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SUMMARY 

Citrus Black Spot (CBS), caused by Phyllosticta citricarpa, is a fungal disease that influences 

citrus industries worldwide. All commercial Citrus spp. are susceptible to the disease. The 

pathogen was first described 117 years ago from Australia; subsequently, from summer rainfall 

citrus production regions in China, Africa, and South America; and, recently, the United States. 

Limited information is available on the pathogen’s population structure, mode of reproduction, and 

introduction pathways at a global scale and at a regional (provincial) scale in South Africa. This 

is also true for the effect of distance (spatial), season (temporal) and Citrus spp. on population 

structure at the orchard scale. The aforementioned aspects were investigated in the current study. 

Since limited co-dominant markers are available for P. citricarpa population genetic analyses, one 

of the first aims of the study was to develop new simple-sequence repeat (SSR) markers.  

The population structure of P. citricarpa was investigated at a global scale in 12 

populations from South Africa, the United States, Australia, China, and Brazil. Seven published 

and eight newly developed polymorphic SSR markers were used for genotyping populations. The 

Chinese and Australian populations had the highest genetic diversities, whereas populations from 

Brazil, the United States, and South Africa exhibited characteristics of founder populations. Based 

on population differentiation and clustering analyses, the Chinese populations were distinct from 

the other populations. High connectivity was found, and possibly linked introduction pathways, 

between South Africa, Australia and Brazil. With the exception of the clonal United States 

populations that only contained one mating type, the other populations contained both mating 

types in a ratio that did not deviate significantly from 1:1. Although most populations exhibited 

sexual reproduction, linkage disequilibrium analyses indicated that asexual reproduction is also 

important.  

The effects of distance (spatial) and season (temporal) on the population structure of P. 

citricarpa were investigated over two seasons, in two lemon orchards in South Africa; one in the 

Mpumalanga province and the other in the North West province. Spatial analyses indicated that 

subpopulations separated by a short distance (within 200 m) were typically not significantly 

genetically differentiated, but that those separated by longer distances were sometimes 

significantly differentiated. Temporal analyses in the North West orchard showed that seasonal 

populations were not significantly genetically differentiated. In contrast, seasonal populations from 

the Mpumalanga orchard were significantly differentiated, most likely due to higher rainfall and 

disease pressure, and the spatial scale of sampling. Based on linkage disequilibrium analyses, 

sexual and asexual reproduction occurred in both orchards. In each orchard, two dominant 
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multilocus genotypes (MLGs) were identified in most of the subpopulations, as well as in the 

seasonal populations. Pycnidiospores are therefore important in the development of CBS at the 

temporal and spatial scales in South African lemon orchards.  

Population genetic studies on a regional (provincial) scale in South Africa showed that ten 

P. citricarpa populations, representing five provinces (North West, Mpumalanga, Limpopo, 

KwaZulu-Natal and Eastern Cape), were not significantly genetically differentiated. Based on 

gene and genotypic diversities and private allele richness, the KwaZulu-Natal or the Limpopo 

provinces are likely the provinces where the pathogen was first introduced. There might have 

been at least two separate introductions of the pathogen into the country. The Eastern Cape 

province was confirmed as being the province where the latest introduction occurred in South 

Africa. Despite lemon trees having overlapping fruit crops, potentially providing increased 

opportunities for clonal reproduction, Citrus spp. (lemons vs. oranges) did not have an effect on 

population structure; not all lemon populations were significantly genetically differentiated from all 

orange populations. 

The current study has revealed novel information on the population structure of P. 

citricarpa at global and regional (South Africa) scales, which have implications for the 

epidemiology and management of the disease. The finding that pycnidiospores, in addition to 

ascospores, are also important in the epidemiology of the disease in South Africa, contradicts 

previous reports that pycnidiospores are of minor significance. Future studies should re-

investigate the role of these spore types in the epidemiology of CBS in South Africa using 

conventional orchard inoculation and leaf removal studies, combined with a population genetic 

data analyses. The role that distance and season have on the population structure should also 

be considered in orchard trial designs. Ascospore spore trap data should be generated that 

involve the differentiation of P. citricarpa from P. capitalensis. 
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OPSOMMING 

Sitrus Swartvlek (SSV) is 'n swamsiekte wat deur Phyllosticta citricarpa veroorsaak word, en wat 

sitrusbedrywe wêreldwyd beïnvloed. Alle kommersiële Sitrus spp. is vatbaar vir die siekte. Die 

patogeen is 117 jaar gelede vir die eerste maal in Australië beskryf en daarna van sitrus 

produserende streke in somerreënval gebiede in Sjina, Afrika en Suid-Amerika en mees onlangs 

van die Verenigde State. Beperkte inligting oor die patogeen se populasie-struktuur, wyse van 

voortplanting en introduksie roetes is op ‘n globale vlak beskikbaar, sowel as op ‘n provinsiale 

vlak in Suid-Afrika. Op ŉ boordvlak, is inlgiting ook beperk oor die effek wat afstand (“spatial”), 

seisoen (temporaal) en Sitrus spp. op die populasie-struktuur het. Voorafgenoemde aspekte is in 

die studie ondersoek. Aangesien beperkte dominante merkers vir P. citricarpa populasie 

genetiese analises beskikbaar is, was een van die eerste doelstellings van die studie om nuwe 

mikrosatelliet merkers te ontwikkel. 

Die populasie-struktuur van P. citricarpa is op ‘n globale vlak in 12 populasies van Suid-

Afrika, die Verenigde State, Australië, Sjina en Brasilië ondersoek. Sewe gepubliseerde en agt 

nuut ontwikkelde polimorfiese mikrosatelliet merkers is gebruik om die populasies te genotipeer. 

Die Sjinese en Australiese populasies het die hoogste genetiese diversiteit getoon, terwyl 

populasies van Brasilië, die Verenigde State en Suid-Afrika eienskappe van stigterspopulasies 

toon. Gebaseer op populasie-differensiasie en groeperings-analises verskil die Sjinese 

populasies van die ander populasies. Hoë konnektiwiteit en moontlik gedeelde introduksie roetes 

is tussen Suid-Afrika, Australië en Brasilië gevind. Met die uitsondering van die klonale populasies 

van die Verenigde State, met net een paringstipe, het die ander populasies beide paringstipes 

gehad in 'n verhouding wat nie beduidend van 1:1 afwyk nie. Alhoewel die meeste populasies 

geslagtelike voortplanting getoon het, het “linkage disequilibrium” analises getoon dat 

ongeslagtelike voortplanting ook belangrik is. 

Die effek van afstand (ruimtelik) en seisoen (temporaal) op die populasie-struktuur van P. 

citricarpa is oor twee seisoene in twee suurlemoenboorde in Suid-Afrika ondersoek; een boord in 

die Mpumalanga-provinsie en die ander in die Noordwes-provinsie.  Ruimtelike analises het 

getoon dat subpopulasies wat deur 'n kort afstand (binne 200 m) geskei word, tipies nie 

betekenisvol geneties gedifferensieerd was nie, maar dat die wat deur langer afstande geskei is, 

soms betekenisvol gedifferensieerd was. Temporale analises in die Noordwes boord het getoon 

dat seisoenale populasies nie betekenisvol geneties gedifferensieerd was nie. In teenstelling 

hiermee, was seisoenale populasies van die Mpumalanga-boord betekenisvol gedifferensieerd, 

waarskynlik weens hoër reënval en siektedruk en die ruimtelike skaal van monsterneming. 
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Gebaseer op “linkage disequilibrium” analises, het geslagtelike en ongeslagtelike voortplanting in 

beide boorde plaasgevind. In elke boord het twee dominante multi-lokus genotipes (MLG's) in die 

meeste van die subpopulasies, sowel as in die seisoenale populasies, voorgekom.  Piknidiospore 

is dus belangrik in die ontwikkeling van SSV op temporale en ruimtelike vlakke in Suid-Afrikaanse 

suurlemoenboorde. 

 Populasie genetika studies op 'n streeks- (provinsiale) vlak in Suid-Afrika het getoon dat 

tien P. citricarpa-populasies wat vyf provinsies verteenwoordig (Noordwes, Mpumalanga, 

Limpopo, KwaZulu-Natal en Oos-Kaap), nie betekenisvol geneties gedifferensieerd was nie. 

Gebaseer op geen- en genotipiese diversiteit en die aantal privaat allele, is die KwaZulu-Natal 

provinsie of die Limpopo provinsie waarskynlik die provinsies waar die patogeen eerste gevestig 

het. Daar is moontlik ten minste twee afsonderlike introduksies van die patogeen. Daar is bewys 

dat die Oos-Kaap die provinsie is waar die laaste introduksie in Suid-Afrika plaasgevind het. Ten 

spyte daarvan dat suurlemoenbome wat oorvleuende oeste het, moontlik verhoogde geleenthede 

vir klonale voortplanting bied, het Citrus spp. (suurlemoene vs. lemoene) nie 'n effek op die 

populasie-struktuur gehad nie, omdat nie al die suurlemoenpopulasies betekenisvol geneties 

gedifferensieerd van al die lemoenpopulasies was nie. 

Die studie het nuwe inligting oor die populasie-struktuur van P. citricarpa op ‘n globale en 

streeks- (Suid-Afrika) vlak gebring, wat implikasies vir die epidemiologie en bestuur van die siekte 

inhou. Die bevinding dat piknidiospore, bykomend tot askospore, ook belangrik in die 

epidemiologie van die siekte in Suid-Afrika is, weerspreek vorige verslae dat piknidiospore van 

geringe belang is. Verdere studies moet die rol van hierdie spoortipes in die epidemiologie van 

SSV in Suid-Afrika deur middel van konvensionele boord-inokulasies en blaarverwyderingstudies 

ondersoek. Dit moet met 'n populasie genetika studie gekombineer word. Die rol wat afstand en 

seisoen op die populasie-struktuur het, moet ook vir die ontwerp van boordproewe oorweeg word. 

Askospoor lokval-data moet gegenereer word wat tussen P. citricarpa en P. capitalensis kan 

onderskei. 
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CHAPTER 1 

A review of Phyllosticta citricarpa, the citrus black spot pathogen 

INTRODUCTION 

The citrus industry in South Africa was founded in 1654 when the seafarer Commander Jan van 

Riebeeck planted the first orange trees in the Cape Colony on his farm and in the Company’s 

Garden (Chapot, 1975). The first trees were brought from the Island of St Helena, which was a 

stopover for ships on their way from Asia to Europe. The tradesmen on these ships planted the 

fruit trees on the Island of St Helena (Powell, 1930; Allwright, 1957). Other records of imported 

citrus material into South Africa, before the first trained horticulturists arrived in the Cape to 

develop the fruit industries, included orange trees imported from India in 1656 and grafted trees 

in 1850 from Brazil (Allwright, 1957). These plantings were seen as the ancestors of the citrus 

trees that subsequently moved inland from the Cape with the pioneer settlers (Oberholzer, 1969). 

The first citrus exports took place in 1902 when fruit was shipped from South Africa to England. 

In 1906, the South African citrus industry won a gold medal at a Trade Show in England. Exports 

reached the one million box mark in 1925 (CGA, 2017).  

Today, the citrus industry in South Africa is an export-driven industry that produces a 

variety of citrus types. The South African citrus industry is one of South Africa’s major agricultural 

industries with regard to exports. South Africa is the second largest international exporter of fresh 

citrus fruit and considering the current 70 055 planted hectares, South Africa is the tenth largest 

international producer of fresh citrus fruit (CGA, 2017). Citrus for fresh fruit production is produced 

in the Limpopo, Eastern Cape, Western Cape, Mpumalanga, KwaZulu-Natal, Northern Cape and 

North West provinces. The main citrus producing areas are situated in the Limpopo (42%), 

Eastern Cape (26%) and Western Cape (17%) provinces. The smallest production area is situated 

in the North West province with only 161 hectares planted (CGA, 2017). About 60% of the crop 

is sweet oranges (Valencias 38% and navels 22%), 16% soft citrus, 13% lemons and limes and 

11% grapefruit. Currently 76% of the total crop is exported, of which 45% is exported to the 

European countries and 21% to the Middle Eastern countries (CGA, 2017). Valencias and navels 

are the major export products with 39% and 24% being exported respectively. The remaining 47% 

consist of lemons (14%), grapefruit (12%) and soft citrus (11%) (CGA, 2017).  

Citrus production in South Africa is hampered by the presence of many pests and 

diseases. The international fresh fruit trade has always been influenced by plant health (McRae 
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et al., 2002). Some of South Africa’s citrus trade partners have identified pests and diseases that 

are present in South Africa, but absent from other citrus producing regions in the world. These 

pests and diseases are thus of quarantine importance (Paul et al., 2005; Carstens et al., 2012). 

Phyllosticta citricarpa (McAlpine) Aa, which causes citrus black spot (CBS), is present in South 

Africa (Kiely, 1948; Kotzé, 1981; Carstens et al., 2012) and has been identified as being of 

quarantine importance by these trade partners. This includes the European Union, since CBS is 

not known to occur in any of the European regions. Specific requirements, such as area freedom, 

consignments inspections and pre- and post-harvest treatments, to ensure that consignments of 

citrus fruit are free from CBS has been specified in bilateral export protocols and import 

requirements (Carstens et al., 2012; E Phoku, Department: Agriculture, Forestry and Fisheries, 

Republic of South Africa, personal communication). Aside from restricting market access, CBS is 

also of economic importance in local markets, since it causes blemishes on fruit that affect fruit 

quality. CBS fruit blemishes are only cosmetic since the pathogen does not cause fruit rot. Fruit 

symptoms can develop after harvest while the fruit is in storage (Kiely, 1848; Kotzé, 1981; 

Agostini, et al., 2006). 

CBS occurs worldwide where climatic conditions are suitable for disease establishment 

and spread. Climatic conditions play an important role in the occurrence and severity of the 

disease and it is only present in citrus producing countries that have a warm, humid, summer 

rainfall climate (Kotzé, 1981; Paul et al., 2005; Carstens et al., 2012; Yonow et al., 2013). The 

pathogen most likely spread on a global scale to new areas through infected budwood, trees and 

leaves. No insect vectors are known to disperse the pathogen. After the first CBS symptoms are 

observed in a region, the spread of the disease is very slowly. In South Africa, it took about 10 

years for it to become a serious disease, and in Brazil it took 12 years to move from the first 

detection site to São Paulo (Kiely, 1948; Wager, 1952; McOnie, 1965; Kotzé, 1981, 2000; USDA 

APHIS, 2010). Valencia oranges and lemons are regarded as the most susceptible citrus types. 

The pathogen can infect all commercial citrus types and all plant parts above the ground with 

infection mostly remaining latent and asymptomatic. The most obvious symptoms are found on 

the fruit (Kiely, 1948; Kotzé, 1981).  

Phyllosticta citricarpa produces two types of spores, i.e. asexual pycnidiospores and 

sexual ascospores. The sexual reproductive system of P. citricarpa was only recently elucidated 

as being that of a heterothallic fungus requiring both mating types. In Australia and Brazil both 

mating types of the pathogen are known to occur, enabling sexual reproduction (Wang et al., 

2016; Amorim et al., 2017; Tran et al., 2017). However, in Florida (USA), and in Portugal, Italy 

and Malta, only one mating type occurs (Wang et al., 2016; Guarnaccia et al., 2017).  
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The relative contribution of asexual and sexual reproduction in countries where both 

mating types occur or are likely to occur, differs. In Australia and South Africa, P. citricarpa is 

believed to mainly reproduce sexually with ascospores playing a prominent role in disease 

development and pycnidiospores are believed to play a limited role (Kiely, 1948; McOnie, 1965; 

Kotze, 1981, 2000). However, in Brazil, pycnidiospores have been shown to play a more 

prominent role in disease development (Spósito et al., 2007, 2008, 2011). 

 Due to the importance of CBS in citrus production in South Africa and worldwide, a lot of 

research has been conducted to better understand the epidemiology of the disease and how to 

manage the disease. However, none of the studies used a population genetic approach to better 

understand the biology of the pathogen. This literature review will review CBS with regards to 

known symptoms, the disease cycle and the epidemiology, focussing on investigating the role of 

pycnidiospores and ascospores in the epidemiology of the disease. The review will end with a 

brief summary of population genetics tools that can be used to better understand the biology and 

epidemiology of plant pathogens. Information on molecular markers that have been evaluated for 

P. citricarpa, and that can be used in population genetic studies will be provided. 

HISTORY AND GEOGRAPHICAL DISTRIBUTION OF CITRUS BLACK SPOT 

A. H. Benson was the first to officially recognize and describe CBS. Although he did not study the 

disease, he made drawings in 1895 of the symptoms he found on sweet oranges in New South 

Wales, Australia (Benson, 1895). The first measurements of one of the spore types of CBS from 

the fruit was made by Cobb in 1897 (Cobb, 1897). At that stage, a Colletotrichum sp. was 

regarded as the causal organism. In 1899, McAlpine provided the first detailed description of the 

causal organism. He based his description on the structure of the asexual (pycnidial) form found 

in lesions on citrus fruit and described the causal organism as a new species, Phoma citricarpa 

McAlpine (McAlpine, 1899). Experiments conducted in 1906 confirmed the suspected latent 

nature of the pathogen on fruit (Kiely, 1948). The first results on possible control methods with 

chemicals was published in 1916 (Darnell-Smith, 1916). Kiely, who described the pseudothecial 

stage of the fungus, Guignardia citricarpa Kiely, was the first to discover the importance of 

ascospores in the life cycle of CBS and that leaves can be latently infected (Kiely, 1948). Later in 

1973, the asexual form was renamed Phyllosticta citricarpa (McAlpine) Aa (Van der Aa, 1973). 

The sexual form of the pathogen was known for many years as Guignardia citricarpa and 

the asexual form as Phyllosticta citricarpa. The recent changes in fungal nomenclature abolished 

the separate names for the two forms of a fungus, and a single name for each fungus based on 
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the earliest description was adopted. Accordingly, the CBS pathogen is now known as Phyllosticta 

citricarpa (Rossman and Samuels, 2005; Wikee et al., 2011).  

The first official record of the disease outside Australia was in 1920 from China which is 

hypothesised to be the centre of origin of Citrus (Lee, 1920; Scora, 1975). The second notification 

was from Argentina in 1928 (Marchionatto, 1928). The third international notification was from 

South Africa in 1929 (Doidge, 1929). Although Brazil and the United States of America are the 

second and third largest producers of citrus, CBS was only reported to be present in 1980 (Paul 

et al., 2005) and in 2010 (Schubert et. al., 2012) in these countries, respectively.  

In South Africa, CBS was first described in 1929 from orange orchards, nearby 

Pietermaritzburg in the Natal province (currently known as the KwaZulu-Natal province) (Doidge, 

1929). Today, KwaZulu-Natal is the fifth largest citrus producing region in South Africa and the 

third largest production region for grapefruit (CGA, 2017). In 1952, Wager reported that the 

disease only became notable in 1940 in the Pietermaritzburg area (Wager, 1952). In 1945, it was 

found in other areas in Natal and was also reported for the first time from another province in 

South Africa, namely the Northern Transvaal (currently known as the Limpopo province). In 1946, 

the disease was reported from other provinces including the Western Transvaal (currently known 

as the North West province) and Eastern Transvaal (currently known as the Mpumalanga 

province). By 1950 the disease was wide spread in these citrus producing areas. In 1953, Wager 

reported that CBS was not reported from the western side of the Western Transvaal (North West), 

the Western Cape and the Eastern Cape. The absence of CBS from the Western Cape was 

supported by McOnie (1964a). The disease was noticed in the Eastern Cape in the early 1970s 

(C. Kellerman, Citrus Consulting Association (SASSCON), personal communication). Until today, 

no CBS has been reported from the Western Cape and two of the magisterial districts in the 

western part of the North West province (Carstens et al., 2012).  

Although CBS has an almost global distribution, it has to date only been recorded from 

citrus producing countries and regions having a warm, humid, summer rainfall climate. The 

disease has been reported from Africa (Ghana, Nigeria, Kenya, Uganda, Zambia, Zimbabwe, 

Mozambique, Swaziland and parts of South Africa), Asia and Oceania (Hong Kong, Bhutan,  parts 

of China, Indonesia, Philippines, Taiwan and  parts of Australia), South America (Argentina, Brazil 

and Uruguay) and North America (Florida - USA) (CABI, 2017). The CBS disease has never been 

reported from countries or areas within countries where citrus is produced under Mediterranean 

climates and climates with winter rains and hot, dry summers (Broadbent 1995; Carstens et al., 

2012; Paul et al., 2005; Yonow et al., 2013). Phyllosticta citricarpa was recently reported to be 

present in citrus leaf litter from the Mediterranean countries, Portugal, Malta and Italy, where citrus 
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is produced. However the disease was apparently absent as no symptoms were present in the 

orchards where the pathogen was found (Guarnaccia et al., 2017). In Australia, the disease is 

absent from the Murray Valley in Riverina and Riverland (Miles et al., 2008). In South Africa, the 

disease is absent from the Western and Northern Cape citrus producing provinces (Carstens et 

al., 2012). Also in China, CBS is restricted to production regions with warm, humid, summer 

rainfall conditions (Wang et al., 2012). CBS is absent for Europe, Central America, the Caribbean 

Region and New Zealand (Everett and Rees-George, 2006; CABI, 2017).  

PHYLLOSTICTA SPECIES ASSOCIATED WITH CITRUS SPECIES 

Prior to the 1970s, it was believed that G. citricarpa had both a pathogenic and a non-pathogenic 

variant since a Guignardia sp. was isolated from citrus trees showing no CBS symptoms and 

other host plant species (Kiely, 1948; McOnie, 1964b). The pathogenic variant causing CBS 

symptoms was restricted to Citrus spp., while the symptomless non-pathogenic variant had a 

broader host range and wider distribution. Morphologically it was not possible to distinguish 

between the two variants. However, molecular studies based on analyses of the sequence of the 

internal transcribed spacer (ITS) region, and amplified fragment length polymorphic fingerprint 

(AFLP) patterns revealed two distinct species, G. citricarpa and G. mangiferae A.J. Roy 

(anamorph P. capitalensis Henn) (Baayen et al., 2002). The study of Baayen et al., (2002) 

confirmed that G. citricarpa is the CBS pathogen and that it is of phytosanitary importance to the 

international citrus trade. Guignardia mangiferae was renamed to Phyllosticta capitalensis 

following phylogenetic studies conducted in 2011 (Glienke et al., 2011). Phyllosticta capitalensis 

is an endophyte with a wide host range and is not known to cause a plant disease.  Subsequently, 

molecular and phylogenetic analyses of the ITS region and additional gene regions of more 

Phyllosticta isolates have identified other Phyllosticta species that are associated with Citrus. 

Some of the species cause symptoms on fruit and leaves while others are endophytic. Noteworthy 

is that the economic or phytosanitary importance of these species have not yet been fully 

elucidated. The plant pathogenic species associated with different citrus types apart from P. 

citricarpa are P. citriasiana on pumeloes in Thailand and China (Wulandari et al., 2009, Wang et 

al., 2012), P. citrichinaensis on grapefruit, mandarins and oranges in China (Wang et al., 2012), 

P. citrimaxima on pumeloes in Thailand (Wikee, et al., 2013) and P. paracitricarpa on leaf litter of 

lemon orchards in Greece (Guarnaccia et al., 2017). Phyllosticta paracitricarpa has been shown 

to produce atypical necrotic lesions on artificially inoculated fruit only, but no symptoms have been 

observed in the field (Guarnaccia et al., 2017). The endophytic species associated with Citrus 

spp. other than P. capitalensis included P. spinarum and P. citribraziliensis on lemons in Brazil 
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(Stingari et al., 2009; Glienke et al., 2011) and P. paracapitalensis on Citrus spp. in Italy and Spain 

(Guarnaccia et al., 2017).  

Symptoms caused by the different plant pathogenic Phyllosticta species (P. citricarpa, P. 

citriasiana, P. citrichinaensis and P. paracitricarpa) are very similar and are also morphologically 

similar. Symptoms are variable in appearance and can easily be confused with symptoms caused 

by pathogens other than Phyllosticta species. To ensure the correct identification of symptoms 

and Phyllosticta species, specific diagnostic procedures have been developed that include 

isolation onto specialised agar media and molecular detection using species-specific primers 

(FAO, 2014). One of the cultural characteristics of P. citricarpa is that it forms a yellow halo around 

colonies after 7-days’ growth on oatmeal agar when plates are incubated at 25˚C (FAO 2014). 

Species-specific primers, or sequence data must be used to genotypically differentiate P. 

citricarpa from P. capitalensis (Meyer et al., 2006; Peres et al., 2007).  

SYMPTOMS CAUSED BY P. CITRICARPA  

CBS symptoms develop on leaves and fruit. On fruit, the symptoms can develop while still on the 

tree or after harvest (Kiely, 1948; McOnie, 1967; Kotze, 1981, 2000). However, symptoms on the 

fruit mostly become visible on mature fruit after colour break (Kotzé, 2000). Symptom expression 

after harvest and the viability of the fungus in fruit lesions can be influenced and controlled by low 

storage temperatures and standard packhouse treatments (Korf et al., 2001; Agostini et al., 2006; 

Schreuder, 2017).  

For symptoms to develop on the fruit, the mycelium must grow into the rind (Kotzé, 2000). 

The pathogen is not known to cause fruit rot, only necrotic lesions. Six symptoms are known to 

be associated with CBS. The most common of these six symptoms include hard spot, false 

melanose, freckle spot and virulent spot, whereas lacy spot and cracked spot are less common. 

Pycnidia producing pycnidiospores are not produced in all of the symptom types (Kiely, 1948; 

Kotzé, 1981, 2000; De Goes et al., 2000; De Goes, 2001; Aguilar-Vildoso et al., 2002).  

Hard spot is the most typical fruit symptom and consists of more or less circular, 

depressed, brick red lesions that turn brown to black over time, with black margins and grey 

necrotic tissue in the centres. Sometimes a yellow or green halo may be found around the lesions, 

depending on the colour of the fruit. Pycnidia often, but not always, develop in the lesions. False 

melanose or speckled blotch are devoid of pycnidia and can appear on green fruit as dark brown 

to black lesions. Freckle spots are grey, tan, reddish or colourless, with no halo around them and 

are mostly devoid of pycnidia. The spots may develop into virulent spots later in the season or 

during storage. Virulent spots, irregular in shape, are the most damaging and numerous pycnidia 
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can develop in these lesions (Kiely, 1948; Kotzé, 1981, 2000). The other two symptoms, lacy spot 

and cracked spot are less common and are devoid of pycnidia (De Goes et al., 2000; De Goes, 

2001; Aguilar-Vildoso et al., 2002).  

Leaf symptoms are rare and have only been reported on leaves of lemons and Valencia 

oranges (Kiely, 1948; Kotzé, 2000; De Oliveira Silva et al., 2017). The disease mainly occurs on 

leaves as latent infections without visible symptoms. If symptoms on leaves are present, they 

consist of small round sunken necrotic spots surrounded by a dark brown ring. Sometimes a 

yellow halo may be present around leaf lesions. Twig symptoms are rare and are characterised 

by small, round, sunken necrotic spots with grey centres, surrounded by a dark brown ring (Kiely, 

1948; Kotzé, 2000; FAO, 2014).  

HOSTS OF CITRUS BLACK SPOT  

All commercially grown Citrus species that include sweet oranges, lemons, limes, pumeloes, 

grapefruit, mandarins, limes and their hybrids, are susceptible (Kiely, 1948, Kotzé, 1981). Of all 

the citrus types, lemons and Valencia oranges are regarded as the most susceptible (Kiely, 1948). 

According to Kiely (1948) and Kotzé (1981), CBS symptoms will first be noticed on lemons in a 

new area. To date, there is no documentation indicating symptom development on Tahiti limes 

and sour oranges and their hybrids, although the pathogen has been isolated from Tahiti limes 

(Kotzé, 1981; Baldassari et al., 2008).  

