 $   99.95 1 
 $  

99.95 

Swing Arm Lamp  $   10.00 2 
 $  

20.00 

Total  $   242.76 

Table 8– Bill of Materials 
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B. List of Tools, Programs and Methods

 MATLAB 2007b

o Audio input via microphone or .wav file

o Host-side computation of BPM

o Serial BPM output communication with robot controller

 Atmel Studio 7.0

o C code software integrated development environment (IDE)

o Creation of files for Orangutan robot controller

o Orangutan robot controller .hex file flashing

 Pololu Orangutan SVP-1284

o Runs looping BPM code from Atmel output

 Audacity

o Creation of BPM Click Tracks for use in development and testing of

BPM algorithm implementation on host-side

 Microsoft Movie Maker

o Editing video files of drumming robot operation
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C. Robot Controller Code

/* DrummingRobot - an application for the Pololu 

Orangutan SVP 

 * 

* This application uses the Pololu AVR C/C++ Library. 

For help, see: 

* -User's guide: http://www.pololu.com/docs/0J20

* -Command reference: http://www.pololu.com/docs/0J18

 * 

*  Author: mjengstx 

 * 

* Updates: improved granularity of BPM output by 

changing the control 

* character set to CHAR[a-r] (25 chars) over the 60-120

BPM range. Granularity is 

* now 61/25 = 2.44

* Previously used CHAR[0-9] (10 chars) with a

granularity accuracy of 61/10 = 6.1 
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* Assuming that the control character coming in from the

serial input is accurate, 

* the maximum Robot Drum output offset gap is improved

by 60%. 

 */  

#include <pololu/orangutan.h>  

#include <string.h> 

 /* 

* To use the SERVOs, you must connect the correct

AVR I/O pins to their 

* corresponding servo demultiplexed output-

selection pins. 

* - Connect PB3 to SA.

* - Connect PB4 to SB.

 */ 

// This array specifies the correspondence between 

I/O pins and DEMUX 

// output-selection pins.  This demo uses three 

pins, which allows you 
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// to control up to 8 servos.  You can also use two, 

one, or zero pins 

// to control fewer servos. 

//const unsigned char demuxPins[] = {IO_B3, IO_B4, 

IO_C0}; // eight servos 

const unsigned char demuxPins[] = {IO_B3, IO_B4}; // 

four servos 

//const unsigned char demuxPins[] = {IO_B3}; 

// two servos 

//const unsigned char demuxPins[] = {};  

// one servo 

static unsigned char init_speed = 150; 

static unsigned char servo_speed = 150; 

static unsigned int neutral_servo_pos = 1300; 

//static unsigned int rt_shoulder_up = 300; 

//static unsigned int rt_shoulder_dn = 1300; 

//static unsigned int rt_shoulder = 1800; 

static unsigned int rt_shoulder_rot_lt = 2000; 

static unsigned int rt_shoulder_rot_rt = 1600; 

static unsigned int rt_shoulder_rot = 1600; 
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static unsigned int rt_elbow_up = 1950;  

//ltdn 

static unsigned int rt_elbow_dn = 1775;  

//ltup 

static unsigned int rt_elbow = 1800; 

//static unsigned int lt_shoulder_up = 300; 

//static unsigned int lt_shoulder_dn = 1300; 

//static unsigned int lt_shoulder = 1800; 

static unsigned int lt_shoulder_rot_lt = 1200; 

static unsigned int lt_shoulder_rot_rt = 850; 

static unsigned int lt_shoulder_rot = 1200; 

static unsigned int lt_elbow_up = 1900; 

static unsigned int lt_elbow_dn = 2150; 

static unsigned int lt_elbow = 2200; 

// receive_buffer: A ring buffer that we will use to 

receive bytes on USB_COMM. 

// The OrangutanSerial library will put received bytes in 

to 

// the buffer starting at the beginning 

(receiveBuffer[0]). 
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// After the buffer has been filled, the library will 

automatically 

// start over at the beginning. 

char receive_buffer[32]; 

// receive_buffer_position: This variable will keep track 

of which bytes in the 

// receive buffer we have already processed. It is the 

offset(0-31) of the 

// next byte in the buffer to process. 

unsigned char receive_buffer_position = 0; 

// send_buffer: A buffer for sending bytes on USB_COMM. 

char send_buffer[32]; 

// sensor_buffer: A buffer for holding sensor bytes 

received on USB_COMM. 

//char sensor_buffer[5]; 

char mode[2]; // Changed to single char 3/22/13 -ME 
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char result[20]; 

int test = 0; 

unsigned int pb_delay = 500; //60 BPM Default starting 

value 

int flipper2 = 0; 

int byte_counter = 0; 

//string aNiceString = ""; 

// wait_for_sending_to_finish:  Waits for the bytes in 

the send buffer to 

// finish transmitting on USB_COMM.  We must call this 

before modifying 

// send_buffer or trying to send more bytes, because 

otherwise we could 

// corrupt an existing transmission. 

void wait_for_sending_to_finish() 

{ 

while(!serial_send_buffer_empty(USB_COMM)) 
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serial_check(); // USB_COMM port is 

always in SERIAL_CHECK mode 

} 

// process_received_byte: Responds to a byte that has 

been received on 

// USB_COMM.  If you are writing your own serial program, 

you can 

// replace all the code in this function with your own 

custom behaviors. 

void process_received_byte(char byte) 

{ 

clear();  // clear LCD 

print("Byte Received"); 

lcd_goto_xy(0, 1); // go to start of second LCD row 

print("RX: "); 

delay_ms(750); 

/* 

byte = '3';*/ 

switch(byte) 
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{ 

// State Machine-style setup for incoming 

Serial values; expecting ':::' 

// then single byte over Serial connection. 

Increment 'byte_counter' 

// for each ':' until we have three, then next 

Serial byte is valid. 

