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Abstract Increasing evidence from epidemiological,
clinical, and experimental studies indicates that
cerebromicrovascular dysfunction and microcirculatory
damage play critical roles in the pathogenesis of many
types of dementia in the elderly, including both vascular
cognitive impairment (VCI) and Alzheimer’s disease.
Vascular contributions to cognitive impairment and de-
mentia (VCID) include impairment of neurovascular cou-
pling responses/functional hyperemia (Bneurovascular
uncoupling^). Due to the growing interest in understand-
ing and pharmacologically targeting pathophysiological

mechanisms of VCID, there is an increasing need for
sensitive, easy-to-establish methods to assess
neurovascular coupling responses. Laser speckle contrast
imaging (LSCI) is a technique that allows rapid and
minimally invasive visualization of changes in regional
cerebromicrovascular blood perfusion. This type of im-
aging technique combines high resolution and speed to
provide great spatiotemporal accuracy to measure
moment-to-moment changes in cerebral blood flow in-
duced by neuronal activation. Here, we provide detailed
protocols for the successful measurement in neurovascular
coupling responses in anesthetized mice equipped with a
thinned-skull cranial window using LSCI. This method
can be used to evaluate the effects of anti-aging or anti-AD
treatments on cerebromicrovascular health.

Keywords Neurovascular coupling . Functional
hyperemia . Laser speckle contrast imaging . Laser
speckle contrast analysis . LASCA . Laser speckle
imaging . LSI

Neurovascular uncoupling in aging and Alzheimer’s
disease

It is well recognized that the brain consumes more
energy than any other human organ. Over 20% of the
body’s total energy requirements are spent to fuel the
brain, which in turn only accounts for 2% of the total
body mass. Moment-to-moment regulation of cerebral
blood flow (CBF) is crucial since inadequate supply of
glucose and oxygen to an active region of the brain
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would cause cell dysfunction or injury within a very
short time frame. In healthy subject during times of
increased neural activity, a homeostatic mechanism
termed neurovascular coupling (functional hyperemia)
matches the localized demand for glucose and oxygen
with increased blood supply to ensure normal brain
function. Neurovascular coupling is a feed-forward
mechanism which requires the coordinated cellular in-
teraction between neurons, astrocytes, pericytes, vascu-
lar endothelial and smooth muscle cells (Petzold and
Murthy 2011; Stobart et al. 2013; Wells et al. 2015;
Chen et al. 2014; Tarantini et al. 2016). A large body
of evidence derived from both clinical and experimental
studies demonstrate that aging significantly impairs
neurovascular coupling responses, which likely contrib-
ute to cognitive decline in the elderly (Balbi et al. 2015;
Fabiani et al. 2013; Sorond et al. 2013; Tong et al. 2012;
Toth et al. 2014; Zaletel et al. 2005; Park et al. 2007).
There is also growing evidence for microvascular path-
ophysiological alterations having a causal role in the
development of cognitive decline associated with
Alzheimer’s disease (AD) (Tarantini et al. 2016;
Snyder et al. 2015).

An early role of vascular dysregulation in the pro-
gression of AD was underscored by recent studies of
late onset AD using brain images and plasma bio-
markers from the Alzheimer’s Disease Imaging Initia-
tive (ADNI) (Iturria-Medina et al. 2016). Vascular dys-
regulation in AD includes deficiencies in cerebrovascu-
lar reactivity, CBF, and neurovascular coupling re-
sponses (Girouard and Iadecola 2006; Gorelick et al.
2011; Hock et al. 1997; Rombouts et al. 2000).
Neurovascular coupling dysfunction of AD has been
replicated in experimental studies showing that in
mouse models of AD, neurovascular coupling is also
significantly impaired (Rancillac et al. 2012; Shin et al.
2007; Royea et al. 2017), at least in part, due to en-
hanced oxidative stress (Nicolakakis et al. 2008; Park
et al. 2008; Park et al. 2005) arising from mitochondrial
dysfunction and inflammation (Lacoste et al. 2013;
Ongali et al. 2014). Importantly, recent evidence sug-
gests that pharmacological interventions that rescue
functional hyperemia result in improved cognitive func-
tion in mice with AD pathologies (Tong et al. 2012;
Nicolakakis et al. 2008). Due to the increased realization
that understanding of the mechanisms underlying
neurovascular dysfunction is critical for developing
novel therapeutic interventions to prevent or treat AD,
there is an increasing need in many laboratories to adapt