LIFE CYCLE OF P. CITRICARPA 

The pathogen has a primary life cycle involving sexual ascospores, and secondary life cycle 

involving asexual pycnidiospores. Pycnidia containing pycnidiospores can be found in lesions on 

fruit, dead twigs, leaves and living branches, while the ascopores can only be found on leaf litter 

(Kotzé 1981, 2000; De Oliveira Silva et al., 2017). The availability of the two spore types and 

infection by the spores requires different climatic conditions and have different ways of dispersal. 

These aspects will be discussed under the epidemiology section below.  

Phyllosticta citricarpa is a heterothallic fungus that requires two mating types for sexual 

reproduction and the formation of ascospores (Wang et al., 2016; Amorim et al., 2017). Although 

the importance of ascospores in the life cycle has been known since 1948 (Kiely, 1948), the 

mating types genes and the mechanism responsible for sexual reproduction of the pathogen were 

only recently resolved (Wang et al., 2016; Amorim et al., 2017; Tran et al., 2017). A factor that 

hampered the unravelling of the heterothallic nature of the pathogen was that it has been 

impossible to produce ascospores in culture until very recently. Tran et al. (2017) was the first to 
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report a method to produce ascospores in culture. The difficulty in accomplishing this in the past, 

is due to the fact that P. citricarpa is vegetatively incompatible, coupled with the fact that it was 

not possible to know the mating type of isolates used in matings (Tran et al., 2017). The latter has 

recently been resolved when the mating type locus was identified for the first time in P. citricarpa. 

This enabled the development of mating type specific primers for the MAT1-1-1 and the MAT1-2-

1 genes (Wang et al., 2016; Amorim et al., 2017). The study by Tran et al. (2017) revealed that 

successful mating requires opposite mating types in direct physical contact. Recent studies 

determined that both mating types were present in P. citricarpa populations from Australia and 

Brazil. Furthermore, the frequency of the mating types did not deviate significantly from a 1:1 ratio 

based on Chi-square analyses (Wang et al., 2016, Amorim et al., 2017). Populations obtained 

from the USA (Florida) and Europe (Portugal, Italy and Malta) have, however, been reported to 

only contain one of the mating types (Wang et al., 2016; Guarnaccia et al., 2017).  

Ascospores are regarded as the primary source of infection of susceptible plant parts. 

These spores are only produced in fruiting bodies (pseudothecia) on infected leaf litter when 

certain conditions prevail (Kiely, 1948; Kotzé, 1981; Truter, 2010; Fourie et al., 2013). Under 

suitable environmental conditions ascospores are ejected from pseudothecia and infected 

susceptible plant parts. Plant parts are only susceptible while on the tree and only green leaves 

up to the age of ten months are susceptible (Truter, 2010). Fruit are susceptible from fruit set until 

four to five months after fruit set (Kiely, 1948; Kotzé, 2000).  
Primary infections caused by ascospores, depending on the plant part infected, will 

develop into lesions in which pycnidia can develop. The most obvious presence of pycnidia are 

found within fruit lesions. However, as discussed under the symptom section above, not all fruit 

lesions produce pycnidia. Pycnidia are found in lesions on infected twigs and leaves (dead and 

green), living branches and sometimes on fruit stalks. Pycnidia produce pycnidiospores that are 

reported to be short-lived (Kiely, 1948). The spores are produced in gelatinous masses and need 

water to be release from the mucilaginous mass to infect the susceptible plant parts. 

Pycnidiospores can cause infections of susceptible fruit and also leaves (Kiely, 1948; Whiteside, 

1967; Kotzé, 1981; De Oliveira Silva et al., 2017). Fallen leaves on the ground cannot be infected 

by pycnidiospores (Truter, 2010).  

EPIDEMIOLOGY 

Studies on the epidemiology of the disease focused mainly on weather parameters that influence 

disease development and the dispersal of the two spore types (ascospores and pycnidiospores). 

The production of pycnidiospores and ascospores occur under different conditions, which 
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influences the epidemiology differentially (Magarey et al., 2015). Pseudothecia will only develop 

and produce spores for infection after recurrent wetting and drying periods after 40 to 180 days 

at temperatures between 15°C to 35°C (Kiely, 1948; McOnie, 1964c; Lee and Huang, 1973; 

Kotzé, 1981; Truter, 2010; Fourie et al., 2013). Fourie et al. (2013) found, using a modelling 

approach, that temperature had a major influence on the maturation of pseudothecia. The 

pseudothecia were only mature and ascospores ready for release after 907.1 degree days >10˚C 

(Fourie et al., 2013). In unsuitable climates such as too wet or too hot or too dry, the leaf litter 

decomposes or is colonised by saprophytes or dries out and the pathogen is killed inside the leaf 

litter before any ascospores can be produced (Kiely, 1948, Lee and Huang, 1973, Truter, 2010). 

Precipitation (rainfall) is needed for the ascospores to be forcibly discharged from asci within 

pseudothecia (Kiely, 1948; Kotzé, 1963, 1981; McOnie, 1964c; Reis et al., 2006; Dummel et al., 

2015). For ascospores to germinate and infect susceptible plant parts, at least 15 hours of 

continuous wetness of the plants parts at an optimal temperature of 27°C is required. Optimal 

conditions for the germination of pycnidiospores and the infection of suseptible plant parts differ 

from ascospores. Pycnidiospores require a wet period of at least 12 hours at 25°C for infection 

(Noronha, 2002).  

Several modelling approaches, using weather parameters along with other factors, have 

been used to develop models for determining if the climate in Europe is suitable for CBS to 

establish and develop. This information is required to determine the risk of introduction of CBS on 

imported fruit from infected locations (Magarey et al., 2015).  

CLIMEX, a mechanistic model which uses literature, weather data and distribution records 

was used to determine if CBS can establish in Europe. The first study using CLIMEX concluded 

that it was unlikely that CBS could establish in European regions (Paul et al., 2005). A follow-up 

study by Yonow et al. (2013), similar to Paul et al. (2005), came to the same conclusion that there 

is not a risk for CBS establishing in Europe.  

A few studies have also used infection models to predict whether CBS will be able to 

establish in Europe. Magarey et al. (2011) developed an infection model using daily weather data, 

but did not include an ascospore dispersal model. EFSA (2008, 2014) used advanced infection 

models to predict the number of CBS infection periods in Europe, South Africa and Australia. 

Whilst infection events were predicted in most localities, the number of infections were always 

significantly higher in warm, summer rainfall climates where CBS is known or expected to occur. 

Fourie et al. (2013) published models for the effects of temperature and wetness on Phyllosticta 

ascospore dispersal using ascospore trapping data and weather data. Magarey et al. (2015) used 

the ascospore dispersal model (T-model) described in Fourie et al. (2013), ascospore and 
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pycnidiospore infection models (Magarey et al., 2011) and hourly weather data in order to develop 

a model to define the thresholds for the number of infection periods required for a site or year to 

be classified as favourable for CBS development.  

The dispersal distance of P. citricarpa ascospores and pycnidiospores differ. Ascospores 

are windborne and responsible for  dispersal of the pathogen over distances typically up to 25 

meters (Kiely, 1948; Wager, 1953; McOnie, 1964d, 1965; Kotzé, 1981, 2000; Spósito et al., 2007). 

In contrast to ascospores, pycnidiospores are waterborne spores that mostly disperse at short 

distances (Spósito et al., 2011; Hendricks et al., 2017). Due to this short-distance dispersal, 

pycnidiospores are not regarded as an important contributor to disease development within 

orchards or dispersal of the pathogen to new areas in South Africa and Australia (Kiely, 1948; 

McOnie, 1964d; Kotzé, 1981, 2000). However, in Brazil pycnidiospores are regarded as being 

important in CBS epidemiology (Spósito et al., 2008, 2011). 

STUDIES THAT HAVE BEEN CONDUCTED TO INVESTIGATE THE ROLE OF ASCOSPORES 
AND PYCNIDIOSPORES IN CBS EPIDEMIOLOGY 

Studies conducted in Australia and South Africa in late 1940’s and 1960’s came to the conclusion 

that ascopores are more important in disease epidemics than pycnidiospores (Kiely, 1948; 

McOnie, 1964d; Kotzé, 1981, 2000). However, in Brazil, recent studies have shown that 

pynidiospores  are important. This could be due to differences in management practices and 

climate in Brazil, in comparison to South Africa and Australia (Spósito et al., 2008, 2011). More 

recently, investigations into the role of pycnidiospores in the epidemiology of CBS have been 

facilitated by the recent introduction of P. citricarpa into Florida (USA) consisting of a single mating 

type. This provides the first evidence that the pathogen can spread and persist using only 

pycnidiospores (Wang et al., 2016). The specific experiments that have been conducted in all of 

the aforementioned studies will be discussed in more detail in this section.  

In South Africa, McOnie (1964c, d) came to the conclusion that pycnidiospores were not 

important based on experiments using spore trapping, fruit bagging, and staggered spray 

experiments. These experiments showed that initial fruit infection coincided with the earliest and 

highest ascospore discharge. However, at that time it was unknown that two Phyllosticta species, 

similar in their ascospore morphology, were present (Meyer et al., 2006). The species identity of 

the trapped ascospores remains unknown. Pycnidiospores on dead leaves, which are abundant 

in orchards, were not considered important since they were released prior to the fruit infection 

period. Interestingly, pycnidia formed on dead leaves along with pseudothecia (McOnie, 1964c). 

It was also concluded that if dead leaves were an inoculum source of pycnidiospores, low hanging 
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fruit would have more lesions, which have not been observed in South Africa. Pycnidiospores on 

fruit were not considered important in South Africa since in all citrus types, except for lemons, the 

fruit are removed from trees before the onset of the new crop (McOnie, 1964c; Kotzé, 1981).  

In Australia, Kiely (1948) showed that pycnidiospores are not important in the 

epidemiology of the pathogen using spore trapping in an orchard containing severe fruit infections. 

Microscope slides that were placed between tree rows and around the boundary of an orchard 

containing severe fruit infections, rarely contained pycnidiospores when slides were placed 

between rows, and not at all on slides placed at the boundary of the orchard. Ascospores on the 

other hand, could consistently be trapped on slides between rows and at the boundary of the 

orchard. Kiely (1948) could only trap pycnidiospores in water sampled from a filter funnel placed 

at the bottom of trees. This suggested that the source of pycnidiospores is only relevant within 

trees, but rarely between trees. The spores trapped from within trees were thought to originate 

from fruit, since spores were only present once virulent type lesions started forming on fruits 

(Kiely, 1948).  

Studies conducted in the 2000s in Brazil showed that pycnidiospores are important in the 

disease cycle. The difference in the role of pycnidiospores in Brazil, as opposed to South Africa 

and Australia, is thought to be due to several cultural and environmental conditions differing 

between the regions. In Australia and South Africa, in contrast to Brazil, there are few off-season 

fruit, the period of fruit infection is restricted to four to five months, and no overlapping of old and 

new fruit crops within trees occurs in most citrus types. Furthermore, differences exist in the 

frequency, type of pruning and the management of pruning in orchards that influence the amount 

of dead twigs. In Brazil, three studies were conducted on the spatial behaviour of P. citricarpa to 

deduce the role of pyncidiospores in CBS epidemiology. The focus of the first study was to 

determine the dispersal of P. citricarpa in citrus orchards by counting the trees with symptomatic 

fruit and by plotting the position of the trees on maps of the orchards over a 3-year period (Spósito 

et al., 2007). In the second study, the incidence of symptomatic fruit and their aggregation patterns 

within the tree were measured over a 2-year period, to determine the role of asexual and sexual 

spores in disease epidemics (Spósito et al., 2008). The studies concluded that the pathogen was 

only dispersed over a short distance, and that pycnidiospores play an important role in the 

dispersal of the pathogen within trees and within orchards. In 2011, Spósito et al. (2011) showed 

that the placement of P. citricarpa inoculum, consisting of infected fruits or dead twigs in trees in 

a CBS-free orchard, was able to cause new fruit infections, but at short distances (<0. 8 m). 

Pycnidiospores produced in fruit lesions were an important inoculum source since fruit infections 

were more severe in the second fruit crop, when there was an overlap between young and old 
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fruit on trees. Lastly, the removal of all leaf litter and therefore ascospore inoculum, from the 

orchard floor in orchards where there was no overlap of fruit crops within trees, did not prevent 

disease development (Spósito et al., 2011).  

In Florida, where only pycnidiospores are known to be available (Wang et al., 2016), a 

study has been conducted where the position of trees within orchards with CBS fruit were plotted 

using the position of the trees on maps of the orchards over a 3-year period. The study suggested 

that based on expansion of the disease foci, pycnidiospores can be dispersed over longer 

distances (>0.8 m) than previously reported in Brazil. It was concluded that pycnidiospores can 

contribute to dispersal within orchards and disease expansion for a distance of at least 6.7 m 

(Hendricks et al., 2017). However, the methodology employed could not exclude the possibility of 

spread of the pycnidium-containing leaves or twigs by other means, most notably the frequent 

tropical storms under south-Florida conditions. 

MANAGEMENT OF CITRUS BLACK SPOT  

Orchard sanitation 

A key management strategy of CBS is to establish new orchards using CBS free trees. It is best 

to obtain these trees from nurseries in areas that are CBS free (Kotzé, 2000).  

The practice of not having overlapping fruit crops on trees, will remove fruit containing 

pycnidiospores as a source of inoculum (Kotzé, 1981). However, this is not always possible for 

all citrus types. 

Removal of leaf litter or chemical treatment of leaf litter are known effective management 

strategies for other ascigerous tree pathogens such as V. inaequalis with a similar life cycle to P. 

citricarpa (Truter, 2010; Gonzalez-Dominguez et al., 2017). However, in CBS, this strategy has 

been less effective. McOnie (1967) evaluated several chemicals for treatment of leaf litter to 

reduce ascospore inoculum. However, none of the treatments were effective in reducing the 

primary inoculum to a level where disease incidence was reduced (McOnie, 1967). In Brazil, leaf 

litter removal significantly reduced the initial amount of disease and disease progress rate relative 

to plots where leaf litter was not removed. In these trials there was no overlapping of fruit crops 

on the trees, which could provide a source of pycnidiospore inoculum from fruit for new fruit 

infections. Although the disease was reduced by leaf litter removal, CBS symptoms were still 

present and disease incidence amounted to 100% after 120 days (Spósito et al., 2011). In South 

Africa, Truter (2010) found a significant reduction in disease symptoms through the management 
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of leaf litter, but the disease was not eliminated. Kotzé (2000) stated that covering leaves with 

grass mulch during the critical period of infection can reduce CBS in South Africa.  

Chemical control 

Chemical control is a pivotal and very effective method for managing CBS world-wide (Makowski 

et al., 2014). A preventative chemical strategy is used, which is aimed at protecting fruit from 

infection during the fruit susceptibility period. Generally this occurs between October through to 

February in South Africa. However, this period can be affected by the start of the first major rains, 

the first major discharge of ascospores and how favourable conditions are for infection of the 

pathogen (Kotzé, 1981). In South Africa, spore trapping, rainfall records and pseudothecium 

maturation and infection models (Fourie et al., 2013) have been used to predict the onset of 

ascospore release and the start of the protective fungicide spray programmes. These factors are 

critical for determining the timing of chemical applications (Kotzé, 2000). However, these factors 

are not always easy to predict accurately, and therefore losses to CBS still continue to occur 

occasionally. Initially, only protective fungicides such as mancozeb or copper fungicides were 

used preventatively to control CBS (Kotzé, 1981). Tree age, tree vigour, cultivar and 

environmental conditions determine the number of sprays required during the fruit susceptibility 

period, which can last for four to five months (Kotzé, 2000). Mancozeb and other dithiocarbamate 

fungicides are, however, no longer used in some countries due to requirements by some export 

markets (Silva Junior et al., 2016). Benzimidazole fungicides were found to be very effective, but 

resistance eventually developed against this group of fungicides (Kotzé, 1981, 2000). Currently 

strobilurin fungicides (quinone outside inhibitors, QoI), such as azoxystrobin and pyraclostrobin, 

are used in mixtures with protectant fungicides during the fruit susceptibility period (Hincapie et 

al., 2014; Silva Junior et al., 2016).  

POPULATION GENETIC ANALYSES OF PLANT PATHOGENS 

The field of population genetics was founded about 100 years ago with the work done by the 

fathers of the field namely R.A. Fisher and Sewall Wright (Fisher, 1930; Wright, 1931, 1943). They 

integrated the principles of Mendelian genetics with Darwin’s theory on natural selection. Fisher 

demonstrated that there is a direct correlation between a population’s genetic diversity and the 

rate of evolutionary change by natural selection with respect to fitness. In plant pathology, the 

awareness of genetic diversity and evolution dates back to the earliest description of host 

specialization and races (Milgroom, 2015).  
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 Population genetics is a field of biology that studies the genetic composition and diversity 

of biological populations. It can deal with rather long time scales and large spatial scales and also 

forms part of evolutionary biology. It is important to note that in population genetics, the focus is 

on the population and not on the individual. A population’s amount of genetic variation ultimately 

determines the evolutionary potential of a pathogen. The latter, for plant pathologists, can be 

indicative of the ease with which a pathogen can be managed (McDonald and Linde, 2002). 

Genetic variation and population structure is studied within and between populations. It involves 

the examination of changes in gene diversity and genotype diversity (Milgroom and Peever, 

2003). 

Gene diversity is an indication of the occurrence (richness) and frequency (evenness) of 

alleles at a locus (Nei, 1973), and the value always ranges between 0 and 1. When the gene 

diversity of a population is 1 (He = 1), it means that any two alleles sampled at a locus will be 

different. Determining the number of alleles (richness) at a locus is the simplest way to measure 

genetic diversity, while the number of private alleles in a population is a simple way to indicate 

genetic distinctiveness (McDonald and Linde, 2002). It is known that allele diversity is affected by 

the length of time that a specific population occurs in a specific area; older populations will have 

a higher level of genetic diversity with more alleles and also more private alleles. Therefore, it is 

expected that populations in the centre of origin of the pathogen will have a higher allele and 

private allele richness (Castric and Bernatchez, 2003; Linde et al., 2009).  

Genotypic diversity is an indication of the number (richness) and frequencies (evenness) 

of multilocus genotypes (MLGs) in a population (McDonald and Linde, 2002; Grünwald et al., 

2003). A multilocus genotype is defined as unique combination of alleles (Milgroom, 2015). The 

genotype evenness value is an indication of how the genotypes are distributed within a population. 

The evenness values can vary from zero (no evenness) to one (all MLGs have equal abundance) 

(Grünwald et al., 2003; Shannon and Weaver, 1949). The number of MLGs (richness) is 

influenced by the sample size. To overcome this problem, Hulbert (1971) invented the statistical 

solution of rarefraction. Genotypic diversity is measured in three ways, namely the Shannon-

Wiener index (H), Stoddart and Taylor index (G) and the Simpson’s index (lambda) (Stoddart and 

Taylor, 1988; Shannon, 2001; Grünwald et al., 2003). Although the genotypic diversity of a 

population is influenced by the mode of reproduction of the pathogen, caution should be taken 

when interpreting the results. A low genotypic diversity, which is an indication of predominant 

asexual reproduction, does not exclude sexual reproduction (McDonald and Linde, 2002). 

Therefore, other approaches are important for determining sexual reproduction as discussed 

below. 
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The amount and distribution of genetic diversity within and among populations can be 

measured by the fixation index (F statistics) formulated by Wright in 1951 (Wright, 1951). This 

index can be seen as a measurement of homozygosity - the probability that any two alleles that 

are randomly sampled are related by descent. The values can range between zero and one. A 

value of zero indicates that the populations are not differentiated from each other and that most 

of the genetic diversity that is found can be attributed to differences between isolates within the 

populations. A value of one is an indication of no gene flow between the populations. As this index 

was developed from diploid and sexual reproducing populations, other formulations were 

developed to make it applicable to haploid and asexual reproducing populations as well (Nei, 

1973). Several methods and programmes are available to study the amount and distribution of 

genetic diversity within and among populations. 

There are five evolutionary forces that ultimately affect the genetic composition (allele 

frequencies) of populations including the distribution and change in genotype and phenotype 

frequencies in populations. The evolutionary forces include natural selection, genetic drift, 

mutation, gene flow and reproductive systems (mating systems) (Hartl and Clark, 1997). Mutation 

is a change in DNA sequence at a specific locus, and is a source of new genes. In plant pathology 

important examples include mutations in genes that result in new virulence alleles and fungicide 

resistance, which creates new genotypes. Migration (gene/genotypic flow) is an indication of how 

freely genes can be exchanged between populations. It can take place over short and long 

distances. In agriculture, migration is very important since new genetic material can be introduced 

into new areas. Migration is a powerful force that can determine genetic variation and thus 

differentiation between populations (Milgroom and Peever, 2003). Natural selection (directional 

process leading to an increased frequency of selected alleles or genotypes) is a powerful force 

and along with genetic drift (random process leading to unpredictable changes in pathogen 

populations), determines the presence or absence of an allele. Natural selection and genetic drift 

influence the effective population size (Ne) (Linde at al., 2009; Möller and Stukenbrock, 2017). A 

low effective population size can be a result of a bottleneck and an extended period of clonal 

reproduction (Dlugosch and Parker, 2008; Milgroom, 2015; Möller and Stukenbrock, 2017). 

The reproduction or mating system of plant pathogens is an important evolutionary force 

that shape population structure. It affects the way in which alleles are put together in different 

genotypes. Populations that are outcrossing can put together new allele combinations rapidly. In 

contrast, populations that mainly undergo asexual reproduction keep together existing 

combinations of genes leading to lower genotype diversity. Populations that have a mixed 

reproductive system will benefit from the advantages associated with both types of reproduction. 
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To ascertain whether a haploid population reproduces sexually (random mating) or asexually, the 

distribution of mating types can be determined or the presence of linkage disequilibrium can be 

tested (Slatkin, 2008). A mating type ratio that does not deviate from a 1:1 ratio, is regarded as 

an indication of random mating. To infer whether the population is in linkage disequilibrium or 

equilibrium, the index of association IA and the standardized version of the index of association 

𝑟̅𝑟 Rd P-values can be calculated (Agapow and Burt, 2001). The IA and 𝑟̅𝑟 Rd indices provide an 

indication of the degree of association of alleles at different loci, within and among populations 

compared to that observed in a permutated dataset. A value of zero is expected for physically 

unlinked loci under random mating, i.e. linkage equilibrium (null model). Linkage disequilibrium 

among loci is indicated by a value significantly larger than zero, which is generated when no or 

infrequent sexual reproduction occurs. Asexual reproduction can impact linkage disequilibrium, 

therefore tests should be done on clone corrected and non-clone corrected datasets, since the 

inclusion of clonal haplotypes in the analysis can distort estimates of allelic diversity (Balloux et 

al., 2003).  

Population genetic studies aimed at understanding the evolutionary forces that shape and 

maintain genetic variation within and among populations, requires polymorphic markers for 

genotyping populations. Many different types of genetic markers have been developed over time, 

and many of the markers are not used anymore. Currently used genetic markers directly assess 

variants (polymorphism) in DNA sequences. The markers used in a study is determined by the 

questions that need to be answered and the biology of the pathogen (Thompson, 2010). Ideal 

genetic markers are selectively neutral, polymorphic, specific to a single locus, co-dominant, 

independent and allow for repeatable, unambiguous scoring. The kind of markers that comply 

with all these requirements only recently became available with the development of microsatellites 

(simple sequence repeat markers - SSRs) and single nucleotide polymorphisms (Sunnucks, 

2000). It is important that markers should be able to differentiate genotypes sufficiently. The ability 

of markers to differentiate genotypes sufficiently, can be tested using a genotype accumulation 

curve (Kamvar et al., 2014). 

Studies on the population structure and genetic variation in and between populations can 

provide valuable information on the routes of pathogen introduction into new areas and to answer 

questions pertaining to the epidemiology of pathogens. Spatial and temporal patterns of MLGs 

can shed light on how pathogens spread/move within and between orchards and/or countries and 

can also be indicative of sources of inoculum. Information about the evolutionary processes that 

shape pathogen populations in agriculture is important for understanding disease dynamics and 

the biology of pathogens and to develop better disease management strategies. Information on 
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other factors that can affect population structure such as host species and fungicide applications 

can provide valuable information with regard to resistance breeding against pathogens and 

effective chemical control strategies (McDonald and Linde, 2002; Milgroom and Peever, 2003).  

MOLECULAR MARKERS FOR STUDYING GENETIC VARIATION WITHIN P. CITRICARPA 
POPULATIONS 

Several dominant polymorphic markers, which are not ideal for population genetic studies, have 

been used to investigate the genetic structure of P. citricarpa. These include Randomly Amplified 

Polymorphic DNA markers (RAPDs) and fluorescent amplified fragment length polymorphism 

markers (fAFLPs). RAPD analyses were used by Stringari et al. (2009) to determine genetic 

variability and population structure between P. citricarpa, P. mangiferae and P. spinarum isolates 

from Brazil, Japan, Mexico and South Africa. They found a high genetic variability in and among 

the species. Glienke et al. (2002) conducted RAPD analyses on P. citricarpa isolates from Brazil, 

which also revealed a high level of intraspecific genetic variability. fAFLP analyses were used by 

Baldassari et al. (2008) to determine genetic diversity in P. citricarpa and P. mangiferae isolates 

from Brazil. The study showed that P. mangiferae isolates had a higher genetic diversity than the 

P. citricarpa isolates. 

In P. citricarpa, sequence data of individual loci have not been very useful in investigating 

the population genetic diversity, due to low polymorphisms that were identified in the gene regions 

evaluated thus far. Wickert et al. (2012) used sequence data of the ITS1-5.8S-ITS2 region to 

determine if P. citricarpa populations from different orange varieties obtained from two geographic 

locations within Brazil, were genetically differentiated. Their study revealed low genetic diversity 

in populations from different varieties and geographic areas, with the highest genetic diversity 

found within populations. A study by Miles et al. (2013), also using the ITS region showed high 

similarity among P. citricarpa isolates from Australia. In a study by Zavala et al. (2014), genetic 

variation in P. citricarpa isolates from Florida was mainly investigated using multi-locus 

sequencing of four conserved loci (ITS, translation elongation factor 1-α (TEF1), actin (ACT) and 

glyceraldehyde-3-phosphate dehydrogenase [GADPH]). The study included the analyses of 

isolates from Brazil, South Africa, Zimbabwe, and Australia. Sequence analyses of the four gene 

regions did not reveal any genetic variation among the Floridian isolates or the isolates from the 

other countries (Zavala et al., 2014). However, recently Guarnaccia et al. (2017) reported the 

presence of seven single nucleotide polymorphisms in sequence data of the actin (actA) and 

gapdh genes among 21 P. citricarpa isolates from various countries. These limited polymorphisms 
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could compliment other co-dominant markers for studies on the genetic diversity in P. citricarpa 

populations.  

Recently, Wang et al. (2016) developed the first useful polymorphic co-dominant markers 

for P. citricarpa using the genome sequence of P. citricarpa. Although 13 simple sequence repeat 

(SSR) markers were developed, only seven of the markers were polymorphic. These markers 

were used to genotype one population from Australia, and several populations collected over 

different years from Florida (USA). The markers seemed to have low polymorphisms, and only 

identified two to four alleles per locus and 12 multilocus genotypes among 24 Australian isolates. 

The Florida populations were all clonal, consisting of a single multilocus genotype (Wang et al., 

2016). Recently, Guarnaccia et al. (2017) used the SSR markers from Wang et al. (2016) along 

with SSR markers developed in the current study (Chapter 2), to show that P. citricarpa 

populations in Europe (Malta, Italy and Portugal) were all clonal. Interestingly, these populations 

were all obtained from citrus leaf litter in orchards where no CBS symptoms were present 

(Guarnaccia et al., 2017). Tran et al. (2017) used a selection of the markers of Wang et al. (2016) 

to show that new recombinant genotypes, and thus genetic recombination, were present in the 

F1 progeny of P. citricarpa isolates of opposite mating types that were paired in artificial mating 

studies.  

