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Abstract

This thesis explores the possibilities of using quantum dots (QDs) in nanoscale energy har-
vesters converting heat into electrical energy, i.e. heat engines. From a theory perspective,
these possibilities have been investigated for almost two decades, and interest in them seem
to continuously increase over time. However, a high degree of experimental control over
the manufacturing and operation of QD engines have only recently been achieved. This
opens up the possibility of verifying the theory predictions and brings new questions to be
answered, which is where this thesis aims at making a contribution. The author’s contri-
butions to the work that the thesis builds upon are theoretical, but are often used together
with experimental results for synergistic effects.
The thesis starts with an introduction to relevant concepts in classical thermodynamics and
a quantum mechanical description of electron states in QDs. This is followed by a discus-
sion of electron transport in QDs, as well as an introduction to the master equation based
approaches used to model the relevant experimental devices.
There are three studies included in the thesis, all of which have been peer-reviewed and
published in scientific journals. The details of the physics relevant for each one are presen-
ted together with a summary of the studies. The first is an investigation of the performance
limits of an experimental implementation of a steady-state QD heat engine, in which the
Curzon-Ahlborn efficiency is observed at maximum power and the highest efficiency was
in excess of 70 of the Carnot efficiency. This is the first verification that QDs can be used
in high efficiency heat engines. The second study investigates how to practically optimize
the output power of similar devices, and quantifies how high efficiency one can hope to
reach in other implementations of QD engines. The third study proposes an experimental
quantum engine based on a double QDwhere entangled singlet spin states are used to drive
the engine. This can be viewed as entanglement acting as the engine’s fuel.
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Populärvetenskaplig sammanfattning

Denna avhandling behandlar hur vi med hjälp av nanoteknik kan direkomvandla värme-
energi till elektrisk energi. Mer specifikt hur detta kan göras genom att använda sig av
komponenter som baseras på kvantprickar. En kvantprick, även kallad en artificiell atom,
är en struktur eller materialbit som är så liten att elektroner som befinner sig inuti kvant-
pricken inte kan röra sig fritt i någon riktning. När elektroner stängs inne i så små strukturer
(en typisk storlek är några tusen atomer) blir deras energi begränsad till vissa kvantiserade
energinivåer, precis som för elektroner som är bundna till den positivt laddade kärnan i
atomer. Därav namnet artificiella atomer. Det är denna energistruktur som gör kvant-
prickar intressanta när det kommer till att studera energiomvandling på nanoskalan.

Det absolut vanligaste sättet att omvandla värmeenergi till elektrisk energi är att använda
värmen till att värma upp en vätska eller gas som i sin tur driver en turbin kopplad till en
generator. Det är t.ex. så vi tar till vara på värmeenergin som frisläpps när vi eldar kol och
gas i fossila kraftverk eller klyver atomer i kärnkraftverk. Detta tillvägagångssätt lämpar
sig för storskaliga kraftverk men är inte kompatibelt med mikroskopiska och nanoskopiska
komponenter. Därför studeras här istället två typer av direkomvandlande komponenter
som båda baseras på kvantprickar. Syftet med forskningen som avhandlingen bygger på är
främst att studera fundamentala aspekter av energiomvandling på dessa längdskalor, inte
att designa kommersiellt gångbara komponenter.

Den första komponenttyp som studeras är en så kallad termoelektrisk generator i vilken
en temperaturskillnad över ett material inducerar en elektrisk ström. Detta kräver att
elektroner med olika energier transporteras olika bra i materialet, d.v.s. att materialet
fungerar som ett energifilter. Här är kvantprickar intressanta då elektroner som transport-
eras genom dem endast kan ha vissa kvantiserade energier, vilket är väldigt fördelaktigt för
en termoelektrisk komponent. Det har förutspåtts att en termoelektrisk generator baserad
på en enda kvantprick kan ha en väldigt hög verkningsgrad, och i extrema fall till och med
nå den absolut högsta verkningsgrad som tillåts enligt termodynamikens lagar. Denna
förutsägelse testas i en studie som är inkluderad i avhandlingen. I den lyckades vi med
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avancerad teori och experiment utförda nära den absoluta nollpunkten (-273.15 °C) veri-
fiera att sådana komponenter faktiskt kan närma sig de fundamentala gränserna för hur
effektiv energiomvandling kan vara. Samma komponent analyserades i mer detalj i en
annan studie där det undersöktes vilka arbetsförhållande som krävs för att maximera kom-
ponentens elektriska uteffekt samt verkningsgrad. Resultatet av studien kan ses som tydliga
riktlinjer för hur prestandan hos liknande komponenter enkelt kan optimeras.

Den andra typen av komponent som analyserats består av två sammankopplade kvant-
prickar där elektronerna kan hoppa mellan dem via så kallad tunnling. Speciellt för detta
system är att elektronerna kan befinna sig i ett visst sammanflätat kvanttillstånd. Genom
att ändra tunnelkopplingen mellan kvantprickarna går det att ändra energin hos detta
tillstånd. Denna princip används för att föreslå ett experiment där en dubbekvantprick
med två elektroner används för att utvinna värmeenergi från omgivningen. I förslaget
börjar elektronerna i ett sammanflätat tillstånd och kopplingen mellan kvantprickarna är
avstängd. I nästa steg ökas tunnelkopplingen snabbt till ett förutbestämt värde och elektron-
ernas energiminskning tolkas som utvunnet arbete. Efter ett tag kommer värmeenergi från
omgivningen att ha absorberas vilket gör att elektronerna övergått till andra energitillstånd.
Till slut stängs tunnelkopplingen av igen. Efteråt befinner sig elektronerna i ett tillstånd
som är nästan identiskt med det tillstånd de började i, fast utan sammanflätning. Detta är
alltså ett förslag på hur vi med hjälp av kvantprickar kan använda kvantmekanisk samman-
flätning för att utvinna värmeenergi. Analysen som utförts är helt teoretiskt, men med den
teknik vi har idag kan det vara fullt möjligt att utföra det föreslagna experimentet inom en
snart framtid.
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Introduction

The topic of this thesis is energy conversion at the nanoscale. More precisely how thermal
energy (heat) can be converted into another more useful form of energy, electrical energy.
This subject has its roots in two of the historically most important disciplines of physics,
both in regards of fundamental science and for enabling the rapid technological develop-
ment of our society, namely thermodynamics and quantum mechanics. Thermodynamics
is the study of energy, work and heat. It plays an immensely important role in all of the
natural sciences and did allow us to understand how to best use the heat produced by burn-
ing fuel to make large machines move. In other words, how to build heat-engines, such as
the steam engine, which kick-started the industrial revolution. Quantummechanics on the
other hand is used to describe tiny worlds that are far too small to be seen by the naked eye.
For example, it helps us understand elementary particles, atoms, molecules and how they
interact with one another. It was breakthroughs in quantum mechanics that allowed us to
understand the electronic properties of materials, such as why certain materials are good
conductors, and how to modify these properties to our liking. This led to the creation of
the first transistor half a century ago that paved the way for the digital revolution we have
experienced since. Because thermodynamics and quantum mechanics have typically been
deployed to describe systems of vastly different sizes, there has historically been little in-
terest in studying the union of the two. However, in recent years the ability manufacture
materials and components with nanometer, or even atomic, precision sparked an interest
in the field. Much effort has been put into answering questions such as how work, heat and
entropy should be defined and understood in the quantum realm. And more importantly
for this thesis, if we can create tiny heat-engines that make use of the special properties of
nanoscale and quantum systems to perform as good, or even better, as their classical coun-
terparts.

There is a myriad of different ways to create nanoscopic heat-engines where the laws of
quantum mechanics become important (however, to this date very few have been demon-
strated in practice), but focus here will be on engines whose central part consists of one or
more quantum dots (QDs). A QD is a spatial region inside a material where electrons are
in some way confined (or trapped). They are often described as artificial atoms since the
electrons trapped inside them have discrete energies, just like in the orbitals of atoms.
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In the research introduced in later chapters the QDs are either used in a steady state single-
electron transistor setup where energy is harvested using the thermoelectric effect, or the
spin dynamics of electrons on a double QD is used to extract thermal energy from its envir-
onment. However, before these engines are discussed any further this chapter attempts to
provide the reader with enough background information to understand how these engines
work. This is done by briefly introducing selected parts of the relevant fields of physics that
the current research builds upon, and use simple, but robust, theoretical arguments to break
down any underlying physical mechanism. The thesis is written with the aim that a ficti-
tious reader with experience in physics will be able to understand most concepts and grasp
the novelty of the research. It is my hope that all parts of the thesis can be read somewhat
independently and I will try to emphasize the main messages so that also non-physicists
can appreciate the findings, and hopefully learn something new.

The thesis is organized as follows. The first chapter introduces the scientific background
needed to fully understand the main results in later chapters. It focuses on the most im-
portant concepts of classical thermodynamics and of electron states in nanoscale systems.
It is written with the intent that a reader familiar with the former, but not the latter, will be
able to appreciate the main results as much as a reader with the inverse experience. This is
followed by a chapter describing electron transport though QD-based devices. Much em-
phasis is put on the theoretical approaches used to model and analyze the engines studied.
That chapter is rather technical and requires a fair amount of knowledge about quantum
mechanics, in particular second quantization and density matrices, to fully grasp. How-
ever, knowledge of the specific theory it is not completely necessary when going in to the
remaining chapters. The topic of the third chapter is the thermoelectric effects in general,
and in QD devices in particular. This is also the topic of paper I and II, which are summar-
ized here. Moving on to chapter four, single bath (quantum) heat engines will be discussed
together with the summary of paper III. Finally, the thesis ends with an outlook.

