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Abstract: Counteracting reactive oxygen species (ROS, e.g., superoxide radical ion, H2O2 and hydroxyl
radical) is an important task in fighting against oxidative stress-related illnesses and in improving
product quality in industrial manufacturing processes. This review focuses on the recent advances
on two-dimensional (2D) nanomaterials of antioxidant activity, which are designed for effective
decomposition of ROS and thus, for reduction of oxidative stress. Some materials featured in this
paper are of uni- or multi-lamellar structures modified with small molecular or enzymatic antioxidants.
Others are enzyme-mimicking synthetic compounds (the so-called nanozymes) prepared without
antioxidant additives. However, carbon-based materials will not be included, as they were extensively
reviewed in the recent past from similar aspects. Given the landmark development around the 2D
materials used in various bio-applications, sheet-like antioxidant compounds are of great interest
in the scientific and technological communities. Therefore, the authors hope that this review on
the recent progresses will be helpful especially for researchers working on novel developments to
substantially reduce oxidative stress either in biological systems or industrial liquors.

Keywords: antioxidant activity; 2D nanomaterial; nanozyme; clay; enzyme; chalcogenide; metal
organic framework; oxidative stress; reactive oxygen species; radical scavenge

1. Introduction

Nanomaterials with two-dimensional (2D) structure have attracted notable scientific interest due
to their high surface area and intriguing properties arising from their large variety of composition [1–5].
Starting with their light element-based representatives (e.g., graphene, graphite, graphite oxides,
carbon nitride, boron nitride and covalent organic frameworks), through metal chalcogenide sheets,
layered double hydroxides (LDHs), montmorillonites (MMTs), metal organic frameworks (MOFs) to
thin noble metal platelets, one of the main advantages is that their composition is tunable for specific
applications. In addition, 2D materials possess unusual electronic, mechanical and optical properties
and hence, they can be used as building blocks in a wide range of composites. Concerning the
contemporary applications of 2D compounds, they serve as efficient catalysts for water splitting [6–15]
or organic reactions [16–21], drug carriers [22–31], sensors [32–39], materials for energy production
and storage [2,15,21,40–49] or adsorbers [50–55].

Biocompatible 2D materials gained considerable popularity in the biochemical community, as
indicated by the rapidly growing number of their bio-medical applications [56–58]. Among them, 2D
antioxidant composites were developed [59–61] and used in decomposition of reactive oxygen species
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(ROS) [62] and subsequently, to reduce oxidative stress in living and industrial systems. Tremendous
improvement has been accomplished in the number and variety of antioxidant materials obtained
over this period and the following approaches were reported (Figure 1): (i) immobilized natural and
artificial enzymes, (ii) 2D materials loaded with molecular antioxidants and (iii) 2D composites of
radical scavenging activities (nanozymes). In the present contribution, the antioxidant characteristics of
such 2D materials are summarized emphasizing metal-based nano-objects. The carbonaceous materials
of 2D structure were greatly investigated in the recent past and collective reviews were published on
their applications [57,63–79]. Therefore, carbon-based 2D materials will not be discussed here.
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chronic inflammation, neurological disorders and cancer [81]. On the other hand, efficient defense 
against ROS is also required in industrial manufacturing processes (e.g., food, cosmetic and textile 
industry) to improve the quality of the products [82,83]. 

Superoxide anion is one of the most notable ROS, since its decomposition by the superoxide 
dismutase (SOD) enzyme leads to the formation of molecular oxygen and H2O2. Therefore, the 
dismutation reaction is also a ROS source. Enzymatic assays were developed to estimate the SOD 
activity. In the most popular tests, radicals are produced in enzymatic ways and indicator molecules 
change their color upon reduction by the superoxide anions [84]. Inhibition of the radical-indicator 
reaction by the enzyme is the measure to assess the dismutation ability. 

The two common enzyme groups that can break up H2O2 are catalases and peroxidases [85,86]. 
During neutralization of harmful peroxides, catalases generate O2 gas and H2O, while peroxidases 
perform homolytic bond cleavage on H2O2 (Figure 1). The as-obtained hydroxyl radicals (OH∙) either 
are consumed by an appropriate substrate near the active site or converted to water. The antioxidant 
enzymes decompose ROS in tandem reactions in the intracellular environment, e.g., H2O2 produced 
by SOD is subsequently decomposed by catalase (see graphical abstract). 

Figure 1. Illustration of molecular and enzymatic antioxidants immobilized in/on layered 2D materials.
Schematic representation of superoxide radical anions and H2O2 is also presented.

2. Natural Defense Systems versus Oxidative Stress

The most effective defense systems against reactive oxygen species (ROS), which induce oxidative
stress at higher concentrations, are the antioxidant enzymes [80]. ROS include, for instance, superoxide
radical anion, H2O2, hydroxyl and alkoxy radicals of short life time, but of extremely high reactivity [62].
They damage cell constituents leading to the development of various diseases such as chronic
inflammation, neurological disorders and cancer [81]. On the other hand, efficient defense against
ROS is also required in industrial manufacturing processes (e.g., food, cosmetic and textile industry) to
improve the quality of the products [82,83].

Superoxide anion is one of the most notable ROS, since its decomposition by the superoxide
dismutase (SOD) enzyme leads to the formation of molecular oxygen and H2O2. Therefore, the
dismutation reaction is also a ROS source. Enzymatic assays were developed to estimate the SOD
activity. In the most popular tests, radicals are produced in enzymatic ways and indicator molecules
change their color upon reduction by the superoxide anions [84]. Inhibition of the radical-indicator
reaction by the enzyme is the measure to assess the dismutation ability.

The two common enzyme groups that can break up H2O2 are catalases and peroxidases [85,86].
During neutralization of harmful peroxides, catalases generate O2 gas and H2O, while peroxidases
perform homolytic bond cleavage on H2O2 (Figure 1). The as-obtained hydroxyl radicals (OH·) either
are consumed by an appropriate substrate near the active site or converted to water. The antioxidant
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enzymes decompose ROS in tandem reactions in the intracellular environment, e.g., H2O2 produced
by SOD is subsequently decomposed by catalase (see graphical abstract).

Besides antioxidant enzymes, molecular antioxidants also play an important role in reducing
oxidative stress. They involve vitamins, carotenoids and flavonoids, for instance [87]. Supplementation
from certain foods is feasible, however, their activity in ROS decomposition lags behind the enzymatic
antioxidants. Non-enzymatic routes are also established to estimate antioxidant capacity. Methods
based on free radicals involve 2,2-diphenyl-1-picrylhydrazyl (DPPH) [88], nitrogen monoxide (NO) [89],
radical form of 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS+) [90] and peroxynitrite ion
(ONOO−, prepared by the direct, cold peroxidation of nitrite salts) [91], which are relatively stable and
can be reduced by the antioxidant of choice.

In addition, Fenton reaction, which is a catalytic route to decompose H2O2 in the presence of
metal ions, especially Fe2+ or Fe3+, generating aggressive OH· and OOH· radicals, therefore used for
strong oxidations and thus, it is a radical source to probe enzymatic antioxidant compounds [92]. Two
indirect radical-based tests include thiobarbituric acid (TBA) as substrate [93]. The degradation of
2-deoxyribose by Fenton reaction [94] and egg lipid peroxidation [95] produces small dialdehydes,
mainly malondialdehyde that gives a colored condensation product with TBA. If OH· radicals in Fenton
kinetics or the lipid damaging radicals are consumed by antioxidants, the color in the reactions with
TBA are less profound. Further, two assays take oxidative metal complexes as reagents with Fe3+ (Ferric
reducing antioxidant power assay (FRAP) [96], with 2,4,6-tris(2-pyridyl)-s-triazine ligand) and Cu2+

(cupric reducing antioxidant capacity (CUPRAC) assay [97], with 2,9-dimethyl-1,10-phenanthroline
ligand) central ions. The latter test has a kinetic advantage as the Cu2+ complex is easier to reduce.
For detailed antioxidant effect of various materials, the reader is referred to the works of Nimse and
Pal [98] and Valgimigli et al. [99].