CONCLUSION 

Citrus black spot is a fungal disease currently influencing global citrus production and trade. From 

the literature review it is evident that the epidemiology of P. citricarpa has been unravelled in 

many countries including South Africa. In South Africa the epidemiology was unravelled by Kotzé, 

McOnie and Truter. However, despite all the research conducted in South Africa, limited 

information is available on the pathogen’s population structure, mode of reproduction and possible 

introduction pathways. This information could support the current knowledge on the epidemiology 

of the disease, or perhaps bring new insights. The available molecular markers are able to identify 

only low levels or no polymorphisms in P. citricarpa populations. The best markers to date are the 

SSR markers published by Wang et al. (2016). Therefore, more informative additional markers 

are required to conduct population genetics studies.  

The first objectives of this study were to investigate the reproductive mode of the pathogen 

and to develop informative markers to determine the distribution of genetic variation in global P. 

citricarpa populations. Subsequently, the study focused on the population structure of P. citricarpa 

in South Africa. In the first research chapter, the goals were to develop additional informative 

markers (SSR markers) and to investigate the population structure of P. citricarpa at a global 
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scale. The markers were used to genotype global populations (China, South Africa, Australia, 

Florida and Brazil) in order to infer introduction pathways and possibly the centre of origin of the 

pathogen. The mode of reproduction of P. citricarpa on a global scale was also investigated. In 

the second research chapter, the effects of distance (spatial) and season (temporal) on P. 

citricarpa population structure were investigated at the orchard scale. P. citricarpa populations 

from two South African lemon orchards were studied over two seasons. In the third and last 

research chapter, the correlation between production region and population structure was 

investigated within the five citrus producing provinces in South Africa where CBS occurs. The 

effect of Citrus spp. (lemons vs. oranges) on the population structure of P. citricarpa in South 

Africa was investigated. 

The knowledge acquired by conducting this study will better aid the understanding of the 

biology of the pathogen and may lead to improved control practices for the CBS disease in citrus 

orchards to enhanced local and global citrus production. This will be the first study to embark on 

using a population genetics approach to better understand the biology and epidemiology of the 

disease at global-, regional- and orchard scales. 
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CHAPTER 2 

A Global Perspective on the Population Structure and Reproductive System of 
Phyllosticta citricarpa* 

ABSTRACT 

The citrus pathogen Phyllosticta citricarpa was first described 117 years ago in Australia, 

subsequently from the summer rainfall citrus-growing regions in China, Africa, South America and 

recently the United States. Limited information is available on the pathogen’s population structure, 

mode of reproduction and introduction pathways, which were investigated by genotyping 383 

isolates representing 12 populations from South Africa, USA, Australia, China and Brazil. 

Populations were genotyped using seven published and eight newly developed polymorphic 

simple sequence repeat (SSR) markers. The Chinese and Australian populations had the highest 

genetic diversities, whereas populations from Brazil, USA and South Africa exhibited 

characteristics of founder populations. The U.S. population was clonal. Based on principal 

coordinate and minimum spanning network analyses the Chinese populations were distinct from 

the other populations. Population differentiation and clustering analyses revealed high 

connectivity and possibly linked introduction pathways between South Africa, Australia and Brazil. 

With the exception of the clonal U.S. populations that only contained one mating type, all the other 

populations contained both mating types in a ratio that did not deviate significantly from 1:1. 

Although most populations exhibited sexual reproduction, linkage disequilibrium analyses 

indicated that asexual reproduction is important in the pathogen’s life cycle. 

INTRODUCTION 

Phyllosticta citricarpa (McAlpine) Aa, which causes citrus black spot (CBS), is a good example of 

a recently introduced plant pathogen that constrains the global trade of a high value fruit crop. 

Officially, CBS was first recorded and described from Australia on Valencia oranges in 1895 

(Benson (1895). Soon after this report, McAlpine (1899) described the asexual stage of the 

fungus. The sexual, pseudothecial stage, was later described by Kiely (1948). The first official 

record of the disease from citrus areas outside of Australia was from China (Lee, 1920). Later, 

reports of the disease were published from Argentina (Marchionatto, 1928), South Africa (Doidge, 

                                                
* Carstens, E., Linde, C.C., Slabbert, R., Miles, A.K., Donovan, N.J., Hongye. L., Dewdney. M.M., Glienke. 
C., Schutte. G.C., Fourie, P.H. and McLeod. A. 2017. A Global Perspective on the Population Structure and 
Reprodcutive System of Phyllosticta citricarpa, a pathogen of citrus. Phytopathology 107: 758-768. 
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1929) and Brazil (Robbs et al., 1980). The most recent report was the introduction of the pathogen 

into Florida in the United States in 2010 (Schubert et al., 2012). 

Today, global expansion of citrus production and the associated movement of propagation 

material have resulted in P. citricarpa being introduced into most of the major citrus producing 

countries around the world that have a hot, wet/humid summer rainfall climate (Paul et al., 2005; 

Carstens et al., 2012, Yonow et al., 2013). The disease is absent and has never been reported 

from regions/countries with a Mediterranean, winter rainfall climate (Paul et al., 2005; Carstens et 

al., 2012; Yonow et al., 2013). Even within the same country, such as South Africa, Australia and 

China, the disease is only present in the summer rainfall production areas (Miles et al., 2008; 

Carstens et al., 2012; Wang et al., 2012). Although P. citricarpa has been reported as being 

present in New Zealand, which has an unsuitable climate for CBS (Paul et al., 2005; Yonow et 

al., 2013), this was an incorrect report due to the misidentification of Phyllosticta capitalensis as 

P. citricarpa (Everett and Rees-George, 2006). These two species are morphologically very 

similar, but can be differentiated molecularly. Phyllosticta capitalensis is an endophytic non-

pathogenic species in citrus with a wide geographic distribution and host range (Baayen et al., 

2002; Stringari et al., 2009; Glienke et al, 2011; Wikee et al., 2013a) and is of no phytosanitary 

concern in the world trade of fresh citrus fruit. 

Despite the importance of CBS, little is known about the origin of P. citricarpa, but it has 

been hypothesized that the pathogen is native to areas that are believed to be the primary centre 

of origin of its host Citrus. These include South- and Southeast Asia, specifically in the regions of 

Northeast India, south-eastwards through the Malayan Archipelago to China and Japan, but also 

southwards to and including Australia (Scora, 1975; Malik et al., 2013; Hynniewta, et al., 2014). 

The hypothesis for South- and Southeast Asia being the origin of P. citricarpa is supported by the 

Phyllosticta species diversity, with several new species recently being described from these 

regions including P. citriasiana (Wulandari et al., 2009) and P. citrichinaensis (Wang et al., 2012) 

from citrus in China, and P. citrimaxima from Thailand (Wikee et al., 2013b). 

To manage a disease and prevent further incursions, it is important to understand the 

disease cycle of the pathogen, inoculum sources and dissemination pathways. Phyllosticta 

citricarpa produces two types of spores, namely waterborne conidia (pycnidiospores) and aerially 

dispersed ascospores. Symptoms can develop on leaves, twigs and fruit, but symptoms on fruit 

are the most obvious. Waterborne, short-lived asexual pycnidiospores, are produced in pycnidia 

on fruit, leaves and twigs (Kiely, 1948; McOnie, 1965; Kotze, 1981; 2000; Spósito et al., 2007). 

Free water is required for the short-distance downward dispersal of pycnidiospores from 

symptomatic fruit within the tree (Kiely, 1948; Spósito et al., 2007; 2008; 2011). Ascospores are 
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sexually produced in pseudothecia that develop on leaf litter, but never on fruit (Kiely 1948; Kotzé, 

1981; 2000). Pseudothecia mature over an extended period of time and require mild to warm 

temperatures and alternate wetting and drying (Kiely, 1948; Kotzé, 1981; Fourie et al., 2013). 

Ascospores are forcibly discharged from mature pseudothecia and are dispersed for distances 

up to 25 m (Spósito et al., 2007). Given the relatively short distance of dispersal of ascospores 

and pycnidiospores, latently infected propagation material is the most likely inoculum source that 

contributes towards the long distance dissemination of the pathogen into new regions (Kiely, 

1948; Wager, 1953; McOnie, 1964a, b; 1965; Kotzé, 1981; 2000; Spósito et al., 2007; 2011). 

Recently, the occurrence of two opposite mating types (MAT 1-1-1 and MAT 1-2-1) has 

been reported in P. citricarpa populations, supporting the hypothesis that the fungus is 

heterothallic and will require mating between opposite mating types in order to produce 

ascospores (Wang et al., 2013; Amorim et al., 2016; Wang et al., 2016). Limited information is 

available on the mating type distribution of P. citricarpa worldwide, because the MAT loci were 

only characterized recently (Amorim et al., 2016; Wang et al., 2016). In Australia and Brazil, MAT 

genotyping of populations revealed an almost equal mating type distribution (Zhang et al., 2015; 

Amorim et al., 2016; Wang et al., 2016). However, in Florida in the USA, only one mating type 

has been identified, which implies an absence of sexual reproduction and thus ascospores (Wang 

et al., 2016). 

Recent pathogen movement around the globe should be detectable in population genetic 

signals. For example, recent founder populations will be characterized by low genotype and allelic 

diversity (Dlugosch and Parker, 2008; Linde et al., 2009). On the other hand, more established 

populations or populations with a long co-evolutionary history with their host, should display more 

allelic and genotype diversity. Information on population structure and diversity will also help to 

elucidate routes of pathogen introduction and migration. Furthermore, investigating the life-history 

and evolutionary processes that shape pathogen populations in agriculture is important for 

understanding disease dynamics and to develop disease control and management strategies. For 

such studies, codominant neutral genetic markers are essential. Simple sequence repeat (SSR) 

markers for P. citricarpa were developed recently from a published genome sequence of P. 

citricarpa and consist of seven polymorphic loci (Wang et al., 2016). These markers were used to 

genotype one population from Australia, and several populations collected in different years from 

Florida in the USA. The markers identified two to four alleles per locus in the Australian population, 

and 11 multilocus genotypes (MLGs) among 24 Australian isolates. The Florida populations were 

all clonal, consisting of a single MLG (Zhang et al., 2015; Wang et al., 2016). Therefore more 
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informative markers are needed to examine the population structure and migration pathways of 

P. citricarpa. 

In P. citricarpa, sequence data of individual loci have not been very useful for investigating 

the population structure due to low levels of polymorphisms. Wickert et al. (2012) used sequence 

data of the internal transcribed spacer (ITS) 1-5.8S-ITS2 region to determine if P. citricarpa 

populations from different orange varieties obtained from two geographic locations within Brazil 

were genetically differentiated. Their study revealed low genetic diversity in populations from 

different varieties and geographic areas. Similarly, a study from Australia showed high ITS 

sequence similarity among isolates of P. citricarpa (Miles et al. 2013). In a study by Zavala et al. 

(2014), genetic variation in P. citricarpa isolates from Florida was investigated relative to 18 global 

isolates (Brazil, South Africa, Zimbabwe, and Australia) using multilocus sequencing of four 

conserved loci (ITS, elongation factor 1-alpha, actin and glyceraldehyde-3-phosphate 

dehydrogenase). The analysis did not reveal any genetic variation among the investigated 

isolates. 

On a global scale, almost no information is available on the population structure, routes of 

introduction and putative origin of P. citricarpa. The first objective of this study was to develop 

additional SSR markers for population genetic studies using next generation sequencing data of 

a South African P. citricarpa isolate. These SSR markers and published markers (Wang et al., 

2016) were used to genotype P. citricarpa populations from South Africa, Brazil, Australia, USA 

and China in order to infer introduction routes, the possible centre of origin of the pathogen and 

founder populations. Lastly, the mating type distribution, frequencies and mode of reproduction 

were also investigated in the aforementioned populations. In combination with genotype 

diversities and linkage disequilibrium analyses, mating type distribution will provide valuable 

insights into the mode of reproduction of P. citricarpa. Information gained from this study will be 

valuable in decision-making for disease management strategies to enhance global citrus 

production. 

 

MATERIALS AND METHODS 

Collection and isolation of P. citricarpa isolates 

Phyllosticta citricarpa isolates from South Africa were sampled in 2011 and 2012 from a citrus 

orchard in each of the following provinces: Limpopo, Mpumalanga, North West, Eastern Cape 

and KwaZulu-Natal. In 2011, a single orchard was sampled in Brazil, whereas three orchards 

were sampled in the Unites States and two orchards in China. In Australia, one orchard was 
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sampled in 2010 and two orchards were sampled in 2011 (Table 1). For each orchard in South 

Africa, Brazil and Australia, 40 to 50 randomly selected CBS symptomatic fruits were collected. 

In the United States, 23 to 35 fruits were randomly sampled from each of the three orchards and, 

in China 15 fruits were randomly selected from each of the two orchards. Fruit were surface 

sterilized with a 1.25% sodium hypochlorite solution or 70% ethanol for 5 minutes followed by 

rinsing in sterile water. Small fragments of the lesions obtained from fruit with hard spot symptoms 

were placed onto potato dextrose agar (PDA) (Biolab, Midrand, South Africa) containing 

chloramphenicol (0.01%), and incubated for 10 to14 days at 25°C. One isolate was selected per 

fruit and a single spore culture was prepared for subsequent storage at 17°C in sterile distilled 

water and at -85°C in 30% glycerol. Isolates from the USA were kept on dried sterile filter paper 

on desiccant at -20°C for long term storage. 

Confirming the species identity of P. citricarpa isolates 

Due to P. citricarpa being morphologically very similar to P. capitalensis, the species identity of 

isolates was confirmed using morphological and molecular analyses. For morphological analyses, 

putative P. citricarpa single- spored isolates were transferred to oatmeal agar (OMA) (Biolab, 

Midrand, South Africa) plates and incubated at 25°C to differentiate P. citricarpa from other 

Phyllosticta species. The plates were examined for the presence of a yellow halo around colonies 

after 7 days, since P. citricarpa is the only Phyllosticta species that produces this halo (Baayen et 

al., 2002; FAO, 2014). 

Molecular identification was conducted using species-specific primers. DNA was isolated 

from 2-week old mycelia growing on PDA plates. The fungal growth was scraped from the agar 

plates and lyophilized for DNA extraction using the Qiagen DNeasy Plant Mini Kit (Qiagen, Hilde, 

Germany). Species-specific primers (IDT, Iowa, United States of America) (Meyer et al., 2006; 

Peres et al., 2007) were used to amplify diagnostic fragments specific for P. citricarpa and P. 

capitalensis, following conditions as described previously (Meyer et al., 2006; Peres et al., 2007). 

DNA of P. citricarpa (PPRI 9827) and P. capitalensis (PPRI 9065) (obtained from the National 

Collection of Fungi, Agricultural Research Council-Plant Protection Research Institute, Pretoria, 

South Africa ) were included as positive species controls in the PCR assays. PCR products were 

analysed by electrophoresis at 100 V for 1 h in a 1 % (w/v) agarose gel and visualized under UV 

light using a Genegenius Gel Documentation and Analysis System (Syngene, Cambridge, United 

Kingdom) after ethidium bromide staining. 
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Ion Torrent genome sequencing and SSR marker development 

Genomic DNA for sequencing with the Ion PGM (Life Technologies, Carlsbad, California) system 

was extracted from a South African P. citricarpa isolate (STEU-7794) according to Goodwin et.al. 

(1992). A low coverage whole genome shot-gun sequencing was performed using two Ion 318 

chips and Ion sequencing V1 200 bp sequencing chemistry. These sequences (1,650kb – 12,896 

kb) were assembled into 65 contigs using the Torrent Suite 2.2 and were sorted according to size 

using Galaxy (Giardine et al., 2005; Blankenberg et al., 2010; Goecks et al., 2010). Sequences 

containing at least four to six tandem repeat units of di- to hexa-nucleotides were mined for simple 

sequence repeats using BatchPrimer3 version 1 (Rozen and Skaletsky, 1998). Fifty-seven primer 

pairs were designed using this online tool. These primer pairs were tested for amplification 

success and levels of polymorphism using a subset of 10 isolates, representing three countries 

(South Africa, Australia and China). The PCR reaction for amplification with the different primer 

pairs contained 20 ng of template DNA, 1 x KAPA Readymix (KAPA Biosystems, Cape Town, 

South Africa) and 0.2 µM of each primer. Cycling was performed in a Veriti thermal cycler (Life 

Technologies, Carlsbad, California) using the following conditions: 95°C for 5 min followed by 35 

cycles of 95°C for 30 s, 52°C for 30 s and 72°C for 40 s followed by a final extension step at 72°C 

for 5 min. The fragment lengths of PCR amplicons were analysed on a 2100 Agilent Bioanalyzer 

(Agilent, Santa Clara, CA, USA) using the DNA High Sensitivity Kit. Loci were considered 

polymorphic if two or more alleles were observed among the ten evaluated isolates. Primers from 

the eight selected loci were labelled with FAM, PET, NED and VIC fluorescent dyes and amplified 

in three multiplex reactions (Table 2). The PCR reaction and cycling conditions were as described 

above. Electrophoresis was performed using the 3730XL Genetic Analyser (Life Technologies, 

Carlsbad, California). The SSR alleles were scored using Genemapper software (version 4; Life 

Technologies, Carlsbad, California). 

Seven published polymorphic loci (PC12, PC19, PC20, PC32, PC37, PC6, PC7) (Wang 

et al., 2016) were also used to genotype the P. citricarpa populations. Primers from the selected 

loci were labelled with FAM, PET, NED and VIC fluorescent dyes and amplified in two multiplex 

reactions (Table 2). The PCR reaction for amplification with the different primer pairs contained 

10 ng of template DNA, 2 x KAPA2G Fast Multiplex Mix (KAPA Biosystems, Cape Town, South 

Africa) and 0.5 µM of each primer. Cycling was performed in a GeneAmp PCR System 9700 

(Applied Biosystems) using the following conditions: 95°C for 5 min followed by 35 cycles of 94°C 
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for 30 s, 57°C for 30 s and 72°C for 60 s followed by a final extension step at 72°C for 5 min. 

Electrophoresis and SSR allele scoring were done as described above. 

SSR data analyses 

Selective neutrality of markers was evaluated with a Ewens-Watterson test in POPGENE (Yeh et 

al., 2000). Isolates with the same alleles at all loci were considered clones or MLGs. To determine 

the genotypic diversities in individual and regional populations, the number of MLGs, the expected 

number of MLGs after rarefaction (eMLG) to account for different sample sizes and the evenness 

index (E5) estimating the equitability in the distribution of the sampling units, was determined in 

the R package Poppr (Kamvar et al. 2014; R Core Team, 2013). The equitability index E5 varies 

from zero (no evenness) to one (all MLGs have equal abundance) (Grunwald et al. 2003; Shannon 

& Weaver, 1949). 

All allele-based population genetic analyses were conducted using a per population clone-

corrected dataset unless otherwise stated, since the inclusion of clonal haplotypes in the analysis 

can distort estimates of allelic diversity (Balloux et al. 2003). To determine the genetic diversity of 

populations, the following indices were calculated in GenAlEx version 6.5 (Peakall & Smouse, 

2012): number of alleles, number of effective alleles, number of private alleles, number of 

polymorphic loci and Nei’s measure of gene diversity (Nei, 1973). The values for Nei’s gene 

diversity vary between zero and one. A zero value is an indication that there is no genetic diversity 

within the population, i.e. no allelic variation. The allele and allele richness for each population 

was determined using HP-RARE (Kalinowski, 2005) to account for populations with different 

sample sizes. To assess whether the 15 SSR markers were able to discriminate between unique 

individuals (MLGs) in the complete dataset a genotype accumulation curve was generated using 

the R package Poppr (Kamvar et al. 2014; R Core Team, 2013). 

To estimate the distribution of variation within and among populations and regions, an 

analysis of molecular variance (AMOVA) was conducted. The statistical significance was tested 

using 999 permutations. Two identical MLGs from the USA population were included in the 

dataset to enable the performance of this analysis. To further assess genetic relatedness among 

populations, a principal coordinate analysis (PCoA) and a discriminant analysis of principal 

components (DAPC) were also conducted. The AMOVA and PCoA analyses were performed in 

GenAlEx version 6.5 (Peakall & Smouse, 2012), whereas the DAPC analysis was performed in 

the R package adegenet (Jombart, 2008). 

To visualize the relationships among MLGs in the 12 populations and to infer introduction 

pathways, SSR data were used to construct a minimum spanning network based on Bruvo’s 
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distance (Bruvo et al., 2004) using the R package Poppr on nonclone-corrected data. The network 

was visualized using the package igraph (Csardi and Nepusz, 2006). 

Mode of reproduction 

MAT-specific primer pairs (Wang et al., 2016) were used to determine the mating type of 196 

isolates that represented a clone-corrected dataset. The PCR reaction contained 10 ng of 

template DNA, 0.2 μM of each primer, 1× reaction buffer, 0.01 μl Taq DNA polymerase (Promega 

Corporation, Madison, USA), 2 mM MgCl2 and 0.2 mM of each dNTP. Amplification of the MAT1-

1-1 allele was performed using the following conditions: denaturation step at 95°C for 5 min 

followed by 30 cycles at 95°C for 30 s, 55°C for 45 s and 72°C for 45 s followed by a final extension 

step at 72°C for 10 minutes. The same conditions were followed for the MAT1-2-1 allele, except 

that the annealing temperature was 60°C. PCR products were analysed by electrophoresis at 100 

V for 1 h in a 1 % (w/v) agarose gel and visualized under UV light using a Genegenius Gel 

Documentation and Analysis System (Syngene, Cambridge, United Kingdom) after ethidium 

bromide staining. The primer pair for MAT1-1-1 yielded a fragment of 630 bp and the primer pair 

for MAT1-2-1 yielded a fragment of 500 bp. A chi-square test (Fisher and Yates, 1963) was used 

to determine whether the populations deviated from the null hypothesis of a 1:1 ratio of the mating 

types. 

To infer the reproduction strategy (clonal or sexual) used by P. citricarpa, linkage 

disequilibrium analyses were performed on a SSR nonclone-corrected and clone-corrected 

dataset in the R package Poppr by calculating the index of association IA and the standardized 

version of the index of association 𝑟̅𝑟 Rd. P-values were obtained after 999 permutations (Agapow & 

Burt, 2001). The IA and 𝑟̅𝑟 Rd indices provide an indication of the degree of association of alleles at 

different loci, within and among populations compared to that observed in a permutated dataset. 

A value of zero is expected for physically unlinked loci under random mating, i.e. linkage 

equilibrium (null model). Linkage disequilibrium among loci is indicated by a value significantly 

larger than zero, which is generated when no or infrequent sexual reproduction occurs. 

RESULTS 

Collection, isolation and identification of P. citricarpa isolates 

A total of 383 P. citricarpa isolates representing 12 populations from five countries were obtained 

for analyses (Table 1 and Fig. 1). The species identity of all the isolates was confirmed to be P. 

citricarpa since all the isolates produced a 580 bp (Meyer et al., 2006) or a 300 bp amplicon 
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(Peres et al., 2007) with the P. citricarpa specific PCR primers, and olivaceous-grey colonies with 

a yellow halo on oat-meal agar. 

Ion Torrent genome sequencing and SSR marker development 

Only 8 of the 57 primer pairs that were evaluated on the subset of 10 isolates were polymorphic, 

and were used to genotype all the isolates. Sequence alignment of the newly developed SSR loci 

sequences with the Wang et al. (2016) loci, showed that there were no sequence similarities 

between these loci. 

SSR data analyses 

In addition to the eight newly developed polymorphic SSRs, the seven published loci (Wang et 

al., 2016), were also polymorphic in the analysed populations. The 15 polymorphic primer pairs 

revealed a total of 68 alleles across the 15 loci in 383 isolates, ranging from two to 18 alleles 

(Table 3). The markers were all selectively neutral according to the Ewens-Watterson test (data 

not shown). Two of the loci (Pc236 and Pc849) were polymorphic only in the Chinese populations. 

Locus Pc117 and locus Pc20 were the most polymorphic and identified 18 and 8 alleles in the 12 

populations, respectively. On a regional scale, the populations from China contained the greatest 

number of alleles (n = 54) followed by Australia (n = 38) and South Africa (n = 35) (Table 3). 

Furthermore, when the data were corrected for sample size and rarefactioned to a sample size of 

20 isolates, the private allelic richness was the highest in the two Chinese populations (0.37 and 

0.28). Of all the other analysed populations, one private allele was found only in one population 

from Australia (Queensland 1) and one population from South Africa (Kwazulu-Natal). None of 

the populations showed 100% polymorphism for all 15 loci and none of the loci were polymorphic 

in the population from the USA. The populations from China (He = 0.324 (SE = 0.062)) and 

Australia (0.254 (SE = 0.050)) had the highest average gene diversities. The population from 

Brazil (0.144 (SE = 0.056)) and the United States (0) had the lowest gene diversity (Table 3). 

Among the 383 isolates that were analysed, 149 MLGs were identified using the 15 SSR markers 

(Table 4). This provided a better resolution of MLGs than when only the seven published SSR 

markers (45 MLGs) or the eight newly developed SSR markers (85 MLGs) were used. The 

genotype accumulation curve showed a linear increase as the number of loci increased, 

confirming the importance of using all 15 loci for discriminating MLGs (Fig. 2). However, the 

genotype accumulation curve did not reach a plateau, which indicated that additional loci would 

further improve discrimination among individuals. Nevertheless, given that the variation in number 

of MLGs identified decreased dramatically with the addition of the 15th locus, and that at least the 
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83 isolates from the USA are likely to be true clones, the 15 loci used here were deemed sufficient 

to discriminate amongst most individuals in the 12 populations analysed (Fig. 2). 

The number of MLGs varied among populations with the highest number (n = 60) identified 

in the Australian populations, followed by the South African populations (n = 54) and Chinese 

populations (n = 43). Only one MLG was identified in the USA population, whereas Brazil 

contained six MLGs (Table 4). To account for different sample sizes, the eMLG value for each 

population and each country were determined. The eMLG values also indicated that the 

Australian populations have the highest number of MLGs (n = 21.40), which agrees with the high 

genotypic diversity (D = 0.975). Based on the eMLG values, the highest numbers of MLGs in 

South Africa were found in the populations from North West (n = 14.75) and KwaZulu-Natal (n = 

14.09) and the lowest (n = 6) in the Eastern Cape province (Table 4). The evenness values (E5) 

are an indication of the relative abundance of different genotypes in populations. The high 

evenness in populations from Australia (E5 = 0.782) and China (E5 = 0.870) indicated that 

genotypes are equally abundant in the populations and also are an indication of higher genotype 

diversity (Table 4). The lower genotype evenness in populations from Brazil (E5 = 0.694) and 

South Africa (E5 = 0.626) are an indication that these populations are dominated by a smaller 

number of genotypes (clones). 

Various MLGs were shared among populations from South Africa, Australia, Brazil and 

USA, but none were shared with populations from China. The USA MLG was shared with Australia 

(populations from Queensland 1 and New South Wales) and South Africa (populations from 

Mpumalanga, KwaZulu-Natal and North West) but not with Brazil or China. The population from 

Brazil shared MLGs with all three populations from Australia and all five populations from South 

Africa. The South African population from the Eastern Cape only shared MLGs with the 

Queensland 2 population from Australia. The South African population from the Limpopo province 

shared MLGs with the Queensland 2 and the New South Wales populations from Australia. The 

North West population shared MLGs with the Queensland 1 and New South Wales populations 

from Australia. The South African populations from the Mpumalanga and KwaZulu-Natal 

provinces shared MLGs with all three the Australian populations (data not shown). 

The AMOVA analysis comparing the 12 populations from the five countries showed that 

53% of the total variance was distributed among countries. A relatively low level of variance of 

7% was distributed among the 12 populations, whereas a higher proportion of the variation (41%) 

was distributed within populations. There was significant (P = 0.001) genetic variation among 

countries (PhiRT = 0.528) and within populations (PhiPT = 0.593). The genetic variation among 

populations was low (PhiPR= 0.138) (Table 5). 
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Pairwise PhiPT values indicated that the genetic differentiation varied significantly 

amongst some, but not all countries (Table 6). The USA population was not significantly 

differentiated from the Australian (P = 0.438), the South African (P = 0.481) or the Brazilian (P = 

0.365) populations. The South African population was not significantly differentiated from Brazil 

(P = 0.318) but was differentiated from the Australian population (P = 0.001). The Chinese 

population was significantly (P = 0.001) differentiated from all other populations (PhiPT = 0.694 - 

0.700). 