// Single byte is BPM with granularity of 6 

from range 60-120. 

case ':': 

byte_counter += 1; 

print_character(byte); 

break; 

case 'a': 

test = 0; 

print_long(test); 

delay_ms(100); 

byte_counter += 1; 

break; 
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case 'b': 

test = 1; 

print_long(test); 

delay_ms(100); 

byte_counter += 1; 

break; 

case 'c': 

test = 2; 

print_long(test); 

delay_ms(100); 

byte_counter += 1; 

break; 

case 'd': 

test = 3; 

print_long(test); 

delay_ms(100); 
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byte_counter += 1; 

break; 

case 'e': 

test = 4; 

print_long(test); 

delay_ms(100); 

byte_counter += 1; 

break; 

case 'f': 

test = 5; 

print_long(test); 

delay_ms(100); 

byte_counter += 1; 

break; 

case 'g': 

test = 6; 
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print_long(test); 

delay_ms(100); 

byte_counter += 1; 

break; 

case 'h': 

test = 7; 

print_long(test); 

delay_ms(100); 

byte_counter += 1; 

break; 

case 'i': 

test = 8; 

print_long(test); 

delay_ms(100); 

byte_counter += 1; 

break; 
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case 'j': 

test = 9; 

print_long(test); 

delay_ms(100); 

byte_counter += 1; 

break; 

case 'k': 

test = 10; 

print_long(test); 

delay_ms(100); 

byte_counter += 1; 

break; 

case 'l': 

test = 11; 

print_long(test); 

delay_ms(100); 

byte_counter += 1; 
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break; 

case 'm': 

test = 12; 

print_long(test); 

delay_ms(100); 

byte_counter += 1; 

break; 

case 'n': 

test = 13; 

print_long(test); 

delay_ms(100); 

byte_counter += 1; 

break; 

case 'o': 

test = 14; 

print_long(test); 
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delay_ms(100); 

byte_counter += 1; 

break; 

case 'p': 

test = 15; 

print_long(test); 

delay_ms(100); 

byte_counter += 1; 

break; 

case 'q': 

test = 16; 

print_long(test); 

delay_ms(100); 

byte_counter += 1; 

break; 

case 'r': 
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test = 17; 

print_long(test); 

delay_ms(100); 

byte_counter += 1; 

break; 

case 's': 

test = 18; 

print_long(test); 

delay_ms(100); 

byte_counter += 1; 

break; 

case 't': 

test = 19; 

print_long(test); 

delay_ms(100); 

byte_counter += 1; 

break; 
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case 'u': 

test = 20; 

print_long(test); 

delay_ms(100); 

byte_counter += 1; 

break; 

case 'v': 

test = 21; 

print_long(test); 

delay_ms(100); 

byte_counter += 1; 

break; 

case 'w': 

test = 22; 

print_long(test); 

delay_ms(100); 
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byte_counter += 1; 

break; 

case 'x': 

test = 23; 

print_long(test); 

delay_ms(100); 

byte_counter += 1; 

break; 

case 'y': 

test = 24; 

print_long(test); 

delay_ms(100); 

byte_counter += 1; 

break; 

case 'z': 

test = 25; 
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print_long(test); 

delay_ms(100); 

byte_counter += 1; 

break; 

/* case '0': 

test = 0; 

print_long(test); 

delay_ms(400); 

byte_counter += 1; 

break; 

case '1': 

test = 1; 

print_long(test); 

delay_ms(400); 

byte_counter += 1; 

break; 

case '2': 

test = 2; 

print_long(test); 
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delay_ms(400); 

byte_counter += 1; 

break; 

case '3': 

test = 3; 

print_long(test); 

delay_ms(400); 

byte_counter += 1; 

break; 

case '4': 

test = 4; 

print_long(test); 

delay_ms(400); 

byte_counter += 1; 

break; 

case '5': 

test = 5; 

print_long(test); 

delay_ms(400); 
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byte_counter += 1; 

break; 

case '6': 

test = 6; 

print_long(test); 

delay_ms(400); 

byte_counter += 1; 

break; 

case '7': 

test = 7; 

print_long(test); 

delay_ms(400); 

byte_counter += 1; 

break; 

case '8': 

test = 8; 

print_long(test); 

delay_ms(400); 

byte_counter += 1; 
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break; 

case '9': 

test = 9; 

print_long(test); 

delay_ms(400); 

byte_counter += 1; 

break; 

*/ 

// Default is to place byte in 'send_buffer' 

default: 

wait_for_sending_to_finish(); 

send_buffer[0] = byte;// ^ 0x20; 

//green_led(TOGGLE); 

//print(byte_counter); 

//delay_ms(400); 

break; 

} 
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} 

void check_for_new_bytes_received() 

{ 

while(serial_get_received_bytes(USB_COMM) != 

receive_buffer_position) 

{ 

// Process the new byte that has just been 

received. 

process_received_byte(receive_buffer[receive_buffer_

position]); 

// Increment receive_buffer_position, but wrap 

around when it gets to 

// the end of the buffer. 

if (receive_buffer_position == 

sizeof(receive_buffer)-1) 

{ 

receive_buffer_position = 0; 

} 
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else 

{ 

receive_buffer_position++; 

} 

} 

} 

int main() 

{ 

servos_start(demuxPins, sizeof(demuxPins)); 

// Set the servo speed to 150.  This means that the 

pulse width 

// will change by at most 15 microseconds every 20 

ms.  So it will 

// take 1.33 seconds to go from a pulse width of 

1000 us to 2000 us. 

set_servo_speed(0, init_speed); 
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set_servo_speed(1, init_speed); 

set_servo_speed(2, init_speed); 

set_servo_speed(3, init_speed); 

// Make all the servos go to a neutral position. 

set_servo_target(0, rt_shoulder_rot); //right 

shoulder rotation 

set_servo_target(1, rt_elbow); 

//right elbow 

set_servo_target(2, lt_shoulder_rot); //left 

shoulder rotation 

set_servo_target(3, lt_elbow); //left 

elbow 

clear(); // clear the LCD 

print("Robot Drummer"); 

lcd_goto_xy(0, 1); // go to start of second LCD row 

//print("or press Btn"); 

print("Send BPM Mode"); 
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delay_ms(2000); 

// Set the baud rate to 9600 bits per second.  Each 

byte takes ten bit 

// times, so you can get at most 960 bytes per 

second at this speed. 

serial_set_baud_rate(USB_COMM, 9600); 

// Start receiving bytes in the ring buffer. 

serial_receive_ring(USB_COMM, receive_buffer, 

sizeof(receive_buffer)); 

    while(1) 

    { 

// USB_COMM is always in SERIAL_CHECK mode, so 

we need to call this 

// function often to make sure serial 

receptions and transmissions 

// occur. 

serial_check(); 
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// Deal with any new bytes received unless we 

have a complete sample 

// of three ':' bytes, then 4th byte is desired 

BPM byte 

if (byte_counter < 4) 

{ 

check_for_new_bytes_received(); 