1 Classical thermodynamics

Thermodynamics is a true giant of modern science that is frequently employed in all of the
natural sciences. Nowadays it is probably most associated with the descriptions of states of
matter, and changes between states of matter (phase transitions), but the field is far richer
than that. Here we are more interested in using it to study conversion between different
types of energy. Primarily how we can take heat, which is generally considered a useless
form of energy, and convert it into useful work, in our case electrical energy. This approach
has great historical value as much of the foundation of what we today call thermodynamics
was developed in the 18th and 19th century in order to create more efficient steam engines.
These engines became widely used in the 1700s, and along with their success grew a desire to
understand how to best convert heat into motion. One of the biggest breakthroughs came
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with Sadi Carnot’s book Reflections on the Motive Power of Fire [1], in which he discussed
energy, power and efficiency of heat engines, as well as introduced the notion that their
fundamental performance limits are independent of engine designs. Although Carnot did
not include any mathematical proofs to support his claims he successfully inferred what
properties a heat engine should have to maximize its performance (work and efficiency).
He also argued that the maximum possible efficiency is only determined by the operat-
ing temperatures (of the heat source and heat sink, see Section 1.2), but did not calculate
how high this efficiency is. Building upon this work Clausius introduced the notion of
entropy [2], which is a quantity that only depends on the state of a given system. Entropy
is commonly viewed as the degree of disorder of a system, but it can be more practical to
think of it as a measure of a system’s resistance to change. Today the concept of entropy
is as central to thermodynamics as energy and work. By the late 1800s a new approach to
thermodynamics, statistical mechanics, arose with contributions from many well-known
physicists such as Boltzmann, Gibbs, Maxwell and Einstein [3, 4]. Statistical mechanics
can be viewed as a microscopic approach to thermodynamics where properties of a system
are calculated by considering collections of a great number of individual particles and their
interactions. As an example, the pressure and temperature of a gas can be obtained by
considering only the positions and velocities of the individual particles that make up the
gas. Statistical mechanics came out as a very successful theory and is a crucial tool to have
in one’s toolbox when studying the thermodynamics of nanoscale systems, especially since
the number of particles under consideration is typically very small. The concepts intro-
duced in this chapter take advantage of this approach. The history of thermodynamics is of
course far richer than highlighted here, but for our purposes the preceding history lesson
will suffice, and we will move on to an introduction of the relevant concepts for building
nanoscale heat engines.

1.1 The laws of thermodynamics

In this thesis a system is thought of as a spatial region that can accommodate particles of a
certain kind, e.g. a QD that can be populated with up to a few electrons, or metallic leads
(contacts) where the number of electrons become macroscopic. A system can be in one of
many well-defined states where the likeliness of the system being in a particular state can
be calculated using statistical mechanics. The systems under consideration are generally
connected to other systems with whom they can exchange particles and/or energy. The
change of a system’s internal energy U is expressed as

dU = dW+ dQ, (1)

where the notions of work W and heat Q are introduced. This is known as the first law
of thermodynamics, and will serve as a definition of heat where it makes up the part of an
energy change that cannot be used to perform work, at least not directly.
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The second law of thermodynamics can be expressed in several ways, but the most com-
mon interpretation is that the entropy S of an isolated system never decreases over time,
i.e. spontaneous processes are always, on average, associated with an increase in entropy

Sfinal ≥ Sinitial or dS ≥ 0. (2)

Equality is only found when the initial and finial states are connected by adiabatic (no
heat exchange) reversible processes. A reversible process is a process without losses such
that when done in reverse, by infinitesimal changes is some control parameter, is the exact
inverse of the original process. This requires that the process is quasistatic, meaning that
the system will remain in equilibrium at all times. A further characteristic of reversible
processes is that dSrev = dQ

T , for which the first law can be rewritten

dU = dW+ TdS. (3)

All natural processes, however, have some degree of irreversibility associated with them
since almost all systems have some inherent losses, and a process is never truly quasistatic
as that would require an infinite amount of time. For irreversible processes dSirr > dQ

T .

A consequence of the second law is that heat always flows from a hot to a cold heat bath (also
known as reservoir) in contact with one another if no energy is being spent to prevent it, or
to make it move in the opposite direction. This can be understood from a simple example.
Consider two reservoirs, one cold at temperature TC and one hot at TH, in contact with
one another such that energy can be transferred between the two. If no work is being per-
formed on, or extracted from, the system then dW = 0, both in total and for each reservoir.
The first law provides the energy change in the hot reservoir dUH = dQH, which must be
compensated for by the change in the cold reservoir, dQC = −dQH, if no energy exchange
with the environment is allowed. The second law states that dStot = dSC + dSH ≥ 0, from
which one obtains

dSC + dSH =

(
dQC

TC
+

dQH

TH

)
=

(
1
TC

− 1
TH

)
dQC ≥ 0. (4)

As a result, we can see that dQC > 0, i.e. the energy of the cold reservoir increases and
thus heat must flow from hot to cold. One can also see that dStot = 0 requires either
dQC = dQH = 0 (uncoupled reservoirs) or TC = TH (equilibrium).

1.2 Heat engines

A heat engine uses the energy flow between reservoirs at different temperatures to generate
useful work. The term heat engine has traditionally been used for devices that transform
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thermal energy into useful mechanical energy, although in this thesis it will also be used to
describe devices that transform thermal energy into electrical energy. A very crude diagram
showing the different parts of a traditional heat engine can be seen in Fig. 1. It consists
of two reservoirs, each in a thermal equilibrium state, but at different temperatures, and
the central “engine” part that generates the mechanical work. The engine works by, in each
cycle, absorbing heat QH from the hot reservoir, convert some of that thermal energy into
useful mechanical energy Wout in its central part before depositing the remaining energy
QC in the cold reservoir, which acts as a heat sink (as heat naturally flows from hot to cold).
The second law forbids heat engines from continuously converting all thermal energy to
work, and as a result also forbids them from working with only one reservoir. If the entirety
of the absorbed heat in a reversible engine was converted to work then Qreservoir = TΔS =
Wout < 0, in violation of the second law since ΔS < 0. The cold reservoir thus acts as a
heat, and entropy, sink ensuring that ΔStot = QC

TC
+ QH

TH
≥ 0.

TH TC

QH QC

Wout

Figure 1: A crude schematic showing the components common for all heat engines: a hot reservoir at temperature TH, a cold
reservoir at temperature TC and the central part that generates the output work (gray). The central part converts
some of the heat leaving the hot reservoir QH into useful work Wout and deposits the remaining heat QC in the cold
reservoir.

The efficiency of a heat engine is given by the ratio of the output work and the thermal
energy absorbed from the hot reservoir

η =
Wout

QH
. (5)

Carnot realized that a heat engine would generate a maximal amount of work per cycle, and
be maximally efficient, only if operated reversibly [1]. In that case ΔStot = ΔSH+ΔSC = 0
yielding

QH

TH
= −QC

TC
. (6)

The generated work can then be obtained from energy conservation aloneWout = QH+QC,
and the efficiency of a reversible heat engine is

ηC =
QH + QC

QH
= 1+

QC

QH
= 1− TC

TH
. (7)
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This is known as the Carnot efficiency and is the fundamentally highest efficiency any heat
engine can reach. However, ηC is derived for reversible conditions and is thus, unfor-
tunately, accompanied with infinitely slow operation and vanishing output power. This
makes it very cumbersome to experimentally verify it in a laboratory. It is nevertheless an
interesting bound from a fundamental physics perspective, and it serves as a good measure
of engine performance since engines that could reach ηC in the long-time limit tend to
have a high efficiency also for shorter cycles. It is worth noting that there are recent claims
that ηC can under certain circumstances be approach even at a finite output power, see e.g.
Refs 5–7.

From a practical point of view, it is usually more important to have a high output power
and a high efficiency at this power. For this reason, the efficiency at maximum power is
another important performance measure. If one analyzes a heat engine whose components
are ideal, where all losses in its cycle are due to finite time operation, one finds that the
efficiency at maximum power can be written

ηCA = 1−
√

TC

TH
, (8)

as long as the heat flow is proportional to the temperature difference [8], which is the
case for most engines. This efficiency was first derived independently by Novikov [9] and
Chambada [10], but became a widely known result first after the work by Curzon and
Ahlborn [11]. In this thesis it will be referred to as the Curzon-Ahlborn efficiency, as is
commonly done in literature. The efficiency at maximum power becomes modified for
engines that couple asymmetrically to its reservoirs [12], or if the heat flux does not depend
linearly on the temperature difference [13, 14], although the deviations from Eq. 8 usually
remain small. Today, many well-optimized heat engines such as large power plants operate
at an efficiency that lies within a few percent of the Curzon-Ahlborn efficiency [12].