Due to the increased harmful environmental effects such as air pollution, food additives and
radiations, the ROS level increased and thus, oxidative stress became an important issue nowadays.
The supplementation of the above natural antioxidants is complicated due to their high sensitivity
to the environmental conditions (enzymatic) or limited water solubility (molecular). Therefore, their
heterogenization in composite materials, which provides sufficient protection and solubilization of the
antioxidants, is a promising research direction.

3. Metal Oxide Structures

3.1. Cobalt-Based 2D Oxides

The intrinsic peroxidase and catalase activity of Co3O4 was first described in 2012 for cubic
nanoparticles [100] (NPs) and was proven at several occasions for spherical NPs [101] and architectures
consisting of Co3O4 nanorods [102]. Morphology-dependent study was also conducted, revealing
an order of nanocubes < nanorods < nanoplates (Figure 2) in catalytic activity, pointing out that
the efficiency depends on the most exposed crystal plane [103]. The same correlation was found
by Zhang et al. who were able to produce polyhedrons of Co3O4, possessing approximately 55% of
peroxidase and 70–80% of catalase activity, compared to the 2D platelets [104]. Data of the quantitative
assessment of the activity, together with other 2D antioxidant systems discussed in this feature article,
are given in Table 1.
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Table 1. Two-dimensional 2D nanomaterials of antioxidant properties and the quantitative assessment
of their activities in test reactions.

Materials Mimicked
Enzymes Activity Assessment a Ref.

Cu(4-hydroxythiophenol)
Nanosheets Peroxidase H2O2

TMB

Km (mM)
0.716
0.431

[19]

MoS2 Nanosheets Peroxidase H2O2
Km (mM)

0.003

vmax (10−6

mol/min)
3.4

[39]

Mg/Al-CO3-LDH-SOD
Mg/Al-CO3-LDH-SOD-Hep SOD Fridovich

method b

IC50 (mg/L) c

0.056
0.096

[60]

SOD-PDADMAC-TNS SOD Fridovich
method b

IC50 (mg/L)
0.057 [61]

Co3O4 Sisal-like Structures Peroxidase H2O2
TMB

Km (mM)
0.827
0.015

[102]

Co3O4 Nanoplates Peroxidase H2O2
TMB

Km (mM)
284

0.090

vmax (10−8 M/s)
48.1
9.9

[103]

Co3O4 Nanoplates Peroxidase Fixed TMB and
H2O2

v
0.038 a.u./s [104]

Co3O4 Microbelts Peroxidase H2O2
TMB

Km (mM)
0.0262
0.012

[105]

Co3O4-CeO2 Nanosheets Peroxidase H2O2
TMB

Km (mM)
132.2
0.36

vmax (10−8 M/s)
4.3

16.7
[106]

Co3O4 Nanosheets Peroxidase H2O2
TMB

Km (mM)
2.22
0.082

vmax (10−8 M/s)
11.8
6.6

[107]

V2O5 nanosheets Glutathione
Peroxidase GSH

H2O2

Km (mM)
3.425

0.0573

vmax (10−8 M/s )
778.8
388.5

[108]

VO2 Nanosheets Peroxidase H2O2
TMB

Km (mM)
2.924
0.111

Vmax (10−8 M/s)
97300
16800

[109]

HRP-Titanate Nanosheets

SOD-Titanate Nanosheets

HRP

SOD

Guaiacol

Hypoxanthine/XO
Cytochrome c

Km (mM)
2.06

IC50 (U)
0.036

vmax (10−8 M/s)
176

[110]

HPR-TiOx
nanosheets-magnetic beads HRP Guaiacol Km (mM)

1.8
vmax (10−8 M/s)

330
[111]

Au-MoS2 Nanoribbons Peroxidase H2O2
TMB

Km (mM)
10

0.015

vmax (10−8 M/s)
1170
670

[112]

MoSx-Co(OH)2 Nanoflakes Peroxidase H2O2
TMB

Km (mM)
0.127
0.236

vmax (10−8 M/s)
8.73
5.69

[113]

MoSe2 Nanosheets Peroxidase H2O2
TMB

Km (mM)
0.155
0.014

vmax (10−8 M/s)
0.99
0.56

[114]

VS2 Nanosheets Peroxidase H2O2
TMB

Km (mM)
3.49
0.28

vmax (10−8 M/s)
55.7
41.6

[115]

Cu-Boron Nitride Nanosheets Peroxidase H2O2
TMB

Km (mM)
25

0.175

vmax (10−8 M/s)
12.5
3.76

[116]

Ni-MOF Nanosheets HRP H2O2
TMB

Km (mM)
2.49
0.365

vmax (10−8 M/s)
130
6.53

[117]
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Table 1. Cont.

Materials Mimicked
Enzymes Activity Assessment a Ref.

HRP-Hep-LDH HRP Guaiacol Km (mM)
5.25

vmax (10−8 M/s)
272

[118]

Carnosine-MgAl-LDH
Gallic acid-MgAl-LDH – d DPPH

Scavenging activity
95.9%
83.9%

[119]

Gallic acid-Zn2Al-NO3-LDH – d DPPH Scavenging activity
93% [120]

Organic solvent treated
EA-LDH – d

DPPH

CUPRAC assay

Scavenging activity
up to 80–90%

TEAC value >1
[121]

IrganoxCOOH-MgAl-LDH
Trolox-MgAl-LDH – d DPPH

EC50
0.13
0.24

[122]

Olanzapine-CaAl-LDH
Olanzapine-NiAl-LDH – d

DPPH

ABTS

NO

EC50 (µg/mL) e

8.541
11.630

0.681
1.117

8.574
22.970

[123]

SOD-Hep-LDH
Cu(Hsm)2-PVPMAA-LDH SOD Fridovich

Method

IC50 (nM)
2.9
97

[124]

DNA-CoAl-LDH Peroxidase H2O2
TMB

Km (mM)
10.24
1.775

vmax (10−8 M/s)
2.3

4.09
[125]

(Bael oil proteins)-MgAl-LDH – d DPPH Scavenging activity
42–50% [126]

CoAl-LDH Peroxidase H2O2
TMB

Km (mM)
22.13
0.372

vmax (s−1)
0.598
0.101

[127]

NiFe-LDH Peroxidase H2O2
TMB

Km (mM)
2.4
0.5

[128]

Polyethylene Glycol-Fe-LDH Peroxidase H2O2
Km (mM)

0.09
vmax (10−8 M/s)

176
[129]

AEA-GSH– MMT – d ABTS Scavenging activity
59.88% [130]

Blue Berry Exract-MMT – d DPPH Scavenging activity
38% [131]

PHB-TPS/eugenol-MMT – d DPPH Scavenging activity
92% [132]

Hemin-Hsm-MMT HRP Guaiacol Rate constant (A/min)
0.107 [133]

TOC-CSNPs/CS/MMTg – d DPPH Scavenging activity
46.5% [134]

ZnS-MMT Peroxidase H2O2
TMB

Km (mM)
0.0254
0.055

vmax (10−8 M/s)
0.750
7.993

[135]

CuS-MMT Peroxidase H2O2
TMB

Km (mM)
2.27

0.0212

vmax (10−8 M/s)
0.971
2.814

[136]

Ag2S-MMT Peroxidase H2O2
TMB

Km (mM)
1.874

0.00412

vmax (10−8 M/s)
2.286
5.27

[137]

CoNiS-3/MMT Peroxidase H2O2
TMB

Km (mM)
1.247
0.821

vmax (10−8 M/s)
6.92

68.31
[138]
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Table 1. Cont.