A principal coordinate analysis (PCoA) clearly divided the isolates into two groups (Fig. 

4). The one group included the populations from China and the second group the populations 

from South Africa, Brazil, the USA and Australia. 

The minimum spanning network revealed that the MLGs from China are distinct from all 

the other populations analysed and have a separate evolutionary history (Fig. 3). The MLGs from 

South Africa, Australia and Brazil were distributed all across the network, but distant from the 

Chinese MLGs. The DAPC analysis also divided the isolates from the 12 populations into two 

groups, with the isolates from China clearly separated from those from South Africa, Brazil, the 

USA and Australia (Supplementary Fig. S1). A DAPC analysis to assess the relationship between 

the populations in the main group (Australia, Brazil, South Africa and the USA) also showed that 

there is no significant differentiation between the populations from these four countries 

(Supplementary Fig. S2). 

Mode of reproduction 

A positive PCR amplification with either one of the MAT primer pairs was achieved for all isolates 

analysed. In all the populations from Australia, Brazil, China and South Africa, the mating-type 

frequencies did not deviate significantly from a 1:1 ratio (χ2 = 1.14 – 2.26; P > 0.1) based on Chi-

square analyses (Table 7). In contrast, all the isolates obtained from the USA contained only a 

single MAT locus (MAT1-2). 

Linkage disequilibrium analyses were performed to infer the reproductive strategy. For the 

non-clone-corrected dataset, the IA and 𝑟̅𝑟 Rd indices in the association tests differed significantly 

from zero in five (Queensland 1, Brazil, China (Jiangxi), KwaZulu-Natal and Limpopo) of the 12 

populations (Table 8). This is an indication of linkage among loci and thus a deviation from random 

mating. In the other seven populations the hypothesis of random mating could not be rejected. 

For the clone-corrected dataset, the association tests differed significantly from zero in only three 

(Queensland 1, Brazil and China (Jiangxi)) of the 12 populations (Table 8). Significant linkage 

disequilibrium may be achieved by no or infrequent sexual reproduction. 
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DISCUSSION 

In this study, using a population genetics approach, a worldwide collection of Phyllosticta 

citricarpa isolates originating from five continents were analysed. The study revealed some novel 

and important aspects regarding the relatedness of populations from different continents, possible 

pathways of introduction and the reproductive system of P. citricarpa. China and Australia were 

shown to have had a longer evolutionary history of P. citricarpa compared to South Africa, Brazil 

and the USA. This is in agreement with the documented history of first reports of the pathogen in 

these countries. The USA population was confirmed to be clonal, using eight newly developed 

SSR markers. Populations from South Africa, Australia, Brazil and the USA shared some MLGs, 

which is indicative of long distance human-mediated dispersal. Investigations into the 

reproductive system of the pathogen showed that all populations, except the U.S. population, 

contained both MAT, and that asexual reproduction may play a more important role in the 

epidemiology of the disease than previously thought. Population genetic inferences were 

strengthened by the development of eight new polymorphic SSR markers, which were used in 

combination with seven previously published SSRs (Wang et al., 2016). Some of the new markers 

(loci Pc117 and Pc440) were highly polymorphic and identified five to 18 alleles in the 12 analysed 

populations that allowed for a better resolution of MLGs, as was evident from the genotype 

accumulation curve. 

Knowledge of the origin of Citrus spp. (the host of P. citricarpa) could aid in the 

development of hypotheses on the origin of the pathogen. However, the origin, domestication, 

distribution and botanical classification or taxonomy of edible / true Citrus are characterized by a 

history of controversy and interesting folklore. Yet, it is accepted that Citrus most likely originated 

from certain parts of South-east Asia possibly China, India and the Malay Archipelago (Gmitter 

and Hu, 1990). More recently, Liu et al. (2012) and Carbonell-Caballero et al. (2015) considered 

Australia, New Caledonia and New Guinea to be the centre of origin. In the current study, P. 

citricarpa populations were sampled from some of the regions hypothesized as being the centre 

of origin of Citrus. Two of the major citrus production areas in China were sampled, which included 

the Jiangxi area where citrus has been produced since the Xia dynasty (21st - 17th century BC) 

(AQSIQ, 2014). However, in Australia only commercial citrus production areas in Queensland and 

New South Wales were sampled; but not regions close to New Caledonia and New Guinea. 

Therefore, future analyses of populations from New Caledonia and New Guinea, as well as the 

Malay Archipelago will be instrumental in better understanding the origin of P. citricarpa.  
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Combined with the known native distribution of Citrus hosts in China and Australia, the 

high levels of gene and genotypic diversities of P. citricarpa populations identified in China and 

Australia, as well as the presence of more private alleles in these populations, indicate that the 

pathogen has had a long co-evolutionary history with its host in these countries. It is known that 

allele diversity is affected by the length of time that a specific population occurs in a specific area, 

with older populations having a higher level of genetic diversity with more alleles and also more 

private alleles (Linde et al., 2009). This finding is also consistent with a co-evolutionary 

relationship between the pathogen on its wild host. 

The low genetic diversity of the five South African P. citricarpa populations and the 

population from Brazil is an indication of these populations being founder populations that have 

undergone genetic drift. Further support for this hypothesis is gained from low numbers of private 

alleles in the South African populations compared to populations from Australia and China, and 

the lack of private alleles in the Brazilian population. In Brazil, the low genetic diversity can be 

attributed to a more recent introduction of P. citricarpa (Robbs et al., 1980). Similarly, the low 

genetic diversity in the South African populations may also be attributed to a relatively recent 

introduction (Doidge, 1929). 

In South Africa, the population from the KwaZulu-Natal province had the highest level of 

gene and genotypic diversity, whereas the Eastern Cape population had the lowest. This 

correlates with the history of CBS in South Africa. The recorded first discovery of CBS in South 

Africa was in 1929 in the humid coastal regions of the KwaZulu-Natal province, but the disease 

only became severe in 1940. During surveys in 1946 the disease was also found in the North 

West, Limpopo and Mpumalanga provinces (previously known as the Western Transvaal, 

Northern Transvaal and Eastern Transvaal, respectively) (Wager, 1952). The disease was first 

discovered in the Eastern Cape province in the 1970s (C. Kellerman, personal communication). 

The P. citricarpa populations from the five continents differed in their connectivity and 

differentiation from each other, which provided clues as to possible introduction pathways. 

Principal coordinate analysis (PCoA), a discriminant analysis of principal components (DAPC) 

and a minimum spanning network based on genetic distances between MLGs, revealed that there 

is little connectivity between the Chinese populations and the populations from the other countries 

(South Africa, Brazil, Australia and the USA). This was also supported by the pairwise PhiPT 

comparisons. Population differentiation and clustering analyses showed that there are high levels 

of connectivity between South Africa, Australia and Brazil, as well as between South Africa, 

Australia and the USA. No connectivity was evident between the USA population and the 

population from Brazil. The high levels of connectivity among the P. citricarpa populations in South 
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Africa, Australia and Brazil is most likely due to exchanges of plant material and the associated 

P. citricarpa genotypes, either between these countries directly, or between un-sampled 

populations that share the same P. citricarpa populations. Sharing of plant material and possibly 

P. citricarpa, may date back to the establishment of the citrus industries in these countries. The 

recorded history of the South African citrus industry goes back as far as 1654 when the first trees 

were brought from the Island of St. Helena, a stopover for ships from the East (Scora, 1975). 

Additional records prior to the 1900s indicated that citrus trees were also brought to South Africa 

from Brazil (1850) and India (Powell, 1930; Allwright, 1957). The commercial citrus industry in 

Australia was established using trees imported in 1788 from the Cape of Good Hope (South 

Africa) and Brazil (Rio de Janeiro) (Scora, 1975). The citrus industry in Brazil was founded with 

trees brought from Europe in 1540 by the Portuguese explorers (http://irrec.ifas.ufl.edu; Navarro, 

de Andrade, 1933). 

The mating type analysis and genotyping showed that only a single clonal mating type 

(MAT 1-2-1) was present in the U.S. population, which suggests a human introduction, a founder 

effect and subsequent asexual reproduction of the pathogen in Florida, as was also reported by 

Wang et al. (2016). The finding of only one mating type in the USA population will result in atypical 

disease cycles, compared to other countries. In this population, the primary inoculum is 

pycnidiospores, whereas in populations from other continents the primary inoculum is sexually 

produced ascospores. Asexual overwintering of the pathogen might occur endophytically as latent 

infections in leaves or twigs, in leaf or twig lesions and on infected out-of-season fruit on the tree 

(Kiely, 1948; Wager, 1952; Whiteside, 1967; Spósito et al., 2007, 2011). 

Very little is known about the reproductive system of P. citricarpa based on genetic data. 

It was only recently that Wang et al. (2016) and Amorim et al. (2016) were able to clone the MAT 

genes, supporting the hypothesis that P. citricarpa is heterothallic. Mating type analyses of the 

global populations showed that both mating types were present in populations from Australia, 

Brazil, China and South Africa at similar frequencies. This supports frequency-dependent-

selection of mating types and hence the occurrence of regular sexual reproduction in the life cycle 

of the pathogen. However, the association tests (IA and 𝑟̅𝑟 Rd), indicated significant linkage 

disequilibrium in clone-corrected populations, suggesting no or infrequent sexual reproduction in 

some of the populations (Queensland 1, Brazil and China (Jiangxi)). The low genotype evenness, 

which indicates that only a few MLGs are present, in most of the South African populations and 

in the Brazilian population further indicates that these populations have frequent clonal 

reproduction. This finding is surprising considering that historical data from epidemiological 

studies have shown that pycnidiospores play a relatively minor role in the epidemiology compared 
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with ascospores (Kiely, 1948; Kotzé, 1981; Wager, 1952; Whiteside, 1967; McOnie, 1964b; 

Spósito et al., 2007, 2008, 2011). However, our findings as well as the recent identification of a 

single clonal genotype causing epidemics in Florida (Wang et al., 2016; this study) suggest a 

more significant contribution of asexual reproduction to the epidemiology of the disease, as was 

concluded by Spósito et al. (2011) for areas with highly suitable climates. 

The importance of asexual reproduction to disease development may be management 

and climate dependent. Management practices in citrus types (lemons) that is known to produce 

multiple crops, or where the fruit remain on the trees during fruit set of the next crop may likely 

result in symptomatic fruit that can produce pycnidiospores that coincided with the young 

susceptible fruitlets. It was shown in Brazil that under high rainfall conditions, and particularly 

under management practices with overlapping fruit set, pycnidiospores played an important role 

in disease spread within trees (Spósito et al., 2007, 2011). Our data indicates that asexual 

reproduction in some populations is more important than previously thought. In the future, a 

structured within-orchard sampling strategy will shed more light on the role of asexual 

reproduction and pycnidiospores within and between trees in orchards where both mating types 

occur. 

Our study on the global population genetic structure of P. citricarpa provides novel and 

important insights into historical dissemination of the pathogen, the genetic structure of the global 

population and the reproductive system of the pathogen. Information on the introduction pathways 

of P. citricarpa to date has been based on historical records of first reports and speculations. The 

historical records can be incorrect and misleading especially since the pathogen can be present 

in a latent form (cryptic infection) for a long period of time (Kiely, 1948, Wager, 1952; Kotzé, 1981). 

The source of the South African population could be from the Far East or Australia. We also 

identified either Australia or South Africa as a likely source of the Brazilian population. Australia 

or South Africa can also be the source of the USA population, although it cannot be ruled out that 

the USA’s MLG remained un-sampled elsewhere. Our study, however, does not provide a 

complete picture of the introduction pathways, as additional populations from other countries in 

Asia and from New Caledonia and New Guinea need to be analysed to determine whether the 

Oceanian countries, China or another country in Asia was the source population from which 

dispersal of the pathogen to other continents took place. Knowledge on the reproductive system 

of P. citricarpa has only been based on epidemiological studies, which has concluded that sexual 

reproduction frequently occurs in this pathogen system (Kiely, 1948; McOnie, 1965; Kotzé, 1981). 

Our data supports the importance of a sexual reproductive system, but further indicate that in 

some populations asexual (clonal) reproduction may also be important. 
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Table 1. Geographic origin, collection year and host of Phyllosticta citricarpa populations 
analysed in this study. 

Country  Province or State/ 
County 

Year  Citrus Type No. of 
isolates 

 

Australia Queensland 1(Qld1) 2011 Lemon 25 
 

 
Queensland 2 (Qld2) 2011 Soft Citrus 29 

 

 
New South Wales (NSW) 2010 Navels 25 

 

  
 

   
Brazil Sao Paulo 2011 Lemons 24 

 

  
 

   
China Jiangxi 2011 Soft Citrus 35 

 

 
Zhejiang 2011 Soft Citrus 23 

 

  
 

   
South Africa Eastern Cape (SA-EC) 2012 Lemons 20 

 

 
KwaZulu Natal (SA-KZN) 2011 Grapefruit 30 

 

 
Limpopo (SA-LIM) 2011 Valencias 30 

 

 
Mpumalanga (SA-MP) 2011 Valencias 29 

 

 
North West (SA-NW) 2012 Lemons 30 

 

  
 

   
Unites States of 

America 

Florida/Collier (USA) 2011 Valencias 83 
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Table 2. Characteristics of 15 simple sequence repeat markers used to genotype Phyllosticta citricarpa populations and the allele size 

ranges present in a collection of 383 isolates. 

Locus a   Multiplex 
reaction nr. 

Size range 
(bp) 

Primer sequence (5’ – 3’) Labelling  
Dye 

Repeat MOTIF 

Pc117* 3 146-250 F:  GCG AAA AAT AAG TCT GCA CT 
R:  AGA TAG CTC CGT CTT GGA TA 

VIC (GATT) 

Pc179.1* 3 141-153 F:  ATT TTG CTG ACT GAC TGG AC 
R:  CTA AAT CTC CTG CTT GTG CT 

PET (CAGA) 

Pc236* 3 137-143 F:  CTG ATG CGT GAC CTT CTC 
R: CTA GCC CAG TTC ATG TCT TC 

FAM (GTC) 

Pc440* 1 
 

270 -282 F:  CCT CTC TCG TCA AGA AAC AAG 
R:  TCC TGC ATG GTA AGA CAG AC 

FAM (CAT)n 

Pc849* 1 
 

290-293 F:  CAA TGA CGA TAG CGA AGA AG 
R:  GCT CGA ACA GAA CCA TGA C 

VIC (GAA)n 

Pc1007* 2 147-151 F:  AGA GTC GTC GGT TTT GAA G 
R:  CTG GCA GGC TAA TAG ATT GA 

FAM (TG)n 

Pc2073* 2 157-177 F:  GAC AGG ACA GAT GGA TGA AT 
R:  AGA AGC GCT AGA ATT GAG TG 

NED (GCCTG)n 

Pc3011* 2 157-160 F:  TGA GCA GGT CCA TAC AAG A 
R:  ACC GAA GAC AAC CTC TCT G 

PET (TCC)n 

Pc6 4 117-135 F:  GGC CTG CAG TAC GAT TTT A 
R:  ATA TCC ACG TCC ATC AAC TC 

FAM (CAA) n 

Pc7 4 173-185 F:  AAG GTG GTC GTG GTC ATC 
R:  CAA GTT CTT GGG AGT ACA TCA 

VIC (GTG) n 

Pc12 4 
 

167-187 F:  TAA AGT AAT GAC GCT CGA CTC 
R:  GAG AGA AAG GAG ACG TGA CA 

FAM (ACC) n 

Pc19 4 154-160 F:  GCA GGC ACT ACC TTA GAC C 
R:  GTC GAG GAT GAC AGT ACC C 

NED (ACC) n 

Pc20 5 187-222 F:  GTT TCG GCA TCT TTG TTT T 
R:  GAT TCC TAA ACC TGC TGT TG 

NED (CTG) n 

Pc32 5 155-163 F:  TGTCTGAGGCTAAGAGTTCTG 
R:  AGA AGG GAG AAG AGA GTT GAA 

PET (GGCT) n 

Pc37 5 144-147 F:  GCA TCT CTT CTC CTT CTT CTT 
R: AAA TCG AGA CTG TGC TAT TTG 

FAM (CTC) n 

a Loci followed by * were developed in the current study, whereas the remaining loci were previously published by Wang et al., (2016).  
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Table 3. The number of alleles, private alleles and gene diversity of 15 simple sequence repeat loci in clone corrected Phyllosticta 

citricarpa populations from Australia, Brazil, China, South Africa, and the United States. 

Country 
States/Province #Isolates 

# Alleles (Private Alleles) 
Gene Diversitya Pc 

117 
Pc 

179.1 
Pc 
236 

Pc 
440 

Pc 
849 

Pc 
1007 

Pc 
2073 

Pc 
3011 

Pc 
12 

Pc 
19 

Pc 
20 

Pc 
32 

Pc 
37 

Pc 
6 

Pc 
7 

Ne 

Australia                   
NSW 25 4 1 1 2 1 3 2 2 2 2 1 2 1 3 2 1.37 0.216 
Queensland 1 25 4(2) 2 1 3 1 2 1 2 3 2 1 2 2 3 1 1.48 0.243 
Queensland 2 29 5 2 1 3 1 2 2 2 2 2 2 2 2 2 2 1.42 0.252 
Total 79 8(2) 2 1 3 1 3 2 2 3 2 2 2 2 3 2 1.43 0.254  

                  

Brazil                    

Sao Paulo 24 2 1 1 2 1 2 2 1 1 1 1 1 1 1 2 1.27 0.144 

Total 24 2 1 1 2 1 2 2 1 1 1 1 1 1 1 2 1.27 0.144  
                  

China                    

Jiangxi 35 8(4) 2 2(1) 2 2 2 2 2 4(2) 3(1) 3(2) 1 1 3(1) 1 1.60 0.309 

Zhejiang 23 10(2) 2 2 3(1) 2 3 1 2 2(1) 1 5(4) 1 1 2 2(1) 1.53 0.213 

Total 58 15(6) 2 3(1) 3(1) 2 3 2 2 5(3) 3(1) 7(6) 1 1 3(1) 2(1) 1.79 0.324  
                  

South Africa                   

EC 20 1 1 1 2 1 1 2 2 1 1 1 1 1 2 2 1.17 0.107 

KZN 30 2(1) 1 1 2 1 2 2 2 2 2 2 2 1 2 2 1.34 0.202 

LIM 30 5 2 1 3 1 2 2 2 1 2 1 1 1 2 2 1.33 0.190 

MP 29 3 1 1 3 1 2 2 2 1 2 1 1 2 1 1 1.25 0.153 

NW 30 4 2 1 2 1 2 2 2 1 1 1 1 1 2 2 1.31 0.179 

Total 139 7(1) 2 1 3 1 3 2 2 2 2 2 2 2 2 2 1.35 0.210  
                  

USA                   

Collier 83 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.00 0 

Total 83 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.00 0  
                  

Total 383 18 3 3 5 2 3 3 2 6 3 8 2 2 4 4 1.37 0.184 

aNei’s gene diversity, He (Nei, 1973); Ne - effective population size  

 

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



52 

 

Table 4. Summary of genotypic diversity indices for 12 populations of Phyllosticta citricarpa from 

Australia, Brazil, China, South Africa and the United States. 

Country/ 
States/Province 

#Isolates #MLGsa eMLG SE E5 D 

       
Australia 

  
  

  
Queensland 1 25 23 18.73 0.654 0.961 0.954 

Queensland 2 29 25 17.82 0.965 0.883 0.951 

NSW 25 23 18.73 0.654 0.961 0.954 

Total 79 60 21.40 1.39 0.782 0.975 
       
Brazil       

Sao Paulo 24 6 5.64 0.530 0.694 0.684 

Total 24 6 6.00 0.530 0.694 0.684 
       

China       

Jiangxi 35 24 15.84 1.289 0.859 0.945 

Zhejiang 23 20 17.64 0.662 0.904 0.941 

Total 58 43 20.90 1.38 0.870 0.970 
   

    
South Africa       

KZN 30 19 14.09 1.249 0.789 0.920 

LIM 30 15 11.70 1.183 0.712 0.880 

MP 29 14 11.38 1.101 0.746 0.880 

NW 30 20 14.75 1.237 0.820 0.929 

EC 20 6 6.00 0.000 0.735 0.710 

Total 139 54 16.90 1.930 0.626 0.952 
       

USA 
  

 
   

Collier 83 1 1.00 0.000 - 0 

Total 83 1 1.00 0.000 - 0 
Total  383 149 14.59 1.917 0.256 0.930 

aMLGs = Multilocus genotype, eMLG = expected number of MLGs after rarefraction, SE = Standard error based on 

eMLG, E5 = Evenness and D = Genotypic diversity 
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Table 5. Analysis of molecular variance (AMOVA) for Phyllosticta citricarpa populations in five 

countries using 15 simple sequence repeat loci. 
Source d.f. SS % 

Variation 
AMOVA statistics P 

Among countries 4 319.260 53% PhiRT = 0.528 0.001 

Among populations 7 46.994 7% PhiPR = 0.138 0.001 

Within populations 185 318.711 41% PhiPT = 0.593 0.001 

Total 196 684.964 100% 
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Table 6. Estimates of pairwise PhiPT values (below the diagonal) averaged over 15 microsatellite 

loci of Phyllosticta citricarpa populations in five countries (Australia, Brazil, China, South Africa 

and the United States). Significance values indicated above the diagonal. 

 Australia Brazil China South Africa USA 
Australia - 0.011 0.001 0.001 0.438 

Brazil 0.097 - 0.001 0.318 0.365 

China 0.649 0.659 - 0.001 0.001 

South Africa 0.165 0.013 0.700 - 0.481 

USA 0.000 0.013 0.674 0.000 - 
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Table 7. Mating-type (MAT) composition and χ2 testing for expected 1:1 MAT ratios in clone corrected Phyllosticta citricarpa populations 

from five countries. 
Country  Province or State/ 

County 
Populations Number of A1 

mating-type 
isolates 

Number of A2 
mating-type 

isolates 

Number 
of 

MLGsa 

χ2 
value 

P-value 

Australia Queensland 1 1 12 11 23 0.04 0.80 
 

Queensland 2 1 14 11 25 0.36 0.50 
 

New South Wales 1 14 9 23 1.09 0.30 

Total 
 

3 40 31 71 1.14 0.30 

Brazil Sao Paulo/Parana 1 4 2 6 0.67 0.50 

China Jiangxi 1 14 10 24 0.67 0.50 
 

Zhejiang 1 13 7 20 1.80 0.20 

Total  
 

2 27 17 44 2.26 0.10 

South Africa Eastern Cape 1 3 3 6 - - 
 

KwaZulu Natal 1 12 7 19 1.32 0.30 
 

Limpopo 1 5 10 15 1.67 0.20 
 

Mpumalanga 1 6 8 14 0.29 0.70 
 

North West 1 6 14 20 3.20 0.10 

Total 
 

5 32 42 74 1.35 0.30 

USA Florida/Collier 1 0 1 1 - - 
 

   

a The total number of Multilocus genotypes (MLG) per population in clone corrected Phyllosticta citricarpa populations from Australia, 

Brazil, China, South Africa and the USA.  

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



56 

 

Table 8. Linkage disequilibrium analyses for 12 populations of Phyllosticta citricarpa from Australia, Brazil, China, South Africa, and 

the United States with corresponding significance level (P-value). 

Country/ 
States/Province #Isolates #MLGs eMLG 

 Non-clone-
corrected 

populations 

Clone-corrected  
populations 

IA P value 𝑟̅𝑟 Rd P value IA P value 𝑟̅𝑟 Rd  P value 
Australia            
Queensland 1 25 23 18.73 0.275 0.046 0.310 0.047 0.240 0.061 0.027 0.063 
Queensland 2 29 25 17.82 -0.164 0.924 -0.014 0.923 -0.267 0.992 -0.023 0.992 
NSW 25 23 18.73 -0.008 0.480 -0.001 0.480 -0.065 0.651 -0.007 0.651 
Total 79 60 21.40 0.885 0.138 0.008 0.135                 
Brazil            
Sao Paulo 24 6 5.64 1.336 0.001 0.350 0.001 0.311 0.153 0.078 0.185 
Total 24 6 6.00 1.336 0.001 0.350 0.001     

            
China            
Jiangxi 35 24 15.84 1.068 0.001 0.100 0.001 0.960 0.001 0.089 000.1 
Zhejiang 23 20 17.64 -0.202 0.911 -0.213 0.909 -0.352 0.990 -0.037 0.990 
Total 58 43 20.90 0.912 0.001 0.079 0.001       

          
South Africa            
KZN 30 19 14.09 0.186 0.072 0.020 0.646 -0.034 0.546 -0.004 0.545 
LIM 30 15 11.70 0.001 0.456 0.000 0.456 -0.231 0.925 -0.030 0.920 
MP 29 14 11.38 -0.079 0.732 -0.013 0.732 -0.316 0.981 -0.534 0.979 
NW 30 20 14.75 -0.056 0.656 -0.008 0.657 -0.213 0.953 -0.313 0.951 
EC 20 6 6.00 -0.081 0.648 -0.021 0.646 -0.472 0.960 -0.118 0.955 
Total 139 54 16.90 0.129 0.010 0.013 0.010     

            
USA            
Collier 83 1 1.00 - - - - - - - - 
Total 83 1 1.00 - - - - - - - - 
 

 
          

Total  383 149 14.59 5.758 0.001 0.414 0.001 4.645 0.001 0.332 0.001 

MLGs = Multilocus genotype, eMLG = expected number of MLGs after rarefraction, IA = Index of Association; 𝑟̅𝑟 Rd = Standardized index 

of association 
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Figure 1. Geographic distribution of the Phyllosticta citricarpa isolates indicating the five countries in which the isolates were collected. 

Dates indicated are those that are known as the earliest record of Phyllosticta citricarpa. 
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Figure 2. Genotype accumulation curve for 15 microsatellite loci in 12 Phyllosticta citricarpa 

populations. The numbers of observed multilocus genotypes (MLGs) are denoted by the vertical 

axis, from 0 to the observed 149 MLGs in the P. citricarpa populations. The numbers of loci that 

were randomly sampled without replacement are denoted on the horizontal axis. The boxplots 

each contain 1000 random samples representing different possible combinations of n loci. A MLG 

resolution of 100% is indicated by the horizontal red dashed line.   

Stellenbosch University  https://scholar.sun.ac.za



59 

 

 
 

Figure 3. Principal coordinate analysis (PCoA) for 12 Phyllosticta citricarpa populations collected 

in five different countries. 

  

Brazil
CHINA - Jiangxi

CHINA -Zhejiang

NSW

Qld1

Qld2

SA-EC

SA-KZN

SA-Lim

SA-MP

SA-NW

USA

Co
or

d.
 2

Coord. 1

Principal Coordinates (PCoA)

Stellenbosch University  https://scholar.sun.ac.za



60 

 

 
Figure 4. Minimum Spanning Network based on Bruvo Genetic Distances. In total, 149 multilocus 

genotypes were observed in Phyllosticta citricarpa populations from five countries. Node colors 

represent population membership proportional to the pie size. Node sizes are relatively scaled to 

log1.75n, where n is the number of samples in the nodes to reduce node overlap. Edges (lines) 

represent minimum genetic distance between individuals.  
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Supplementary Figure S1. Discriminant analysis of principal components (DAPC) analysis 

of worldwide Phyllosticta citricarpa populations (clone-corrected) sampled from five different 

continents. Populations are indicted by different colours and shapes. The number of axes 

retained for the principal component analysis was 30 and 3 for the discriminant analysis.   
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Supplementary Figure S2. Discriminant analysis of principal components (DAPC) analysis 

of Phyllosticta citricarpa populations (clone-corrected) sampled from Australia, Brazil, South 

Africa and the United States of America. Populations are indicted by different colours and 

shapes. The number of axes retained for the principal component analysis was 20 and 2 for 

the discriminant analysis. 
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CHAPTER 3 

Spatial and temporal analysis of Phyllosticta citricarpa populations in two 
South African citrus orchards 

 

ABSTRACT 

Citrus Black Spot (CBS), caused by Phyllosticta citricarpa, is a disease that influences citrus 

industries world-wide. No information is available on the population structure of P. citricarpa 

at the orchard spatial (distance) - and temporal (seasonal) scales. These aspects, as well as 

the reproductive system of the pathogen were investigated in South Africa. Phyllosticta 

citricarpa populations were genotyped from two lemon orchards differing in climate; one in the 

province of Mpumalanga (sub-tropical) and the other in the North West province (semi-arid). 