1.3 Equilibrium distributions

A central concept in thermodynamics is that of equilibrium. Equilibrium states are long-
time stable states that perturbed systems return to when left to relax of their own accord. In
equilibrium all energy andmatter flows vanish, and equilibrium states thus remain constant
over time. The entropy of a system in equilibrium always takes its maximal value, which is
a further characteristic of such a state. If a system is connected to an environment (a larger
system) it is said to be in equilibrium with the environment when all flows between them
have vanished, which requires the two systems to have the same temperature. However,
the concept of temperature is not always well-defined in small isolated systems since it is a
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collective property of a large number of particles,¹ and we will thus refrain from discussing
temperatures in small systems. Explicit expressions for equilibrium states for different sys-
tems, derived frommicroscopic principles, is a central result of statistical mechanics. Below
follows a short discussion of the most common such states, which are also the ones relevant
for this thesis. More in-depth discussions and derivations of the results presented here can
be found in all introductory text books on statistical mechanics, e.g. Ref. 4.

When a system with relatively few (micro)states is coupled to an environment at thermal
equilibrium such that only energy can be exchanged, the probability of finding the system
in a certain state i in equilibrium is given by the Boltzmann distribution

pi =
e−Ei/kBT

Z
. (9)

Here Ei is the energy of state i, kB Boltzmann’s constant and Z the partition function
accounting for probability normalization, Z =

∑N
j e−Ej/kBT, where the sum runs over

all possible states. If one knows the probability distribution of a given system, be it in
equilibrium or not, obtaining the entropy is a straight forward task as it is given by

S = −kB
∑
i

pi ln pi. (10)

When a system instead contains a macroscopic number of particles (this is referred to as
a reservoir or bath) its equilibrium state can characterized by only two thermodynamic
quantities: a temperature T and a chemical potential µ. µ is the energy required to add
a new particle to the reservoir and is only defined for the grand canonical ensemble. If
the particles in a reservoir are non-interacting fermions (e.g. electrons), such that the Pauli
principle must be taken into account, its state in thermal equilibrium is characterized by
the Fermi-Dirac distribution

ff(ε) =
1

e(ε−µ)/kBT + 1
, (11)

which describes the occupation probability of a single-particle state at energy ε. When the
reservoir is filled with bosons (e.g. phonons or photons) the equilibrium state is given by
the Bose-Einstein distribution

fb(ε) =
1

e(ε−µ)/kBT − 1
. (12)

¹An effective temperature of a small system out of equilibrium can be defined when it is weakly coupled
to a larger, but finite sized, reservoir with which it can exchange energy and particles. The effective chemical
potential and temperature of the system is then defined as the reservoir’s corresponding parameters when all
energy and particle transfer between them vanish [15, 16].
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1.4 Maxwell’s demon and information

The validity of the second law has been challenged plenty of times. Most notable is the
thought experiment by Maxwell [17], nowadays known as Maxwell’s demon, that led to
the discovery of the connection between thermodynamics and information. It is form-
ulated as follows. Maxwell envisioned a box with two compartments, both of which are
filled with a gas in thermal equilibrium. A gas consists of molecules, or particles, that move
stochastically with random velocities, but their mean velocity is set by the temperature of
the gas. Next, Maxwell considered a hatch in the wall connecting the two compartments.
The hatch can move without friction such that there is no work cost associated with open-
ing and closing it. If a fictitious being (the demon) with the ability to track individual
molecules is set to operate the hatch it could, for example, open the hatch for slow particles
approaching from the left and for fast particles approaching from the right. This would,
after a while, result in the left compartment containing only particles with a velocity larger
than the average and the right only containing slower particles. As a result, the gas in the
left compartment has a higher temperature than that in the right compartment. The energy
difference between two reservoirs kept at different temperatures can then be used to induce
a heat flow and extract work, as discussed in section 1.2. Energy can then be extracted “for
free” and the demon violates the second law as the total entropy of the system decreases
without work being spent (since the hatch is frictionless). Maxwell did not reach a satis-
factory explanation of how this could be the case.

The most important step towards solving this conundrum was provided by Szilard in his
study of what is now known as the Szilard engine [18]. The operation of this engine is
illustrated in Fig. 2. It is a minimal version of Maxwell’s original demon where the box is
filled with an ideal gas that consists of a single particle. The first step in the engine’s cycle
is to observe if the particle is in the left or right half of the box. Once this information is
acquired a partition is inserted (without friction) in the middle of the box, and a weight is
connected to the partition. Then, by letting the box exchange energy with an environment
at temperature T it is possible to lift the weight by letting the gas expand. If the expansion
is isothermal (T of the gas is kept constant), i.e. reversible, the total work performed by the
ideal gas on the weight is

W =

∫
dW =

∫ Vbox

Vbox
2

PdV =

∫ Vbox

Vbox
2

kBT
V

dV = kBT ln 2. (13)

After the expansion is completed the weight is disconnected and the partition removed,
leaving the system in its initial state and a new cycle can begin. Thus, in each cycle kBT ln 2
of heat is converted into work, decreasing the entropy of the environment by kB ln 2.
However, ΔSgas = 0 since the particle has the same initial and final state, which yields
ΔStotal < 0 in violation of the second law. Szilard argued that the decrease of the reser-
voir’s entropy must be compensated for by an increase in entropy in some other part of the
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Figure 2: Schematic of the Szilard engine. Top left - the demon observes where the particle is located. Top right - the demon
insert a partition (frictionless). Bottom left - the demon attaches a weight to the partition. Bottom right - The gas gets
to expands isothermally. The resulting work lifts the weight.

system. Two decades later Brillouin theorized that it is measurements, i.e. acquisition of
information, that leads to an entropy increase [19], which was the first, and very important,
link between thermodynamics and information. According to that theory acquiring a single
bit of information (in this case: is particle to the left or right, which is equivalent to 0 or
1) is associated with an entropy increase of at least kB ln 2, and thus also energy dissipation
Q ≥ kBT ln 2. Independently, Landauer investigated the minimum energy cost associated
with memory erasure in a computer, and formulated what we now know as Landauer’s
bound, that the minimum energy cost for erasing a bit of information is kBT ln 2 [20].
This is the fundamental energetic limit of computing. The final piece in the puzzle was
provided by Bennett who made the connection between Maxwell’s demon and Landauer’s
bound. Furthermore, he showed that the measurements (and in fact any computation) can
be performed reversibly, without an energy cost [21, 22]. In the Szilard engine this means
that in order to start a new cycle one must erase the demon’s memory from the previous
cycle, which costs energy and thus no net work is extracted. Alternatively, arguing from an
entropy point of view, the entropy decrease of the bath is exactly compensated for by the
entropy increase of the memory (where the demon stores the information from measuring
the particle’s position) and the total entropy change in one cycle is ΔStot = 0. The second
law will thus not be violated.
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2 Nanoscale systems

The development of the theory of quantum mechanics in the early 20th century provided
us with the tools to study and understand the mesoscopic and nanoscopic worlds that
are too small to be observed with the human eye, even with the most advanced optical
microscope. The theory was during its first decades only used to describe natural systems
such as atoms, molecules and crystalline materials. But if we fast forward to today, techno-
logical advancements have made it possible to manufacture artificial systems small enough
for a classical description to fail, and a quantum mechanical description to be necessary
also here. The remainder of this chapter is devoted to a quantum mechanical discussion
of how electrons behave inside nanoscale systems, and how different kinds of such systems
can be created.

2.1 The wave function

In quantum mechanics all matter is treated as waves, which is in stark contrast to class-
ical physics where a particle’s state can be assigned a well-defined position and velocity.
Information of the classical state combined with knowledge of the particle’s surrounding
environment, as well as its intrinsic properties such as charge andmass, is enough to determ-
inistically predict the particle’s time evolution and the outcome of any measurement. In a
wave description of matter the state information is instead encoded in the wave function
of the particle, and the wave function’s time evolution can be calculated deterministically.
However, the outcome of measurements on the particle are inherently stochastic. The idea
that all particles, as well as all physical objects, can be viewed as waves was introduced by
Louis the Broglie in 1924 [23]. He proposed that an object with mass m is associated with
a wavelength λdB = h

mv , where h is Planck’s constant and v the objects velocity. As far as
we know this description remains valid for all particles, but for macroscopic objects such
as a human being or a football λdB is too small for the wave description to be meaningful,
and it is only used for very light particles such as elementary particles, atoms and molecules.

de Broglie’s ideas led to Erwin Schrödinger gaining enough insight to write down the gen-
eral equation governing the dynamics of any quantummechanical wave function |Ψ(t)⟩ [24],

iℏ
∂

∂t
|Ψ(t)⟩ = H|Ψ(t)⟩. (14)

(the reader is assumed to be familiar with the Dirac notation, otherwise see e.g. Ref. 25).
Here h = 2πℏ andH is the Hamilton operator, which incorporates all terms corresponding
to the kinetic and potential energy of the system. When the Hamilton operator is time-
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independent and relativistic effects are neglected Eq. 14 can be rewritten as(
−ℏ2

2m
∇2 + V(r)

)
ψ(r) = Eψ(r), (15)

where Ψ(r) = ⟨r|Ψ⟩ is the particle’s position-space wave function, E its total energy and
V(r) describes the potential landscape the particle experiences. |Ψ(r)|2 is interpreted as
the probability distribution for finding the particle at position r in a measurement.