Materials Mimicked
Enzymes Activity Assessment a Ref.

HRP-MMT HRP Phenol Km (mM)
12.96

vmax (10−8 M/s)
7150

[139]

Cu–Zn complex-MMT SOD Fridovich
methodb

IC50 (µM)
91.0 [140]

Cu-histidine-MMT SOD Fridovich
methodb

IC50 (µM)
251 [141]

Ni Foam-CoP Nanosheets Peroxidase H2O2
TMB

Km (mM)
4.90
0.54

[142]

Co2(OH)2CO3-CeO2
Nanosheets Peroxidase H2O2

TMB

Km (mM)
10.01
0.14

vmax (10−8 M/s)
10.21
20.14

[143]

Fe3(PO4)2·8 H2O Nanoflowers Peroxidase H2O2
TMB

Km (mM)
0.11
0.36

vmax (10−7 M/s)
5.58
1.58

[144]

Porous Iron Oxide Nanoflakes Peroxidase H2O2
TMB

Km (mM)
150.47

0.24

vmax (10−8 M/s)
3.12
3.07

[145]

a The columns contain the applied substrate or assay and the quantitative measure of the activity; b The method is
described in reference [84]; c Concentration of enzyme or enzyme mimic necessary to decompose 50% of the radicals
forming in the test reaction; d General radical scavenging activity was assessed, no enzymatic assays was applied;
e Top values belong to olanzapine-CaAl-LDH and the bottom ones to olanzapine-NiAl-LDH. Abbreviation list:
TMB: 3,3’,5,5’-tetramethylbenzidine, SOD: superoxide dismutase, GSH: glutathione, HRP: horseradish peroxidase,
XO: xanthine oxidase, DPPH: 2,2-diphenyl-1-picrylhydrazyl, CUPRAC: cupric reducing antioxidant capacity, ABTS:
2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid).
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Figure 2. TEM image of a typical Co3O4 nanoplate (a), high-resolution transmission electron microscopy
(HRTEM) images of site 1 (a), site 2 (c) and site 3 (d) of Co3O4 nanoplate, a HRTEM image of a Co3O4

nanorod (e), a HRTEM image of a Co3O4 nanocube (f) and exposed crystal planes on the nanoplate,
nanorod and nanocube of Co3O4 (g). Reproduced from Reference [103] with permission from the PCCP
Owner Societies.

Elongated 2D Co3O4 belts were obtained by electrospinning technique from Co(NO3)2 containing
polyvinylpyrollidone gel with superior affinity compared to the native horseradish peroxidase (HRP)
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enzyme and up to 100-fold higher activity was calculated from the Michaelis constants (Km) determined
in the test reactions involving H2O2 and TMB (3,3’,5,5’-tetramethylbenzidine). Besides, the belts were
found to be stable at significantly higher temperature than HRP [105]. The high-resolution transmission
electron microscopy (HRTEM) images of the belts obtained reflect characteristic basal distances of 0.24
and 0.29 nm assigned to (311) and (220) interplanar spacings in Co3O4, respectively.

Platelets of Co3O4 were combined with CeO2 sheets to a nanocomposite of relatively low affinity
towards H2O2, as indicated by higher Km values, but excellent maximum reaction rate (vmax) was
observed in the diffusion controlled regime [106]. Separately, both oxides are considered as peroxidase
nanozymes that was reinforced in the composite, which was later used as a paper based analytical
glucose sensor with smartphone software quantification.

In a recent finding, porous Co3O4 nanoplates of pH-switchable peroxidase-like (acidic medium)
or catalase-like (basic medium) properties was synthesized [107]. Overall, the porous flakes possessed
remarkable kinetic parameters and were used as a glucose sensor enabled by glucose oxidase
(GOx)-glucose selective reaction (Figure 3).Crystals 2020, 10, x FOR PEER REVIEW 8 of 31 
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Figure 3. Schematic representation of the multienzymatic activity of porous Co3O4 flakes (a) captured on
TEM micrograph (b), the peroxidase activity of the nanoflakes in TMB assay with visual representation as
inset photograph (c) and its O2 evolution through catalase activity (d). Reproduced from Reference [107]
with permission from the Royal Society of Chemistry.

Finally, a mixed-valance state lamellar cobalt oxide with non-stoichiometric composition was also
used as a nanozyme to oxidize TMB substrate with molecular O2 [146]. This structure was synthesized
by partial oxidation of Co(II)-trimesate and was applied as a glutathione (GSH) sensor.
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3.2. Vanadium-Based Oxides

Ghosh et al. extensively examined the morphology-activity correlation of orthorhombic V2O5

structures of peroxidase activity [108]. Unlike Co3O4 [104], they found that surface area is not a main
factor in activity, but it is the accessibility of active sites on the dominant crystal faces. The GSH-mediated
peroxidase activity and surface area of the nanomaterials obtained are depicted in Figure 4 (with V2O5

abbreviated as V), showing that V2O5 spheres reached the highest maximum rate, followed by flowers,
sheets and wires, out of which only wires and 2D sheets are saturated at the lowest H2O2 concentration.
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and it was pointed out that VO2 sheets exhibited the best kinetic overall parameters in regard of Km 
and vmax. Additionally, the aforementioned VO2 particles were applied as H2O2 sensors with the 
nanosheets providing linear range up to 62.5 mM H2O2, four times higher than the second best 
performing nanorods. 

Figure 4. SEM and TEM (inset) images of V2O5 nanowires (VNw) (a), V2O5 sheets (VSh) (b),
V2O5 nanoflowers (VNf) (c) and V2O5 spheres (VSp) (d). Reduction of H2O2 by GSH in the
presence of nanomaterials, glutathione reductase (GR) and NADPH (e). The GSH peroxidase-like
activity using H2O2, tert-butyl hydroperoxide (t-BuOOH) and cumene hydroperoxide (CuOOH) (f).
Michaelis–Menten plot for the nanozymes (g). Trends in vmax and surface area (h). Copyright (2020)
Wiley. Used with permission from (Ghosh, S.; Roy, P.; Karmodak, N.; Jemmis, E.D.; Mugesh, G.
Nanoisozymes: Crystal-facet-dependent enzyme-mimetic activity of V2O5 nanomaterials. Angew.
Chem. Int. Ed. 2018, 57, 4510–4515) Reference [108].
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Aside from its peroxidase mimic, a layered V2O5 2D structure was also used to detect GSH via
an oxidase-type mechanism [147]. Lower valence state vanadium oxide, VO2 was investigated in
various morphologies [109]. Fibrillar, lamellar and elongated NPs were tested against TMB substrate
and it was pointed out that VO2 sheets exhibited the best kinetic overall parameters in regard of
Km and vmax. Additionally, the aforementioned VO2 particles were applied as H2O2 sensors with
the nanosheets providing linear range up to 62.5 mM H2O2, four times higher than the second best
performing nanorods.