} 

 //NEW Mode value key: 

 // a = 60 BPM 

 // b = 62 BPM 

 // c = 65 BPM 

 // d = 68 BPM 

 // e = 70 BPM 

 // f = 72 BPM 

 // g = 75 BPM 

 // h = 78 BPM 

 // i = 80 BPM 

 // j = 82 BPM 
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 // k = 85 BPM 

 // l = 88 BPM 

 // m = 90 BPM 

 // n = 92 BPM 

 // o = 95 BPM 

 // p = 98 BPM 

 // q = 100 BPM 

 // r = 102 BPM 

 // s = 105 BPM 

 // t = 108 BPM 

 // u = 110 BPM 

 // v = 112 BPM 

 // w = 115 BPM 

 // x = 118 BPM 

 // y = 120 BPM 

//OLD Mode value key: 

// 0 = 60-65 BPM 

// 1 = 66-71 BPM 
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// 2 = 72-77 BPM 

// 3 = 78-83 BPM 

// 4 = 84-89 BPM 

// 5 = 90-95 BPM 

// 6 = 96-101 BPM 

// 7 = 102-107 BPM 

// 8 = 108-113 BPM 

// 9 = 114-120 BPM 

// The 'flipper2' variable in this section and 

the next makes sure that 

// the drumming arms alternate beats. Only one 

of the two drumming arms 

// strikes the drum per beat, and the other is 

up in the air ready to 

// strike on the next beat. 

if ( flipper2 % 2 != 0 ) 

{ 

//set_servo_speed(0, servo_speed); 

set_servo_speed(1, servo_speed); 
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//set_servo_speed(2, servo_speed); 

set_servo_speed(3, servo_speed); 

// Make all the servos go to a neutral 

position. 

//set_servo_target(0, rt_shoulder_rot_lt);

//right shoulder rotation 

set_servo_target(1, rt_elbow_dn); 

//right elbow 

//set_servo_target(2, lt_shoulder_rot_rt);

//left shoulder rotation 

set_servo_target(3, lt_elbow_up); 

//left elbow 

//set_servo_target(3, lt_elbow_up); 

//make left elbow random for up 

if ( (rand()) % 2 != 0 ) 

{ 

set_servo_target(3, lt_elbow_up); 

//left elbow 

} 

else 
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{ 

set_servo_target(3, lt_elbow_dn); 

//left elbow 

} 

} 

else 

{ 

//set_servo_speed(0, servo_speed); 

set_servo_speed(1, servo_speed); 

//set_servo_speed(2, servo_speed); 

set_servo_speed(3, servo_speed); 

// Make all the servos go to a neutral 

position. 

//set_servo_target(0, rt_shoulder_rot_lt);

//right shoulder rotation 

set_servo_target(1, rt_elbow_up); 

//right elbow 

//set_servo_target(2, lt_shoulder_rot_rt);

//left shoulder rotation 
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//set_servo_target(3, lt_elbow_dn); 

//make left elbow random for down 

if ( (rand()) % 2 != 0 ) 

{ 

set_servo_target(3, lt_elbow_dn); 

//left elbow 

} 

else 

{ 

set_servo_target(3, lt_elbow_up); 

//left elbow 

} 

} 

flipper2 += 1; // increment 

flipper2 toggle value 

if (test == 0) // 0 = serial 

input 'a' = 60 BPM 

{ 

clear(); // clear the LCD 
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print("BPM = 60-61"); 

lcd_goto_xy(0, 1); // go to start of 

second LCD row 

print("mode: "); 

print_long(test); 

green_led(TOGGLE); 

pb_delay = 500; 

//delay_ms(500); 

servo_speed = 200; // faster BPM 

needs faster servo speed 

byte_counter = 0; //reset counter 

} 

else if (test == 1) // 1 = serial 

input 'b' = 62 BPM 

{ 

clear(); // clear the LCD 

print("BPM = 62-64"); 

lcd_goto_xy(0, 1); // go to start of 

second LCD row 
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print("mode: "); 

print_long(test); 

green_led(TOGGLE); 

pb_delay = 484; 

//delay_ms(440); 

servo_speed = 200; // faster BPM 

needs faster servo speed 

byte_counter = 0; //reset counter 

} 

else if (test == 2) // 2 = serial 

input 'c' =65 BPM 

{ 

clear(); // clear the LCD 

print("BPM = 65-67"); 

lcd_goto_xy(0, 1); // go to start of 

second LCD row 

print("mode: "); 

print_long(test); 
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green_led(TOGGLE); 

pb_delay = 462; 

//delay_ms(400); 

servo_speed = 200; // faster BPM 

needs faster servo speed 

byte_counter = 0; //reset counter 

} 

else if (test == 3) // 3 = serial 

input 'd' = 68 BPM 

{ 

clear(); // clear the LCD 

print("BPM = 68-69"); 

lcd_goto_xy(0, 1); // go to start of 

second LCD row 

print("mode: "); 

print_long(test); 

green_led(TOGGLE); 

pb_delay = 441; 

//delay_ms(360); 
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servo_speed = 200; // faster BPM 

needs faster servo speed 

byte_counter = 0; //reset counter 

} 

else if (test == 4) // 4 = serial 

input 'e' = 70 BPM 

{ 

clear(); // clear the LCD 

print("BPM = 70-71"); 

lcd_goto_xy(0, 1); // go to start of 

second LCD row 

print("mode: "); 

print_long(test); 

green_led(TOGGLE); 

pb_delay = 429; 

//delay_ms(345); 

servo_speed = 200; // faster BPM 

needs faster servo speed 
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byte_counter = 0; //reset counter 

} 

else if (test == 5) // 5 = serial 

input 'f' = 72 BPM 

{ 

clear(); // clear the LCD 

print("BPM = 72-74"); 

lcd_goto_xy(0, 1); // go to start of 

second LCD row 

print("mode: "); 

print_long(test); 

green_led(TOGGLE); 

pb_delay = 417; 

//delay_ms(335); 

servo_speed = 200; // faster BPM 

needs faster servo speed 

byte_counter = 0; //reset counter 

} 
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else if (test == 6) // 6 = serial 

input 'g' = 75 BPM 

{ 

clear(); // clear the LCD 

print("BPM = 75-77"); 

lcd_goto_xy(0, 1); // go to start of 

second LCD row 

print("mode: "); 

print_long(test); 

green_led(TOGGLE); 

pb_delay = 400; 