Each orchard was sampled in each of two years (2012 and 2013). Spatial analyses at the 

orchard scale indicated that subpopulations separated by a short distance (within 200 m) were 

typically not significantly genetically differentiated, but those that were separated by larger 

distances (200 m to 400 m) were sometimes significantly differentiated. Temporal analyses in 

the North West orchard showed that seasonal populations were not significantly genetically 

differentiated. In contrast, seasonal populations from the Mpumalanga orchard were 

significantly differentiated. In both orchards, linkage disequilibrium analyses indicated that 

populations were sexual. The exception was the population from Mpumalanga in one season, 

although only the non-clone corrected and not the clone corrected population was in linkage 

disequilibrium. Sexual reproduction was supported by the clone corrected mating type ratios 

not deviating significantly from a 1:1 ratio. Asexual clonal reproduction was evident from low 

genotype evenness values for seasonal- and some subpopulations. In each orchard, two 

dominant multilocus genotypes (MLGs) were identified in most of the subpopulations, as well 

as in the seasonal populations.  Therefore, pycnidiospores are important in the development 

of CBS over time and space in South African orchards. On a regional scale, the Mpumalanga 

seasonal populations were significantly genetically differentiated from the North West 

populations. 

Stellenbosch University  https://scholar.sun.ac.za



67 

 

67 

 

INTRODUCTION 

In South Africa, Phyllosticta citricarpa (McAlpine) Aa is a globally distributed fungal pathogen 

that causes citrus black spot (CBS). The pathogen primarily causes fruit lesions that only affect 

the rind of fruit. Although the lesions do not cause decay, the cosmetic damage caused by the 

lesions results in the downgrading of fruit in local markets (Kotzé, 1981, 2000). Lesions on 

fruit can result in the rejection of consignments of exported fruit, since P. citricarpa is 

considered a regulated pest by some of South Africa’s trade partners (Carstens, et al., 2012). 

Various types of fruit symptoms have been described, but hard spot is the most typical 

symptom (Kotzé, 1981, 2000; De Goes, 2000, 2001; Aguilar-Vildoso et al., 2002). Twig 

symptoms are rare and are characterised by small, round, sunken necrotic spots with grey 

centres, surrounded by a dark brown ring. Leaf lesions seldom occur, and have only been 

found on leaves of lemons (Citrus limon) and less often on Valencia oranges (Citrus sinensis). 

The lesions on leaves consist of small round sunken necrotic spots and at times a yellow halo 

may be present around these lesions (Kiely, 1948; Kotzé, 2000; FAO, 2014).  

Phyllosticta citricarpa was first identified in South Africa in 1929 from the former Natal 

province (KwaZulu-Natal) and subsequently in four other provinces (Doidge, 1929; Wager, 

1952). Today, CBS is present in citrus producing regions of the Limpopo, Mpumalanga, North 

West and Eastern Cape provinces, but absent from the citrus producing regions of the 

Western Cape and Northern Cape provinces (Paul et al., 2005; Carstens et al., 2012). The 

restricted occurrence of the pathogen to only five of the seven citrus producing provinces in 

South Africa is attributed to the disease favouring citrus producing areas with warm, humid, 

summer rainfall climates (Paul et al., 2005; Carstens et al., 2012; Fourie et al., 2013; Yonow 

et al., 2013; Magarey et al., 2015; Guarnaccia et al., 2017).  

The epidemiology of P. citricarpa is not only highly influenced by climatic conditions, 

but by leave and fruit age too. The fruit infection period starts at fruit set, with the young fruitlet 

remaining susceptible for 4 to 5 months after fruit set (Kiely, 1948; Kotzé, 1981). After this 

period, natural resistance to infection sets in. Following infection, P. citricarpa remains in a 

quiescent state and most often becomes visible after fruit colour break (Kotzé, 2000). Leaves, 

while on the tree, are susceptible to infection for up to 10 months (Truter, 2010). Pycnidia and 

pycnidiospores may be produced on such infected leaves (Kiely, 1948; Kotzé, 2000; FAO, 

2014). In fallen leaves (leaf litter) the availability and discharge of sexual ascospores, formed 

within pseudothecia, are influenced by climatic conditions. The required conditions for 

pseudothecium maturation and ascospore development include recurrent wet and dry periods 

at temperatures of between 15°C to 35°C, for a period of 40 to 180 days after leaf fall (Kotzé, 

1981; Reis et al., 2006; Truter, 2010; Fourie et al., 2013, Dummel et al., 2013). Under 
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favourable conditions, ascospores can be produced during the entire year if both mating types 

are present to enable sexual reproduction. The optimal conditions for the released ascospores 

to germinate and infect susceptible plant parts are 15 hours of wetness at 27°C (Kiely, 1948; 

Kotzé, 1981; McOnie, 1964a; Huang and Chang, 1972). Conditions for asexual 

pycnidiospores to germinate and infect susceptible plant parts include a minimum wet period 

of 12 hours at 24°C (Noronha, 2002; Wang and Dewdney, 2014).  

Previous molecular studies on P. citricarpa include a microsatelite-based population 

genetics structure and reproductive system study at a global scale (Australia, China, Brazil, 

USA (Florida) and South Africa). The South African populations, as well as those from 

Australia, Brazil and China were shown to reproduce sexually, based on linkage disequilibrium 

analyses and the co-occurrence of mating types (MAT 1-1-1 and MAT 1-2-1) at a 1:1 ratio. In 

populations from South Africa and Brazil, a low level of genotype evenness was identified 

along with some non-clone corrected populations showing significant linkage disequilibrium. 

This suggest frequent clonal reproduction. Pycnidiospores, may thus play a more important 

role in the spatial distribution of the pathogen in South Africa (Carstens et al., 2017) than 

previously understood (McOnie, 1965; Kotzé, 1981). Furthermore, in Florida (USA), only one 

mating type is present (Wang et al., 2016; Carstens et al., 2017) and pycnidiospores are likely 

the only determinant of the spatial distribution of the pathogen (Hendricks et al, 2017). 

Ascospores and pycnidiospores likely play a different role in the spatial distribution of 

CBS within orchards and trees based on published studies using spore traps, inoculation 

studies and other conventional approaches. Pycnidiospores, which are exuded in a gelatinous 

mass, are dispersed over short distances and are the source for distribution of the pathogen 

within trees in South Africa, Australia and Brazil (Kiely, 1948; McOnie, 1964b; Kotzé, 1981; 

2000; Spósito et al., 2008, 2011). Ascospores are forcibly discharged and dispersed over 

distances of up to 25 m (Spósito et al., 2007) and are seen as the primary source of between-

tree pathogen dispersal in orchards in Australia and South Africa (Kiely, 1948; Kotzé, 1981). 

However, in Brazil where fruit set, climate (higher rainfall), cultural and management practices 

differ from South Africa and Australia, pycnidiospores are considered to be more important in 

the spatial distribution of the pathogen (Spósito et al., 2007, 2008, 2011). Furthermore, in 

Florida, pycnidiospores are the only spore type present and are solely responsible for 

dispersal and disease expansion over longer distances, including between trees and across 

rows (Hendricks et al., 2017). Studies on the spatial structure of CBS in orchards outside 

South Africa and Australia concluded that the CBS pathogen disperse over a relatively short 

distance, and that the disease has an aggregated dispersal pattern at the orchard tree scale, 

as well as within trees. Unfortunately the aforementioned population genetic studies all used 

a random sampling strategy, and were thus unable to make inferences on the importance of 
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sexual versus asexual reproduction within and across seasons in orchards. This study 

therefore aims to investigate the spatial within orchard structure of P. citricarpa populations.  

The objectives of the current study were to further investigate the reproductive mode of 

P. citricarpa in South Africa, and to determine the effect of distance (spatial) and season 

(temporal) on the population structure of P. citricarpa. Important aspects that were investigated 

were: (i) contribution of sexual and asexual spores to disease, (ii) whether dominant multilocus 

genotypes (MLGs) persist over time and space, and (iii) whether population structure differ in 

orchards which differ in climate. The study was conducted in two lemon orchards situated in 

the Mpumalanga province (subtropical) and North West province (semi-arid) in South Africa, 

over two seasons (2012 and 2013). A better understanding of the reproductive mode of the 

CBS pathogen and the contribution of sexual and asexual spores to disease may lead to 

improved control strategies in orchards. Currently, a preventative control strategy is applied 

that focuses on targeting ascospore infections during the fruit susceptibility period (October 

through to February).  

MATERIALS AND METHODS 

Orchard locations 

Two commercial lemon orchards, situated in the Mpumalanga and North West provinces (Fig. 

1), with contrasting climates and a history of CBS, were included in the study. The site in the 

North West province was a 15-year-old Eureka lemon orchard located near Brits, with a BSh 

Köppen-Geiger climate classification (StepSA; CGA, 2017). BSh climates are described as 

semi-arid; low relative humidity, warm summers and mild winters. The Mpumalanga site was 

a 9-year-old Eureka lemon orchard, located near Mbombela (Nelspruit), with a Cwa Köppen-

Geiger classification. Cwa climates are described as humid, subtropical; the summers are hot 

and the winters are dry. The two orchards were separated by approximately 400 km.  

Phyllosticta citricarpa isolates were collected according to a structured orchard 

sampling strategy over two consecutive production seasons (2012 and 2013). The number of 

sampling sites and the layout varied between the orchards (Fig. 2). In the North West orchard, 

four sampling sites were selected. The distances of sample sites varied based on their relative 

location to each other. Sample sites were separated at distances ranging from 50 m (sampling 

sites 1 vs. 2; 2 vs. 3; 3 vs. 4), to 100 m (sampling sites 1 vs. 3; 2 vs. 4), or 200 m (sampling 

sites 1 vs. 4) (Fig. 2A). The number of rows of trees between the samples sites varied with the 

highest number (34 rows) being between sample sites 1 and 4. In the Mpumalanga orchard, 

three sampling sites were selected. Sample sites were separated by 200 m (sampling sites 1 

vs. 2), 300 m (sampling sites 1 vs. 3), or 400 m (sampling site 2 vs. 3) (Fig. 2B). The number 

of rows of trees between the sampling sites varied with the highest number (48 rows) being 
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between sample sites 2 and 3, and the lowest being 35 rows between sampling sites 1 and 2. 

A sampling site consisted of a total of five trees located in three different rows; three of the 

sampled trees were in the middle row, and the other two trees were in the adjacent rows (cross 

figure). At each sampling site, ten CBS symptomatic fruits were randomly collected from each 

of the five trees for isolation studies.  

Phyllosticta citricarpa isolations and genotyping  

Isolation of P. citricarpa from CBS lesions on lemons, verification of species identity and DNA 

extraction were performed as described by Carstens et al. (2017). Fifteen polymorphic SSR 

markers (Pc117, Pc179.1, Pc236, Pc440, Pc849, Pc1007, Pc2073, Pc3011, PC12, PC19, 

PC20, PC32, PC37, PC6, PC7) were used to genotype the P. citricarpa populations (Wang et 

al., 2016; Carstens et al., 2017). Primer labelling as well as PCR reaction and amplification 

conditions were as previously described (Carstens et al., 2017). Electrophoresis was 

performed using the 3730XL Genetic Analyzer (Life Technologies) and the SSR alleles were 

scored using GeneMapper software version 4 (Life Technologies).  

SSR data analyses  

Population genetic diversity 

Isolates with the same alleles at all loci were considered clones or members of the same 

multilocus genotype (MLG). All allele based population genetic analyses were conducted 

using a per population clone corrected dataset unless otherwise stated, since the inclusion of 

clonal haplotypes in the analysis can distort estimates of allelic diversity (Balloux et al. 2003). 

For the spatial analysis, each sample site was considered a subpopulation. For the temporal 

analysis, seasons within an orchard were considered as populations, hereafter referred to as 

seasonal populations. For the gene and genotypic analyses on a spatial scale, the 

subpopulations were grouped per orchard and for the temporal and regional analysis, the 

seasonal populations were grouped per orchard (Table 2). The number of alleles (Na), 

effective population size, number of polymorphic loci and Nei’s measure of gene diversity (He) 

(Nei, 1973) were calculated using GenAlEx version 6.5 (Peakall and Smouse, 2012). The 

number of MLGs, the expected number of MLGs after rarefaction (eMLG) to account for 

different sample sizes, and the evenness index (E5), was determined using the R package 

(Kamvar et al. 2014; R Core Team, 2013). The eMLGs were calculated for three different 

groupings of data: (i) for spatial analyses by comparing the subpopulations per orchard e.g. 

four subpopulations of North West in 2012, (ii) for temporal analyses by comparing the two 

seasons per orchard with each other, e.g. North West 2012 season population with North West 

2013 season population, and (iii) for regional analyses by comparing the North West seasonal 

population with the Mpumalanga seasonal population, e.g. North West orchard 2012 with 
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Mpumalanga orchard 2012. The equitability index E5 is an indication of the evenness of MLGs 

present in subpopulations and populations, and varies from zero (no evenness) to one (all 

MLGs have equal abundance) (Grünwald et al., 2003; Shannon and Weaver, 1949).  

Mode of reproduction 

To infer the reproduction strategy (clonal or sexual) used by P. citricarpa, linkage 

disequilibrium analyses were performed on a SSR non-clone corrected and clone corrected 

dataset in the R package Poppr by calculating the index of association IA and the standardized 

version of the index of association 𝑟̅𝑟 Rd. P values were obtained after 999 permutations (Agapow 

and Burt, 2001). The IA and 𝑟̅𝑟 Rd indices provide an indication of the degree of association of 

alleles at different loci, within and among populations compared to that observed in a 

permutated dataset. A value of zero is expected for physically unlinked loci under random 

mating, i.e. linkage equilibrium. A value significantly larger than zero is an indication of linkage 

disequilibrium, which is generated when no or infrequent sexual reproduction occurs. Most 

fungi are able to reproduce both sexually and asexually. Thus, the presence of clones indicate 

asexual reproduction, but may mask the signal of sexual reproduction. Therefore, both non-

clone corrected and clone corrected datasets were analysed to test the null hypotheses of 

random mating in populations.  

PCR analyses with mating type specific primers (Wang et al., 2016) were used to 

determine the presence of the MAT1-1-1 and MAT1-2-1 alleles in 203 isolates that 

represented a clone corrected dataset, as previously described (Carstens et al., 2017). A chi-

square test was used to determine whether the populations deviated from the null hypothesis 

of a 1:1 ratio of the mating types (Fisher and Yates, 1963). 

Effect of distance (spatial) and season (temporal) on distribution of genetic variation    

For each orchard, the effects of distance (between sampling sites of an orchard) and season 

(temporal) on genetic differentiation of populations were investigated using three approaches. 

The genetic differentiation of populations and subpopulations within and among orchards were 

analysed using analysis of molecular variance (AMOVA). The statistical significance was 

tested using 999 permutations. Secondly, genetic differentiation using a pairwise PhiPT 

analyses was also determined for subpopulations and seasonal populations. These analyses 

were performed in GenAlEx version 6.5 (Peakall and Smouse, 2012). Thirdly, to determine 

the inter-relationship between the subpopulations within orchards, a discriminant analysis of 

the principal components (DAPC) was performed in the R package adegenet (Jombart, 2008). 
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Comparison between the North West and Mpumalanga orchards (regional sale) 

Weather data, provided by the Soil, Climate and Water Business Unit, Agricultural Research 

Council, South Africa, were collected from 2011 to 2013. The prevailing weather data (rainfall, 

wind speed, humidity and temperatures) in the two orchards during the fruit susceptibility 

period were evaluated for each season. 

The 2012 seasonal population from the North West orchard was compared with the 

2012 population from the Mpumalanga orchard, using AMOVA analyses and repeated for the 

2013 season.  

RESULTS 

Phyllosticta citricarpa isolations 

In total, 599 P. citricarpa isolates were collected over a 2-year period from the Mpumalanga 

and North West orchards for SSR analyses (Table 1). Of these, 373 isolates were obtained 

from the North West orchard (200 in 2012 and 173 in 2013). The remaining 226 isolates were 

from the Mpumalanga orchard (130 in 2012 and 96 in 2013). The species identity of all the 

isolates were confirmed as being P. citricarpa as described by Carstens et al. (2017). 

Population genetic diversity of sub-populations within each orchard (spatial scale) 

In both orchards and years, locus Pc117 was the most polymorphic (with a maximum of 8 

alleles). None of the populations showed 100% polymorphism for all 15 loci (Table 1). In the 

North West orchard, the 15 polymorphic loci revealed a total of 30 to 31 alleles in the different 

subpopulations in both seasons, ranging from 1-5 different alleles per locus. The gene 

diversity (He) for the four subpopulations within each season in the North West orchard ranged 

from 0.180 to 0.227 (Table 1). 

In the Mpumalanga orchard, a total of 38 alleles were present in the different 

subpopulations in 2012, ranging from 1-8 different alleles per locus. In the 2013 season, a 

total of 31 alleles were present in the subpopulations, ranging from 1-7 alleles per locus. The 

gene diversity (He) for the subpopulations within each of the seasons in the Mpumalanga 

orchard ranged from 0.178 to 0.234. (Table 1). 

The number of eMLGs varied slightly (eMLG = 20 to 24.8) in the North West orchard 

subpopulations for each of the seasons (Table 2). The genotypic diversity (D) was high and 

varied from 0.915 to 0.942 in the different subpopulations within each season. The evenness 

values (E5), which are an indication of the relative abundance of different genotypes in the 

subpopulations within each season, varied in 2012 from 0.682 to 0.832, and in 2013 from 

0.718 to 0.789 (Table 2). 
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In the Mpumalanga orchard, the eMLG numbers for subpopulations were higher in 

2012 (18.9 to 28.0) than for the 2013 subpopulations (16.0 to 17.0). The genotypic diversity 

(D) in the subpopulations was high in both seasons (0.846 to 0.940). The evenness values 

(E5) varied in 2012 from 0.677 to 0.733, and in 2013 from 0.558 to 0.721 (Table 2). 

Population genetic diversity of populations in the 2012 and 2013 seasons (temporal 
scale) 

The gene diversity was low in the North West orchard for both seasonal populations, but was 

higher, although not significantly so, in 2012 (He = 0.221; SE = 0.057) than in 2013 (He = 

0.203; SE = 0.057) (Table 1). In the Mpumalanga orchard, gene diversity was low in both 

years but was significantly higher in 2012 (He = 0.238; SE = 0.048) than in 2013 (He = 0.212; 

SE = 0.053) (Table 1). 

In the North West orchard, based on eMLG values (which account for the different 

sample sizes), 55.5 and 49.0 MLGs (SE = 1.80), which differed significantly from each other, 

were identified in 2012 and 2013 respectively. Genotypic diversity (0.947 and 0.944) was high 

in the 2012 and 2013 populations, regardless of time. The evenness values (E5) were 0.587 

and 0.638 in the two seasons (Table 2). 

In the Mpumalanga orchard, based on the eMLG values, a significantly higher number 

of MLGs was identified in 2012 (45.1; SE = 2.23) than in 2013 (39.0; SE = 0.00). The genotypic 

diversity was higher in 2012 (D = 0.942) than in 2013 (D = 0.881). The evenness values (E5) 

were low in both seasons (E5 = 0.533 and 0.425) (Table 2). 

Occurrence of prevalent MLGs within each orchard 

In the North West orchard, there were two dominant multilocus genotypes (MLG81 and 

MLG50) that were equally abundant and represented 23% and 24% of the 2012 and 2013 

season populations respectively. MLG81 represented 12% of the 2012 and the 2013 

populations. MLG50 constituted 11% and 12% of the 2012 and 2013 season populations 

respectively (Fig. 3A). Both MLGs occurred in all four subpopulations at the four different 

locations within the orchard, representing 6 to 15% of each subpopulation. Different dominant 

MLGs were detected in subpopulations in the 2012 season, but not in the 2013 season (data 

not shown). 

In the Mpumalanga orchard across the two seasons, there were also two MLGs 

(MLG53 and MLG83) that represented 24% and 40% of the 2012 and 2013 season 

populations, respectively. The most dominant MLG (MLG83) represented 17% and 29% of 

the 2012 and 2013 season populations. The second most prevalent MLG (MLG53) 

represented 7% and 11% of the 2012 and 2013 season populations, respectively (Fig. 3B). 
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The dominant MLG83, but not MLG53, occurred in each of the three subpopulations in each 

season representing 12 to 34% of each subpopulation (data not shown).  

Mode of reproduction  

Linkage disequilibrium analyses for the non-clone corrected and the clone corrected data set 

of each of the four subpopulations in the North West orchard, indicated that the index of 

association did not differ significantly (P > 0.05) from zero in any of the subpopulations in the 

two seasons (Table 3). Similarly, in the total population of both seasons in the North West, for 

the non-clone corrected and clone corrected dataset, the index of association (IA) and 

standardized index of association (𝑟̅𝑟 Rd) did not differ significantly from zero. This is an indication 

that the loci are not linked and that the hypothesis of random mating occurring could not be 

rejected.  

In the Mpumalanga orchard, the index of association differed significantly (P < 0.050) 

from zero in the 2013 season in the non-clone corrected dataset for subpopulation 3, and in 

the 2013 seasonal population (Table 3). All the other populations, including all the clone 

corrected populations, were not in significant linkage disequilibrium (Table 3). 

Amplification of the mating type loci yielded a positive PCR amplification for either one 

of the mating type primer pairs for all analysed isolates. The mating type frequencies were 

found to not deviate significantly from a 1:1 ratio in the North West orchard (χ2 = 1.00 - 1.07; 

P = 0.30) and the Mpumalanga orchard (χ2 = 0.02 - 1.27; P = 0.90; P = 0.20) (Table 4).  

Effect of distance on distribution of genetic variation (spatial)  

The AMOVA showed that the total genetic variance attributable to differences among isolates 

within the subpopulations in both orchards was high (93-99%). For all populations, PhiPT was 

low (0.013-0.068) and non-significant except for the Mpumalanga 2012 seasonal population 

(P = 0.021) (Table 5).  

In the North West orchard, spatially significant population structuring was only 

observed in the 2012 season, and only between subpopulations 1 and 4, based on pairwise 

PhiPT values. These populations were located at the largest distance (200 m) from each other 

(PhiPT = 0.113; P = 0.011) in this orchard. Subpopulations that were separated by 50 or 100 

m were not significantly differentiated (Fig. 2A; Table 6). In the 2013 season, subpopulations 

1 to 4 in all possible combinations showed no significant population sub-structuring (PhiPT = 

0 to 0.070; P = 0.091 to 0.465) (Table 6). These populations were spaced at distances ranging 

from 50 m to 200 m.  

In the Mpumalanga orchard, spatial population structuring was observed in the 2012 and 2013 

seasons based on pairwise PhiPT values. In both seasons, subpopulations 2 and 3, which 

were separated by 400 m (Fig. 2B) were significantly genetically differentiated from each other 
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(PhiPT = 0.090; P = 0.007; PhiPT = 0.082; P = 0.042). Furthermore, subpopulations 1 and 3, 

which were separated by 300 m (Fig 2B) were also significantly genetically differentiated from 

each other (PhiPT = 0.068; P = 0.037; PhiPT = 0.117; P = 0.021) (Table 7). However, in both 

seasons, subpopulation 1 was not significantly differentiated from subpopulation 2 (PhiPT = 

0.000; P = 0.386; PhiPT = 0.000; P = 0.390), which were separated by the shortest distance 

(200 m) from each other in this orchard (Fig. 2B; Table 7).  

The DAPC, which reveals the variation between populations, in general supported the 

pairwise PhiPT analyses. Analyses in the North West orchard only showed separate clustering 

of subpopulation 1 and 4 in the 2012 season but complete overlap and thus no differentiation 

in the next season (Fig. 4). In the Mpumalanga orchard, DAPC also revealed differentiation 

between some of the subpopulations in both seasons (Fig. 5). The eigenvalues chosen for 

both orchards and both seasons in the orchards represented 80% of the total variation.  

Effect of season on distribution of genetic variation (temporal) 

In the North West orchard, the AMOVA analysis comparing the populations over the two 

seasons showed that 100% of the genetic variance was attributable to differences among 

isolates within the populations, while there was no variance among the populations (Table 8). 

Pairwise PhiPT values confirmed the absence of a temporally differentiated population 

structure in this orchard (0.000; P = 0.445). 

In the Mpumalanga orchard, the AMOVA analysis showed that 97% of the total 

variance was attributed  to differences between isolates within the populations and 3% to 

differences among populations (PhiPT = 0.027; P = 0.013) (Table 8). Based on pairwise PhiPT 

values, temporally population differentiation was observed in this orchard (0.027; P = 0.016).  

Comparison between the North West orchard and Mpumalanga orchard (regional sale) 

Weather data 

Lemon fruit in the North West and Mpumalanga provinces are susceptible to P. citricarpa 

infections between the beginning of October and the end of February (C. Kellerman, Pest 

Management Services, Nelspruit, South Africa, personal communication). The monthly 

weather parameters (minimum and maximum temperatures, relative humidity, wind speed and 

rainfall) differed in the two orchards during the fruit susceptibility period (October through to 

February) in the 2012 and 2013 seasons (Supplementary Table 1). Mpumalanga had a higher 

total rainfall in both seasons (2012 season 765.04 mm; 2013 season: 950.96 mm) than the 

North West (2012 season: 407.93 mm; 2013 season: 476.52 mm). In both seasons, the 

maximum temperatures were higher in the North West orchard than in Mpumalanga orchard; 

approximately 2 to 3°C for 2012 season, and 3 to 5 °C for the 2013 season. However, the 

minimum temperatures for Mpumalanga were higher (approximately 2.5°C) in both seasons 
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than in the North West. The relative humidity was higher in Mpumalanga (91.36 %) during 

these periods than in North West (88.60 %) (Supplementary Table 1).  

Population structure 

AMOVA analyses and pairwise PhiPt values showed that there was significant differentiation 

between the two orchards in both seasons. In 2012, 48% (PhiPT = 0.479; P = 0.001) of the 

variation was due to differences between the orchards and in 2013, it was 54% (PhiPT = 

0.543; P = 0.001) (Supplementary Table 2).  

DISCUSSION 

The current study investigated the effect of distance (spatial) and season (temporal) at the 

orchard scale, on the population structure and mode of reproduction of P. citricarpa in South 

Africa. The populations were studied over two seasons in two lemon orchards; one in the sub-

tropical Mpumalanga province and the other in the semi-arid North West province. The study 

has shown for the first time that distance and season have an effect on the distribution of 

genetic variation of P. citricarpa. Distance affected population structure in both orchards, since 

subpopulations that were within 200 m were typically not significantly genetically differentiated, 

but those that were separated by larger distances of 200 to 400 m were often significantly 

differentiated. The effect of season (temporal) differed in the two orchards. In the North West 

orchard (semi-arid), season did not affect population structure, whereas in the Mpumalanga 

orchard (subtropical) the populations from the 2012 and 2013 seasons were genetically 

differentiated. In both orchards, populations were sexual. However, the persistence of two 

dominant MLGs in populations over space and seasons in both orchards, indicated strong 

asexual reproduction. On a regional scale, the Mpumalanga seasonal populations were both 

significantly differentiated from the North West seasonal populations. The genotypic diversity 

and genotype evenness were comparable between the two orchards in the 2012 season. 

However, in the 2013 season the Mpumalanga orchard had a lower genotypic diversity and 

genotype evenness than the North West orchard, but a higher number of eMLGs. 