3.3. Titania-Based Composites

The prominent photocatalytic activity of pure and doped TiO2 is known for decades [4]. Despite
Ti(IV) is moderately redox active, TiO2 is not an antioxidant nanozyme. However, its negative surface
charge in a broad range of pH makes it a suitable vehicle for HRP immobilization, for instance. Xie et al.,
constructed hollow titania spheres based on sheets as building blocks, capable storing 20 mass% HRP
owing to the porous structure [148]. This highly loaded material was used for electrochemical H2O2

sensing with linearity over three orders of magnitudes.
Moreover, titania materials were proved as excellent solid supports for other antioxidant enzymes

due to their biocompatibility, high abundance of surface functionalities and chemical inertness.
Surface modifications with polyelectrolytes resulted in stable structures capable of hosting various
enzymes. Accordingly, lamellar titania nanosheet (TNS)-based nanocomposite with this setup had
peroxidase activity nearly identical to the bare HRP (Figure 5) [149]. An adsorbed positively charged
poly(diallyldimethylammonium chloride) (PDADMAC) polyelectrolyte layer improved the enzyme’s
structural integrity over longer timeframes and maintained a good colloidal stability for the platelets.
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Figure 5. Illustration of HRP (a) and SOD (b) immobilization on titania nanosheet (TNS) of saturated
poly(diallyldimethylammonium chloride (PDADMAC) polyelectrolyte layer on the surface. Reprinted
with permission from (Rouster, P.; Pavlovic, M.; Saringer, S.; Szilagyi, I. Functionalized titania nanosheet
dispersions of peroxidase activity. J. Phys. Chem. C 2018, 122, 11455–11463) Reference [149]. Copyright
(2020) American Chemical Society (a). Copyright (2020) Wiley. Used with permission from (Rouster, P.;
Pavlovic, M.; Szilagyi, I. Immobilization of superoxide dismutase on polyelectrolyte functionalized
titania nanosheets. ChemBiochem 2018, 19, 404–410) Reference [61] (b).

The same TNS was used to immobilize SOD enzyme [61]. Surface functionalization was carried
out first with PDADMAC to obtain positively charged sheets and the enzyme was attached through
electrostatic and hydrophobic interactions. The same superoxide anion radical scavenging activity of
the free and attached SOD indicated that the enzyme kept its structural integrity upon immobilization.

Kamada et al. demonstrated that nanometric titanate nanosheets enhanced the catalytic properties
of aqueous HRP and SOD [110]. It was claimed that TNS served as a surfactant and helped to decrease
the number of HRP and SOD aggregates in the solution, exposing more catalytic centers for the
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reactions to occur. This was possible due to electrostatic attraction, thus immobilization of the enzymes
on TNS particles, as indicated by dynamic light scattering measurements.

Stable suspensions were obtained by immobilizing HRP and magnetic beads on positively
charged layered titania in slightly acidic samples [111]. Although steric hindrance and possibly slight
conformational changes led to reduced HRP activity, the magnetic composite was separable with
strong magnets at the end of catalytic cycles. Furthermore, the reused material maintained 80% of its
original activity after 5 repetitions.

4. Chalcogenide Structures

Among the other lamellar chalcogenides, molybdenum compounds were inspected thoroughly.
Pure MoS2 has multienzymatic activity under physiological conditions. It was reported to have
the ability to scavenge superoxide radicals generated by the xanthine/xanthine oxidase system and
to degrade H2O2 in catalase and peroxidase-type manners [59]. Although the generation of OH·
radicals was evident by using DMPO (5,5-dimethyl-pyrroline N-oxide) as a radical trap for electron
paramagnetic resonance (EPR) spectroscopy measurements, the OH· radical products were transformed
to H2O, proven by the scavenging of Fenton-type developed radicals. Furthermore, the 2D MoS2

was used as a scavenger for other reactive species, e.g., NO and DPPH radicals, meaning that the
nanozyme was an excellent oppressor of oxidative stress during in vitro measurements (Figure 6).
Moreover, in vivo experiments revealed that MoS2 sheets protected E. coli and S. aureus bacteria from
H2O2-induced oxidative stress. While the nanozyme was fully biocompatible with E. coli, it expressed
a moderate toxicity on S. aureus.
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Figure 6. Illustration of the multi-fold antioxidant activity of MoS2 nanosheets. Reprinted with
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antioxidant system based on MoS2 nanosheets. ACS Appl. Mater. Interfaces 2018, 10, 12453–12462)
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Later, Nandu et al. showed that out of many proteins, lipase selectively masked the peroxidase
activity of 2D MoS2 [39], as indicated by the increasing Km values, i.e., decreasing affinity towards
H2O2. The vmax value was also decreased by more than 94% in the presence of lipase. Based on this
principle, the MoS2 NPs were used as a colorimetric lipase sensor.

The peroxidase activity of MoS2 sheets can be improved by depositing Au NPs on the surface
to drastically increase reaction rate (100-fold increment in vmax) and the affinity to TMB substrate
(350-fold decrease in Km) [112]. This system was also used as a probe in detection of free cholesterol.

In another study, 2D Co(OH)2 flakes were combined with MoS4
2− ions and treated hydrothermally

to get a mainly amorphous CoMo(OH)xSy or simply CoMo hybrid, perceived as MoSx doped
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Co(OH)2 [113]. This novel material acted as a tri-enzymatic mimic with catalase, peroxidase and
oxidase activity (Figure 7).Crystals 2020, 10, x FOR PEER REVIEW 12 of 31 
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Figure 7. Absorbance intensity of TMB and 50 mM H2O2 upon the addition of different materials (a).
Time-dependent absorbance of TMB at 652 nm varied with different catalysts used (b). O2 generation
from H2O2 decomposition with different catalysts (c). Catalytic activity comparison of CoMo hybrids
and the supernatant coexisting with the CoMo hybrids (d). Visualized reaction scheme to obtain
the CoMo hybrids (e). Reprinted with permission from (Ding, Y.Q.; Wang, G.; Sun, F.Z.; Lin, Y.Q.
Heterogeneous nanostructure design based on the epitaxial growth of spongy MoSx on 2D Co(OH)(2)
nanoflakes for triple-enzyme mimetic activity: Experimental and density functional theory studies on
the dramatic activation mechanism. ACS Appl. Mater. Interfaces 2018, 10, 32567–32578) Reference [113].
Copyright (2020) American Chemical Society.
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The molybdenous modification improved the Michaelis–Menten parameters of lamellar Co(OH)2.
Exfoliated MoSe2 sheets with few hundreds nm lateral size also possessed superb peroxidase mimicking
properties [114]. Although this structure’s maximum rate in H2O2 decomposition with TMB as
chromogen is lower than that of native HRP’s, the Km values observed are outstanding, making the
material an effective sensor for xanthine and H2O2 detection (Table 1).

Huang et al. proved that VS2 sheets catalyzes homolytic cleavage of H2O2 in a faster reaction
than HRP and the nanozyme also possesses higher affinity to both H2O2 and TMB compared to the
native enzyme [115]. The same mechanism was implied for a BN@CuS composite [116], suitable for
detection of cholesterol and for an HRP@WS2 hybrid [150], evidently. Several different sulfides were
used as a composite building block with montmorillonites, which are detailed later.

5. Metal Organic Frameworks (MOFs)

MOFs are a subgroup of coordination polymers built up by metal ions coordinated and
interlinked by multidentate bridging organic ligands [48]. In MOFs, the coordination network contains
voids leading to enlarged surface area. Utilizing their favorable surface properties, Huang et al.
constructed ca. 4 nm thick Cu-based MOFs with Fe or Co complexes of a porphyrin ligand
(tetrakis(4-carboxyphenyl)porphyrin, TCPP) decorated with 2 nm spherical Au NPs [151]. While
the bare MOF was attested to be a peroxidase mimic (in acidic buffers near pH 3–4, similar for all
MOFs with peroxidase activity), Au deposition turned the material into a GOx mimic, after which
the concentration of gluconic acid was measured by a photometric assay. Similarly, Qin et al. used
the same Fe-TCPP in Zn, Co and Cu-MOFs as peroxidases with altered activity in the presence of
numerous phosphates of biological relevance [152]. Based on their activity change, the peroxidase
probe reaction was utilized to detect the biomolecules mixed with the MOFs. Ultrathin (2 nm) variants
of the same Cu and Co-MOFs, alongside a Ni-containing one, were also synthesized and used as
a modifier on glassy carbon electrodes fused with carbon nanotubes or graphene oxide [49].