methodologies to investigate neurovascular coupling
responses in mouse models of aging and AD (Lacoste
et al. 2013; Ongali et al. 2014; Papadopoulos et al. 2016;
Hamel et al. 2016; Nicolakakis and Hamel 2011;
Papadopoulos et al. 2014). In this paper, published as
part of the BMethods for Geroscience^ series in the
BTranslational Geroscience^ initiative of the journal
(Callisaya et al. 2017; Kane et al. 2017; Kim et al.
2017; Liu et al. 2017; Meschiari et al. 2017; Perrott
et al. 2017; Shobin et al. 2017; Ashpole et al. 2017;
Bennis et al. 2017; Deepa et al. 2017; Grimmig et al.
2017; Hancock et al. 2017; Konopka et al. 2017;
Podlutsky et al. 2017; Sierra and Kohanski 2017; Tenk
et al. 2017; Ungvari et al. 2017a; Ungvari et al. 2017b;
Urfer et al. 2017a; Urfer et al. 2017b), we present an
easy-to-adapt protocol for assessment of neurovascular
coupling responses in mice in both geroscience and AD
research. As in these studies, experimental animals usu-
ally undergo behavioral testing prior to terminal exper-
imentation; we aimed to provide a protocol that is rela-
tively fast allowing investigators to process larger co-
horts of animals. In our experience, assessment of
neurovascular coupling responses in 10–15 animals
per week is realistic using this protocol.

Laser speckle contrast imaging (LSCI) for assessment
of neurovascular coupling responses

The accurate measurement of changes in local CBF in
response to neuronal activation is essential for the as-
sessment of the efficacy of physiological neurovascular
coupling or its age- or disease-related dysfunction in
experimental models. The traditional, real-time moni-
toring of local CBF in the cerebral cortex relies on laser
Doppler flowmetry (i.e., the measurement of velocity
with the aid of the frequency shift caused by the Doppler
effect), which is a valid approach with excellent tempo-
ral resolution, but provides no information as to the
spatial variation of flow. Still, spatial resolution is de-
sired when a small microvascular bed responding to the
activity of a distinct neuron population needs to be
identified and monitored (e.g., within the barrel cortex
of the mouse) (Ayata et al. 2004), or when irregular flow
patterns are to be visualized in experimental models of
cerebral ischemia (Bere et al. 2014). Laser Doppler
flowmetry can be applied in a scanning mode to obtain
two-dimensional relative flow maps (Lauritzen and
Fabricius 1995), with the limitation that the mechanical
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scan may not provide high enough resolution (Briers
2001; Tew et al. 2011).

As an alternative to Laser Doppler flowmetry, LSCI
was first introduced for the mapping of microvascular
perfusion in various tissues including the skin and the
retina (Briers 2001; Ruth 1990; Tamaki et al. 1994), and
was later adapted and found highly suitable to create
flow maps of the superficial layers of cerebral cortex
(Dunn et al. 2001). LSCI flow maps are computed
using fluctuating intensity of the random interference
effect known as speckle; still, LSCI and laser Doppler
flowmetry both derive flow information on the basis of
the same physical phenomenon and yield comparable
results (Briers 2001; Tew et al. 2011). With regard to the
cerebral cortex, comprehensive evaluation of LSCI
against laser Doppler flowmetry has demonstrated that
the two approaches deliver correlating flow data and are
equally valid and powerful, with LSCI having the ad-
vantage of a good spatial resolution (Ayata et al. 2004).
In particular, laser Doppler flowmetry and LSCI were
found similarly suitable for the characterization of CBF
changes in response to whisker stimulation, CO2 chal-
lenge, or after middle cerebral artery occlusion in ro-
dents (Ayata et al. 2004).