The complexity of solving Eq. 15 depends on V(r), and for most physical systems no ana-
lytical solution exists. However, for later discussions it is illustrative to look at two cases
where the solutions are particularly simple. First, the solutions to Eq. 15 for a free elec-
tron (V(r) = 0) are plane waves ψ(r) ∝ e−iq·r with wave vector q. The particle’s energy
is given by E = p2

2m where p = ℏq denotes the momentum. If an electron is instead
trapped in a cube with infinitely high potential walls (V(r) = ∞ outside the cube) and
side-length L, its position-space wave function is ψ(r) ∝

∏
r=x,y,z sin

nrπr
L , nr = 1, 2, 3...

In this case the wave vector only takes discrete values kr = πnrL−1, and the energy is
E = ℏ2π2

2mL2 (n
2
x + n2y + n2z). The take away message from this is that the energy of free elec-

trons can take any (positive) value as q will be a continuous variable, whereas the energy
for trapped electrons is limited to discrete values.

2.2 Electrons in solids

Obtaining a full quantum mechanical description of solid materials is an extremely hard
problem due to the presence of an astronomical number of positively charged nuclei, as
well as negatively charged electrons, who all interact with one another electrostatically. An
exact treatment would require finding the many body wave function of all particles in the
solid, a hopelessly complex task. Realizing that the kinetic energy of the nuclei is much
lower than that of electrons (due to the larger nuclear mass) allows for treating the elec-
trons and nuclei separately. However, even with this simplification the task of finding the
many electron wave function is an incredibly hard problem, and great effort is being put into
accurately calculating the electronic structure of solid materials using several sophisticated
techniques [26]. Here we will not concern ourselves with those techniques, but instead use
fairly simple theoretical arguments to deduce how electrons behave inside solid materials,
leading up to how they behave in nanostructures. Such a simplified approach sacrifices
detailed information in exchange for clarity.

Our starting point will be to consider electrons inside ideal crystalline materials where all
atoms are perfectly ordered in repeating patterns in all spatial directions. In this case the
potential due to the ordered nuclei, Vper(r), is a perfectly periodic function in real space,
i.e. Vper(r) = Vper(r+ a) where a is a lattice vector connecting two repeating unit cells
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in an arbitrary direction. The shape of this potential is rather complex as the potential an
electron experiences due to a single nucleus with atomic number ZN at position rp is given
by the Coulomb interaction between the charges

VC(r) ∝
−e2ZN

|r− rp|
. (16)

The total potential from the lattice is a sum of the Coulomb potentials for all nuclei at
different rp. If one assumes that it is possible to treat the problem as an effective one-
particle problem, e.g. by incorporating the effects of all other electrons as a mean field [27],
the problem is reduced to finding the solution to the Schrödinger equation with a periodic
potential. With these assumptions Bloch’s theorem states that the energy eigenfunctions,
i.e. solution to Eq. 15, can always be expressed as [28]

Ψk(r) = uk(r)eik·r, (17)

where uk(r) is a function with the same periodicity as the potential.² A possible one-
dimensional Bloch wave Ψkx(x) is illustrated in Fig. 3.a. A special property of the Bloch
waves is that they are invariant under a shift of a reciprocal lattice vector G = a−1, i.e.
Ψk(r) = Ψk+G(r), or by multiples of a reciprocal vector. Furthermore, the energy dis-
persion follows the same periodicity E(k) = E(k+G). It is thus sufficient to restrict any
analysis to |k|-values lesser than a single reciprocal lattice vector, for example |k| ≤ π/a
in a one-dimensional crystal with lattice constant a. This region of k-space is commonly
referred to as the first Brillouin zone.

Ψkx(x)

x

E(kx)

kx0 π
a− π

a

Figure 3: a) A possible one-dimensional Bloch wave function according to Eq. 17. The green line represents ukx (x), which
oscillates at the same frequency as the crystal lattice, and the black line is real part of eikx. b) Illustration of a one-
dimensional band structure. The grey area represents an energy range with no allowed states. The continuum of
allowed states is called an energy band, and the difference between bands is called a band gap. A typical bulk
material will host many bands.

²A derivation of Bloch’s theorem can be found in Chap. 7.1 of Ref. 29, in appendix C of Ref. 30, and in
many other books on solid state physics.
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Bloch’s theorem thus provides us with some properties of the electronic wave functions in
solid materials based on symmetry arguments alone, but so far we do not have any expli-
cit expressions for neither Ψk(r) nor E(k). Obtaining such expressions requires solving
Eq. 15, usually using some approximative method, while requiring that the solutions have
the aforementioned properties. This can for example be done by assuming that the periodic
potential is weak and the wave functions resemble plane waves, such that the problem can
be treated using second order perturbation theory with Vper(r) as the perturbing potential.
Another approach is to express the wave functions as sums of atomic orbitals from atoms
at the different lattice sites. These, and other, approaches are discussed in e.g. Refs. 29–31
and other standard textbooks on solid state physics. The resulting energy dispersion E(k)
will be similar to the one sketched in Fig. 3.b for a one-dimensional crystal. For the sake
of simplicity, the discussion will be restricted to one dimension, but extensions to higher
dimensions follow the same reasoning. Close to the center of the Brillouin zone E(k) will
be (almost) parabolic, but close to the edges of the Brillouin zone there will be large devi-
ations from the free electron case. As a result, an energy band without electron states opens
up close to the zone border.

The presence of a periodic potential thus creates bands of energies for which there are no
solutions to the Schrödinger equation. There will be one forbidden band for each k-value
that is a multiple of π

a , but in Fig. 3.b the entire band structure is moved to the first Brillouin
zone without loss of generality. The emergence of energy bands in solid materials and the
filling of these bands allow us to understand the difference in electric properties between dif-
ferent materials. When filling the bands with electrons the Pauli principle must be obeyed.
It states that any state characterized by a unique set of quantum numbers can only be oc-
cupied by a single electron. In solid materials this means that each state corresponding to
a k-value at a specific energy can be populated only by two electrons with opposing spins.
When accounting for the electrons originating from all the individual atoms that make up
the crystal the total number of electrons is enormous, and several band will be completely
filled. We differentiate between metals, semiconductors and insulators based on the filling
of the bands as follows. Metals have a band that is not completely filled with electrons, i.e.
the chemical potential is located in a band, and it only takes a small amount of energy to
excite electrons at the chemical potential to another state. As a result, when the electrons
in the band experience a force, e.g. by an applied electric field, the balance between filled
states with positive and negative k that exists in equilibrium is easily disturbed. We thus
get a net k-value in total, leading to a net crystal momentum p̃ = ℏk, and a net trans-
port of electrons. In contrast, insulators and semiconductors have their chemical potential
located in between bands and it requires a lot of energy (determined by the band gap) to
excite electrons and get transport. These materials are hence poor conductors. However,
semiconductors have a fairly small band gap (usually∼ 1 eV) compared to insulators, mak-
ing it easier to excite electrons to the next band. Furthermore, it is possible to introduce
impurities with electronic states in the band gap into semiconductors (i.e. doping). The
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electrons in these states are easily excitable - thermal energy from the surroundings is often
enough - which provides engineers with a means of controlling a material’s conductivity,
which has been absolutely crucial for the success of digital technologies.

For the remaining part of this thesis only semiconductors will be of interest. The highest
occupied band in a semiconductor is called the valence band and the lowest unoccupied
band the conduction band. In the experimental devices presented in a later chapter only
the conduction band is relevant, and we will focus solely on that from hereon. The semi-
conductors in those devices are highly n-doped resulting in the chemical potential lying
inside the conduction band, as opposed to the undoped case. In general, much of the in-
teresting physics in the conduction band takes place near the band edge where E(k) has
a minimum. In Fig. 3.b this happens around k ≈ 0 and one can see that the bands are
almost parabolic in this region (this is also case for band structures obtained using more
sophisticated methods [31]), much like for free electrons, albeit not necessarily with the
same derivative. This observation is important as it allows us to the define an effective mass
of the electrons, m∗, as

1
m∗ =

1
ℏ2
∂2E(k)
∂k2

, (18)

allowing us to treat electrons in the conduction band as free electrons with mass m∗ such
that their kinetic energy is ℏ2k2

2m∗ . Formally, the effective mass is a tensor as it will depend on
the orientation it is evaluated at in reciprocal space, but for our purposes it is sufficient to
consider it to be a constant parameter that is material dependent.

2.3 Effective mass approximation

Up until this point only homogeneous bulk materials have been considered when discuss-
ing how electrons behave in solids. However, when modeling nanostructures these condi-
tions need to be relaxed. As the name implies, nanostructures are typically far from bulk
materials, and they will typically consist of more than one material, i.e. they are hetero-
structures. In order to arrive at a description of electronic states in these structures we start
by addressing how electrons behave in heterostructured materials using the effective mass
approximation. In this approximation one assumes that a perturbing potential V(r) exists
in addition to the lattice periodic potential Vper(r). V(r) can e.g. describe the potential of
an impurity atom used for doping, or the resulting potential landscape in heterostructured
materials.