Although MOFs are noteworthy peroxidase nanozymes under pH 5, this value makes it hard
for researchers to utilize them during in vivo experiments. Bridging this gap, a cascade system was
fabricated using the well-known Cu-MOF applying Fe-TCPP in the synthesis [153]. In the first step,
GOx was immobilized on the framework that oxidized glucose in the presence of molecular O2.
During this reaction, the pH dropped (Figure 8), therefore the generated H2O2 was decomposed by
a self-activated peroxidase mechanism. The resulting OH· radicals are strong potent antibacterial
agents, decimating S. aureus bacteria after injecting onto mice wound using a band-aid containing the
biocompatible GOx@MOF and glucose.



Crystals 2020, 10, 148 13 of 30

Crystals 2020, 10, x FOR PEER REVIEW 14 of 31 

 

 
Figure 8. TEM micrograph of Cu-TCPP(Fe) 2D MOF nanosheets (a). AFM image of Cu-TCPP(Fe) 2D 
MOF nanosheets and their thickness distribution (b). Darkfield TEM image of typical Cu-TCPP(Fe) 
2D MOF nanosheets and the corresponding TEM element mappings (c). TEM image of Cu-TCPP(Fe) 
2D MOF/GOx (d). Time-dependent color changes of TMB reaction solutions catalyzed by the Cu-
TCPP(Fe) 2D MOF/GOx every 30 min in pH 7.4 PBS buffer (0−240 min, e) or pH 7.4 PBS buffer (0−240 
m, f). Methyl red pH indicator (0.001%) was used to signal the developing acidic conditions. Reprinted 
with permission from (Liu, X.P.; Yan, Z.Q.; Zhang, Y.; Liu, Z.W.; Sun, Y.H.; Ren, J.S.; Qu, X.G. Two-
dimensional metal-organic framework/enzyme hybrid nanocatalyst as a benign and m self-activated 
cascade reagent for in vivo wound healing. ACS Nano 2019, 13, 5222−5230) Reference [153]. Copyright 
(2020) American Chemical Society. 

Chen et al. obtained Ni-MOF with p-benzenedicarboxylate ligands [117]. In acidic acetate buffer, 
TMB was oxidized via the peroxidase intrinsic activity of the material. The nanosheets had 
impeccable affinity towards the substrates, while maintaining high maximum rate. Since the 
selectivity of the catalyst was high, it was applied in the detection of H2O2 in human serum samples 
with good accuracy. Furthermore, the material possessed remarkably low limit of detection. 

6. Layered Double Hydroxides (LDHs) 

The main structural motifs of LDHs are the positively charged metallic lamellae containing metal 
ions coordinated by hydroxide ions [5]. Generally, they are based on divalent and trivalent cations, 
although many exceptions are known. Since the surplus layer charge is neutralized by interlamellar 
(or intercalated) anions, the family of LDHs is suitable for immobilization of enzymatic [118,154] and 
molecular [119,155,156] antioxidants. Alternatively, large antioxidants may be anchored to the outer 
surface of LDHs through electrostatic attraction [60]. In this section, LDHs modified with simpler, 
then more complex drugs via intercalation will be introduced first. Thereafter, surface modified 
LDHs of antioxidant effect will be discussed, followed by some details about LDH nanozymes. 

Among antioxidant drugs, the main target molecules for intercalation are phenolic compounds, 
e.g., ascorbic acid, ferulic acid and gallic acid. Gallate, the anionic form of gallic acid, preserved its 

Figure 8. TEM micrograph of Cu-TCPP(Fe) 2D MOF nanosheets (a). AFM image of Cu-TCPP(Fe) 2D
MOF nanosheets and their thickness distribution (b). Darkfield TEM image of typical Cu-TCPP(Fe) 2D
MOF nanosheets and the corresponding TEM element mappings (c). TEM image of Cu-TCPP(Fe) 2D
MOF/GOx (d). Time-dependent color changes of TMB reaction solutions catalyzed by the Cu-TCPP(Fe)
2D MOF/GOx every 30 min in pH 7.4 PBS buffer (0–240 min, e) or pH 7.4 PBS buffer (0–240 m, f).
Methyl red pH indicator (0.001%) was used to signal the developing acidic conditions. Reprinted with
permission from (Liu, X.P.; Yan, Z.Q.; Zhang, Y.; Liu, Z.W.; Sun, Y.H.; Ren, J.S.; Qu, X.G. Two-dimensional
metal-organic framework/enzyme hybrid nanocatalyst as a benign and m self-activated cascade reagent
for in vivo wound healing. ACS Nano 2019, 13, 5222–5230) Reference [153]. Copyright (2020) American
Chemical Society.

Chen et al. obtained Ni-MOF with p-benzenedicarboxylate ligands [117]. In acidic acetate buffer,
TMB was oxidized via the peroxidase intrinsic activity of the material. The nanosheets had impeccable
affinity towards the substrates, while maintaining high maximum rate. Since the selectivity of the
catalyst was high, it was applied in the detection of H2O2 in human serum samples with good accuracy.
Furthermore, the material possessed remarkably low limit of detection.

6. Layered Double Hydroxides (LDHs)

The main structural motifs of LDHs are the positively charged metallic lamellae containing metal
ions coordinated by hydroxide ions [5]. Generally, they are based on divalent and trivalent cations,
although many exceptions are known. Since the surplus layer charge is neutralized by interlamellar
(or intercalated) anions, the family of LDHs is suitable for immobilization of enzymatic [118,154] and
molecular [119,155,156] antioxidants. Alternatively, large antioxidants may be anchored to the outer
surface of LDHs through electrostatic attraction [60]. In this section, LDHs modified with simpler, then
more complex drugs via intercalation will be introduced first. Thereafter, surface modified LDHs of
antioxidant effect will be discussed, followed by some details about LDH nanozymes.
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Among antioxidant drugs, the main target molecules for intercalation are phenolic compounds,
e.g., ascorbic acid, ferulic acid and gallic acid. Gallate, the anionic form of gallic acid, preserved its
antioxidant character in MgAl-LDH [119] and ZnAl-LDH [120]. Release kinetics were also scoped and
for ZnAl-LDH, parabolic model (governed by intraparticle diffusion) provided the best fit, while for
MgAl-LDH, a fast, diffusion-controlled stage (Freundlich model) was followed by the slow parabolic
release. The antioxidant capacity was evaluated in DPPH assays. MgAl(gallate)-LDH scavenged 83.9%
of initial DPPH radicals and the same method yielded a maximal 95% scavenging for ZnAl(gallate)-LDH.
A plausible reason of the difference may arise from the synthetic procedure: the ZnAl variant was
obtained from the delamination-reconstruction process, which can lead to LDHs of higher surface area,
contrary to the coprecipitation method used for the synthesis of MgAl(gallate)-LDH.

Beside the gallate-containing MgAl-LDH, Kong et al. also crafted carnosine-intercalated MgAl-LDH
through ion-exchange, which provided nearly complete scavenging (95.9%) of DPPH radicals [119].
Interestingly, although gallic acid is a strong antioxidant [87,157], it can act as a prooxidant [157],
especially without oxidants present. This effect was exploited by Arratia-Quijada et al., who prepared
ZnAl(gallate)-LDH that was used as cytotoxic agent against lung cancer cells [158]. Lima et al. modified
ZnAl-LDH with ferulate anions [159]. The intercalant is known for its high antioxidant effect as
a pure substance, but the authors proved that ferulate keeps its advantageous scavenging properties
in the LDH as well and thus, successfully preventing H2O2-induced oxidative damage generation in
fibroblast cultures. The prolonged release (10 h) from the carrier meant that the protective effect could
be maintained for longer time frames. Similar multi-hour release kinetics was measured for two of
the most known antioxidant, ascorbic acid (from MgAl-, MgFe- [160] and CaAl-LDH host [161]) and
epigallocatechin gallate (from CaAl-LDH [162]).