//delay_ms(310); 

servo_speed = 200; // faster BPM 

needs faster servo speed 

byte_counter = 0; //reset counter 

} 

else if (test == 7) // 7 = serial 

input 'h' = 78 BPM 

{ 
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clear(); // clear the LCD 

print("BPM = 78-79"); 

lcd_goto_xy(0, 1); // go to start of 

second LCD row 

print("mode: "); 

print_long(test); 

green_led(TOGGLE); 

pb_delay = 385; 

//delay_ms(290); 

servo_speed = 200; // faster BPM 

needs faster servo speed 

byte_counter = 0; //reset counter 

} 

else if (test == 8) // 8 = serial 

input 'i' = 80 BPM 

{ 

clear(); // clear the LCD 

print("BPM = 80-81"); 
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lcd_goto_xy(0, 1); // go to start of 

second LCD row 

print("mode: "); 

print_long(test); 

green_led(TOGGLE); 

pb_delay = 375; 

//delay_ms(270); 

servo_speed = 200; // faster BPM 

needs faster servo speed 

byte_counter = 0; //reset counter 

} 

else if (test == 9) // 9 = serial 

input 'j' = 82 BPM 

{ 

clear(); // clear the LCD 

print("BPM = 82-84"); 

lcd_goto_xy(0, 1); // go to start of 

second LCD row 

print("mode: "); 
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print_long(test); 

green_led(TOGGLE); 

pb_delay = 366; 

//delay_ms(250); 

servo_speed = 200; // faster BPM 

needs faster servo speed 

byte_counter = 0; //reset counter 

} 

else if (test == 10) // 10 = serial 

input 'k' = 85 BPM 

{ 

clear(); // clear the LCD 

print("BPM = 85-87"); 

lcd_goto_xy(0, 1); // go to start of 

second LCD row 

print("mode: "); 

print_long(test); 

green_led(TOGGLE); 

pb_delay = 353; 



107 

//delay_ms(440); 

servo_speed = 200; // faster BPM 

needs faster servo speed 

byte_counter = 0; //reset counter 

} 

else if (test == 11) // 11 = serial 

input 'l' = 88 BPM 

{ 

clear(); // clear the LCD 

print("BPM = 88-89"); 

lcd_goto_xy(0, 1); // go to start of 

second LCD row 

print("mode: "); 

print_long(test); 

green_led(TOGGLE); 

pb_delay = 341; 

//delay_ms(400); 
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servo_speed = 200; // faster BPM 

needs faster servo speed 

byte_counter = 0; //reset counter 

} 

else if (test == 12) // 12 = serial 

input 'm' = 90 BPM 

{ 

clear(); // clear the LCD 

print("BPM = 90-91"); 

lcd_goto_xy(0, 1); // go to start of 

second LCD row 

print("mode: "); 

print_long(test); 

green_led(TOGGLE); 

pb_delay = 333; 

//delay_ms(360); 

servo_speed = 200; // faster BPM 

needs faster servo speed 

byte_counter = 0; //reset counter 
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} 

else if (test == 13) // 13 = serial 

input 'n' = 92 BPM 

{ 

clear(); // clear the LCD 

print("BPM = 92-94"); 

lcd_goto_xy(0, 1); // go to start of 

second LCD row 

print("mode: "); 

print_long(test); 

green_led(TOGGLE); 

pb_delay = 326; 

//delay_ms(345); 

servo_speed = 200; // faster BPM 

needs faster servo speed 

byte_counter = 0; //reset counter 

} 
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else if (test == 14) // 14 = serial 

input 'o' = 95 BPM 

{ 

clear(); // clear the LCD 

print("BPM = 95-97"); 

lcd_goto_xy(0, 1); // go to start of 

second LCD row 

print("mode: "); 

print_long(test); 

green_led(TOGGLE); 

pb_delay = 316; 

//delay_ms(335); 

servo_speed = 200; // faster BPM 

needs faster servo speed 

byte_counter = 0; //reset counter 

} 

else if (test == 15) // 15 = serial 

input 'p' = 98 BPM 

{ 
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clear(); // clear the LCD 

print("BPM = 98-99"); 

lcd_goto_xy(0, 1); // go to start of 

second LCD row 

print("mode: "); 

print_long(test); 

green_led(TOGGLE); 

pb_delay = 306; 

//delay_ms(310); 

servo_speed = 200; // faster BPM 

needs faster servo speed 

byte_counter = 0; //reset counter 

} 

else if (test == 16) // 16 = serial 

input 'q' = 100 BPM 

{ 

clear(); // clear the LCD 

print("BPM = 100-101"); 
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lcd_goto_xy(0, 1); // go to start of 

second LCD row 

print("mode: "); 

print_long(test); 

green_led(TOGGLE); 

pb_delay = 300; 

//delay_ms(290); 

servo_speed = 200; // faster BPM 

needs faster servo speed 

byte_counter = 0; //reset counter 

} 

else if (test == 17) // 17 = serial 

input 'r' = 102 BPM 

{ 

clear(); // clear the LCD 

print("BPM = 102-104"); 

lcd_goto_xy(0, 1); // go to start of 

second LCD row 

print("mode: "); 
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print_long(test); 

green_led(TOGGLE); 

pb_delay = 294; 

//delay_ms(270); 

servo_speed = 200; // faster BPM 

needs faster servo speed 

byte_counter = 0; //reset counter 

} 

else if (test == 18) // 18 = serial 

input 's' = 105 BPM 

{ 

clear(); // clear the LCD 

print("BPM = 105-107"); 

lcd_goto_xy(0, 1); // go to start of 

second LCD row 

print("mode: "); 

print_long(test); 

green_led(TOGGLE); 

pb_delay = 286; 



114 

//delay_ms(250); 

servo_speed = 200; // faster BPM 

needs faster servo speed 

byte_counter = 0; 

//reset counter 

} 

else if (test == 19) // 19 = serial 

input 't' = 108 BPM 

{ 

clear(); // clear the LCD 

print("BPM = 108-109"); 

lcd_goto_xy(0, 1); // go to start of 

second LCD row 

print("mode: "); 

print_long(test); 

green_led(TOGGLE); 

pb_delay = 278; 

//delay_ms(440); 

servo_speed = 200; // faster BPM 

needs faster servo speed 
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byte_counter = 0; //reset counter 