Previous studies on P. citricarpa populations in Brazil, South Africa, Australia and 

China, where both mating types occur, have shown that the pathogen reproduces sexually 

and asexually (Carstens et al., 2017). Similar results were found in the current study in both 

of the orchards investigated over the two seasons. Mating type frequencies did not deviate 

significantly from a 1:1 ratio in both of the orchards and seasons. Furthermore, the index of 

association tests (IA and 𝑟̅𝑟 Rd) did not differ significantly from zero in all of the North West 

populations, and for most of the Mpumalanga populations. The exception was for one non-

clone corrected 2013 Mpumalanga subpopulation and also the non-clone corrected 2013 
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seasonal population in the Mpumalanga orchard. This indicated the importance of asexual 

reproduction in the orchard. The occurrence of asexual reproduction in the 2013 season in the 

Mpumalanga population was likely driven by the two dominant MLGs (clones) that increased 

from 24% in the 2012 season to 40% in the 2013 season. In the North West orchard, a similar 

situation was found in that two dominant MLGs were present, but these represented the same 

percentage of the populations in both seasons (23 to 24%). The occurrence of asexual 

reproduction was also supported by low genotype evenness. The genotype evenness was low 

for the seasonal populations over time in both orchards (E5 = 0.425 to 0.638), compared to 

that of the subpopulations (E5 = 0.677 to 0.832). This indicated that the abundance of 

genotypes were more equal in subpopulations than across the total population. The 

occurrence of asexual and sexual reproduction indicates that the CBS pathogen can use both 

reproductive systems to adapt and survive in changing environments. An important 

environmental factor that may have affected asexual reproduction in the Mpumalanga orchard 

in the 2013 season was a higher rainfall (951 mm) during the fruit susceptibility period than in 

the 2012 season (765 mm). Similarly, in Brazil, under high rainfall conditions, pycnidiospores 

play an important role in disease development (Spósito et al., 2007, 2011).  

Clonal reproduction of P. citricarpa has been reported in citrus orchards where only 

one mating type occurs. In Florida in the USA, only one clonal mating type population exists 

(Wang et al., 2016; Carstens et al., 2017). In the orchards, the disease occurs in a clustered 

pattern supporting short-distance dispersal by pycnidiospores as the major inoculum source 

(Hendricks et al., 2017). In these Florida orchards, the spread of CBS by pycnidiospores was 

observed at distances further than the 80 cm reported in Brazil (Spósito et al., 2011), and 

occurred at least across tree rows, approximately 6.7 m apart. It was hypothesized that the 

spread of pycnidiospores was most likely by wind-driven rain and/or through the spread of 

infected twigs and leaves from diseased trees during hurricanes and tropical storms that occur 

in Florida (Hendricks et al., 2017). The clonal survival and reproduction of P. citricarpa were 

recently reported in Europe by Guarnaccia et al. (2017). The finding by Guarnaccia et al. 

(2017) of P. citricarpa populations, consisting of a single mating type and a single clone per 

country, in citrus leaf litter in Italy, Malta and Portugal was unexpected since no CBS 

symptoms were found in the orchards nor were CBS symptoms ever reported from these 

countries (Paul et al., 2005; Yonow, et al., 2013; Fourie et al., 2013; Magarey et al. 2015; 

Guarnaccia et al., 2017;).  

The ability of P. citricarpa to spread and persist clonally is supported by reports that 

MLGs can be shared between countries. Carstens et al. (2017) reported that MLGs were 

shared among populations from South Africa, Australia, Brazil, and the United States. For 

example, MLGs present in Brazil were shared with all three populations from Australia and all 
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five populations from South Africa. No MLGs from the aforementioned four countries were 

shared with China, one of the putative origins of the pathogen (Carstens et al., 2017). 

Guarnaccia et al. (2017) furthermore reported that the single P. citricarpa MLG from Portugal, 

found in leaf litter, was shared with the three Australian populations from the Carstens et al. 

(2017) study. Malta and Italy shared the same single P. citricarpa MLG, which was not present 

in Portugal or any of the populations studied by Carstens et al. (2017) (Guarnaccia et al., 

2017). In both of the aforementioned studies, and in the current study, MLGs were identified 

using 15 SSR markers. A genotype accumulation curve of the markers showed that the curve 

did not reach a plateau, suggesting that additional loci might improve discrimination among 

MLGs (Carstens et al., 2017). It might therefore be possible that these markers are not 

sufficiently polymorphic to identify true clones. It has been a challenge finding polymorphic 

SSR markers in P. citricarpa (Wang et al., 2016; Carstens et al., 2017). Previously sequence 

data were not useful for identifying polymorphisms in P. citricarpa (Wickert et al., 2012, Miles 

et al., 2013, Zavala et al., 2014). However, recently the presence of seven single nucleotide 

polymorphisms in sequence data of the actin gene (actA) and glyceraldehyde-3-phosphate 

dehydrogenase (gapdh) genes among 21 P. citricarpa isolates from various countries was 

reported (Guarnaccia et al., 2017). In future studies, sequence data from these genes could 

be used to ascertain whether the clonal MLGs identified thus far in the various studies are true 

clones. However, considering that (i) all P. citricarpa clones identified in the current study, and 

those identified by Guarnaccia et al. (2017) consist of the same single mating type and (ii) that 

Zavala et al. (2014) found no polymorphisms in the actA gene and gapdh genes in the clonal 

population from Florida, supports the fact that the 15 SSR markers may identify true clones 

with a high level of probability. 

In the current study, two dominant MLGs were identified in subpopulations and 

populations from both seasons in each of the two South African lemon orchards. This suggests 

that pycnidiospores play a role in the epidemiology of the pathogen in South Africa at spatial 

and temporal scales, which has not been reported previously. This contradicts the current 

understanding of the minor epidemiological importance of pycnidiospores in disease 

development over seasons and space in South African and Zimbabwean orchards (Kiely, 

1948; Wager, 1952; McOnie, 1964b, 1965; Whiteside, 1967; Kotzé, 1963, 1981; Truter, 2010). 

However, the number of peer reviewed studies published to provide evidence for this are 

limited, and data may have been interpreted incorrectly. In South Africa, McOnie (1964b) 

concluded that pycnidiospores were not important based on experiments using spore trapping, 

fruit bagging, and staggered spray experiments. These experiments all showed that initial fruit 

infection coincided with the earliest and highest ascospore discharge (McOnie, 1964b). 

However, the species identity of the trapped ascospores could not be ascertained as being P. 
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citricarpa, due to the similarity in ascospore morphology of P. citricarpa and the saprophyte P. 

capitalensis (Meyer et al., 2001). McOnie (1964b) furthermore found that pycnidiospores 

released from dead leaves were not important since their release from dead leaves did not 

coincide with fruit infections. Lastly, in South Africa, except for lemons, fruit do not overlap 

within trees.  It was therefore concluded that pycnidiospores from fruit on trees in general are 

not a source of inoculum for new fruit infections (McOnie, 1964b; Kotzé, 1981). Wager (1949) 

and Whiteside (1967), in neighbouring Zimbabwe, demonstrated the short-distance wash-

down dispersal of pycnidiospores from pycnidia in fruit lesions and concluded that the 

epidemiological contribution of these spores would be much more limited than the airborne 

ascospores.   

In Australia, where populations were recently shown to be sexual (Carstens et al., 

2017; Tran et al., 2017), pycnidiospores have in the past not been considered as being 

important in the epidemiology of the pathogen but new studies are underway to determine the 

roles of the different spores in Australia (N.T. Tran, Queensland Alliance for Agriculture and 

Food Innovation, The University of Queensland, Australia, personal communication and 

unpublished data). Similar to South Africa, limited peer reviewed literature is currently 

available to support the prominent role of ascospores in CBS epidemiology (Kiely, 1948). 

Spore trap studies conducted by Kiely (1948) showed that ascospores could frequently be 

trapped between tree rows, and around the boundary of an orchard containing severe fruit 

infections. However, the species identity of the ascospores could not be confirmed. 

Pycnidiospores were rarely trapped between rows, and not at all at the boundary of the 

orchard. Pycnidiospores were, however, frequently identified in water sampled from a filter 

funnel placed at the bottom of trees (Kiely, 1948) and the author concluded that 

pycnidiospores are a source of inoculum within trees, but are not disperse between trees. This 

data, however, is not conclusive since rain dispersed pycnidiospores will be difficult to trap 

onto slides, as opposed to the wind dispersed ascospores.  

Pycnidiospores are important in the epidemiology of CBS in Brazil and Florida (Spósito 

et al., 2011; Hendricks et al., 2017), although the pathogen also does reproduce sexually in 

Brazil (Amorim et al., 2017; Carstens et al., 2017). The subtropical and tropical climates in 

these two countries are considered to be much more favourable for CBS development than in 

Africa and Australia (Yonow et al. 2013; Magarey et al., 2015). The importance of 

pycnidiospores in Brazil has been shown by three studies. Firstly, Spósito et al. (2007, 2008) 

reported that the aggregation of symptomatic fruits in all sectors and heights in trees provided 

support for the importance of pycnidiospores that were likely splash-dispersed. Secondly, 

Spósito et al. (2011) showed that the placement of P. citricarpa inoculum consisting of infected 

fruits or dead twigs in trees in a CBS-free orchard were able to cause new fruit infections. 
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Thirdly, fruit on trees were furthermore considered as an important inoculum source, since 

fruit infections were more severe when there was an overlap between young and old fruit on 

trees. Fourthly, the removal of all possible leaf litter as ascospore inoculum source from the 

orchard floor, did not prevent disease development when there was no overlap in fruit crops 

on trees (Spósito et al., 2011). 

The difference in the perceived role of pycnidiospores in Brazil compared to Australia 

and South Africa, is thought be due to differences in cultural and environmental conditions. In 

Australia and South Africa, in contrast to the predominant production of late maturing Valencia 

oranges for juicing in Brazil, the period of fruit infection is restricted to four to five months. 

Lanza et al. (2018), however, recently reported from Brazil that although fruit susceptibility 

declined after 4 to 5 months, fruits are likely to be susceptible for up to 7 months. There is less 

overlapping of old and new fruit in orchards in South Africa and Australia. Furthermore, less 

frequent pruning of dead twigs, a source of pycnidiospore inoculum in orchards managed for 

juice fruit production, are conducted in Brazil than in South Africa and Australia (Spósito et al., 

2011).  

Spatial analyses at the orchard scale in the current study in South Africa showed that 

in both orchards, distance affected population structure. In the North West orchard, where 

subpopulations were spatially separated by relative short distances of 50 m, 100 m, or 200 m, 

the subpopulations were not significantly sub-structured in both seasons (at a 95% confidence 

level interval). The only instance in the North West orchard where two subpopulations were 

significantly differentiated was for two subpopulations that were the most distant from each 

other (200 m) in the 2012 season. In the Mpumalanga orchard, where subpopulations were 

separated further away from each other (200 m or 300 m or 400 m), significant differentiation 

occurred between the subpopulations; the exception, however, in the Mpumalanga 

subpopulations was where subpopulations were separated at the shortest distance from each 

other (200 m). Thus, in both orchards, the genetic structure of the subpopulations revealed 

distance limitations in the dispersal of propagules. DAPC analyses supported population sub-

structuring at the orchard spatial scale by distance. In Brazil, Spósito et al. (2011) showed, 

based on a spatial analyses of CBS-symptomatic trees, that trees were aggregated in small 

foci with a maximum radius of 24.7 m, and that dispersal was thus likely limited to this distance. 

Venturia inaequalis, another ascomycete tree pathogen, also produces ascospores in leaf 

litter, which are dispersed at an effective distance of up to 33 m from the source, but could be 

dispersed up to 45 m (Holb et al., 2004). Yet in Mycosphaerella fijensis, a pathogen of banana 

and plantain, ascospores were wind-dispersed at a mean distance of 104 m to 613 m from 

source (depending on the wind direction), although the disease gradient declined sharply 100 

m from the source (Rieux et al., 2014).  
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The current study indicated that P. citricarpa pycnidiospores were important, as 

evidenced by the MLGs that were shared between spatially separated subpopulations within 

the same orchard, but their dispersal would not most likely not have been evident over the 

short period of the two studied seasons. This is due to the fact that P. citricarpa pycnidiospores 

are dispersed over short distances (only 0.80 m or up to 6.7 m) (Spósito et al., 2011; Hendricks 

et al., 2017). Therefore, the dispersal of pycnidiospores within orchards will rather occur over 

multiple seasons in the long term. The epidemiological role of asexual reproduction can be 

hypothesized to be at least sufficient for clonal survival (under less favourable conditions for 

CBS), but also contributing to CBS disease (under more favourable conditions). The former 

was particularly evident from the findings of Guarnaccia et al. (2017) that P. citricarpa 

apparently persists under climatic conditions unsuitable for CBS disease development. The 

role of pycnidiospores in CBS disease development is clear from the studies in Florida (Wang 

et al., 2016; Hendricks et al., 2017) and Brazil (Spósito et al., 2007, 2008, 2011). 

Season is not expected to affect the population structure of P. citricarpa in citrus 

orchards, especially in lemon orchards. This is due to citrus trees being evergreen and leaves 

dropping throughout the year, with the lifespan of a leaf ranging from 2 to 3 or even more years 

(Kelley and Cummins, 1920; Wallace et al., 1954). Since leaves are susceptible to infection 

for the first 10 months (Truter, 2010), leaves on a tree can over time potentially be infected 

with a range of P. citricarpa genotypes. Infected leaves on the tree are therefore an important 

inoculum reservoir of a variety of genotypes, which can contribute to sexual reproduction over 

a 2 to 3 year period once leaves drop from the tree. In lemon orchards, fruit crops overlap on 

trees, which may further contribute to populations not being differentiated between seasons 

since a single genotype can infect different fruit crops and can contribute to asexual 

reproduction over a prolonged period. The occurrence of CBS symptoms on green leaves on 

the tree is more common in lemons (Kiely, 1948; Kotzé, 2000), which will prolong the potential 

contribution of asexual spores produced in these lesions. In the current study, it was found 

that P. citricarpa populations in the North West orchard populations were not significantly 

genetically differentiation based on AMOVA analysis. In contrast, the seasonal populations in 

the Mpumalanga orchard, were significantly differentiated as indicated by AMOVA analysis. 

This could be due to a higher rainfall which can favour asexual reproduction (Kotzé, 1963; 

Huang and Chang, 1972; Truter, 2010), a higher disease incidence (subtropical climate), 

larger distances between sub-populations in the Mpumalanga than the North West orchard 

(reduced ability of sub-populations to interbreed) or cultural practices.  

In summary, the current study on the population structure of P. citricarpa in two 

orchards in two different production regions in South Africa showed that distance at the scale 

of the orchard influenced population structure. The effect of season on population structure 
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was small and orchard dependent. Asexual reproduction and clonal reproduction were evident 

in both orchards and played a major role in the epidemiology of CBS. Airborne ascospores 

may play an important role in the spatial distribution of the pathogen at the orchard scale. Even 

though sexual and clonal reproduction was evident in both of the studied lemon orchards, this 

might not be true for other citrus types as the periods of flowering and fruiting are different in 

citrus types. Lemons can have up to three fruit sets in one production cycle, whilst most other 

citrus types are managed to have one fruit set only. The observation that pycnidiospore play 

an important role in CBS in South Africa, require changes to the current management 

strategies, which only targets ascospores during fruit susceptibility periods and weather 

conditions conducive for their release and infection.  Future studies should re-investigate the 

role of pycnidiospores and ascospores in South Africa. Conventional inoculation (fruit and 

twigs) and leaf removal studies should be conducted in citrus orchards, combined with 

population genetic analyses of the trials. New ascospore trap data should be generated to 

determine the specific differentiation of P. citricarpa from P. capitalensis ascospores. 

Additional studies should be conducted in orange orchards, since the relative importance of 

ascospore and pycnidiospore inoculum sources might differ between citrus types.  
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Table 1. Gene diversity and number of alleles of 15 microsatellite loci across time (between 2012 and 2013 seasons) and space (within 
orchard between subpopulations separated by defined distances) between clone corrected Phyllosticta citricarpa populations in two 
lemon orchards in the North West and Mpumalanga provinces of South Africa.  

Province #Isolates #MLGsa 
# Alleles 

Ne  He b Pc 
117 

Pc 
179.1 

Pc 
236 

Pc 
440 

Pc 
849 

Pc 
1007 

Pc 
2073 

Pc 
3011 

Pc 
12 

Pc 
19 

Pc 
20 

Pc 
32 

Pc 
37 

Pc 
6 

Pc 
7 

North West                     
2012                    
Subpopulation 1 52 14 4 2 1 4 1 2 2 2 1 2 1 1 2 3 2 1.34 0.200 
Subpopulation 2 50 21 3 2 1 3 1 2 2 2 1 2 1 1 2 3 2 1.37 0.212 
Subpopulation 3 50 15 4 1 1 2 1 3 2 2 1 2 1 1 2 3 2 1.42 0.227 
Subpopulation 4 48 10 3 1 1 2 1 2 2 2 1 1 1 1 1 3 2 1.36 0.183 
Seasonal  200 60 5 2 1 3 1 3 2 2 1 2 1 1 2 3 2 1.40 0.221 
2013                     
Subpopulation 1 41 14 3 2 1 2 1 2 2 2 1 2 1 1 1 3 2 1.36 0.201 
Subpopulation 2 46 13 4 1 1 2 1 2 2 2 1 2 1 1 1 3 2 1.38 0.185 
Subpopulation 3 46 15 3 1 1 3 1 2 2 2 1 2 1 1 1 3 2 1.33 0.183 
Subpopulation 4 40 7 2 1 1 2 1 2 2 2 1 2 1 1 1 2 2 1.29 0.180 
Seasonal  173 49 5 2 1 3 1 2 2 1 2 1 1 1 1 3 2 1.37 0.203 
Mpumalanga                    
2012                    
Subpopulation 1 45 14 4 2 2 2 1 2 2 2 2 1 1 1 2 3 2 1.34 0.216 
Subpopulation 2 41 21 5 1 1 3 1 2 2 2 1 2 1 1 2 3 1 1.41 0.223 
Subpopulation 3 44 20 5 3 2 3 2 2 2 2 1 2 1 1 2 3 2 1.36 0.227 
Seasonal  130 55 8 3 3 3 2 2 2 2 2 2 1 1 2 3 2 1.37 0.238 
2013                    
Subpopulation 1 32 13 5 2 1 3 1 2 2 2 1 1 1 1 2 2 1 1.36 0.188 
Subpopulation 2 32 15 6 2 1 3 1 2 2 2 1 2 1 1 2 2 1 1.38 0.178 
Subpopulation 3 32 11 3 2 1 2 1 2 2 2 2 2 1 1 2 2 1 1.39 0.234 
Seasonal 96 39 7 2 1 3 1 2 2 2 2 2 1 1 2 2 1 1.38 0.212 

 a #MLGs = Multilocus genotypes; bNei’s gene diversity, He (Nei, 1973); Ne - effective population size 
 

Stellenbosch University  https://scholar.sun.ac.za



88 

 

88 

 

TABLE 2. A summary of genotypic diversity indices for populations of Phyllosticta citricarpa across space (within orchard between subpopulations 
separated by defined distances) and a summary of the genotypic diversity indices for populations of Phyllosticta citricarpa across time (between 
2012 and 2013 seasons) in two lemon orchards in the North West and Mpumalanga provinces of South Africa. 

Province/Year  #Isolates #MLGsa eMLGb SEb E5c Dd 

North West        
2012       
Subpopulation 1 52 26 24.8 0.887 0.768 0.936 
Subpopulation 2 50 25 24.4 0.628 0.832 0.942 
Subpopulation 3 50 24 23.4 0.653 0.682 0.915 
Subpopulation 4 48 22 22.0 0.000 0.751 0.921 
Seasonal 200 60 55.5 1.80 0.587 0.947 
2013       
Subpopulation 1 41 22 21.7 0.455 0.786 0.930 
Subpopulation 2 46 23 20.9 1.095 0.718 0.918 
Subpopulation 3 46 23 21.9 1.059 0.789 0.931 
Subpopulation 4 40 20 20.0 0.00 0.768 0.917 
Seasonal 173 49 49.0 0.00 0.638 0.944 
Mpumalanga        
2012       
Subpopulation 1 45 20 18.9 0.853 0.677 0.896 
Subpopulation 2 41 28 28.0 0.000 0.733 0.940 
Subpopulation 3 44 25 23.8 0.819 0.728 0.930 
Seasonal 130 55 45.1 2.23 0.533 0.942 
2013       
Subpopulation 1 32 17 17.0 0.00 0.558 0.850 
Subpopulation 2 32 16 16.0 0.00 0.721 0.885 
Subpopulation 3 32 16 16.0 0.00 0.579 0.846 
Seasonal 96 39 39.0 0.00 0.425 0.881 

a MLGs = Multilocus genotype 
b eMLG = expected number of MLGs after rarefraction, SE = Standard error based on eMLG. The eMLGs values for subpopulations were calculated 
separately for each orchard and season. The eMLG value for the seasonal populations were calculated separately for each orchard using the total 
populations of the 2012 and 2013 seasons.  
c E5 = Evenness  
d D = Genotypic diversity 
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TABLE 3. Linkage disequilibrium analyses for populations of Phyllosticta citricarpa across space and time within two lemon orchards 

in South Africa with corresponding significance level (P-value). 

Province/Year #Isolates #MLGs eMLG 
 Non-clone-corrected 

populations 
Clone-corrected  

populations 
IA P value 𝑟̅𝑟 Rd P value IA P value 𝑟̅𝑟 Rd  P value 

North West/2012            
Subpopulation 1 52 26 24.8 0.001 0.454 0.000 0.454 -0.349 0.982 -0.045 0.978 
Subpopulation 2 50 25 24.4 0.038 0.318 0.005 0.317 -0.104 0.749 -0.012 0.749 
Subpopulation 3 50 24 22.7 0.130 0.088 0.017 0.088 -0.329 0.983 -0.042 0.982 
Subpopulation 4 48 22 19.9 0.015 0.387 0.003 0.388 -0.086 0.610 -0.015 0.609 
Seasonal 200 60 55.5 0.019 0.330 0.002 0.328 -0.214 0.999 -0.025 0.999 
North West/2013            
Subpopulation 1 41 22 21.7 -0.045 0.660 -0.006 0.662 -0.300 0.960 -0.038 0.957 
Subpopulation 2 46 23 20.9 0.043 0.267 0.007 0.264 0.041 0.364 0.007 0.365 
Subpopulation 3 46 23 21.1 -0.060 0.743 -0.009 0.745 -0.349 0.988 -0.051 0.987 
Subpopulation 4 40 20 20.0 -0.109 0.872 -0.017 0.874 -0.248 0.795 -0.035 0.788 
Seasonal 173 49 49.0 -0.056 0.880 -0.008 0.884 -0.268 1.000 -0.035 1.000 
Mpumalanga/2012            
Subpopulation 1 45 20 18.9 0.147 0.124 0.014 0.123 -0.255 0.922 -0.026 0.911 
Subpopulation 2 41 28 28.0 0.150 0.069 0.019 0.068 -0.109 0.789 -0.016 0.789 
Subpopulation 3 44 25 23.8 -0.068 0.708 -0.007 0.709 -0.315 0.979 -0.029 0.978 
Seasonal 130 55 45.1 0.108 0.060 0.010 0.058 -0.162 0.974 -0.015 0.975 
Mpumalanga/2013            
Subpopulation 1 32 17 17.0 0.210 0.062 0.032 0.062 -0.188 0.845 -0.027 0.838 
Subpopulation 2 32 16 16.0 0.219 0.074 0.029 0.076 0.283 0.091 0.036 0.094 
Subpopulation 3 32 16 16.0 0.325 0.022 0.038 0.022 -0.199 0.808 -0.022 0.805 
Seasonal 96 39 39.0 0.233 0.007 0.028 0.007 -0.137 0.914 -0.016 0.914 

MLGs = Multilocus genotype, eMLG = expected number of MLGs after rarefraction, IA = Index of Association; 𝑟̅𝑟 Rd = Standardized index of association 
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TABLE 4. Mating type composition and χ2 testing for expected 1:1 mating-type ratios in clone corrected Phyllosticta citricarpa 

populations collected in the 2012 and 2013 seasons from two lemons orchards in the North West and Mpumalanga provinces of South 

Africa. 
Province and Year Number of A1 mating type 

isolates 
Number of A2 mating type 

isolates 
Number of 

MLGsa 
χ2 

value 
P-value 

North West      

2012 26 34 60 1.07 0.300 

2013 21 28 49 1.00 0.300 

Mpumalanga      

2012 27 28 55 0.02 0.900 

2013 23 16 39 1.27 0.200 
 

a The total number of multilocus genotypes (MLG) per population in clone corrected Phyllosticta citricarpa populations. 
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TABLE 5. Analysis of molecular variance (AMOVA) of Phyllosticta citricarpa subpopulations per 

season in each of the two orchards (North West and Mpumalanga) using 15 simple sequence 

repeat loci. 
Source d.f. SS % Variation  AMOVA statistics P 

North West 2012      

Among subpopulations 3 6.519 2   

Within sub populations 56 93.614 98 PhiPT = 0.020 0.163 

Total 59 110.133 100   

      

North West 2013      

Among subpopulations 3 5.339 1   

Within subpopulations 45 69.171 99 PhiPT = 0.013 0.284 

Total 48 74.510 100   

      

Mpumalanga 2012      

Among subpopulations 2 8.597 5   

Within subpopulations 52 118.676 95 PhiPT = 0.047 0.021 

Total 54 127.273 100   

      

Mpumalanga 2013      

Among subpopulations 2 9.969 7   

Within subpopulations 36 92.390 93 PhiPT = 0.068 0.059 

Total 38 102.359 100   
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TABLE 6. Estimates of pairwise PhiPT values (below the diagonal) averaged over 15 simple 

sequence repeat loci of Phyllosticta citricarpa subpopulations within the lemon orchard in the 

North West province, for two consecutive years. Significance values indicated above the diagonal. 

2012 Subpopulation1 Subpopulation 2 
 

Subpopulation 3 
 

Subpopulation 4 
 

Subpopulation 1 - 0.431 0.131 0.011 
Subpopulation 2 0.000 - 0.461 0.067 

Subpopulation 3 0.032 0.000 - 0.392 
Subpopulation 4 0.113 0.057 0.005 - 

2013 Subpopulation1 Subpopulation 2 
 

Subpopulation 3 
 

Subpopulation 4 
 

Subpopulation 1 - 0.100 0.465 0.461 
Subpopulation 2 0.050 - 0.063 0.091 
Subpopulation 3 0.000 0.058 - 0.435 

Subpopulation 4 0.000 0.070 0.000 - 

 

TABLE 7. Estimates of pairwise PhiPT values (below the diagonal) averaged over 15 simple 

sequence repeat loci of Phyllosticta citricarpa subpopulations within the lemon orchard in the 

Mpumalanga province, for two consecutive years. Significance values indicated above the 

diagonal. 

2012 Subpopulation 1 Subpopulation 2 Subpopulation 3 

Subpopulation 1 - 0.386 0.037 

Subpopulation 2  0.000 - 0.007 

Subpopulation 3 0.068 0.090 - 

2013 Subpopulation 1 Subpopulation 2 Subpopulation 3 

Subpopulation 1 - 0.390 0.021 

Subpopulation 2 0.000 - 0.042 

Subpopulation 3 0.117 0.082 - 
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TABLE 8. Analysis of molecular variance (AMOVA) of Phyllosticta citricarpa populations 

between 2012 and 2013 for each of the two lemon orchards (North West and Mpumalanga) 

using 15 simple sequence repeat loci. 
Source 
(2012/2013) 

d.f. SS % 
Variation 

 AMOVA statistics P 

North West       

Among populations 1 1.149 0   

Within populations 107 173.860 100 PhiPT = 0.000 0.732 

Total 108 175.009 100   

Mpumalanga      

Among populations 1 3.959 3   

Within populations 92 159.967 97 PhiPT = 0.027 0.013 

Total 93 163.926 100   
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Figure 1. Location of two orchards in the Mpumalanga and North West provinces in South Africa 

where the population structure of Phyllosticta citricarpa was studied at the orchard spatial- and 

temporal scales. 
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Figure 2. Sampling strategy used for studying the population structure of Phyllosticta citricarpa at the spatial- and temporal scales in 

two lemon orchards situated in the (A) North West and (B) Mpumalanga provinces in South Africa. In each orchard, the selected 

sampling sites are indicated by “+” along with the P. citricarpa subpopulation numbers. At each of the sampling sites five trees located 

in a cross over two rows were selected, from which 10 citrus black spot fruits were randomly sampled for subsequent P. citricarpa 

isolation and genotyping.  