Recently, polyphenolic ellagic acid (EA) was used to prepare an antioxidant LDH hybrid. Although
the cleavage of lactone bonds in EA occurred, the material preserved its antioxidant activity after
intercalation. Additionally, the LDH shell served as a tool to drastically improve the dispersibility of the
originally hydrophobic EA. It was also proved that the release of EA from the mixed material is minimal.
Organic solvents were also used to modify the surface properties of the hybrids and the originally ca.
60% DPPH scavenging activity of untreated EA-LDH increased to ca. 90% after treatment with ethanol
and acetonitrile [121]. The materials also showed high TEAC (trolox equivalent antioxidant capacity)
values. Trolox is the common name of 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid.

Regarding larger, but still molecular antioxidants, the most common target molecules are
polyphenols. In this family, BHPPA (3-(3, 5-di-tert-butyl-4-hydroxy-phenyl)-propionic acid) is a model
compound with good antioxidant effect, expressed in DPPH assay after intercalation in various
LDHs [156,163,164]. The DPPH scavenging capability of such LDHs ranged from ca. 50% to
70%, which are comparable to the 60–70% effectivity of pure BHPPA, depending on the reaction
conditions. Even though the values obtained are well below 100%, the nanocomposites were excellent
polypropylene (PP) stabilizers against accelerated oxidation (Figure 9) [163], which probably arose
from i) the BHPPA-protective effect of the LDH structure and ii) the general polymer stabilizing
characteristics of LDHs originated from endothermic water loss at higher temperatures [165] and the
reduced gas permeability through plastic [166]. The BHPPA-LDH hybrid surpassed Irganox 1010 [164],
a frequent polymer antioxidant used in the industry.
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UV-Vis absorption curves after radical scavenging for 30 min in a dark box (a). FT-IR absorbance spectra
of pure PP in the range of 3700–1250 cm−1 as a function of accelerated thermal aging time at 150 ◦C.
Inset shows a magnified region of the FT-IR spectra in the wavenumber range of 1810–1660 cm−1, thus
the carbonyl region indicating oxidation of the plastic (b). Reprinted with permission from (Feng,
Y.J.; Jiang, Y.; Huang, Q.; Chen, S.T.; Zhang, F.B.; Tang, P.G.; Li, D.Q. High antioxidative performance
of layered double hydroxides/polypropylene composite with intercalation of low-molecular-weight
phenolic antioxidant. Ind. Eng. Chem. Res. 2014, 53, 2287–2292) Reference [163]. Copyright (2020)
American Chemical Society. BHPPA: (3-(3, 5-di-tert-butyl-4-hydroxy-phenyl)-propionic acid; LDH:
layered double hydroxides

In 2013, Lonkar et al. also reported the improved thermal behavior of PP containing BHPPA-LDH
as a filler [167]. Gomez Amaro et al. investigated BHPPA and Trolox in intercalated from [122], revealing
up to 90% DPPH scavenging for both antioxidant-modified LDHs with 14 and 13 mass% organic
content, respectively. Irganox 1425, an ionic antioxidant consisting of a benzylphosphonate-type anion
in Ca2+ salt, a common building block in the LDH structures, was used as precursors to prepare
CaAl-LDH intercalated with its anion [155]. The polymer additive kept its DPPH scavenging activity
after intercalation with ca. 55% maximum effect, which is very similar, if not slightly higher than
bare Irganox 1425. The LDH hybrid of olanzapine (2-methyl-4-(4-methylpiperazin-1-yl)-10H-thieno
[2,3-b][1,5]-benzodiazepine) was also developed to overcompensate its low water solubility [123]. This
drug molecule is a popular antipsychotic agent and due to the correlation between oxidative stress and
brain damage [168], its antioxidant potential may be a reason for its pharmaceutical efficacy. It was
demonstrated that the LDH hosts (CaAl- and NiAl-LDH) did not have negative effects in the assays
investigated, e.g., DPPH assay, ABTS assay, NO scavenging and TBARS (TBA reactive substances) test.
Moreover, the LDHs had synergistic effects with the olanzapine molecules. This was more pronounced
for CaAl-LDH, which was often significantly more active than NiAl-LDH, as a carrier for olanzapine.

As mentioned earlier, larger, or more importantly, positively charged agents can be immobilized
only via surface modifications. These examples tend to find enzymatic applications, e.g., the histamine
(Hsm) containing Cu(Hsm)2

2+ complex fixed on a polymer modified MgAl-LDH surface [124].
Poly(vinylpyridine-b-methacrylic acid (PVPMAA) copolymer of negative charge was used to reverse
the originally positive surface charge of LDH enabling the adsorption of the positively charged Cu2+

complex. Charge reversal also achieved higher colloidal stability, i.e., the LDH precipitated at higher
background electrolyte concentrations. The complex-LDH composite was then used as a SOD mimic
with comparable activity to bare SOD or a SOD-coated MgAl-LDH [60]. The latter material was
obtained by modifying the surface of SOD-MgAl-LDH composite by heparin (Hep) polyelectrolyte
giving rise to highly stable antioxidant dispersions. It was apparent that both SOD functioning LDHs
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were highly active, but unlike natural enzymes, Cu(Hsm)2
2+ was not heat sensitive and kept 90% of its

activity at 80 ◦C, while SOD quickly denatured at higher temperatures (Figure 10).
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activity in SOD assay compared to bare SOD, LDH-Hep-SOD and Cu(Hsm)2
2+ at 80 ◦C as a function of

reaction time (b). Reprinted from (Highly stable enzyme-mimicking nanocomposite of antioxidant
activity, 543, Pavlovic, M.; Nafradi, M.; Rouster, P.; Murath, S.; Szilagyi, I., J. Colloid Interface Sci. 2019,
543, 174–182) Reference [124] Copyright (2020), with permission from Elsevier.

The intrinsic peroxidase activity was enhanced using deoxyribonucleic acid (DNA) from herring
sperm [125]. The hybrids were constructed by surface electrostatic force between the building blocks.
Furthermore, DNA-induced delamination of the carrier LDH (proved by X-ray powder diffraction
and light scattering) facilitated the antioxidant reaction in the TMB test reaction, which showed best
activity at 35–45 ◦C and at pH 3–4 with sudden decrease afterwards. Combined with GOx-glucose
pair, Chen et al. used their DNA-LDH hybrid as a colorimetric glucose sensor.

Natural HRP bears gross positive charge in its active form, thus a Hep coating was used on the
surface of MgAl-LDH before its immobilization [118]. The kinetic parameters in the guaiacol assay of
the as-prepared composite LDH were slightly different compared to the free enzyme, representing that
adsorption forces were insufficient to overcome the protein rigidity and to considerably influence the
native structure of the enzyme. Beforehand, HRP-containing LDHs were synthesized using transition
metal LDHs that were applied in the electrochemical detection of H2O2 [154,169].