} 

else if (test == 20) // 20 = serial 

input 'u' = 110 BPM 

{ 

clear(); // clear the LCD 

print("BPM = 110-111"); 

lcd_goto_xy(0, 1); // go to start of 

second LCD row 

print("mode: "); 

print_long(test); 

green_led(TOGGLE); 

pb_delay = 273; 

//delay_ms(400); 

servo_speed = 200; // faster BPM 

needs faster servo speed 

byte_counter = 0; //reset counter 
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} 

else if (test == 21) // 21 = serial 

input 'v' = 112 BPM 

{ 

clear(); // clear the LCD 

print("BPM = 112-114"); 

lcd_goto_xy(0, 1); // go to start of 

second LCD row 

print("mode: "); 

print_long(test); 

green_led(TOGGLE); 

pb_delay = 268; 

//delay_ms(360); 

servo_speed = 200; // faster BPM 

needs faster servo speed 

byte_counter = 0; //reset counter 

} 
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else if (test == 22) // 22 = serial 

input 'w' = 115 BPM 

{ 

clear(); // clear the LCD 

print("BPM = 115-117"); 

lcd_goto_xy(0, 1); // go to start of 

second LCD row 

print("mode: "); 

print_long(test); 

green_led(TOGGLE); 

pb_delay = 261; 

//delay_ms(345); 

servo_speed = 200; // faster BPM 

needs faster servo speed 

byte_counter = 0; //reset counter 

} 

else if (test == 23) // 23 = serial 

input 'x' = 118 BPM 

{ 
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clear(); // clear the LCD 

print("BPM = 118-119"); 

lcd_goto_xy(0, 1); // go to start of 

second LCD row 

print("mode: "); 

print_long(test); 

green_led(TOGGLE); 

pb_delay = 254; 

//delay_ms(335); 

servo_speed = 200; // faster BPM 

needs faster servo speed 

byte_counter = 0; //reset counter 

} 

else if (test == 24) // 24 = serial 

input 'y' = 120 BPM 

{ 

clear(); // clear the LCD 

print("BPM = 120"); 
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lcd_goto_xy(0, 1); // go to start of 

second LCD row 

print("mode: "); 

print_long(test); 

green_led(TOGGLE); 

pb_delay = 250; 

//delay_ms(310); 

servo_speed = 200; // faster BPM 

needs faster servo speed 

byte_counter = 0; //reset counter 

} 

else if (test == 25) // 25 = serial 

input 'z' = PAUSED 

{ 

clear(); // clear the LCD 

print("PAUSED"); 

lcd_goto_xy(0, 1); // go to start of 

second LCD row 

print("mode: "); 
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print_long(test); 

delay_ms(200); 

byte_counter = 0; //reset counter 

flipper2 = 1; // set flipper2 

toggle value to 1 so 

// that arms 

stop drumming in this mode 

} 

//Default mode of 60 BPM 

else 

{ 

green_led(TOGGLE); 

clear(); // clear the LCD 

print("Robot Drummer"); 

lcd_goto_xy(0, 1); // go to start of 

second LCD row 

print("Default mode"); 

pb_delay = 500; 

//delay_ms(pb_delay); 
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servo_speed = 200; // faster BPM 

needs faster servo speed 

} 

delay_ms(pb_delay); //moved delay out of 

'else if' tests to here 

// If the user presses the middle button, send 

"Robots Rule!" 

// and wait until the user releases the button. 

if (button_is_pressed(MIDDLE_BUTTON)) 

{ 

wait_for_sending_to_finish(); 

memcpy_P(send_buffer, PSTR("Robots 

Rule!\r\n"), 12); 

serial_send(USB_COMM, send_buffer, 12); 

send_buffer[12] = 0; // terminate the 

string 

clear(); // clear the LCD 
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lcd_goto_xy(0, 1); // go to start of 

second LCD row 

print("Delay (ms): "); 

print_long(pb_delay); 

delay_ms(1000); 

byte_counter = 0; // reset detect 

cycle by pressing button 

// Wait for the user to release the 

button.  While the processor is 

// waiting, the OrangutanSerial library 

will not be able to receive 

// bytes from the USB_COMM port since this 

requires calls to the 

// serial_check() function, which could 

cause serial bytes to be 

// lost.  It will also not be able to send 

any bytes, so the bytes 

// bytes we just queued for transmission 

will not be sent until 
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// after the following blocking function 

exits once the button is 

// released. 

wait_for_button_release(MIDDLE_BUTTON); 

} 

// If the user presses the TOP button, 

increment BPM Mode by 1 

if (button_is_pressed(TOP_BUTTON)) 

{ 

wait_for_sending_to_finish(); 

clear(); // clear the LCD 

print("BPM Mode Up"); 

if (test <= 25) // BPM Mode 

'10' is wait state 

{ 

test = test + 1; 

} 
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lcd_goto_xy(0, 1); // go to start of 

second LCD row 

print("To Mode "); 

print_long(test); 

delay_ms(1000); 

byte_counter = 0; // reset detect 

cycle by pressing button 

wait_for_button_release(TOP_BUTTON); 

} 

// If the user presses the BOTTOM button, 

decrement delay by 10 ms 

if (button_is_pressed(BOTTOM_BUTTON)) 

{ 

wait_for_sending_to_finish(); 

clear(); // clear the LCD 

print("BPM Mode Down"); 

if (test >= 1) //fastest speed, 

{ 

test = test - 1; 
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} 

lcd_goto_xy(0, 1); // go to start of 

second LCD row 

print("To Mode "); 

print_long(test); 

delay_ms(1000); 

byte_counter = 0; // reset detect 

cycle by pressing button 

wait_for_button_release(BOTTOM_BUTTON); 

} 

    } 

} 
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D. Host MATLAB Code

MatlabSerialCode.m 

%Interface for launching Beat Detection script 

%This is the script to run for starting Beat Detection 

using MATLAB 

%########################################################

################## 

%########################--MATLAB CODE--

################################### 

%########################################################

################## 

%What is the COM port name? 

%  input COM port name 

%  SerBEAT = serial([Com port name]); 

%Do you want to use a .wav file or the microphone? 

% if file then 

%  input file name 

%  test = strcat('xx', num2str(control([file 

name]))) 

% else 

% ... 
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% 

%NOTE: 

%If MATLAB gives a serial error, it will most likely say 

'unable to open 

%serial port' next time you run the program; restart 

MATLAB to recover. 