Our goal is to solve the Schrödinger equation for the total potential, Vper(r) + V(r), and
a convenient starting point is to identify that the Bloch states describing electrons experi-
encing Vper(r) alone form a complete basis set [28]. If these states are known it is possible
to express any other wave function as a series expansion in these Bloch states. If we denote
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the wave function that solves the Schrödinger equation for the total potential as ϕ(r) the
expansion in Bloch states (see Eq. 17) is expressed as

ϕ(r) =
∑
n

∫ π
a

− π
a

χ̃nΨn,k(r)d 3k, (19)

where n is a band index and χ̃n the expansion coefficients. If only states in a narrow k-
range contribute significantly to the integral, e.g. only states close to the bottom of the
band, and if we assume that un,k(r) varies slowly with k compared to the plane wave part,
it is possible to rewrite

Ψn,k(r) ≈ Ψn,0(r)eik·r. (20)

With these assumptions one can perform an inverse Fourier transform of Eq. 19 to obtain

ϕ(r) ≈ χ(r)Ψn,0(r). (21)

Assuming that it is possible to exclude all bands save one from the expansion, for example if
the band gap is large, one can insert the new wave function into the Schrödinger equation.
After some mathematical tricks one arrives at [32–34],

[ϵn (−i∇) + V(r)]χ(r) = Eχ(r), (22)

which is the Schrödinger equation for the so-called envelope function χ(r), but with an
effective Hamiltonian. Here, ϵn (−i∇) is the band structure for band n expanded as a
power series, in which k is replaced by−i∇. Close to the band edge, such that a parabolic
expansion of the band is sufficient, Eq. 22 can be rewritten as[

− ℏ2

2m
∇ 1
m∗(r)

∇+ V(r)
]
χ(r) = (E− EC)χ(r), (23)

where EC is the conduction band edge, and a spatial dependence of the effective mass is
taken into account. This is a remarkable result as the energy of the state only depends on
the envelope function, which in turn only depends on the perturbing potential and not the
periodic potential of the crystal lattice. The effective mass approximation is thus very use-
ful when studying heterostructured materials, but it is worth noting that the assumptions
made in order to obtain this result are not guaranteed to be valid and must be checked for
each system under consideration. However, for many relevant semiconductor structures
they remain valid [35], and we will thus use the effective mass approximation and the en-
velope function description when discussing the electronic structures of low dimensional
semiconductor systems.

The simplest possible heterostructure is the combination of two bulk materials, A and B,
such that there is a sharp interface between the two at x = 0. Since the materials are mac-
roscopically large in two dimensions, the y- and z-components of the wave function will
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Figure 4: Comparison between the wave function and envelope function for a square potential well. a) shows a perfectly square
potential well and the wave function for the ground state of an electron trapped in the well (green line). b) shows a
simplification of the real potential an electron experiences when the potential well is created using a heterostructure.
The envelope function (shown in green) is calculated using the effective mass m∗ = 0.067m0 inside the well and
m∗ = 0.1m0 outside the well. The energy of the electron in relation to the bottom of the well is illustrated by the
vertical dashed lines.

be simple plane waves, and it is enough to study the x-dependence of the envelope func-
tion. Continuity of the wave function and current conservation provides the boundary
conditions

χA(0−) = χB(0+), (24)

1
m∗
A

dχA(x)
dx

∣∣∣
x=0−

=
1
m∗
B

dχB(x)
dx

∣∣∣
x=0+

. (25)

The envelope function is obtained from solving Eq. 23 when imposing the boundary con-
ditions in Eqs. 24-25.

An example of a χ in a heterostructure is shown in Fig. 4 where V(x) takes the shape of a
one-dimensional square potential well (y- and z-components are ignored). The solution for
χ looks similar to that of the free particle trapped in a finite potential well, with only two
noticeable differences: the derivative of χ is not continuous at the edge of the well due to
Eq. 25, and the energy obtained using the effective mass approximation is larger due to the
lower effective mass of the particle inside the material.

The take-away message from this section is that when the effective-mass approximation
is valid, it is enough to know the effective mass(es) and the overall potential structure of a
heterostructure or nanostructure to solve the Schrödinger equation and obtain the energy
spectrum. The details of the periodic potential from the underlying crystal lattice can safely
be ignored.
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2.4 Density of states

Structures with length scales in the nanometer range are rich in terms of the amount of
physical phenomena that can be studied using them, especially since their electronic struc-
ture becomes highly modified compared to bulk systems. A qualitative understanding of
why this is the case can be obtained using the effective mass approximation introduced in
the previous section. When free electrons experience a confining potential whose length
scale is on the order of their de Broglie wave length, quantum confinement effects become
important. The same holds true for electrons inside semiconductors (or other materials)
where instead the confinement of the envelope function becomes important, as it determ-
ines an electron’s energy. The exact shape of the energy spectrum of actual low dimensional
structures will of course depend on the specifics of the system, but by only looking at a
crude version of the confining potential one can usually get a qualitative understanding
of how the electrons behave in the system. Some problems are particularly easy to ana-
lyze as the envelope function can many times be factorized into separate parts for each
spatial dimension χ(r) = χx(x) · χy(y) · χz(z), and in turn the energy turns into a sum
E(k) = Ex(kx)+Ey(ky)+Ez(kz). Whether this is possible or not depends on the potential,
its symmetries, and the choice of coordinate system, but for the structures relevant here we
assume this will be the case. An example was shown in Fig. 4 where an electron experienced
a 1D potential in the shape of a square quantum well, and χ(x) resembled the text book
solution for the particle in a box problem. Along the remaining spatial dimensions χ(r)
will behave like plane waves.

Structures with confining potentials in different number of dimensions will have vastly dif-
ferent energy spectra. This is quantified when calculating, or measuring, a system’s density
of states (DOS). If one assumes that the effective mass approximation is valid the energy
dependence of the DOS for samples of different dimensionality is given by

ρn(E) = θ(E− En) ·


√

2πm∗

h2 (E− En)−
1
2 , 1D

4πm∗

h2 , 2D
8π

√
2(m∗)

3
2

h3 (E− En)
1
2 , 3D

, (26)

where θ is the Heaviside step function. In Eq. 26 the index n refers to a band and En
the band edge in 3D, whereas n refers to a so-called sub-band with energy En in one and
two dimensions. Different sub-bands correspond to different quantum numbers for the
part of the wave function that experiences quantum confinement. The DOS for systems
of different dimensionality is illustrated in Fig. 5, which includes multiple sub-bands. The
figure also shows the DOS for a 0D object. In that case all components of k are discrete,
resulting in a completely discrete energy spectrum, much like for electrons bound to a
nucleus in an atom. In reality, nanoscale systems rarely have a pure 2, 1, or 0D DOS, and
the actual DOS will have some deviations from those sketched in Fig. 5.
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Figure 5: Density of states for systems of decreasing dimensionality, from 3D to 0D as illustrated by the insets in the figure where

arrows show the dimensions along which the electrons can move freely.

2.5 Nanoscale semiconductors

The term nanoscale structure, or nanoscale semiconductor, is in this thesis used for semi-
conductor samples with some feature in the in the nanometer range that makes the electrons
experience a confining potential in at least one dimension. Creating these structures in a
lab is in itself a very complicated task, and the topic of finding new and optimized manu-
facturing strategies occupy entire research fields. An overview of the manufacturing of these
structures is beyond the scope of this thesis and we will take their existence for granted.

Perhaps the most straight forward nanostructure is a slab of material A sandwiched in
between bulk pieces of another material B, as in Fig. 6. If the conduction band edge of
material A (e.g. GaAs) is lower than that of material B (e.g. AlGaAs) the low energy
electrons in the conduction band of material A will experience a confining potential in
the z-direction [36], at least as long as there is no overlap between the valence band in B
and conduction band in A. This structure is referred to as a quantum well, and its DOS
resembles that of a 2D system in Fig 5. If the sample is doped such that there is a non-
negligible number of electrons in the conduction band of material A, this structure is also
commonly referred to as a two-dimensional electron gas (2DEG). It is named after the
simple theoretical model used to describe the electrons in the structure, in which the elec-
trons behave as free electrons (with an effective mass) in two dimensions. In general, it is
not necessary for the sample to have the samematerial B on both sides, as long the electrons’
movement is confined to a plane, and it is sometimes more useful when one side consists
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Figure 6: Quantum well sample made by sandwiching a material A with low EC (energy of the conduction band edge), such as
GaAs, between bulk pieces of a material B with a higher EC, e.g. InGaAs. This effectively creates a quantum well in
the z-direction, as illustrated in the figure, but low energy electrons in material a A are still free to move in the x- and
y-directions.

of a high band gap semiconductor and one of an insulator. A 2DEG can also be created
in semiconductor-insulator-metal system where a high voltage applied to the metal attracts
(or repels) electrons, effectively forming a thin conductive layer close to the insulator [37].
When done in a bulk system the electrons can move freely in two dimensions.