A distinct additional benefit of using LSCI is that it
can be effectively combined with other imaging modal-
ities, allowing the exact spatial and temporal correlation
of optical signals. For instance, relative changes in ce-
rebral blood volume and hemoglobin saturation can be
achieved by recording intrinsic optical signals at speci-
fied wave lengths (i.e., green or red, respectively) simul-
taneous with CBF variations visualized by LSCI (Bere
et al. 2014; Farkas et al. 2010). In addition, spectroscop-
ic measurements using multiple wavelengths—rather
than a single light source of a specific, narrow range—
can yield quantitative data on hemoglobin saturation
parallel with relative changes in CBF assessed by LSCI
(Dunn et al. 2003). Finally, LSCI has been very suc-
cessfully integrated into multi-modal imaging systems,
which visualize membrane potential changes in the ce-
rebral cortex (i.e., the intensity of the optical signal
emitted by a voltage-sensitive fluorescent dye increases
with decreasing transmembrane potential) (Farkas et al.
2010; Obrenovitch et al. 2009), or image variations of
pH in the nervous tissue (i.e., fluorescence intensity of a
pH-sensitive dye increases with deepening acidosis)
(Menyhart et al. 2017). These approaches are highly
pertinent and very powerful, because the exact spatial
and temporal match of individual modalities offers the

opportunity to draw specific conclusions about their
coupling patterns (i.e., neuronal activation, metabolic
status, and CBF).

Imaging apparatus

Many laboratories build their own setups for LSCI using
a CCD camera with optics and custom-written image
acquisition software. The protocol below was specifical-
ly optimized for experiments in geroscience and AD
research for laboratories, whose primary expertise is not
in cerebrovascular physiology, but who want to quickly
a d o p t L SC I - b a s e d me t h o d s t o e v a l u a t e
cerebromicrovascular health and/or assess potential ther-
apeutic interventions. The experiments shown in Fig. 1A
were conducted using the commercially available high-
resolution PeriCam PSI laser speckle imager (Perimed,
Järfälla, Sweden) in 11-month old C57BL/6 and TG2576
mice overexpressing human APP. This device has high
magnification optics, which resolves details of 20 μm/
pixel in areas up to 20 × 27 mm with a fixed working
distance of 10 cm. Individual data points of CBF changes
in response to whisker stimulation are represented in
Fig. 1B.

Experimental procedures

1) Experiments using laboratory animals must be
performed in accordance with institutional and
federal guidelines. The procedures described here
have been approved by the Animal Care and Use
Committees of the participating institutions.

2) The surgeries described in the protocol are termi-
nal. The methods are optimized for quick process-
ing of larger cohorts of animals. This protocol can
be completed within 3 h.

3) Mouse anesthesia: The following methods of an-
esthesia are appropriate for assessment of
neurovascular coupling measurements in rodents:
(1) isoflurane (Masamoto et al. 2007), (2) keta-
mine (85 mg/kg, i.m.) and xylazine (3mg/kg, i.m.)
(Tong et al. 2012), and (3) alpha chloralose (Norup
Nielsen and Lauritzen 2001; Hillman et al. 2007).
For isoflurane use, induce anesthesia with 4%
isoflurane in oxygen mix in an induction chamber
using a surgical isoflurane vaporizer (Harvard Ap-
paratus). Monitor the surgical depth by observing
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absence of the toe pinch reflex. Mice sedated with
alpha chloralose can be first induced with 4%
isoflurane, and then given a 114-mg/kg i.p. injec-
tion of alpha chloralose (Low et al. 2016; White

and Field 1987). Isoflurane dose should be de-
creased for approximately 15 min until the alpha
chloralose takes effect. Alpha chloralose can be
dissolved in an 80:20 mixture of 1× phosphate