% 

loop_val = 1; 

repeat_val = 0; 

Mode = 'a'; 

prompt = 'Enter your COM port: ';  

com_str = input(prompt,'s'); 

% make sure com port is CAPITALS 

str = upper(com_str); 

prompt2 = strcat(str, ': Is this correct? Y/N [Y]: '); 

str2 = input(prompt2,'s'); 

if (strcmp(str2, 'Y') || strcmp(str2, 'y')) 
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    SerBEAT = serial(str); %<--SET UP SERIAL CONNECTION 

IN MATLAB 

    set(SerBEAT,'BaudRate', 9600, 'DataBits', 8, 

'Parity', 'none','StopBits', 1, 'FlowControl', 'none'); 

    fopen(SerBEAT); %--open the serial port to the PIC 

    while loop_val == 1 

    BPM = 1; 

  if (repeat_val ~= 1) 

  prompt3 = ('Enter .wav file name, ENTER for 

microphone, or z to pause: '); 

 str3 = input(prompt3,'s'); 

 if isempty(str3)    %if ENTER has been 

pressed 

 BPM = control_accurate(); 

   %BPM = control_optimizer(); 

 elseif (strcmp(str3, 'Z') || strcmp(str3, 

'z')) 

   BPM = 1;   %set to zero so Mode check 

drops out to PAUSE 

 else 
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 BPM = control_accurate(str3); 

 %BPM = control_optimizer(str3); 

   end 

   else 

 BPM = control_accurate(); 

   pause(1); 

  end 

   %%%%%%%%%%%%Logic for beat mode to send to Robot 

Controller%%%%%%%%% 

%  while ((BPM > 120) || (BPM < 60)) 

%  if BPM > 120 

%   BPM = (BPM / 2); 

%  end 

%  if BPM < 60 

%   BPM = (BPM * 2); 

%  end 

%    end 

 BPM 

%   Mode = (ceil((BPM - 59)/6)-1); 
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 if ((BPM > 59) && (BPM < 62))   %60-61 BPM 

 Mode = 'a'; %60 BPM 

 elseif ((BPM > 61) && (BPM < 65))   %62-64 BPM 

 Mode = 'b'; %62 BPM 

 elseif ((BPM > 64) && (BPM < 68))   %65-67 BPM 

 Mode = 'c'; %65 BPM 

 elseif ((BPM > 67) && (BPM < 70))   %68-69 BPM 

 Mode = 'd'; %68 BPM 

 elseif ((BPM > 69) && (BPM < 72))   %70-71 BPM 

 Mode = 'e'; %70 BPM 

 elseif ((BPM > 71) && (BPM < 75))   %72-74 BPM 

 Mode = 'f'; %72 BPM 

 elseif ((BPM > 74) && (BPM < 78))   %75-77 BPM 

 Mode = 'g'; %75 BPM 

 elseif ((BPM > 77) && (BPM < 80))    %78-79 BPM 

 Mode = 'h'; %78 BPM 

 elseif ((BPM > 79) && (BPM < 82))    %80-81 BPM 

 Mode = 'i'; %80 BPM 

 elseif ((BPM > 81) && (BPM < 85))   %82-84 BPM 
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   Mode = 'j'; %82 BPM 

 elseif ((BPM > 84) && (BPM < 88))   %85-87 BPM 

   Mode = 'k'; %85 BPM 

 elseif ((BPM > 87) && (BPM < 90))   %88-89 BPM 

   Mode = 'l'; %88 BPM 

 elseif ((BPM > 89) && (BPM < 92))   %90-91 BPM 

   Mode = 'm'; %90 BPM 

 elseif ((BPM > 91) && (BPM < 95))   %92-94 BPM 

   Mode = 'n'; %92 BPM 

 elseif ((BPM > 94) && (BPM < 98))   %95-97 BPM 

   Mode = 'o'; %95 BPM 

 elseif ((BPM > 97) && (BPM < 100))   %98-99 BPM 

   Mode = 'p'; %98 BPM 

 elseif ((BPM > 99) && (BPM < 102))   %100-101 BPM 

   Mode = 'q'; %100 BPM 

 elseif ((BPM > 101) && (BPM < 105))   %102-104 

BPM 

   Mode = 'r'; %102 BPM 

 elseif ((BPM > 104) && (BPM < 108))   %105-107 

BPM 
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   Mode = 's'; %105 BPM 

 elseif ((BPM > 107) && (BPM < 110))   %108-109 

BPM 

   Mode = 't'; %108 BPM 

 elseif ((BPM > 109) && (BPM < 112))   %110-111 

BPM 

   Mode = 'u'; %110 BPM 

 elseif ((BPM > 111) && (BPM < 115))   %112-114 

BPM 

   Mode = 'v'; %112 BPM 

 elseif ((BPM > 114) && (BPM < 118))   %115-117 

BPM 

   Mode = 'w'; %115 BPM 

 elseif ((BPM > 117) && (BPM < 120))   %118-119 

BPM 

   Mode = 'x'; %118 BPM 

 elseif ((BPM > 119) && (BPM < 121))   %120 BPM 

 Mode = 'y'; %120 BPM 

 elseif (BPM == 0)    %user has input a z or Z 

 Mode = 'z';   %Drum is PAUSED 

 end 
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 Mode 

 pause(1); 

 %%%%%%%%%%%%End Beat Mode Logic%%%%%%%%% 

 %test = num2str(Mode); 

 test = strcat(':::', num2str(Mode)); 

    %    for s = 1: 1: 100 

   fprintf(SerBEAT, '%s', test); %--send BPM 

mode to Orangutan Robot Controller 

    %        pause(0.1); 

    %    end 

 if (repeat_val ~= 1) 

   prompt4 = 'Press: R=Repeat, B=BPM Detect Loop 

(CTRL+C to exit), or Q=finish: '; 

 str4 = input(prompt4,'s'); 

 if (strcmp(str4, 'Q') || strcmp(str4, 'q')) 

 loop_val = 0; 

 fclose(SerBEAT) %--close the serial port 

when done 
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 delete(SerBEAT) 

 clear SerBEAT 

 elseif (strcmp(str4, 'B') || strcmp(str4, 

'b')) 

   repeat_val = 1; 

 elseif (strcmp(str4, 'R') || strcmp(str4, 

'r')) 

 repeat_val = 0; 

 end 

 end 

 pause(1); 

 %continue to end of script 

    end 

else 

    %exit 

end 

%NOTE 1: 
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%if MATLAB ever gives a serial error, it will most likely 

say 'unable to 

%open serial port' next time you 

%run the program, so you have to restart MATLAB 

% 

%http://www.instructables.com/id/MATLAB-to-PIC-serial-

interface/ 
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control.m 

function output=control_accurate(song1, bandlimits, 

maxfreq) 

% CONTROL takes in the names of two .wav files, and 

outputs their 

% combination, beat-matched, and phase aligned. 