A B 
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Figure 3. Occurrence of Phyllosticta citricarpa multilocus genotypes (MLGs) in two citrus orchards situated in the (A) North West and 
(B) Mpumalanga provinces in South Africa. In each orchard, the occurrence (count) of MLGs was investigated in the 2012 and 2013 
season.  

A                     2012 Season                           2013 Season 

B                     2012 Season                           2013 Season 
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Figure 4. A discriminant analysis of principal components (DAPC) of Phyllosticta citricarpa subpopulations (clone corrected) sampled 

from a lemon orchard in the North West province in the (A) 2012 and (B) 2013 season. Subpopulations are indicted by numbers and 

different colours. The number of axes retained for the principal component analysis was 16 and 2 for the discriminant analysis. The 

eigenvalues represented 80% of the variation in both seasons.  

  

A B 
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Figure 5. A discriminant analysis of principal components (DAPC) of Phyllosticta citricarpa subpopulations (clone corrected) sampled 

from a lemon orchard in the Mpumalanga province in the (A) 2012 and (B) 2013 season. Subpopulations are indicted by numbers and 

different colours. The number of axes retained for the principal component analysis was 24 and 2 for the discriminant analysis. The 

eigenvalues represented 80% of the variation in both seasons.  
  

A B 
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Supplementary Table 1. Monthly weather conditions prevailing in two regions (North West and Mpumalanga) where Phyllosticta 

citricarpa populations were studied. Weather conditions are summarized according to the fruit infection period (October to February). 

Weather parameter Month 
North West Mpumalanga 

2012 season 2013 season 2012 season 2013 season 
Total Rainfall (mm) October 61.98 126.75 117.35 168.89 
 November 67.56 76.71 59.95 134.11 
 December 129.29 145.8 217.16 201.17 
 January 96.52 83.06 264.67 272.3 
 February 52.58 44.2 105.91 174.49 
Average maximum 
humidity (%) October 84.29 88.3 90.91 90.23 
 November 84.57 87.49 90.22 90.68 
 December 91.18 94.23 90.78 91.32 
 January 92.76 90.77 92.23 92.08 
 February 90.31 92.24 91.3 92.51 
Average maximum 
temperature (°C) October 31.33 30.19 27.5 26.67 
 November 32.58 31.77 28.91 26.98 
 December 30.47 30.37 28.91 28.14 
 January 32.67 32.46 28.83 28.95 
 February 33.51 34.04 31.31 29.21 
Average minimum 
temperature (°C) October 11.6 12.42 14.5 15.21 
 November 14.39 14.44 16.75 16.12 
 December 16.4 16.18 18.4 18.44 
 January 16.73 17.43 18.52 18.79 
 February  17.02 15.87 19.59 18.54 
Average wind speed (ms) October 0.95 1.06 0.9 0.85 
 November 0.94 1.01 0.83 0.96 
 December 0.86 0.84 0.58 0.85 
 January 0.93 0.84 0.69 0.8 
 February  0.79 0.85 0.79 0.8 
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Supplementary Table 2. Analysis of molecular variance (AMOVA) for Phyllosticta citricarpa 

populations across space between the North West and Mpumalanga orchards using 15 simple  

sequence repeat loci. 

Source d.f. SS % 
Variation 

 AMOVA statistics P 

2012      

Among populations 1 93.644 48   

Within populations 112 196.391 52 PhiPT = 0.479 0.001 

Total 113 290.035 100   

      

2013      

Among populations 1 83.450 54   

Within populations 86 136.459 46 PhiPT = 0.543 0.001 

Total 87 219.909 100   
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CHAPTER 4 

Population structure of Phyllosticta citricarpa on a regional scale in South 
Africa, and the influence of Citrus species on the population structure 

ABSTRACT  

Citrus black spot (CBS) caused by Phyllosticta citricarpa, is a disease that negatively affects 

the South African citrus industry. All commercial Citrus species are susceptible to the disease, 

with oranges (Citrus sinensis) and lemons (Citrus limon) being the most susceptible. The 

population structure of ten P. citricarpa populations were investigated, representing the five 

citrus producing provinces (North West, Eastern Cape, Mpumalanga, Limpopo and KwaZulu-

Natal) in which CBS occurs in South Africa. The effect of Citrus spp. (orange vs lemon) on 

population structure was also investigated. AMOVA analysis showed that most genetic 

variation (88%) was distributed within populations and only 2% among citrus provinces. 

Populations from the five provinces were not significantly genetically differentiated (P = 0.094). 

The Eastern Cape was confirmed as being the province into which the last introduction of P. 

citricarpa occurred as was evident from low gene and genotypic diversities of all populations 

within this province. The KwaZulu-Natal (only one population sampled) and Limpopo 

provinces had higher gene and genotypic diversities than the North West and Mpumalanga 

provinces. The Limpopo province had the highest private allele richness, followed by the 

KwaZulu-Natal province. Therefore, the KwaZulu-Natal or Limpopo provinces are the regions 

where the pathogen was likely first introduced. There might have been at least two separate 

introductions of the pathogen into South Africa, based on principal coordinate analyses, 

pairwise PhiPT analyses and the sharing of multilocus genotypes (MLGs) between 

populations. All ten populations reproduced sexually based on linkage disequilibrium 

analyses; IA and 𝑟̅𝑟 Rd did not differ significantly from zero in any of the clone corrected 

populations. Asexual reproduction was evident from low genotype evenness values for some 

populations, which furthermore indicates clonal reproduction. All orchards had at least one 

dominant clonal MLG that represented 10% to 48% of the population. Despite lemon trees 

having overlapping fruit crops, which potentially provide increased opportunities for clonal 

reproduction, Citrus spp. (lemon vs. oranges) did not have an effect on population structure 

as not all lemon populations were significantly genetically differentiated from all orange 

populations. 
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INTRODUCTION 

The South African citrus industry was founded in 1654 when the seafarer, Jan van Riebeeck of 

the Dutch East India Company, planted the first orange trees in the Cape Colony on his farm and 

in the Company’s Garden (Chapot, 1975). Today, the range of citrus types grown in South Africa 

has expanded to an area of 70 055 ha. About 60% of the crop is sweet oranges (Valencias 38% 

and navels 22%), 16% soft citrus, 13% lemons and limes and 11% grapefruit. Citrus is produced 

throughout South Africa, with the Limpopo and Eastern Cape provinces being the largest.  South 

Africa is the tenth largest producer of fresh citrus fruit, and the second largest exporter of fresh 

citrus fruit. Seventy six percent of the fresh fruit is exported, 18% is for processing and only 6% 

is consumed locally (CGA, 2017).  

International citrus market access is significantly impacted by CBS, since some of South 

Africa’s trade partners are free from the disease. (Paul et al., 2005; Carstens et al., 2012). CBS 

causes losses on local markets due to fruit symptoms that result in the downgrading of fruit (N. 

Wentzel, Perishable Product Export Control Board, South Africa, personal communication).  

Citrus black spot, caused by Phyllosticta citricarpa in South Africa, only occurs in five of 

the seven citrus producing provinces (KwaZulu-Natal, Mpumalanga, Limpopo, Eastern Cape and 

North West) (Paul et al., 2005; Carstens et al., 2012). CBS was first detected in 1929 nearby 

Pietermaritzburg in KwaZulu-Natal (then known as the Natal province), but it only became a 

disease of concern in 1940 (Doidge, 1929; Wager, 1952). By 1950 the disease was noticed in 

other areas in KwaZulu-Natal and in other citrus production regions in the North West, Limpopo 

and Mpumalanga (then known as Western Transvaal, Northern Transvaal and Eastern Transvaal, 

respectively) (Wager, 1952). In the Eastern Cape, symptoms of the disease was first found in the 

early 1970’s (C. Kellerman, Citrus Consulting Association, personal communication).  

In South Africa, the population structure of P. citricarpa was investigated by Carstens et 

al. (2017) using 15 simple sequence repeat (SSRs) markers. The five South African populations 

investigated (one from each province) were related to each other based on principal coordinate 

analysis (PCoA) and discriminant analysis of principal components (DAPC). Gene and genotypic 

analyses of the populations supported the documented history of CBS in South Africa; with the 

Eastern Cape population having the lowest gene and genotypic diversity, whereas the KwaZulu-

Natal population had the highest. The low genetic diversity in populations suggested that the 

South African populations were founder populations. This is in agreement with the relative young 

history of CBS in South Africa. The South African populations were sexual and contained both 
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mating types required for sexual reproduction of the pathogen. Some of the populations were in 

linkage disequilibrium, indicating clonal reproduction (Carstens et al., 2017).  

All Citrus spp. including sweet oranges (Citrus sinensis), lemons (Citrus limon), grapefruit 

(Citrus paradisi), mandarins (Citrus reticulata) and their hybrids are susceptible to P. citricarpa 

(Kiely, 1948). Oranges and lemons are the most susceptible citrus types, with mandarins and 

grapefruit being less sensitive. According to Kiely (1948) and Kotzé (1981), CBS symptoms will 

first be noticed on lemons in a new area. Vegetative plant parts can be infected but infections 

mostly remain asymptomatic and lesions develop mainly on fruit after colour break; however their 

appearance varies, which has resulted in some confusion regarding their characterization and 

description. The lesions furthermore differ in the ability to produce pycnidia containing 

pycnidiospores (Kotzé, 1981, 2000; De Goes et al., 2000; De Goes, 2001; Aguilar-Vildoso et al., 

2002; Marques et al., 2012; FAO, 2014). CBS leaf lesions in orchard trees have only been 

reported for oranges and lemons. The leaf lesions, however, are rare for both host species, more 

so for oranges than for lemons (Kiely, 1948; Kotzé, 2000; De Oliveira Silva et al., 2017). In all 

Citrus spp., leaves on trees can contain latent infections without any visible symptoms. 

Pseudothecia, in which sexual ascospores are produced, will only develop and mature once the 

infected leaves have fallen from the tree onto the orchard floor and following suitable conditions 

over a period of 40 to 180 days (Kiely 1948; Kotzé, 1981; 2000; Fourie et al., 2013). Pseudothecia 

have never been recorded from fruit (Kiely, 1948; McOnie, 1964; Kotzé, 1981, 2000). The 

pathogen can infect living branches asymptomatically (De Oliveira Silva et al., 2017). Symptoms 

are found on dead twigs, but these are rare (Kiely, 1948). 

Worldwide, almost no information is available on how the genetic diversity and population 

structure of P. citricarpa are affected by different Citrus spp. or varieties. Only one study was 

conducted, in Brazil, to determine whether the host type affected the population structure. 

Populations from different orange varieties were investigated using sequence data of the ITS 

region. It was concluded that the population structure was not significantly affected by the different 

varieties (Wickert et al., 2012). However, the ITS region contains almost no polymorphisms in P. 

citricarpa (Guarnaccia et al., 2017), thus confounding population structure inferences.  

A recent study in South Africa, investigated P. citricarpa populations in two lemon orchards 

over two seasons. Although populations were reproducing sexually, high clonal reproduction was 

found in both orchards and over two seasons (Chapter 3). This contradicts the current 

understanding that pycnidiospores are of minor importance as a contributor to disease 

development over time and space within orchards under South African climatic conditions and 

production practices (McOnie, 1964; Kotzé, 1981). Chapter 3 showed that each lemon orchard 
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contained at least two dominant multilocus genotypes (MLGs) representing 23% to 40% of the 

populations within each season, and that populations furthermore had low evenness values. It 

was hypothesized that this phenomenon could be specific to lemons, since lemons, unlike other 

citrus types, can have up to three fruit sets in one production cycle, and thus can have overlapping 

fruit crops. This could contribute to higher levels of asexual reproduction (Chapter 3). It is therefore 

important to further investigate whether Citrus spp. will influence the relative importance of 

asexual reproduction of P. citricarpa, and if populations from different Citrus spp. differ in genetic 

variability on an orchard population scale. 

The first objectives of the current study was to investigate (i) whether P. citricarpa 

population structure differed in the five provinces in South Africa, (ii) if domninant MLGs were 

present, (iii) if MLGs were shared between orchards and provinces and (iv) the mode of 

reproduction in P. citricarpa populations. The second objective was to determine if Citrus spp. 

[(specifically C. sinensis (oranges) vs. C. limon (lemons)] affected the genetic diversity in P. 

citricarpa populations. The ten investigated P. citricarpa populations were either newly isolated 

(four populations) or were from two previous studies conducted in South Africa (Carstens et al., 

2017; Chapter 3). Population analyses were conducted using genotyping data obtained from 15 

SSR loci (Wang et al., 2016; Carstens et al., 2017). The frequency of the two mating type alleles 

(MAT 1-1-1 and MAT 1-2-1) was investigated in all populations. The comparisons of populations 

from different provinces and their mode of reproduction will allow for a better understanding of the 

biology of the pathogen, while knowledge of the effects of host species can influence disease 

management strategies.   

MATERIALS AND METHODS 

Phyllosticta citricarpa populations used in population genetic analyses 

A total of ten P. citricarpa populations were investigated to determine if the population structure 

of the pathogen differed in the five provinces where CBS occurs in South Africa (Table 1; Fig. 1). 

Four populations were from the Eastern Cape, two from Mpumalanga, two from Limpopo, and 

one from each of the North West and KwaZulu-Natal provinces. Six of the populations (ECLE2, 

LIMOR, MPLE, MPOR, KZN1, NW) were from two previous studies (Carstens et al., 2017; 

Chapter 3), and were isolated between 2011 and 2012. The other four populations (ECL1, 

ECOR1, ECOR2 and LIMLE) were newly isolated in 2016 (Table 1; Fig. 1). The new populations 

were obtained by randomly selecting 40 CBS fruits with lesions in each orchard. Only one isolate 

per fruit was used. Isolation of P. citricarpa from CBS lesions using procedures for obtaining pure 
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cultures and verification of species identity were performed as described by Carstens et al. (2017). 

In total, 105 isolates were obtained from the four new orchards, which were used in the population 

analyses (Table 1).  

To study the effect of Citrus spp. (orange and lemon) on the population structure of P. 

citricarpa, nine populations (20 to 30 isolates per population) were investigated which were also 

used to compare populations from the different provinces. One lemon and one orange orchard 

each were included for the Limpopo (LIMLE and LIMOR) and Mpumalanga provinces (MPLE and 

MPOR), and one lemon population from the North West (NW). In the Eastern Cape, two orange 

(ECOR1 and ECOR2) and two lemon (ECLE1 and ECLE2) populations were included (Table 1; 

Fig. 1).  

Genotyping of populations 

DNA extraction from the four new populations (ECL1, ECOR1, ECOR2 and LIMLE) (Table 1) was 

done as previously described by Carstens et al. (2017). The fifteen published polymorphic SSR 

markers (Pc117, Pc179.1, Pc236, Pc440, Pc849, Pc1007, Pc2073, Pc3011, PC12, PC19, PC20, 

PC32, PC37, PC6, PC7) were used to genotype the populations (Wang et al., 2016; Carstens et 

al. 2017). Primer labelling as well as PCR reaction and amplification conditions were as previously 

described (Carstens et al., 2017). Electrophoresis was performed using the 3730XL Genetic 

Analyzer (Life Technologies) and the SSR alleles were scored using Genemapper software 

version 4 (Life Technologies). The other six P. citricarpa populations were previously genotyped 

with the 15 SSR markers (Carstens et al., 2017; Chapter 3). 

The mating type alleles (MAT 1-2-1 or MAT 1-1-1) present within all 105 isolates of the 

four new populations (ECL1, ECOR1, ECOR2 and LIMLE) were determined using published PCR 

primers (Wang et al., 2016). PCR reaction and amplification conditions and gel electrophoresis 

were conducted as previously described (Carstens et al., 2017). The 169 isolates from the other 

six populations (ECL2, LIMOR, MPLE, MPOR, KZN1 and NW) was previously genotyped for the 

presence of mating type alleles (Carstens et al., 2017; Chapter 3).  

SSR data analyses of ten P. citricarpa populations  

Population genetics 

Isolates with the same alleles at all loci were defined as clones or members of the same multilocus 

genotypes (MLGs). Per population clone-corrected datasets were used for all allele based 

analyses, since the inclusion of clonal haplotypes in the analysis can distort estimates of allelic 

diversity (Balloux et al. 2003). GenAlEx version 6.5 (Peakall and Smouse, 2012) was used to 
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calculate the following indexes: number of alleles (Na); number of polymorphic loci; effective 

population size and Nei’s measure of gene diversity (He) (Nei, 1973).  

The number and the expected number (to account for different sample sizes) of MLGs, 

richness, diversity and evenness (E5) of genotypes were examined using the package Poppr in 

the R software (Kamvar et al., 2014; R Core Team, 2013). To calculate the expected number of 

MLGs (eMLG) for the five provinces, all 10 populations were grouped together. To calculate the 

expected number of MLGs (eMLG) for the Citrus spp., the populations were grouped together per 

province. Evenness is an indication of the relative abundance of a MLG in a population and 

richness is an indication of how many MLGs in a population (Grünwald et al., 2003; Shannon and 

Weaver, 1949).  

Mode of reproduction  

In order to access the level of sexual and asexual reproduction in the populations, analyses were 

conducted on SSR non-clone-corrected and clone-corrected dataset in the R package Poppr by 

calculating the index of association IA and the standardized version of the index of association 𝑟̅𝑟 Rd. 

P values were obtained after 999 permutations (Agapow and Burt, 2001). These indices provide 

an indication of the degree of association of alleles at different loci, within and among populations 

compared to that observed in a permutated dataset. A value of zero can be expected when there 

is random association of loci. A value significantly different from zero is an indication of linkage 

disequilibrium, which is generated when no or infrequent sexual reproduction occurs.  

The mating type genotypes of clone corrected populations were used in a chi-square test 

(Fisher and Yates, 1963). The chi-square test was used to determine whether the populations 

deviated from the null hypothesis of a 1:1 ratio of the mating types. 

Phyllosticta citricarpa population structure in the five citrus producing provinces 

The genetic variation within and among populations and within and among production regions 

(provinces) were investigated using three approaches. Firstly, an analysis of molecular variance 

(AMOVA) was used. The statistical significance was tested using 999 permutations. Secondly, 

pairwise PhiPT values were determined. Both analyses were performed in GenAlEx version 6.5 

(Peakall and Smouse, 2012). Thirdly, to further define and visualize the genetic differences 

between the populations, a principal coordinates analysis (PCoA) was performed in GenAlEx 

version 6.5 and a discriminant analysis of the principal components (DAPC) was performed in the 

R package adegenet (Jombart, 2008). 
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Effect of Citrus spp. on the population structure of P. citricarpa 

The nine populations obtained from lemon and orange orchards were investigated further using 

the pairwise PhiPT and PCoA analyses to determine whether the structure of P. citricarpa 

populations obtained from these orchards differed. 

RESULTS 

SSR data analyses of ten P. citricarpa populations  

Population genetics 

The gene diversity of the total Eastern Cape province was significantly lower (P < 0.001) (He = 

0.113; SE = 0.024) than the other provinces (Table 2). The populations within the Eastern Cape 

had the lowest gene diversity of all the populations (He = 0.106 to 0.123; SE = 0.052 to 0.053). 

The gene diversity for the Limpopo, Mpumalanga and North West populations were 0.198, 0.174 

and 0.179, respectively, with Mpumalanga differing significantly (P = 0.002) from KwaZulu-Natal 

(Table 2). Private allele richness was the highest in the Limpopo, which contained six private 

alleles, followed by KwaZulu-Natal with three private alleles; the other provinces had one to two 

private alleles (Table 2).  

Among the total South African isolates (274), the 15 markers identified 89 MLGs. The 

number of MLGs and eMLGs varied between the provinces. The number of MLGs were rarefied 

to the smallest population size of 20 for all 10 populations. This showed that one of the populations 

from the Limpopo had the highest eMLG value (LIMLE - eMLG = 16. 2, SE = 1.147). The four 

populations from the Eastern Cape all had the lowest eMLG values (4.60 to 7.70; SE = 0.00 to 

0.736) (Table 3). 

The genotypic diversity for the provinces was the highest in one of the populations from 

the Limpopo (D = 0.944) and the lowest for the four populations from the Eastern Cape (D = 0.682 

to 0.817), in comparison to the populations from the other provinces (D = 0.880 to 0.944). 

Combined, the South African populations had a high genotypic diversity (D = 0.947) (Table 3). 

Mode of reproduction  

In the analysis of the 10 populations, the association tests only differed significantly from zero in 

two of the non-clone corrected data sets; one orchard each in the Eastern Cape (IA and 𝑟̅𝑟 Rd ; P = 

0.016 and P = 0.015) and Mpumalanga (IA and 𝑟̅𝑟 Rd ; P = 0.039). All ten South African populations 

that were non-clone corrected, deviated significantly from zero (IA and 𝑟̅𝑟 Rd; P = 0.002). In all the 
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other non-clone corrected and all the clone corrected data sets, the IA and 𝑟̅𝑟 Rd did not differ 

significantly from zero (Table 4).  

All the isolates analysed gave a positive result following PCR amplification with either one 

of the mating type primer pairs. The mating-type frequencies were found not to deviate 

significantly (P > 0.050) from a 1:1 ratio in nine of the populations. In one Limpopo population 

(LIMLE), mating type frequencies deviated significantly (P = 0.050) from a 1:1 ratio based on a 

Chi-square analyses (Table 5).  

The genotypic evenness for each province varied, as well as for populations within a 

province. Half of the populations had relatively high genotype evenness values (E5 ≥ 0.789), 

whereas evenness was slightly lower (E5 = 0.746 to 0.670) for the rest of the populations. The 

Eastern Cape and populations within this province had the lowest evenness values, with the 

Limpopo having the highest. The total South African population had a low genotypic evenness 

(E5 = 0.461) (Table 3). 

Prevalence of dominant MLGs within orchards of different citrus producing provinces  

Frequent sharing of MLGs was evident among the populations. All the populations, except the 

populations from KZN1 (KwaZulu-Natal) and ECLE2 (Eastern Cape), shared MLG 68. MLG 68 

was furthermore the dominant MLG in four populations from the Eastern Cape and Mpumalanga 

(ECLE1, ECOR, MPLE, MPOR), or it occurred at least twice or more in three other populations 

from the Eastern Cape and Limpopo (ECOR2, LIMLE, LIMOR). MLG 68 occurred only once in 

the North West population (NW). Another MLG frequently shared between populations was MLG 

62; it occurred in all populations except the ECLE2 and LIMOR populations (Fig. 2). The ECLE2 

population shared several MLGs with the KZN1 population (MLG31, 41, 38, 50), the NW 

population (MLG 40, 31, 41), one of the Limpopo populations (LIMOR; MLG 38, 41 and 40) and 

one of the Mpumalanga populations (MPLE; MLG 41) (Fig. 2).  

In nine populations, one or two MLGs were dominant; the exception was the LIMLE 

population where all MLGs were almost equally abundant, which was evident from this population 

having the highest evenness value (E5 = 0.894) (Table 3; Fig. 2). In each of the nine populations, 

the most dominant MLG represented 13% to 48% of each orchard population.  

Phyllosticta citricarpa population structure in the five citrus producing provinces 

The main source of genetic variation (88%) when comparing the ten populations was attributed 

to differences within the populations of the five provinces (PhiPT = 0.117; P = 0.001). Significant 

genetic differentiation (10%) was also found among the ten populations (PhiPR = 0.100; P = 
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0.001). There was no significant genetic differentiation among populations of the different 

provinces (PhiRT = 0.020; P = 0.094) (Table 6).  

 For the PCoA analysis, the axes explained 82.19% of the variation for Coordinate 1 and 

8.66% for Coordinate 2. Two groups were evident from the PCoA analyses among the 10 

populations. The one group contained two populations, KZN1 and ECLE2 from KwaZulu-Natal 

and Eastern Cape, respectively, and the second group contained the other eight populations (Fig. 

3). This was evident from DAPC analyses, although DAPC included the NW population with the 

KZN1 and ECLE2 populations (Fig. 4). Pairwise PhiPT analyses showed that there was significant 

and high levels of genetic differentiation between the KZN1 and ECLE2 populations and seven of 

the other populations; the exception was the non-significant, but lower level of genetic 

differentiation between the KZN1 and ECLE1 populations (PhiPT = 0.111; P = 0.058). The NW 

population was significantly differentiated from the KZN1 population (PhiPT = 0.061; P = 0.015), 

but not from the ECLE2 population (PhiPT = 0.042; P = 0.182). The two populations KZN1 and 

ECLE2, were not significantly differentiated from each other (PhiPT = 0.036; P = 0.214) (Table 

7). Specific differences between the remaining populations on the influence of Citrus spp. on 

population structure, will be discussed in the section below.  

Effect of Citrus spp. on the population structure of P. citricarpa  

Since AMOVA and PCoA analyses showed there was no significant difference between regions 

(provinces) (Table 6; Fig. 3), lemon and orange populations were compared, irrespective of their 

province of origin. Pairwise PhiPT comparisons of lemon and orange populations showed that 

there were 13 highly significant differences (P ≤ 0.009) between and within lemon and orange 

populations. These differences were not always due to host differences (Table 7). The first two 

highly significant differences were between an orange and lemon population (MPOR and LIMLE; 

PhiPT = 0.068; P = 0.007) and between two orange populations (LIMOR and MPOR; PhiPT = 

0.118; P = 0.007). The remaining highly significant difference (P ≤ 0.009) involved the Eastern 

Cape lemon population ECLE2 and the North West lemon population, which was already 

mentioned above in the comparison of the provinces. The lemon orchard ECLE2 was responsible 

for six of the 13 highly significant different combinations (PhiPT = 0.389 to 0.494; P ≤ 0.009). It 

differed significantly from three orange populations (ECOR1, ECOR2, MPOR), and from three 

lemon populations (ECLE1, LIMLE, MPLE) based on pairwise PhiPT values (Table 7). The NW 

lemon population was responsible for five of the 13 highly significant differences between 

populations (PhiPT =0.100 to 0.250; P ≤ 0.009). It differed significantly from two lemon 

populations (LIMLE, MPLE) and three orange populations (ECOR1, ECOR2, MPOR). The other 
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significant differences between and within lemon and orange populations had a low level of 

significance and PhiPT values (P = 0.014 to 0.045; PhiPT = 0.116 to 0.168).  

The evenness values in lemon and orange populations were comparable. The lemon 

populations ranged between 0.735 and 0.894 and orange populations ranged between 0.670 and 

0.812. The eMLG values between orange and lemon populations were comparable. For example 

in the Eastern Cape the two lemon populations (ECLE1 and ECLE2) had eMLG values of 4.60 

and 6.00, whereas the two orange populations (ECOR1 and ECOR2) had eMLG values of 6.20 

and 7.70 (Table 3). 

As previously mentioned, each orchard contained one or two dominant MLGs (Fig. 2). 

There was no trend for the dominant MLG in the lemon orchards being higher than in the orange 

orchards. A good example is evident from the Eastern Cape province where in the orange 

populations (ECOR1 and ECOR2) the dominant MLG represented 30% to 48% of the populations, 

and in the lemon orchards (ECLE1 and ECLE2), it presented 40% to 45% of the populations (Fig. 

2).  

DISCUSSION 

Findings from the current study support those from previous studies with regards the predominant 

modes of reproduction of P. citricarpa, provide insight into potential introductions of the pathogen 

into South Africa, supports the known history of introductions and is the first study to report on the 

effect of Citrus spp. on P. citricarpa population structure. At least two separate introductions of 

the pathogen likely occurred into South Africa. The pathogen was found to reproduce sexually 

and asexually, with a high level of clonal reproduction occurring in some populations. Citrus spp. 

did not affect population structure, which was evident from the fact that not all lemon populations 

were genetically significantly differentiated from orange populations.  