Fig. 1 a Representative
neurovascular coupling responses
between C57BL/6 and TG2576
mouse overexpressing human
APP. Representative images of
blood perfusion maps (upper
panel) obtained using laser
speckle contrast imaging in age-
matched wild-type control (left)
and in the mice overexpressing
human amyloid precursor protein
(right). The differential perfusion
maps in the middle and bottom
panels show regional increases in
cerebral blood flow (white
arrows), specifically in
contralateral somatosensory
whisker barrel cortex during
mechanical whisker stimulation.
Anatomically, the whisker barrel
cortex is located 1 mm rostral and
3 mm lateral from the bregma.
Thinned skull preparations do not
require the skull to be completely
transparent (i.e., extremely thin)
as laser speckle imaging can be
performed through a partially
thinned and smoothed skull. b
Overexpression of human APP in
TG2576 mice results in decreased
neurovascular coupling
responses. The figure represents
individual data points of cerebral
blood flow changes in response to
whisker stimulation in C57BL/6
and TG2576 mice
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buffered saline: polyethylene glycol. At 60 min,
alpha chloralose-sedated mice should be given an
additional half-dose bolus. Note that alpha chlo-
ralosemay have unwanted effects on heart rate and
pCO2, which may confound measurements, so
careful monitoring of the animals is recommended
(Low et al. 2016).

4) If desired, inject 1 mg/kg of dexamethasone (s.c.,
in the scruff of the neck) to reduce cerebral swell-
ing and reduce airway secretions during surgery
(Winship 2014).

5) Mice are endotracheally intubated and ventilat-
ed (MousVent G500; Kent Scientific Co., Tor-
rington, CT). For endotracheal intubation, use
the 20G plastic tube from intravenous catheter
without the provided metal guide (Safelet Cath,
Nipro Corp.). Connect the endotracheal tube to
the mouse ventilator and monitor end-tidal CO2

to keep blood gas values within the physiolog-
ical range (Tarantini et al. 2015; Toth et al.
2015). Blood gases (pO2 and pCO2) and pH
should be measured at the beginning and at
the end of the experiment

6) Apply eye ointment (Liposic ophthalmic gel,
Bausch and Lomb) onto the eyes to prevent
desiccation.

7) Use a homeothermic temperature controller (Kent
Scientific Co., Torrington, CT) to maintain rectal
temperature at 37 °C (Toth et al. 2014).

8) Cannulate the right femoral artery to continuously
monitor arterial blood pressure using a pressure
transducer (Living Systems Instrumentations, Bur-
lington, VT) (Toth et al. 2014). The femoral artery
catheter can be used also for systemic drug admin-
istration or, alternatively, a venous catheter can be
placed in the femoral vein.

9) Shave the skin overlying the desired imaging
location.

10) Place the mouse in a stereotaxic frame (Leica
Microsystems, Buffalo Grove, IL).

11) Inject 0.01 ml of the local anesthetic bupivicaine
(5 mg/ml in saline, s.c.) at the incision path. Make
a 1-cm longitudinal incision along the midline of
the skull. Pull aside the skin to expose the skull
and hold in place with bulldog serrefines. Remove
the periosteum with fine forceps; clean the surface

Fig. 2 Illustration of the procedures for preparation of an acute
thinned-skull closed cranial window for laser speckle contrast
imaging. a Place the mouse into stereotaxic frame. Remove the
hair and perform the midline skin incision and retract the skin to
expose the skull surface. Thin the skull over the brain region of
interest (over the whisker barrel cortex) on both sides using a
precision dental drill. Use cold artificial CSF to prevent

overheating. bOnce the skull is thinned, wipe-dry the skull surface
and apply a drop of cyanoacrylate evenly over the cranial window
and allow it to dry for 5min. cOnce cured, cover the cyanoacrylate
layer with nitrocellulose lacquer and allow to dry for 5 min. d
Position the laser speckle contrast imager 10 cm above the cranial
window
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of the skull with sterile gauze and cotton tip appli-
cators until dry and clear of blood.