% 

%  SIGNAL = CONTROL(SONG1, SONG2, BANDLIMITS, MAXFREQ) 

takes in 

%  the names of two .wav files, as strings, and 

outputs their 

%  sum. BANDLIMITS and MAXFREQ are used to divide the 

signal for 

%  beat-matching 

% 

%  Defaults are: 

%   BANDLIMITS = [0 200 400 800 1600 3200] 

%   MAXFREQ = 4096 

  if nargin < 1, song1 = 'None'; end 
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  if nargin < 2, bandlimits = [0]; end 

  if nargin < 3, maxfreq = 16384; end 

  % Length (in power-2 samples) of the song 

  sample_size = floor(16*maxfreq); 

  scaling = 0.73;   % Experimentally derived 

  % Takes in the two wave files 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%  RECORDING LOGIC  %%%%%%%%%%%% 

if (strcmp(song1, 'None')) 

recObj = audiorecorder; 

disp('Start of Recording') 

recordblocking(recObj, 10); 

disp('End of Recording'); 

    x1 = getaudiodata(recObj); 

    short_sample = x1; 

else 

    x1 = wavread(song1); 
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    short_song = x1; 

    short_length = length(x1); 

    start = floor(short_length/2 - sample_size/2); 

    stop = floor(short_length/2 + sample_size/2); 

  % Finds a 5 second representative sample of each song 

  short_sample = short_song(start:stop); 

end 

  % Implements beat detection algorithm for each song 

  a = filterbank(short_sample, bandlimits, maxfreq); 

  b = hwindow(a, 0.1, bandlimits, maxfreq); 

  c = diffrect(b, length(bandlimits)); 

  % Recursively calls timecomb to decrease computational 

time 

  d = timecomb(c, 5, 60, 240, bandlimits, maxfreq); 

  e = timecomb(c, .5, d-2, d+2, bandlimits, maxfreq); 

  f = timecomb(c, .1, e-.5, e+.5, bandlimits, maxfreq); 

  g = timecomb(c, .01, f-.1, f+.1, bandlimits, maxfreq); 



139 

  h = floor(scaling*g); 

  % We want 60-120 BPM, so scale harmonics into range. 

Assume 240 Max 

  % and 15 Min BPM in audio input sample. 

  if ((h > 120) || (h < 60)) % Only scale if out of range 

 if (h < 30 ) 

 h = 3*h;   %double if less than 60, assume 

never below 30BPM 

 elseif ((h > 30) && (h < 60)) 

   h = 2*h;   %double if less than 60, assume 

never below 30BPM 

 elseif (h > 121) 

 h = 0.5*h;  %halve if more than 120 but less 

than 180 

 %assume never over 300 

 end 

  end 

  short_song_bpm = floor(h); 

  output = short_song_bpm; 
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filterbank.m 

function output = filterbank(sig, bandlimits, maxfreq) 

% FILTERBANK divides a time domain signal into individual 

frequency  

% bands. 

%   

%    FREQBANDS = FILTERBANK(SIG, BANDLIMITS, MAXFREQ) 

takes in a 

%  time domain signal stored in a column vector, and 

outputs a 

%  vector of the signal in the frequency domain, with 

each 

%  column representing a different band. BANDLIMITS is 

a vector 

%  of one row in which each element represents the 

frequency 

%  bounds of a band. The final band is bounded by the 

last 

%  element of BANDLIMITS and  MAXFREQ. 
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% 

%  Defaults are: 

%   BANDLIMITS = [0 200 400 800 1600 3200] 

%   MAXFREQ = 4096 

% 

%  This is the first step of the beat detection 

sequence. 

% 

%  See also HWINDOW, DIFFRECT, and TIMECOMB 

  if nargin < 2, bandlimits=[0 200 400 800 1600 3200]; 

end 

  if nargin < 3, maxfreq=4096; end 

  dft = fft(sig); 

  n = length(dft); 

  nbands = length(bandlimits); 

  % Bring band scale from Hz to the points in our vectors 

  for i = 1:nbands-1 
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    bl(i) = floor(bandlimits(i)/maxfreq*n/2)+1; 

    br(i) = floor(bandlimits(i+1)/maxfreq*n/2); 

  end 

  bl(nbands) = floor(bandlimits(nbands)/maxfreq*n/2)+1; 

  br(nbands) = floor(n/2); 

  output = zeros(n,nbands); 

  % Create the frequency bands and put them in the vector 

output. 

  for i = 1:nbands 

    output(bl(i):br(i),i) = dft(bl(i):br(i)); 

    output(n+1-br(i):n+1-bl(i),i) = dft(n+1-br(i):n+1-

bl(i)); 

  end 

  %output(1,1)=0; 
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hwindow.m 

function output = hwindow(sig, winlength, bandlimits, 

maxfreq) 

% HWINDOW rectifies a signal, then convolves it with a 

half Hanning 

% window. 

% 

%  WINDOWED = HWINDOW(SIG, WINLENGTH, BANDLIMITS, 

MAXFREQ) takes 

%  in a frequecy domain signal as a vector with each 

column 

%  containing a different frequency band. It 

transforms these 

%  into the time domain for rectification, and then 

back to the 

%  frequency domain for multiplication of the FFT of 

the half 

%  Hanning window (Convolution in time domain). The 

output is a 

%  vector with each column holding the time domain 

signal of a 
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%  frequency band. BANDLIMITS is a vector of one row 

in which 

%  each element represents the frequency bounds of a 

band. The 

%  final band is bounded by the last element of 

BANDLIMITS and 

%  MAXFREQ. WINLENGTH contains the length of the 

Hanning window, 

%  in time. 

% 

%  Defaults are: 

%   WINLENGTH = .4 seconds 

%   BANDLIMITS = [0 200 400 800 1600 3200] 

%   MAXFREQ = 4096 

% 

%  This is the second step of the beat detection 

sequence. 