One dimensional structures, i.e. quantum wires, can be created by either manufacturing
thin wire-like segments of a semiconductor (or other material), or by further confinement
of electrons in a 2DEG, see Fig 7. The former can be achieved by putting a thin segment of
a semiconducting material on an insulator [38]. Alternatively, it is possible to manufacture
natural wire-like structures such as carbon nanotubes [39], or so-called nanowires, which
can conveniently be created by a bottom-up approach [40, 41]. For these wires the con-
fining potentials are either oxide layers on their surfaces, the substrate they are lying on (if
lying) or the vacuum/air surrounding the wire. In the second approach metallic contacts
are put on top of the 2DEG (or rather on top of the insulator acting as the barrier on one
side of the 2DEG) in such a fashion that an applied voltage on the contacts can restrict the
electrons’ movement to one dimension [42].

The most relevant structures for this thesis are, however, quantum dots (QDs). Electrons
inside QDs are confined in all spatial directions and their energy spectrum will thus be dis-
crete (see Fig. 5). Illustrations of three different kinds of QDs are shown in Fig. 8. Perhaps
the conceptually most simple way to create them is to manufacture semiconducting nano-
particles where the small size of the particle accounts for the confinement of the electrons. It
is also common to start from a 2DEG and use metallic contacts to create a confining poten-
tial for the electrons also in the x- and y-directions, effectively creating a 0D object [43, 44].
In the same spirit it is possible to create devices where applied electrical potentials pinch
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off a nanowire, trapping electrons in a small segment of the wire [45]. The QDs used in
the research for this thesis are however created using heterostructured nanowires. An ex-
ample is shown in Fig. 8(b) where segments of a high band gap material (e.g. InP), separate
parts of the low band gap nanowire (e.g. InAs) [46]. The conduction band edge of InAs
is lower than that of InP (same principle as in Fig. 6) and any electron between the InP
barriers will, in addition to the radial confinement, experience a confining potential along
the wire if its energy is close to the bottom of the band. It is also possible to create QDs in
homostructured nanowires where potential barriers can instead be created by changing the
crystal structure of the nanowire [47, 48]. This is based on the fact that the band gap and
the energy for the conduction band on-set depend on the crystal structure.

The discrete energy spectrum of QDs have made them widely used in optical applications,
such as florescent marking in biological and medical applications [49, 50], or color filtering
in electronic displays [51, 52]. This is because the light they emit is fairly monochromatic
and its frequency is determined by the width of the confining potential, i.e. the size of
the QD. In research environments QDs are often also used in electronic components, as
will be the case in the remaining chapters, and as quantum bits for quantum information
research [53–57].

(a) (b)

y

x

z

Figure 7: Example of approaches for creating quantum wires. a) Illustration of a semiconductor nanowire in which electrons are
free to move along the wire, but the thin diameter restricts the wave function to small x- and y-values. b) A wire can
instead be created by further confinement of electrons in a 2DEG by applying an electrical potential to contacts (gray)
on top of the sample. If the additional potential from the contacts (illustrated by dashed lines) repels electrons it is
possible to create an effectively 1D potential valley between the contacts. The cross section of the resulting quantum
wire is illustrated by the red circle.
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(a) (b) (c)
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Figure 8: Three strategies for creating QDs. a) A semiconducting nanoparticle. b) Segments of a high band gap material (blue)
in a low band gap nanowire (purple) can create potential barrier for electrons in the bottom of the conduction band. A
QD is created between the segments of material B (defined in Fig. 6). c) Electrons in a 2DEG can be further confined by
electric potentials when applying a voltage to deposited metallic contacts (gray). The red area illustrates that electrons
can be trapped between the contacts if the contact geometry allows it. There are usually some openings in the contacts
to allow for a tunable tunnel coupling between the QD and the rest of the 2DEG (for more info see the next chapter,
which discusses transport through QDs).
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Transport through quantum dots

Having motivated how electrons behave inside nanostructures we can now begin to under-
stand transport in QD devices, and later also how to make heat engines that utilize QDs.
The transport problem, i.e. accurately modeling particle and energy flows in these devices
falls under the general topic of open quantum systems. Here the term open refers to the
quantum system being connected to some macroscopic environment, which is what will
allow us to extract work in the end. This chapter contains descriptions of the transport
theories used to model the devices in the remaining chapters. It begins with an overview
of electron transport in the QD-based single electron transistor, which is the experimental
setup used in papers I and II. Emphasis is put on general properties and a phenomenological
understanding. This is followed by a detailed description of the theory used in papers I and
II to model said electron transport, the real time diagrammatic technique. The chapter
ends with a short discussion of the Lindblad master equation, which was used to obtain
the results in paper III.

3 Single electron transistor

A single electron transistor (SET) consists of a small object, on which electrons interact
strongly, in close proximity to large metallic electron reservoirs, see Fig. 9 for a schem-
atic. The central object can be a small metallic particle where quantization effects need not
be important due to an almost continuous DOS at high energies, which is reached since
metallic islands contain a large number of electrons [58]. Or, as will be the case here, it can
be a semiconducting QD with discrete energy levels for electrons in the bottom of the con-
duction band. The QD is located close to the reservoirs so that the electron wave functions
in the reservoir and the QD have a finite overlap, making it possible for electrons to tunnel
between them. In addition, a third contact (referred to as gate), usually the substrate itself,
is used to tune the electrical potential of the QD. The different kinds of QDs described in
the previous chapter can all be used in a SET setup as long as they can be gated and coupled
to electronic reservoirs [43, 45, 46, 48].
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Ts, µs Td, µd

VG

Γ Γ

Figure 9: Schematic of a SET where a central QD with discrete energy levels (gray) is coupled to two electronic reservoirs, source
and drain, with well-defined temperatures and chemical potentials. A third contact, the gate, is used to change the
electric potential of the QD by an applied voltage VG. The QD is tunnel coupled to the reservoirs such that the mean
rate for electron tunneling is given by Γ.

The transport properties of a SET depend heavily on the energetics of the many body
electron states of the QD. We will therefore start by discussing a simple model used to
determine these energies. For this it is assumed that the energies of the single particle states
are determined by the confinement alone, as discussed in section 2.4, and do not depend
on the overall potential or the charge of the QD. This is of course a crude approximation,
but will be sufficient to get a general picture of the energetics. Strong electron-electron in-
teractions require care when putting several electrons on the QD. A commonly employed
model for describing the many body energy spectrum is the constant interaction model,
which is a classical electrostatic model where the energies are calculated from capacitances
and charges [59, 60]. This is can be motivated by the fact that the reservoirs, gate and QD
are all (fairly) conducting materials in close proximity to one another. It is thus possible to
associate a finite capacitance to each junction between them. If the capacitances between
the different contacts are ignored, the electrostatic potential of the QD with net charge Q
can be calculated as

VQD(Q) =
1
CΣ

Q+
∑
j=s,d,g

ViCj

 , (27)

where Vj is the applied voltage (i.e. electrical potential) to contact j, Cj is the capacitance
between j and the QD and CΣ =

∑
j=s,d,g Cj. j = s, d, g corresponds to the two electron

reservoirs, source and drain, as well as the gate, respectively. From Eq. 27 it is then possible
to calculate the electrostatic energy of a QD with net charge −eN (i.e. N excess electrons)

U(N) =
∫ −eN

0
VQD(Q)dQ =

e2N2

2CΣ
− eN

∑
j=s,d,g

Cj

CΣ
Vj

 . (28)
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Using the constant interaction model the energy for aN electron state can thus be expressed
as

E(N) =
∑
i

εi + U(N), (29)

where εi is the energy of an occupied single particle state. From Eq. 29 it is straight-forward
to obtain the energy µ̃ needed to add an electron to the QD, which will be referred to as
a chemical potential. For example, the chemical potential for adding an electron to single
particle state i, if there already are N− 1 electrons on the QD is

µN,i = εi + EC
(
N− 1

2

)
− eαGVG, (30)

if any bias voltage is applied symmetrically to the source and drain (Vs = −Vd). αG = CG
CΣ

is commonly referred to as the gate lever arm and EC = e2
CΣ

as the charging energy. If the
single particle orbitals are spin-degenerate the difference in µ̃ for adding the first electron
(e.g. spin up) and second electron (spin down) is

Δµ̃i = µ̃N+1,i,↓ − µ̃N,i,↑ = EC. (31)