All population genetic studies conducted to date in South Africa (Carstens et al., 2017; 

Chapter 2), including the current study, have found that, although P. citricarpa reproduces 

sexually (based on linkage disequilibrium analyses in clone correct populations analyses [IA and 

𝑟̅𝑟 Rd do not differ significantly from zero]), some non-clone corrected populations showed linkage of 

alleles, which highlights the predominance of clonal reproduction. Asexual and clonal 

reproduction, evidenced by low genotype evenness values, was identified in the current study. 

This was previously reported in P. citricarpa populations in South Africa (Chapter 3; Carstens et 

al., 2017). The ability of P. citricarpa to persist clonally was discussed in detail in Chapter 3. In 

the current study, clonal reproduction was quite prominent in some orchards where the dominant 

MLG represented 30 to 48% of the population in four of the ten studied populations.  
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In the current study it is reported for the first time that a P. citricarpa clone corrected 

population (LIMLE from the Limpopo province) can have a mating type ratio that deviates 

significantly from 1:1, with mating type being skewed towards the MAT 1-2-1 allele. This skewed 

mating type distribution in the LIMLE population further rejects the assumption that the pathogen 

mainly reproduces sexually, and provides strong support for a mixed reproduction system of the 

pathogen within populations. Interestingly, the LIMLE population was the population that showed 

the lowest degree of clonal reproduction (two dominant MLGs each only represented 10% of 

population), which was evident from the high genotype evenness (E5 = 0.894). In previous 

studies, the mating type ratios in all of the studied clone corrected populations never deviated 

significantly from a 1:1 ratio (Amorim et al., 2017, Carstens et al., 2017; Chapter 3; Tran et al., 

2017). 

In the current study, the population structure of the pathogen in the different provinces 

mostly correlated with the known history of introductions into South Africa. The low overall gene 

diversity for the ten populations corresponded with the finding of Carstens et al. (2017) and 

supports the relatively recent introduction of P. citricarpa into South Africa (Doidge, 1929). 

Carstens et al. (2017) suggested that the latest introduction of the pathogen into South Africa 

occurred in the Eastern Cape, based on the analyses of a single population from this province, 

since the population had the lowest level of gene and genotypic diversity. The current study 

included an additional three populations from the Eastern Cape, which further supported this 

province as being the province where the latest introduction of CBS occurred. This correlates with 

historical records of the disease first becoming evident in the 1970s in the Eastern Cape 

(Kellerman, personal communication). The four populations from the Eastern Cape had the lowest 

gene and genotypic diversities of all the investigated populations, and the second lowest number 

of private alleles. Carstens et al. (2017) suggested that KwaZulu-Natal was the province where 

the first introduction occurred into South Africa (population had the highest level of gene and 

genotypic diversity), which concurs with historical records of the first detection of the disease 

being prior to 1929 (Doidge, 1929; Wager, 1952). However, in the current study, when the same 

KwaZulu-Natal population from Carstens et al. (2017) was analysed along with an additional 

population from the Limpopo province (LIMLE), this was no longer clear. The LIMLE population 

had similar high gene- and genotypic diversities as the KwaZulu-Natal population. Furthermore, 

the Limpopo had the highest private allele richness followed by KwaZulu-Natal. Therefore, both 

of these provinces could have been the place of first introduction into South Africa. According to 

Wager (1952), CBS was first reported in 1945 from a different province in South Africa, namely 

the Limpopo province (previously known as the Northern Transvaal). 
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Two separate introductions of P. citricarpa likely occurred into South Africa. PCoA and 

DAPC analyses, which is based on genetic distances between MLGs, suggested the presence of 

at least two groups among the South African populations. The one group contained a population 

from the Eastern Cape (ECLE2) and the population from KwaZulu-Natal (KZN1), and the second 

group contained the remaining eight populations from the other provinces. The two groups were 

supported by pairwise PhiPT comparisons, and to some extent by DAPC analyses. DAPC 

analyses grouped the NW population with the ECLE2 and KZN1 populations. No or limited 

connectivity was evident for the ECLE2 and KZN1 populations with most of the other eight 

populations. High connectivity, however, was evident between the ECLE2 and KZN1 populations. 

The ECLE2 and KZN1 populations were further unique in that they did not contain MLG68, which 

was a dominant MLG in four of the other populations and also occurred in the remaining four 

populations at least twice. In the Eastern Cape, more than one introduction likely occurred, one 

consisting of the ECLE2 population, whereas the other three Eastern Cape populations likely 

represent a different introduction. The fact that introductions were not province specific, was 

evident from AMOVA analysis which showed that only 2% of the variation was attributed to 

differences among provinces and that there were no significant differentiation between the 

provinces (PhiRT = 0.020; P = 0.093) from where the populations were sampled. The differences 

among the isolates within the populations were the highest (88%) (PhiPT = 0.117; P = 0.001).  

The current study is the first to conduct a relatively extensive study on the population 

structure of P. citricarpa on a regional scale within a country, i.e. South Africa. This has been done 

to a limited extent in Brazil, China, Australia and the United States. The first studies in Australia 

and Brazil, however, were restricted by the molecular markers used. Populations from different 

regions within Brazil (Wickert et al., 2012) and Australia (Miles et al., 2013) were reported to have 

low genetic diversity based on sequence data of the internal transcribed spacer (ITS) region. The 

ITS region is known to contain almost no polymorphisms in P. citricarpa populations (Guarnaccia 

et al., 2017). Carstens et al. (2017), using the same 15 SSRs markers used in the current study, 

analysed two and three populations from China and Australia, respectively. The three Australian 

populations were related to each other based on PCoA and DAPC analyses (Carstens et al., 

2017). In Florida (USA), populations from two different counties were found to contain only one 

mating type and was clonal based on 13 SSR markers (Wang et al., 2016). The clonality of the 

Florida populations, was subsequently confirmed by Carstens et al. (2017) using additional SSR 

markers.  

Citrus host species did not affect P. citricarpa population structure in South African 

orchards based on the analyses of nine populations (five lemon and four orange populations) 
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representing four provinces. Pairwise PhiPT comparisons of lemon and orange populations 

showed that significant genetic differences were not always due to host differences. Lemon 

populations were furthermore often significantly differentiated from each other, as reported in 

Chapter 3. Furthermore, PCoA and DAPC analyses showed high levels of connectivity between 

several of the orange and lemon populations. Clonal reproduction was not more pronounced in 

lemon populations than orange populations. For example, in a lemon and orange orchard in the 

Eastern Cape the same dominant MLG (MLG68) represented 40 and 48% of each population 

respectively. Clonal reproduction was evident from the fact that genotype evenness values were 

comparable between lemon and orange populations.  

The current study on the population structure of P. citricarpa, provides further insights into 

historical introductions of the pathogen into South Africa. The data supports the known history of 

the pathogen in South Africa. However, to clarify the results further, additional populations from 

the five provinces need to be analysed to determine whether KwaZulu-Natal or Limpopo was the 

first place of introduction. Data from the additional populations will indicate whether the South 

African belief is true that CBS was spread from KwaZulu-Natal, via planting material from a 

commercial nursery, to other provinces (Kotzé, 1996) and whether there was more than one 

introduction into a province from different nurseries. The study further supported the importance 

of the mixed reproductive system (sexual and asexual) of the pathogen, along with the 

prominence of clonal reproduction and that clonal reproduction is not confined to lemons, but also 

occur in oranges. The current study is the first to show that Citrus spp., specifically oranges and 

lemons, apparently do not have an effect on P. citricarpa population structure. Future studies 

should investigate the effect of other citrus types on P. citricarpa population structure.   
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Table 1. Origin of Phyllosticta citricarpa populations used to study differences in the population 

structure of P. citricarpa in five provinces in South Africa, and the effect of Citrus spp. on the 

population structure of the pathogen.  

Population 
namea 

Province  Citrus 
Type 

Number 
isolates (N) 

Year of 
isolation  

Sourcea  

ECLE1 Eastern Cape Lemons 25 2014 Current study 

ECLE2 Eastern Cape Lemons 20 2012 Carstens et al. 2017 

ECOR1 Eastern Cape Oranges 27 2016 Current study 

ECOR2 Eastern Cape Oranges 23 2016 Current study 

LIMLE Limpopo Lemons 30 2016 Current study 

LIMOR Limpopo Oranges 30 2011 Carstens et al. 2017 

MPLE Mpumalanga Lemons 30 2012 Chapter 3 

MPOR Mpumalanga Oranges 29 2011 Carstens et al. 2017 

KZN1 Kwazulu-Natal Grapefruit 30 2011 Carstens et al. 2017 

NW North West Lemons 30  2012 Carstens et al. 2017 
a Carstens et al. 2017. A global perspective on the population structure and reproductive system 

of Phyllosticta citricarpa. Phytopathology 107: 758-768. Chapter 3 from the PhD dissertation of E. 

Carstens, Stellenbosch University.  
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Table 2. Number of alleles, private alleles, multilocus genotypes and gene diversity of 15 microsatellite loci in ten clone corrected Phyllosticta 

citricarpa populations from five provinces (Eastern Cape, Limpopo, Mpumalanga, Kwazulu-Natal and the North West) in South Africa. 

Populations 
within provinces 

#Isolates # MLGs 
# Alleles (Private alleles) 

He
a Pc 

117 
Pc 

179.1 
Pc 
236 

Pc 
440 

Pc 
849 

Pc 
1007 

Pc 
2073 

Pc 
3011 

Pc 
12 

Pc 
19 

Pc 
20 

Pc 
32 

Pc 
37 

Pc 
6 

Pc 
7 

Ne 

Eastern Cape                     
ECLE1  25 5 2 1 1  1 1 2 2 2 2 1 1 1 1 1 1 1.19 0.117 

ECLE2  20 6 1 1 1 2 1 1 2 2 1 1 1 1 1 2 2 1.17 0.107 

ECOR1 27 7 3(1) 1 1 1 1 2 1 2 1 1 2 1 1 1 1 1.21 0.106 

ECOR2 23 8 4(1) 2 1 1 1 2 2 2 1 1 1 1 1 1 1 1.25 0.123 
Total 95 26 5  2  1 2 1 2  2 2 2 1 2 1 1 2 2 1.20 0.113 
Limpopo                    

LIMLE  30 22 5(3) 2  3(2) 3 1 2 2 2 1 2  1 1 2 2 2 1.36 0.206 

LIMOR 30 15 5(1) 2 1 3 1 2 2 2 1 2 1 1 1 2 2 1.33 0.190 
Total 60 37 8 2 3 3 1 2 2 2 1 2 1 1 2 3 2 1.35 0.198 
Mpumalanga                    

MPLE  30 16 4(1) 2 1 3 1 2 2 2 2 2 1 1 2 3 2 1.31 0.196 

MPOR 29 14 3 1 1 3 1 2 2 2 1 2 1 1 2 1 1 1.25 0.153 
Total 59 30 5 2 1 3 1 2 2 2 2 2 1 1 2 3 2 1.28 0.174 
Kwazulu-Natal                    
KZN1  30 19 2(1) 1 1 2 1 2 2 2 2(1) 2 2 2(1) 1 2 2 1.34 0.202 
North West                    
NW  30 20 4(1) 2 1 2 1 2(1) 2 2 1 1 1 1 1 2 2 1.31 0.179 
Total (all 
provinces) 

274 132 14 2 3 3 1 3 2 2 3 2 2 2 2 3 2 1.27 0.158 

a = Nei’s gene diversity, He (Nei, 1973); Ne - effective population size 

  

Stellenbosch University  https://scholar.sun.ac.za



 

119 

 

TABLE 3. Summary of genotypic diversity indices for ten populations of Phyllosticta citricarpa from five provinces (Eastern Cape, Limpopo, 

Mpumalanga, KwaZulu-Natal and North West) in South Africa. 

Populations within 
provinces  

#Isolates #MLGsa 
Populations per province All populations 

E5d De 
eMLGb SEc eMLG SE 

Eastern Cape 
  

    
 

 

ECLE1 25 5 4.60 0.554 4.60 0.554 0.819 0.682 

ECLE2 20 6 6.00 0.000 6.00 0.000 0.735 0.710 

ECOR1 27 7 6.20 0.736 6.20 0.736 0.670 0.705 

ECOR2 23 8 7.70 0.489 7.70 0.489 0.812 0.817 
Total 95 18 9.25 1.462   0.679 0.864 
Limpopo         

LIMLE 30 22 22.0 0.00 16.2 1.147 0.894 0.944 

LIMOR 30 15 15.0 0.00 11.7 1.183 0.712 0.880 

Total 60 36 21.8 1.75   0.735 0.953 
Mpumalanga         

MPLE 30 16 15.7 0.471 12.3 1.209 0.738 0.893 

MPOR 29 14 14.0 0.000 11.4 1.101 0.746 0.880 
Total 59 26 16.4 1.730   0.596 0.903 
Kwazulu-Natal         
KZN1 30 19 - - 14.1 1.249 0.789 0.920 
North West          

NW 30 20 - - 14.7 1.237 0.820 0.929 

TOTAL (ALL) 274 89 - - 14.4 1.840 0.461 0.947 
aMLGs = Multilocus genotype, beMLG = expected number of MLGs after rarefraction, cSE = Standard error based on eMLG,d E5 = Evenness  
e D = Genotypic diversity 
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TABLE 4. Linkage disequilibrium analyses for populations of Phyllosticta citricarpa from five provinces (Eastern Cape, Limpopo, Mpumalanga 

KwaZulu-Natal and North West) in South Africa with corresponding significance level (P-value). 

Province and 
population names 

#Isolates #MLGs 
 Non-clone-corrected 

populations 
Clone-corrected  

Populations 

IA P value 𝑟̅𝑟 Rd P value IA P value 𝑟̅𝑟 Rd  P value 

Eastern Cape           

ECLE 1 25 5 0.393 0.016 0.110 0.015 -0.200 0.615 -0.050 0.614 

ECLE 2 20 6 -0.081 0.657 -0.021 0.653 -0.472 0.940 -0.118 0.936 

ECOR 1 27 7 0.034 0.319 0.013 0.320 -0.190 0.718 -0.064 0.706 

ECOR 2 23 8 0.031 0.362 0.008 0.364 -0.230 0.825 -0.058 0.818 

Limpopo           

LIMLE 30 22 0.01083 0.414 0.001 0.412 -0.106 0.741 -0.011 0.741 

LIMOR 30 15 0.00014 0.488 0.000 0.448 -0.231 0.905 -0.030 0.902 

Mpumalanga           

MPLE 30 16 0.3156 0.039 0.033 0.039 -0.033 0.525 -0.003 0.524 

MPOR 29 14 -0.0789 0.722 -0.013 0.720 -0.316 0.987 -.0053 0.984 

KwaZulu-Natal           
KZN1 30 19 0.1855 0.092 0.020 0.092 -0.034 0.565 -0.004 0.565 

North West            
NW 30 20 -0.0559 0.646 -0.008 0.645 -0.213 0.962 -0.031 0.961 

Total (All 
provinces) 

274 89 0.134 0.002  0.013 0.002 -0.082 0.928 -0.007 0.935 

 MLGs = Multilocus genotype, eMLG = expected number of MLGs after rarefraction, IA = Index of Association; 𝑟̅𝑟 Rd = Standardized index of 

association 
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TABLE 5. Mating type composition and χ2 testing for expected 1:1 mating-type ratios in clone corrected Phyllosticta citricarpa populations 

collected in five provinces (Eastern Cape, Mpumalanga, North Wes, KwaZulu-Natal and Limpopo) in South Africa. 

Province/Type Number of A1 mating type isolates Number of A2 mating type isolates Number of 
MLGsa 

χ2 
value 

P-value 

Eastern Cape      

ECLE1 1 4 5 2 0.200 

ECLE2 4 2 6 0.67 0.500 

ECOR1 4 3 7 0.29 0.700 

ECOR2 3 5 8 0.50 0.500 

Mpumalanga      

MPLE 8 8 16 0 0.950 

MPOR 7 7 14 0 0.950 

Limpopo      

LIMLE 6 16 22 4.54 0.050 

LIMOR 6 10 16 1 0.700 

KwaZulu-Natal      

KZN1 11 8 19 0.47 0.500 

North West       

NW 6 14 20 3.2 0.100 
 

 

a The total number of Multilocus genotypes (MLG) per population in clone corrected Phyllosticta citricarpa populations.
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TABLE 6. Analysis of molecular variance (AMOVA) comparing Phyllosticta citricarpa populations 

from five citrus production regions (Eastern Cape, Mpumalanga, Limpopo, KwaZulu-Natal and 

North West provinces) in South Africa using 15 simple sequence repeat loci. 

Source d.f. SS % Variation  AMOVA 

statistics 
P 

Among regions 4 18.950 2 PhiRT = 0.020 0.094 

Among populations 5 15.235 10 PhiPR = 0.100 0.001 

Within populations 122 172.717 88 PhiPT = 0.117 0.001 

Total 131 206.902 100   
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TABLE 7. Estimates of pairwise PhiPT values (below the diagonal) with significance values 

(above the diagonal)  averaged over 15 simple sequence repeat loci of 10 Phyllosticta citricarpa 

populations obtained from five provinces (Eastern Cape, Limpopo, KwaZulu-Natal, North West 

and Mpumalanga) in South Africa. 
Populationsa ECOR 1 ECOR 2 ECLE1 ECLE2 KZN LIMLE LIMOR MPLE MPOR NW 
ECOR1 - 0.422 0.395 0.002 0.001 0.154 0.026 0.147 0.259 0.002 

ECOR2 0.000 - 0.406 0.001 0.001 0.055 0.026 0.116 0.452 0.001 
ECLE1 0.000 0.000 - 0.009 0.058 0.343 0.170 0.377 0.412 0.014 
ECLE2 0.494 0.476 0.389 - 0.214 0.001 0.045 0.003 0.001 0.182 

KZN 0.247 0.258 0.111 0.036 - 0.001 0.026 0.001 0.001 0.015 
LIMLE 0.037 0.063 0.010 0.231 0.149 - 0.196 0.429 0.007 0.002 
LIMOR 0.120 0.126 0.056 0.116 0.070 0.017 - 0.290 0.007 0.149 

MPLE 0.039 0.046 0.000 0.222 0.096 0.000 0.010 - 0.030 0.004 
MPOR 0.029 0.000 0.007 0.410 0.255 0.086 0.118 0.061 - 0.001 
NW 0.230 0.242 0.168 0.042 0.061 0.100 0.029 0.098 0.250 - 

a Population names starting with “EC” were from the Eastern Cape, “KZN” from KwaZulu-Natal, 
“NW” from the North West , “LIM” from Limpopo and “MP” from Mpumalanga. Populations that 
were sampled from lemon orchards included ECLE1, ECLE2, LIMLE, MPLE and NW. The KZN 
population was obtained from a grapefruit orchard. The remaining populations were obtained from 
orange orchards.  
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Figure 1. Five provinces (North West, Limpopo, Mpumalanga, KwaZulu-Natal and Eastern Cape) 

in South Africa where Phyllosticta citricarpa populations were sampled from Citrus spp. orchards. 

The populations were used in studies to determine if P. citricarpa populations differed in the 

provinces and if Citrus spp. had an effect on population structure. 
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Fig 2. Occurrence of Phyllosticta citricarpa multilocus genotypes (MLGs) in ten South African orchards. Above the histogram bars of the dominant MLGs, the 
percentage is indicated that the dominant MLG represented of the orchard’s total population. 
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Figure 3. Principal coordinate analysis (PCoA) for ten Phyllosticta citricarpa populations collected 

in five provinces in South Africa, including the North West (NW), Mpumalanga (MPLE, MPOR), 

Eastern Cape (ECOR1, ECOR2, ECLE2 and ECLE1) and KwaZulu-Natal (KZN). Populations 

sampled from lemon orchards included ECLE1, ECLE2, LIMLE, MPLE and NW. The KZN 

population was obtained from a grapefruit orchard. The remaining populations were obtained from 

orange orchards. The axes explained 82.19% variation for Coordinate 1 and 8.66% for Coordinate 

2. 
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Figure 4. A discriminant analysis of principal components (DAPC) of Phyllosticta citricarpa 

populations (clone corrected) sampled from five provinces in South Africa, including the North 

West (NW), Mpumalanga (MPLE, MPOR), Eastern Cape (ECOR1, ECOR2, ECLE2 and ECLE1) 

and KwaZulu-Natal (KZN). Populations sampled from lemon orchards included ECLE1, ECLE2, 

LIMLE, MPLE and NW. The KZN population was obtained from a grapefruit orchard. The 

remaining populations were obtained from orange orchards. Populations are indicated by different 

colours. The number of axes retained for the principal component analysis was 17 and 3 for the 

discriminant analysis. The eigenvalues chosen represented more than 80% of the total variation. 
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CHAPTER 5 

Conclusion 

 
Citrus black spot is a fungal disease caused by P. citricarpa that influences global citrus 

production and trade. The epidemiology of P. citricarpa has been studied in many countries where 

the disease is present, but limited information is available on the pathogen’s population genetic 

structure. Markers available to conduct population genetic studies have identified very low or no 

polymorphisms in P. citricarpa populations (Wang et al., 2016). The reproductive system of P. 

citricarpa was only recently resolved, when the mating type locus containing the MAT 1-1-1 or 

MAT 1-2-1 genes were  identified (Wang et al., 2016, Amorim et al., 2017) and when the mating 

of opposite mating type isolates was achieved under artificial culture conditions (Tran et al., 2017). 

The aims of this dissertation were to develop more informative markers to determine the 

distribution of genetic variation in global and South African P. citricarpa populations, to investigate 

the reproductive mode of the pathogen on an international and national scale and to determine 

the effect of distance (orchard scale), season (temporal - orchard and regional scale) and Citrus 

spp. on the population structure of P. citricarpa. 

The findings of Chapter 2 were based on the results and analyses of genotyping data of 

P. citricarpa populations from South Africa, USA, Australia, China and Brazil, using seven 

published (Wang et al., 2016) and eight newly developed polymorphic simple sequence repeats 

(SSR) (Chapter 2). The study showed that populations differed in their connectivity and 

differentiation from each other. Limited connectivity was found between the Chinese populations 

and the populations from the other countries. There was, however, high levels of connectivity 

between South Africa, Australia and Brazil, as well as between South Africa, Australia and the 

USA. These findings are most likely due to exchanges of plant material and the associated P. 

citricarpa genotypes dating back to the establishment of the citrus industries in these countries. 

The Chinese and Australian populations had the highest level of genetic diversities, which 

correlates with the origin of the Citrus host and the first description of CBS in Australia (Benson, 

1895). This finding is consistent with a co-evolutionary relationship between the pathogen on its 

wild hosts. The populations from Brazil, USA and South Africa exhibited characteristics of founder 

populations, which correlates with the known history of CBS in these countries. Therefore, the 

source of the South African population could be from the Far East or Australia. Australia or South 

Africa was identified as a likely source of the Brazilian population. Australia or South Africa can 

also be the source of the USA population. Migration has thus played an important role in 
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determining the population structure of P. citricarpa in several countries. Both mating types were 

found in the populations from South Africa, Australia, China and Brazil. The USA populations, 

however, contained one mating type only. Linkage disequilibrium analyses indicated the 

occurrence of sexual reproduction and that asexual reproduction may be important in the 

pathogen’s life cycle. The reproductive structure of the pathogen and presence or absence of 

both mating types will thus be very important in determining the population’s structure and 

epidemiology of the disease in different countries. 

The study conducted in Chapter 2 did not provide a complete picture of the introduction 

pathways. Therefore, additional populations from other countries in Asia and from New Caledonia 

and New Guinea should be analysed to determine whether the Oceanian countries, China or 

another country in Asia was the source population from which dispersal of the pathogen to other 

continents took place. The data from Chapter 2 provides strong evidence that asexual 

reproduction is common in all P. citricarpa populations world-wide.   

To further investigate the population structure of P. citricarpa in South Africa at the orchard 

spatial (distance) and temporal (seasonal) scales, as well as the reproductive system, a detailed 

study in two orchards was conducted (Chapter 3). Populations were sampled according to a 

distance based structure over two seasons (2012 and 2013), from two lemon orchards differing 

in climate (Mpumalanga province - sub-tropical and North West province - semi-arid). The 

populations were genotyped using 15 SSR markers. Spatial analyses at the orchard scale 

indicated that subpopulations that were separated by shorter distances (within 200 m), were 

typically not significantly genetically differentiated, while those separated by longer distances 

were sometimes significantly differentiated. Temporal analyses of the North West orchard showed 

that seasonal populations were not significantly genetically differentiated. In contrast, seasonal 

populations from the Mpumalanga orchard were significantly differentiated, most likely due to 

higher rainfall and disease pressure in the Mpumalanga orchard. Mating type ratios in both 

orchards did not deviate significantly from a 1:1 ratio. Linkage disequilibrium analyses again 

indicated that P. citricarpa reproduces sexually and asexually and supported the finding of 

Chapter 2 that pycnidiospores are important in the epidemiology of CBS in South African 

orchards.  Clonal reproduction was also identified as being important in the two lemon orchards, 

and was evidenced by low genotype evenness values and dominance by one or two multilocus 

genotypes. This is in contrast with previous studies from South Africa that indicated that 

pycnidiospores have a minor role in the epidemiology of CBS. The previous studies, however, 

failed to distinguish between the heterothallic P. citricarpa and the homothallic endophyte P. 
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capitalensis which draws a lot of the older epidemiological research into question and may have 

given rise to an over estimation of the role of ascospores in the epidemiology of CBS.  

The role of pycnidiospores and ascospores in South Africa should be further investigated 

by conventional inoculation (fruit and twigs) and leaf removal studies in citrus orchards. New 

ascospore trap data should be generated involving the specific differentiation of P. citricarpa from 

P. capitalensis ascospores. These studies should be conducted in orange orchards, since the 

relative importance of ascospore and pycnidiospore inoculum sources might differ between citrus 

types. This was one of the aims of Chapter 4.  

The effect of Citrus spp. on population structure in South Africa, and whether P. citricarpa 

populations differ among the five provinces where CBS occurs, were investigated along with the 

reproductive system in Chapter 4. Ten populations from five provinces were genotyped. To study 

the effect of Citrus spp., nine of these populations (obtained from oranges and lemons) were 

analysed. Analyses of the provincial population structure indicated that the KwaZulu-Natal and 

Limpopo populations had the highest genetic diversities, while the Eastern Cape had the lowest. 

This correlates with the historical records of the time period that the disease has been established 

in the different provinces. Results indicated that there was most likely two separate introductions 

of the pathogen into South Africa. Populations from the different provinces were not significantly 

genetically differentiated. Citrus spp., specifically oranges and lemons, did not have an effect on 

P. citricarpa population structure. Further studies should be conducted to determine whether 

KwaZulu-Natal or Limpopo was the first place of introduction of CBS, and how CBS spread within 

South Africa. Future studies should investigate whether other citrus types such as grapefruit and 

mandarins have an effect on the population structure of P. citricarpa. It is important to note that 

the one grapefruit population from KwaZulu-Natal was not significantly differentiated from a lemon 

orchard in the Eastern Cape (Chapter 4). 

Linkage disequilibrium analyses and mating type ratios further supported the findings of 

Chapter 2 and 3 in that P. citricarpa reproduces sexually and asexually and that pycnidiospores 

are more important in the epidemiology of CBS in South African orchards than previously 

reported. The linkage disequilibrium analyses indicated that asexual reproduction was not more 

pronounced in lemon populations than orange populations. The extent of clonal reproduction were 

comparable between lemon and orange orchards (Chapter4). 

This was the first study using a population genetics approach to better understand the 

biology and epidemiology of CBS at a global, regional and orchard scale. The study provides 

insight into CBS introduction pathways. Although China is considered to be the centre of origin of 

the host and the pathogen, no connectivity could be identified between the western and eastern 
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countries. Both mating types were present in all the countries, except for the USA and the three 

European countries. The study indicated that the contribution of asexual spores to disease 

development (fruit symptoms) in South African orchards is more important than previously 

understood and that clonal survival of the pathogen is possible in South Africa. The thesis has 

shed new light on the population structure of P. citricarpa globally and in South Africa. Important 

evolutionary forces that affect the population structure of P. citricarpa at the global scale include 

the reproductive system of the pathogen and migration. Altogether this thesis has contributed 

towards a better understanding of CBS epidemiology, which can be used to improve disease 

management. 
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