Mimicking the active site of HRP, hemin was immobilized in/on FeNi- and CuAl-LDH by
Zhang et al. [170] and Qiao et al. [171], respectively. Despite its size, hemin is a good target for
intercalation owing to the planar structure and negative charge through the carboxylic groups. It
was demonstrated that FeNi(hemin)-LDH was an excellent peroxidase, surpassing free hemin. This
is attributed to the dimerization of hemin outside the layered material, while in intercalated form,
the hemin rings are mostly found as monomers. Finally, Zhang et al. developed an electrochemical
sensor based on this material [170]. The CuAl(hemin)-LDH designed by Qiao et al. was tested as
a scavenger of ONOO− ions [171] (Figure 11). They also found that the composite was more active
than hemin alone, which is interpreted by the electrostatic attraction between the anionic ONOO− and
the LDH particles, and also due to the π donor property of LDHs to the Fe center of hemin, as stated
by the authors. The composite also inhibited the reaction between tyrosine and ONOO− up to 80%.
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Figure 11. Peroxynitrite decomposition without (1) and with equivalent weight of LDHs (2), hemin (3)
and hemin-LDHs (4). Peroxynitrite was mixed with scavengers at 25 ◦C and the reaction was followed
at 302 nm (a). Proposed mechanism for the isomerization and reduction of ONOO− and scavenging of
NO2·by hemin-LDH hybrid nanosheets (b). Reproduced from Reference [171] with permission from
the Royal Society of Chemistry.

A novel protein-LDH interaction was recently revealed when protein extracted from bael (Aegle
marmelos) were anchored to the outer surface of MgAl-LDH [126]. The natural antioxidant proteins
were scavengers of DPPH radicals on the LDHs (ca. 50% effectivity) and possessed antimicrobial effect
towards S. coliform. In addition, the composite adsorbed Pb2+ ions according to Freundlich model.

The earliest report on LDHs with intrinsic nanozyme activity was published by Zheng et al. [172].
For this purpose, like for all the others, redox active metal ions are represented in the lamellae. In this
instance, CoFe-LDH was used as a peroxidase mimic. The characteristics of the nanozyme were like
those of HRP, regarding optimal pH and temperature dependence, but the platelets were active in
a larger H2O2 concentration regime. Thus, H2O2 detection is possible in a range of reaction conditions.
The obtained LDH was also used in the GOx mediated selective sensing of glucose via TMB test
reaction. Afterwards, CoAl-LDH sheets exfoliated in L-asparagine solution were proven to have
peroxidase mimic with pH optimum at 6 [127]. A similar approach with L-asparagine was applied
to get exfoliated 2D NiFe-LDH with 2 nm thickness [128]. Both asparagine exfoliated LDHs showed
Tyndall effect in aqueous suspension, indicating the formation of stable colloids. While the nanosheets
of CoAl-LDH showed relatively lower affinity to H2O2 (Km = 22.1 mM), NiFe-LDH and bare HRP
had similar values with 2.4 and 3.7 mM, respectively (Table 1). The detection limit of NiFe-LDH was
estimated to be 4.4 mM H2O2. The peroxidase-like activity of NiCo-LDH was described by Su et al.
using homovanillic acid as a fluorescent dye upon reacting with H2O2 [173]. It was found that the
catalysis was strongly pH dependent and reached optimum above pH 8.3 with a linear response at
pH between 8.4 and 8.9, before plateauing at 9.6. Another peroxidase mimic, CuAl-LDH was grown
onto carbon fibers (Figure 12) after atomic layer deposition of Al2O3 and hydrothermal conversion
to the end-product [174]. Interestingly, the optimum temperature for this material was 70 ◦C, but at
60 and 80 ◦C, it showed similar efficiency. Activity also grew when using more catalyst, indicating
that the reaction was not diffusion controlled. It was also shown that radical scavengers inhibit the
catalytic reaction in a great manner. Peroxidase nanozyme CoFe-LDH was used as catalyst to obtain
fluorescent polydopamine (PDA) from its monomer [175]. This procedure avoided using concentrated
H2O2 and yielded shorter reaction times. PDA is strongly fluorescent in aqueous solutions which
is quenched by Fe3+ ions through coordination. However, intensity is restored when strong iron
complexing pyrophosphate is introduced, with good linearity and selectivity. Another detection is
possible through the addition of pyrophosphatase, which decomplexes the quenching Fe3+ ions and
lower fluorescent signal is observed.
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Figure 12. TEM micrograph of carbon fiber (CF) (a) and CF/Al2O3 (b). SEM micrograph of CF/CuAl-LDH
(c). TEM and HRTEM images of CF/CuAl-LDH (d–f). Absorbance in different reaction systems (g)
and in different types of LDHs (h). Reproduced from Reference [174] with permission from the Centre
National de la Recherche Scientifique (CNRS) and the Royal Society of Chemistry.

Recently reported MnFe-LDH possessed catalase mimicking activity and exhibited photothermal
effect [176]. Methylene blue loading enhanced the efficacy of O2-dependent photothermal phenomenon.
This way, the phototherapic effect in hypoxia cancer cells were gapped, as demonstrated in human cells
and mice, in which the relative size of tumor was also reduced. We mention that even though it was
not used as an antioxidant, rather a prooxidant, but Fe2+ bearing FeAl-LDH was used to decompose
H2O2 with a Fenton-type mechanism inducing apoptosis in cancer cells through the generated OH·
and OOH· radicals [129].

7. Montmorillonites (MMTs)

Montmorillonites are sheet-like silicate minerals with anionic layers and feasible,
water-exchangeable cations between the individual sheets [31,130,177]. Their charging features,
therefore, are the reverse of the already discussed LDHs. Hence, MMTs may possess antioxidant
capacity by their own through fixing antioxidant compounds in their structures (e.g., intercalation or
physical adsorption) or by the preparation of composite materials with synergistic nanomaterials.

Regarding intercalated MMTs, Baek et al. constructed GSH-containing MMT, coated with
poly(vinylacetal diethylaminoacetate) (AEA) [130]. GSH is the most common antioxidant material
in the body, but with low bioavailability, in case it is taken in orally. Carriers can overcome this
barrier and it was found that GSH and GSH-MMT had an ABTS radical scavenging activity of ca.
60%. Diethyl aminoacetate coating was also introduced as a protective layer, which did not interfere
with the antioxidant effect. After oral administration for mice, the concentration of GSH significantly
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grew in liver, to which delivery of free GSH is minimal. Naturally occurring ionic species may also
be intercalated from plant extracts, e.g., antioxidants from blueberry (Vaccinium corymbosum) that
provided an intelligent potential food packaging nanomaterial, which is color-sensitive to pH [131].
Compared to the negligible DPPH scavenging activity of pure MMT (which probably arose from
adsorption), the blueberry extract-modified clay showed exceptional activity with ca. 40% scavenging.

An antioxidant activity, close to the one of ascorbic acid, was assigned to the eugenol-MMT hybrid
that was used as a filler in poly(3-hydroxybutyrate)-thermoplastic (PHB-TPS) starch composite that
resulted in a functional material with evolved heat resistance and mechanical properties that also
possessed antioxidant and antifungal properties [132]. The peroxidase nanozyme activity of hemin was
demonstrated after adsorbing its highly active monomeric form in 7 mg/g dose on MMT [133]. Earlier,
it was demonstrated that histidine amino acid residues activate the catalytic activity of HRP [178],
which was substituted with intercalated Hsm in the case of hemin-MTT. This way, the relative catalytic
activity of the MMT composite jumped to over 350% at 60 ◦C, where the performance of natural
HRP decreased.

A chitosan (CS) coated MMT@(Ca-alginate) nanoparticle synthesis was recently reported with
covalently bonded HRP enzyme on its outer surface to degrade aflatoxin B1 [179], a dangerous poison
produced by molds. The role of negatively charged MMT in this structure was to promote aflatoxin
adsorption and to attract more chitosan chains. Multiple chitosan/MMT composites were prepared in
Fernando’s group as a biocompatible substitute of classic polymer food wrappers [177,180,181]. These
materials had adequate physical characteristics (tensile strength, optical properties, etc.) and were
incorporated with rosemary (Rosmarinus officinalis) and ginger (Zingiber officinale) essential oils. This
incorporation provided the composite with good antimicrobial activity and antioxidative protection
for applications in poultry packaging. Yan et al. used α-tocopherol (TOC) in a chitosan-MMT matrix
as preservative for wrapping sliced ham with film of the material [134]. The film coating showed
good antioxidant activity in DPPH assay even after 16-day storage, while in lipid oxidation tests, the
remarkable antioxidant effect was expressed after 120 days.