12) Define the borders of the planned thinned-skull
cranial window using a permanent marker.

13) Use a precision dental drill for thinning the skull
over the region of interest until translucent. To
avoid producing excess heat and potentially dam-
aging the brain, continually move the drill bit
around region of interest, using a stochastic pat-
tern. Regularly flush the thinned area with cold
HEPES-buffered ACSF to avoid heat-induced
damage to the superficial layers of the brain
(Fig. 2A). Use a scalpel for the final stages of
thinning. The thickness of the skull is appropriate
for LSCI when pial vessels are visible. HEPES-
buffered ACSF: in 500 ml of distilled H2O, NaCl
3.94 g, KCl 0.2 g, MgCl2 × 6H2O 0.102 g,
CaCl2 × 2H2O 0.132 g, NaHEPES 0.651 g; adjust
the pH to 7.4.

14) Once the skull is thinned, wipe dry the surface and
apply a drop of cyanoacrylate (Fig. 2B). Once
cured (after 5 min), administer a thin layer of
nitrocellulose lacquer to the skull to allow for even
light spread on the thinned bone surface (Fig. 2C).
An alternative would be to apply a layer of low-
melt agarose and cover it with a coverslip.

15) After 5 more minutes of curing time, place the
mouse and frame under the laser speckle contrast
imager (Perimed, Järfälla, Sweden) for imaging
(Fig. 2D). The laser speckle contrast imager is
placed 10 cm above the thinned skull.

16) The depth of the anesthesia should be monitored
throughout the experiment (tail pinch). If
isoflurane anesthesia is used at this time the
isoflurane is lowered to 1% maintenance dose.
Higher dose of isoflurane may result in loss of
autoregulation. The arterial blood pressure should
be monitored and be within the physiological
range throughout the experiments (90–
110 mmHg).

17) Acquire a stable baseline CBF measurement.
18) To achieve the highest CBF responses, the right

whiskers/whisker pad can be stimulated either me-
chanically of electrically. For mechanical stimula-
tion of the whiskers, a cotton swab is used to
carefully and gently brush the mouse whiskers
from side to side for 30 s at ~5 Hz while recording
the changes in blood flow. Alternatively, the right
whisker pad can also be stimulated by a bipolar

stimulating electrode placed to the ramus
infraorbitalis of the trigeminal nerve and into the
masticatory muscles. The stimulation protocol
used to investigate neurovascular coupling con-
sists of ten stimulation presentation trials with an
intertrial interval of 70 s, each delivering a 30-s
train of electrical pulses (2 Hz, 0.2 mA, intensity,
and 0.3-ms pulse width) to the mystacial pad after
a 10-s prestimulation baseline period.

19) Capture differential perfusion maps of the brain
surface. Changes in CBF should be assessed
above the left barrel cortex in ~six trials, separated
by 5 min intervals. Specific neurovascular cou-
pling responses are manifested in a well-defined
region in the contralateral barrel cortex (Fig. 2). To
demonstrate specificity of the responses in Fig. 2,
the simultaneous measurement of blood flow
changes to unilateral whisker stimulation in both
hemispheres is shown. It is recommended that the
side of whisker stimulation be alternated once to
check the contralateral responses.

20) Average changes in CBF and express the values as
percent (%) increase from the baseline value
(Kazama et al. 2004). It is recommended that the
experimenter be blinded to the treatment of the
animals.

21) At the end of the experiments, transcardially per-
fuse and decapitate the animal. The brains should
be immediately removed and hemisected for sub-
sequent biochemical and histological analyses
(e.g., measurement of AD-specific brain
biomarkers).
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