A large charging energy will have very pronounced effects on the transport characteristics
of a SET [60, 61]. This can be understood from the energy diagram in the Fig. 10.a where
EC ≫ kBT and only a single spin-degenerate orbital is assumed to be within reach for
electrons in the reservoirs. It is then only possible to have electron exchange between the
QD and a reservoir when µ̃ of the QD lies within a few kBT of µ in the reservoir (set by
the thermal broadening of the Fermi-Dirac distribution), as any transition requires a filled
initial and empty final state. The device is put in a current-carrying state when the follow-
ing two conditions are satisfied: the total system needs to be put out of equilibrium, e.g.
by introducing a difference in µ and/or T between the source and drain; µ̃ is located at an
energy where the non-equilibrium conditions create a population imbalance of electrons
in the reservoirs, as in Fig 10.a. Furthermore, in the current-carrying state the electron
number on the QD fluctuates between N ↔ N + 1, and electrons will be transported
between the reservoirs one by one (assuming the tunnel rate Γ is small), as the large EC
makes it energetically forbidden to add two charges to the QD. Hence the name single
electron transistor. The conductance G = dI

dVsd
of a SET at low T will have a very charac-

teristic line-shape [60], which can be observed in Fig. 10.b where G is plotted against VG
for Vsd = 0. There is a clear peak in the conductance whenever a chemical potential of the
QD aligns with µ of the reservoirs. In between the peaks, i.e. several kBT away, the large
EC makes it impossible to drive any current though the device, a phenomenon known as
Coulomb blockade, and oscillations in the conductance is a clear indication that a device
is in the Coulomb blockade regime.
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Figure 10: a) Energy diagram illustrating transport in a QD-based SET with large level splitting such that only one spin-degenerate
orbital is available for transport. The discrete energy states of the QD, the central region, limits transport to as little
as a single energy. The colored regions correspond to the Fermi-Dirac distributions of the reservoirs. Non-equilibrium
conditions are created by an applied voltage eVsd = µs − µd, where µs and µd are the chemical potentials of the
source and drain, respectively. The chemical potentials for adding the first electron, µ̃1 = ε− eαGVG, and the second
electron, µ̃2 = ε − eαGVG + EC, to the QD differ by EC. b) The zero-bias conductance of a Coulomb blockaded
QD shows clear peaks whenever the chemical potential of the QD lies within a few kBT of µ of the reservoirs. The
figure is based on calculations where the QD can accommodate a maximum of one electron with each spin, where
EC = 100kBT and αG = 1.

When the first and second electron are put in single particle states with the same energy,
e.g. in a spin-degenerate orbital, the distance between the peaks is equal to EC, making
it a parameter that is easily determined in an experiment.³ For QDs with several orbitals
the frequency of the oscillations is not constant, and not all distances between conductance
peaks correspond to EC [62]. However, the experimental devices used in papers I and II
can be accurately modeled as having a single spin-degenerate orbital, and effects originating
from having more than one orbital will not be discussed further.

In the preceding discussion it was assumed that electrons are transported only at a single
energy set by µ̃ of the QD. This is a valid description as long as the barriers separating the
QD and its reservoirs are large, and tunneling remains an unlikely event. In that case the
transport problem (i.e. calculating currents) can be solved using Fermi’s golden rule based
on leading order perturbation theory in the tunnel coupling Γ [63]. However, for larger Γ
electrons can be transported across the QD at a comparatively fast rate. This leads to an
uncertainty in the energy of transported electrons according to the uncertainty principle

ΔE · Δt ≥ ℏ
2
, (32)

as the temporal uncertainty Δt for time spent on the QD becomes small. Taking into
account the energy uncertainty, as well as a large EC, when modeling transport in QD
devices is not trivial, as will be evident in the following section.

³This is exactly true for SETs based on metallic islands. But for a QD with a spin-degenerate orbital the
peak position will be shifted by a small amount ∼ kbT ln

√
2 [60].
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4 Real time diagrammatic technique

When setting up the transport theory below, the abstraction level of the device needs to
be increased by one step, and we will consider an arbitrary QD-like object tunnel coupled
to any number of metallic contacts, which act as fermionic reservoirs. By having different
chemical potentials (by means of applying a voltage) or temperatures (by means of heating)
of the reservoirs currents can flow between them by going through the QD. The current
will then naturally be heavily influenced by the properties of the QD, as was exemplified in
the previous section. Typical for such systems is that the total system (QD plus reservoirs)
has so many degrees of freedom that a full quantum mechanical description, i.e. solving
the Schrödinger equation for the full system, becomes insurmountable. The common way
to avoid this problem is to assume that the reservoirs contain enough (non-interacting)
particles to always be in an equilibrium state characterized be the Fermi-Dirac distribution
in Eq. 11. It is then sufficient to only solve for the state of the QD in order to calculate
transport.

There exist many techniques for calculating transport in these systems, all of which has
their limitations, and the most appropriate approach is chosen based on the properties
of the device to be modeled. If, for example, electron-electron interactions on the QD
are so small that they can be neglected the transport problem can be solved exactly using
Landauer-Büttiker theory [64, 65]. If instead the interactions are fairly small, but not negli-
gible, and the tunnel coupling to the reservoirs strong (EC < ℏΓ), non-equilibriumGreen’s
function techniques are commonly used [66, 67]. When ℏΓ ∼ EC the problem is usually
tackled using renormalization-group techniques [68]. For systems where the tunnel coup-
ling is very weak master equation techniques are common tools [69]. These are based on a
perturbative expansion in ℏΓ and have the benefit of being able to treat electron-electron
interactions exactly. Since the experimental devices used in papers I and II consist of QDs
weakly coupled to reservoirs, and where the electron-electron interactions can become very
large, it was well motivated to use a master equation approach to model these devices.
There are several master equation techniques available, but for these projects the choice fell
on the real time diagrammatic (RTD) technique. The name hints at the fact that diagrams
are a part of the formulation and that the calculations are being performed in real time, as
opposed to along an imaginary time axis. This technique is an appropriate choice because
also second order tunneling effects (∝ Γ2) needs to be included to model the experimental
devices, something that is not commonly done. The RTD theory provides a systematic ex-
pansion in ℏΓ/kBTwithout the need to artificially insert a life-time broadening of electrons
on the QD to account for an energy uncertainty of transported electrons, which is needed
for its strongest contender; the T-matrix approach [70]. The technique was originally de-
veloped in Refs. 71–73 using Keldysh contours. It was later reformulated using Liouville
supero-perators [74–76], with the benefit that the number of diagrams one needs to keep
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track of is drastically reduced, making numerical implementations more straight-forward.
There exist formulations of the technique both in time and in Laplace (frequency) space,
and it has now been used to study a variety of different problems ranging form, for ex-
ample, time-dependent decay problems [77], to transport in systems with superconducting
leads [78] or where spin-physics becomes important [79–81]. In this thesis we will stick to
stationary state solutions, for which the state-or-art progress includes being able to calcu-
late energy currents up to order Γ2 [82, 83], and being able to study Kondo physics using a
renormalization group theoretical approach [84].

Below follow the main steps of a derivation of generalized master equations using the RTD
technique, based primarily on Refs. 76 and 83, as well as some tips and tricks that increases
the efficiency of a numerical implementation. For the remaining part of this chapter it is
assumed that the reader is familiar with the concepts of second quantization and density
matrices.

4.1 Model system

Figure 11 shows a schematic picture of a quantum object coupled to three reservoirs, with
whom it can exchange particles and energy (illustrated by the arrows).

µ1, T1

µ2, T2

µ3, T3

QD

Figure 11: Standard system for studying transport through QDs. The QD (center object) is tunnel coupled to macroscopic
electron reservoirs. The reservoirs are each assumed to be in local thermal equilibrium and can thus be characterized
by a chemical potential µ and a temperature T. Transport is driven by having different chemical potentials and
temperatures in the reservoirs.

The goal of the theoretical modeling using the RTD theory is to calculate electronic trans-
port through QDs, that is we limit the QD to accommodate only fermions. To set up
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the theory one starts with a Hamiltonian description of the QD and its reservoirs. The
general Hamiltonian for the total system is given by the sum of the Hamiltonians for the
subsystems

H = HD +
∑
r

Hr +
∑
r

HT,r = HD +HR +HT. (33)

Here, HD is the Hamiltonian describing the QD, which on diagonal form simply reads

HD =
∑
a

Ea|a⟩⟨a|, (34)

where |a⟩ is a many body eigenstate of the isolated QD and Ea is its energy. A non-
interacting fermionic reservoir r is described by

Hr =
∑
k,σ

ωk,σ,rc
†
k,σ,rck,σ,r, (35)

where ωk,σ,r is the eigenenergy for a state in reservoir r with single particle index k and spin
σ. The field operators acting on a reservoir subspace are denoted by the letter c.

TheHamiltonian describing electron tunneling between the QD and a reservoir is modeled
by the bi-linear Hamiltonian

HT,r =
∑
k,σ,j

tk,σ,r,jd
†
σ,jck,σ,r + h.c. , (36)

with j labelling the different single particle orbitals of the QD and d†(d) denotes field
operators acting on the QD subspace. The amplitude for electron tunneling is given by
tk,σ,r,j, which allows us to define a tunneling rate

Γk,σ,r,j =
2πνr|tk,σ,r,j|2

ℏ
. (37)

Here νr is the density of states of the reservoir and in the sections to come we utilize the
wide band approximation assuming that νr is constant over an energy D much larger than
any other involved energy scale, motivated by its weak energy dependence inside the bands
of bulk metals, see Fig. 5. For convenience we also set ℏ = e = kB = 1.

4.2 Liouville space super-operators

In order to use real time diagrammatics to derive generalized master equations we need
to define convenient super-operators in Liouville space whose properties resemble those of
fermionic field operators in Hilbert space so that Wick’s theorem can be applied also to the
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super-operators. Using such operators, it is possible to rewrite the Hamiltonians in the pre-
vious section and perform a perturbative expansion of the tunneling coupling in Liouville
space.