% 

%  See also FILTERBANK, DIFFRECT, and TIMECOMB 

  if nargin < 2, winlength = .4; end 
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  if nargin < 3, bandlimits = [0 200 400 800 1600 3200]; 

end 

  if nargin < 4, maxfreq = 4096; end 

  n = length(sig); 

  nbands = length(bandlimits); 

  hannlen = winlength*2*maxfreq; 

  hann = [zeros(n,1)]; 

  % Create half-Hanning window. 

  for a = 1:hannlen 

    hann(a) = (cos(a*pi/hannlen/2)).^2; 

  end 

  % Take IFFT to transfrom to time domain. 

  for i = 1:nbands 

    wave(:,i) = real(ifft(sig(:,i))); 

  end 

  % Full-wave rectification in the time domain. 
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  % And back to frequency with FFT. 

  for i = 1:nbands 

    for j = 1:n 

 if wave(j,i) < 0 

wave(j,i) = -wave(j,i); 

  end 

    end 

    freq(:,i) = fft(wave(:,i)); 

  end 

  % Convolving with half-Hanning same as multiplying in 

  % frequency. Multiply half-Hanning FFT by signal FFT. 

Inverse 

  % transform to get output in the time domain. 

  for i = 1:nbands 

    filtered(:,i) = freq(:,i).*fft(hann); 

    output(:,i) = real(ifft(filtered(:,i))); 

  end 
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diffrect.m 

function output=diffrect(sig,nbands) 

% DIFFRECT differentiates signal, then half-wave 

rectifies the result.  

% 

%  DIFF = DIFFRECT(SIG, NBANDS) takes in a time domain 

signal 

%    stored in a vector with each column representing a 

different 

%    frequency band. The number of frequency bands is 

passed in 

%  through NBANDS. 

% 

%  Defaults are: 

%   NBANDS = 6 

% 

%  This is the third step of the beat detection 

sequence 

%  See also FILTERBANK, HWINDOW, and TIMECOMB 

if nargin <2, nbands=6; end 
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n = length(sig); 

output=zeros(n,nbands); 

for i = 1:nbands 

   for j = 5:n 

% Find the difference from one sample to the next 

d = sig(j,i) - sig(j-1,i);   

if d > 0  

  % Retain only if difference is positive (Half-Wave 

rectify) 

  output(j,i)=d; 

end 

   end 

end 

timecomb.m 

function output = timecomb(sig, acc, minbpm, maxbpm, 

bandlimits, maxfreq) 
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% TIMECOMB finds the tempo of a musical signal, divided 

into 

% frequency bands. 

% 

%  BPM = TIMECOMB(SIG, ACC, MINBPM, MAXBPM, 

BANDLIMITS, MAXFREQ) 

%  takes in a vector containing a signal, with each 

band stored 

%  in a different column. BANDLIMITS is a vector of 

one row in 

%  which each element represents the frequency bounds 

of a 

%  band. The final band is bounded by the last element 

of 

%    BANDLIMITS and MAXFREQ. The beat resolution is 

defined in 

%  ACC, and the range of beats to test is  defined by 

MINBPM and 

%  MAXBPM. 

%  

%  Defaults are: 

%   ACC = 1 
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%   MINBPM = 60 

%   MAXBPM = 240 

%   BANDLIMITS = [0 200 400 800 1600 3200] 

%   MAXFREQ = 4096 

% 

%  Note that timecomb can be recursively called with 

greater 

%  accuracy and a smaller range to speed up 

computation. 

% 

%  This is the last step of the beat detection 

sequence. 

% 

%  See also FILTERBANK, HWINDOW, and DIFFRECT 

  if nargin < 2, acc = 1; end 

  if nargin < 3, minbpm = 60; end 

  if nargin < 4, maxbpm = 240; end 

  if nargin < 5, bandlimits = [0 200 400 800 1600 3200]; 

end 
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  if nargin < 6, maxfreq = 4096; end 

  n=length(sig); 

  bpms = [0,0,0,0,0,0,0,0,0,0]; 

  bpms_cnt = 1; 

  nbands=length(bandlimits); 

  % Set the number of pulses in the comb filter 

  npulses = 3; 

  % Get signal in frequency domain 

  for i = 1:nbands 

    dft(:,i)=fft(sig(:,i)); 

  end 

  % Initialize max energy to zero 

  maxe = 0; 

  for bpm = minbpm:acc:maxbpm 
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    % Initialize energy and filter to zero(s) 

    e = 0; 

    fil=zeros(n,1); 

    % Calculate the difference between peaks in the 

filter for a 

    % certain tempo 

    nstep = floor(120/bpm*maxfreq); 

    % Set every nstep samples of the filter to one 

    for a = 0:npulses-1 

  fil(a*nstep+1) = 1; 

    end 

    % Get the filter in the frequency domain 

    dftfil = fft(fil); 

    % Calculate the energy after convolution 

    for i = 1:nbands 

 x = (abs(dftfil.*dft(:,i))).^2; 

 e = e + sum(x); 
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    end 

    % If greater than all previous energies, set current 

bpm to the 

    % bpm of the signal 

    if e > maxe 

 sbpm = bpm; 

 bpms(bpms_cnt) = sbpm; 

 bpms_cnt = bpms_cnt + 1; 

 maxe = e; 

    end 

  end 

  output = sbpm; 



154

i Eric D. Scheirer, “Tempo and beat analysis of acoustic musical signals,” J. Acoust Soc. 

Am Vol 103, no. 1 (Jan 1998): 588-601 

ii McKinney, Martin F. and Breebaart, Jeroen, “Features for Audio and Music 

Classification,” Johns Hopkins University (2003) 

iii Handel, Stephen, “Listening,” MIT Press (July 1989) 

iv Large, Edward W. and Kolen, John F., “Resonance and the Perception of Musical 

Meter”, Connection Science, Vol. 6, Nos. 2 & 3 (1994) 

v Eric D. Scheirer, “Tempo and beat analysis of acoustic musical signals,” J. Acoust Soc. 

Am Vol 103, no. 1 (Jan 1998): 588-601 

vi Povel, Dirk-Jan and Essens, Peter, “Perception of Temporal Patterns,” Music 

Perception: An Interdisciplinary Journal, Vol. 2, No. 4 (1985) 

vii Valtino X. Afonso, Willis J. Tompkins, Truong Q. Nguyen, and Shen Luo, “ECG Beat 

Detection Using Filter Banks,” IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 

VOL. 46, NO. 2 (Feb 1999) 


	Audio Beat Detection with Application to Robot Drumming
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1588950723.pdf.Fpfxx