Regarding MMT composites with other inorganic materials of overall antioxidant capacity,
sulfide-MMT structures were under investigation previously. A facile way was worked out to construct
ZnS/MMT composite via coprecipitation [135]. This material acted as a peroxidase mimic in a rapid
fashion with merely a few minutes to form oxidized TMB. The activity measured was similar in the pH
range 4–7 and from 20 to 70 ◦C. Besides, outstanding substrate affinity was achieved, compared to
bare HRP (148-fold and 8-fold increase towards H2O2 and TMB, respectively). A CuS/MMT composite
was also considered as a peroxidase mimic with short timeframe (< 1 min) to reach colorimetric
visualization with poorer kinetic parameters [136] (Table 1). Reaction kinetics for ZnS/MMT were
also proved by EPR, trapping and detecting the OH· radicals formed from H2O2 by DMPO spin trap.
A very similar coprecipitation method, starting from thioacetamide, was used to obtain Ag2S/MMT
composite [137]. The pH and temperature dependence profiles were fairly similar to other MMT
systems and it was found that pure MMT also possessed peroxidase activity. In this case, terephtalic
acid was used as fluorescent OH· radical trap to confirm the mechanism. Recently, the composite of
MMT and CoNiSx was prepared, and remarkable peroxidase activity was observed [138]. It exhibited
good affinity towards H2O2 and TMB substrates, often surpassing bare HRP. Contrary to other MMT
composites, elevated temperatures had negative impact on its activity above 35 ◦C, but at ambient
temperatures showed linear response to H2O2.

MMT was also found to be the ideal clay mineral for soil organic matter modification linked with
HRP adsorption [139]. Furthermore, MMT retained 91.3% activity of bare HRP and was reusable for
phenol removal, tested for six cycles with slight activity loss.

Heterobinuclear [140] and mononuclear [141] Cu2+ complexes containing amine and amino
acid ligands were intercalated between the layers of MMT to obtain a heterogeneous catalysts for
dismutation of superoxide radicals. The composites showed significant SOD-like function in the
test reactions, in which the superoxide radical anions were generated by a photochemical reaction.
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Finally, montmorillonite-intercalated Cu2+-tris(2-aminoethyl) amine complexes were highly active in
decomposition of H2O2, i.e., they acted as an excellent catalase mimicking antioxidant composite [182].

8. Miscellaneous Structures

Structures listed in this paragraph either did not fall under the categories listed before or were
borderline (e.g., CeO2@CO2(OH)2CO3) or were the only example of the material (see Fe2O3).

He et al. published the synthesis of flaky CoP 2D particles on Ni foam substrate [142]. First,
Co(OH)2 was built on the metal carrier, which was phosphorylated with NaH2PO2 in a hydrothermal
manner. The precursor Co(OH)2 had mediocre activity in the peroxidase test reaction, the end product
possessed outstanding performance, while Ni foam (NF) was completely inert. More importantly,
the same piece of catalyst showed the same activity for 12 cycles, which was unaffected by pH (2–14)
and temperature (0–95 ◦C). The material was successfully used to detect uric acid in serum samples
(with overall 5% error compared to clinical method) and in real urine samples as well with good
selectivity to the substrate (Figure 13).
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Co(OH)2/NF (c) and CoP/NF (d); the robustness and versatility of the CoP/NF nanozyme against
harsh pH (e) and temperature (f). Reprinted from (Uricase-free on-demand colorimetric biosensing
of uric acid enabled by integrated CoP nanosheet arrays as a monolithic peroxidase mimic. 1021, He,
Y. F.; Qi, F.; Niu, X. H.; Zhang, W. C.; Zhang, X. F.; Pan, J. M., Anal. Chim. Acta 2018, 1021, 113–120)
Reference [142]. Copyright (2020), with permission from Elsevier.
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A facile detection method based on CeO2 nanoparticles on 2D CO2(OH)2CO3 was introduced by
Alizadeh et al [143]. After the material was characterized as an excellent peroxidase mimic with higher
maximum rate than HRP’s, a paper based colorimetric immunoassay method was developed with
smartphone image analysis selective to carcinoembryonic antigen.

Deshapriya et al. used aminated and artificially cationized BSA (bovine serum albumin) as
an overcharging agent on negatively charged, exfoliated ZrP (standing for -Zr(HPO4)2) sheets [183].
This led to the possible immobilization of numerous enzymes, including catalase. For GOx and
tyrosinase, loading up to 640 and 380 mass% was achieved, respectively. Moreover, the bound enzymes
kept their native structure and at least 80% of their activity, excluding tyrosinase with a value of ca. 40%.

Iron containing simple compounds were also tested as peroxidases. Fe3(PO4)2 × 8 H2O sheets
in a flower-like array were utilized as a potent nanozyme to detect H2O2 with over 30 ionic and
non-ionic abundant substances tested as an interfering agent, but the detection was considerably
not distorted [144]. Glucose sensing was also achieved through the glucose-GOx reaction with good
selectivity amongst other bioactive compounds. Tanaka et al. started from Fe3+-glycerate precursor
and applied thermal treatment to obtain porous Fe2O3 flakes [145]. It was found that lower pyrolysis
temperatures resulted in better Fenton-type activity for the synthesized Fe2O3, since those products
had higher surface area and higher hexagonal α-Fe2O3 content with more active sites compared to
cubic γ-Fe2O3 (Table 1).

9. Summary and Outlook

As discussed above, antioxidant compounds of 2D structure has attracted widespread
contemporary interest in the scientific and technological communities, wherever the goal is to
decrease oxidative stress or to develop ROS sensing devices. The main advantages of the 2D structures
are the high specific surface area and that processable samples for homogeneous film formation (e.g.,
for electrode modifications) can be easily prepared. Given the fact that these compounds are excellent
candidates as building blocks of sensing materials, the ease of synthesis even in larger amount will
definitely help in the commercialization of sensors and detectors.

Enzyme-loaded 2D NPs represent a very efficient ROS consuming class, however, the high
sensitivity of the proteins to the environmental conditions often remains upon immobilization. Such
a low resistance against pH, pressure and temperature can be improved by applying enzyme mimicking
metal complexes as catalytic center in the 2D NP-based hybrids, but their efficiencies usually lag
behind the one of the native enzymes. A returning problem in case of many molecular antioxidants is
their low water solubility and thus, low bioavailability. The insufficient solubility may be increased
by loading the 2D particles of high specific surface area with the antioxidant molecules, provided
the carrier can be dispersed in liquid media. The new wave in the field of 2D antioxidants are the
so-called nanozymes, which are able to decompose ROS without embedding enzymatic or molecular
antioxidants in their structure. Metal-containing compounds hold great promise towards development
of such 2D nanozymes.

Apart from the 2D antioxidant materials reported to date, novel hybrid materials are continuously
being developed in the academic and industrial laboratories. Achieving excellent radical scavenging
activity is the main priority, however, other important issues must also be considered. These include the
physiological effect on living organisms, i.e., cell toxicity assessment is a must prior to the biomedical
application. In addition, dispersions of antioxidant 2D particles are applied in most of the systems,
therefore, the stability of the dispersions has to be precisely controlled. Unwanted particle aggregation
processes lead to significant loss in the antioxidant activity and to non-processable samples. The stability
issue can be solved by choosing appropriate stabilizing agents. Comprehensive studies in this topic
are missing in the relevant literature.
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