First, a note about a compact notation that will be used throughout the derivation. The
fermionic creation and annihilation operators acting on the QD Hilbert subspace will be
written as

dησj =

{
dσ,j if η = −
d†σ,j if η = +

, (38)

i.e. η is the electron-hole index. All indices are then combined to a single index repres-
ented by a positive integer, 1 = η1σ1j1, and a bar denotes the sign change of appropriate
numbers i.e. 1̄ = η̄1σ1j1 = (−η1)σ1j1 and later q̄1 = −q1. Furthermore, a sum over such
a multi-index (

∑
1) is implicitly understood as sums over all involved indices.

Using the definition in Eq. 38 we follow Ref. 76 and introduce super-operators acting on
the QD subspace

Gq1
1 • =

1√
2
(d1 •+q1(−1)ND • (−1)NDd1), q1 ∈ {−,+}, (39)

withND =
∑

σ nσ =
∑

σ,j d
†
σ,jdσ,j, and • represents an arbitrary operator. These operators

have properties similar to those of fermionic operators in Hilbert space

(Gq1
1 )† = Gq1

1 , (40)

[Gq2
2 ,G

q1
1 ]+ = δq2q1δ21I, (41)

where [..]+ is the anticommutator. Analogously, the field operators acting on the reservoir
subspace are defined in the same way and denoted J q1

1 , where the reservoir index r is also
included in the multi-index.

A Liouville super-operator is defined as LX• ≡ [HX, •]−. Using the definition of L to-
gether with Eq. 39 one can translate the system’s total Hamiltonian from section 4.1 to
Liouville form as

L = LD + LT + LR (42)
LD = [HD, •]− (43)

LR = [HR, •]− =
∑
1

η1ω1J +
1 J −

1 (44)

LT = [HT, •]− =
∑
1

t1′1η1
∑
q1

Gq1
1′ J

q1
q1

(45)

where t1′1 = δr1′ r1 t1.
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4.3 Generalized master equations

The starting point for deriving generalized master equations that can be used to calcu-
late transport through a QD is the Liuoville-von Neumann equation. It is the differential
equation that describes the time evolution of the full system density matrix, which in the
Schrödinger picture reads

d
dt
ρ = −i[H, ρ]− = −iLρ. (46)

Equation 46 has the formal solution

ρ(t) = e−iLtρ(0), (47)

from which it is possible to obtain the reduced density operator of the QD ρD by tracing
out the reservoir degrees of freedom

ρD(t) = Tr
R
ρ(t). (48)

We assume that the reservoir density matrix ρR and ρD are uncorrelated at time t0 = 0, i.e.
ρ(0) = ρD(0)⊗ρR, and that L is time independent. Then, Laplace transforming equation
48 yields

ρD(z) = Tr
R

∫ ∞

0
eizte−iLtρ(0)dt = Tr

R

i
z− L

ρD(0)⊗ ρR

= Tr
R

i
z− LD − LR − LT

ρD(0)⊗ ρR.

(49)

The quotient is then expanded in LT to obtain the geometric series

i
z− LD − LR − LT

=
i

z− LD − LR
+

i
z− LD − LR

(−iLT)
i

z− LD − LR − LT
. (50)

Using normalization conditions Tr
R
LR = 0 and Tr

R
ρR = 1, together with Eq. 50 makes it

possible to express equation 49 as [76]

ρD(z) =
[ i
z− LD

+
i

z− LD

∑
k

(
− iW(z)

i
z− LD

)k]
ρD(0), (51)

where

W(z) =
∞∑
k=1

Tr
R

(
LT

1
z− LD − LR

)k
LTρR

∣∣∣∣
irred.

. (52)

irred here refers to the irreducible diagrams in the perturbative series. A diagram is irredu-
cible if it cannot be factorized into lower order diagrams separated by a free propagation
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term i
z−LD . For a graphical representation of the irreducible series the reader is encouraged

to consult Refs. 73–75. By identifying Eq. 51 as a geometrical series we can rewrite it as

ρD(z) =
i

z− LD −W(z)
ρD(0), (53)

and by re-arranging the terms we get

izρD(z)− ρD(0) = (−iLD +W(z))ρD(z). (54)

This allows us to identify the left-hand side as the time derivative, and we can thus obtain
the stationary state density matrix by taking the zero-frequency limit (z → i0+), arriving
at the generalized Master equations for the reduced density matrix of the QD,

0 = (−iLD +W)ρD. (55)

4.4 Kernel evaluation

Solving Eq. 55 for ρD provides an exact solution to Eq. 46 as long as all terms in equa-
tion 52 are included. However, keeping terms beyond leading order in the expansion is
cumbersome and quickly becomes impossible from a practical point of view. Only terms
of even order in k give a non-vanishing contribution, and it is common to perform a sys-
tematic expansion up to order k = 2 (∝ Γ), and sometimes k = 4 (∝ Γ2), as will be
done here. Even higher order terms can to some degree be included in the resonant tunnel
approximation [71–73], in which a subset of these terms are kept, or when using real time
diagrammatics in a renormalization group approach [75, 76].

When evaluatingW the reservoir degrees of freedom are traced out by collecting all reser-
voir super-operators and calculating their expectation values using Wick’s theorem

⟨J qn
n J qn−1

n−1 . . .J
q1
1 ⟩R =

∑
P

(−1)P
∏
⟨i,j⟩

⟨J qj
j J qi

i ⟩R (56)

where P is the number of permutations needed to create the pairs of operators ⟨i, j⟩ on the
right hand side, and

⟨J q2
2 J q1

1 ⟩R = δq2−

(
δq1+ + δq1− tanh

(η1(ω1 − µ1)
2T1

))
≡ γ

q1
1 . (57)

The leading order terms of the kernel can now be written

W (2) =
∑
1q1

Γ1

2π
G+
1

q1γ
q1
1

i0− LD + η1ω1
Gq1
1 , (58)
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and the next to leading order is given by [74, 81, 82]

W (4) =
∑
12q1q2

Γ1Γ2

(2π)2

(
G+
1

1
η1ω1 + i0− LD

G+
2 − G+

2
1

η2ω2 + i0− LD
G+
1

)

×
q2γ

q2
2

η1ω1 + η2ω2 + i0− LD
Gq2
2

q1γ
q1
1

η1ω1 + i0− LD
Gq1
1 .

(59)

The physical processes described byW (4) correspond to coherent events in which two tun-
neling processes take place in a short time interval. This can e.g. transport electrons across
the QD through brief population of virtual intermediate states temporarily violating energy
conversion, as allowed by the Heisenberg uncertainty principle. Including these terms thus
results in a broadened energy distribution of transported electrons and a finite current can
be found also in the Coulomb blockade regime.

The matrix elements of a super-operator A are evaluated as

Aab
cd = ⟨c|

(
A|a⟩⟨b|

)
|d⟩. (60)

When evaluating thematrix elements ofW using 58 and 59 one encounters several integrals.
The solutions to these integrals are given in Refs. 74 and 82 for T1 = T2, and in the
supporting material of Ref. 81 for the case when T1 ̸= T2.

4.5 Observables

Any observable can now be calculated using the density matrix⁴

⟨A⟩ = Tr(Aρ) =
1
2
Tr (L+A ρ), L+A • = [A, •]+. (61)

When modeling heat engines we are primarily interested in two observables, the charge
and energy current. The charge current leaving reservoir r can be obtained from the time
derivative of the particle number in the reservoir (e = 1)

Ir =
d
dt
Nr = i[H,Nr]−, Nr =

∑
q,σ

c†q,σ,rcq,σ,r. (62)

However, instead of calculating d
dtNr directly, the evaluation of the particle current can be

simplified using the fact that the charge (and thus number of particles) is conserved in all
tunneling processes

[HT,r, Nr + ND]− = 0. (63)

⁴This follows from the cyclic property of the trace, Tr(AB) = Tr(BA).
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This conservation law allows us to calculate the number of particles entering the QD from
the reservoir instead of calculating the number of particles leaving the reservoir when eval-
uating the current. By using the charge conservation together with equation 61 one can
express the charge current as [76]

Ir = i TrL+ND
WrρD, (64)

whereWr is similar toW in equation 52 with the only difference being that the left-most LT
is replaced by LT,r. This leads to great numerical simplifications as W =

∑
rWr is already

calculated when solving for ρD. Thus no additional kernel is needed and unnecessary in-
tegral evaluations are avoided.

A similar treatment is possible for the energy current, defined as the energy change of a
reservoir, but one needs to be careful since the energy flowing out of a reservoir is not ne-
cessarily equal to the energy entering the QD from the same reservoir (although the total
energy is always conserved) [85]

[HT,r, Hr +HD]− ̸= 0. (65)

Instead the energy change in reservoir r can be rewritten

[HT,r, Hr] = −[HT,r, HD]− [HT,r,
∑
r′

HT,r′ ] + [HT,r, H] (66)

where r ̸= r′. The right-most term can be identified as the time-dependent change of
HT,r, which can lead to a temporary energy storage in the barriers if the Hamiltonian is
time dependent [86], but will vanish in the stationary limit of interest here. This means
that instead of calculating the energy observable directly in the reservoir we can evaluate
it from the two terms, one describing the energy change in the QD due to the coupling
to reservoir r, [HT,r, HD], and one associated with the tunnel couplings, [HT,r,

∑
r′ HT,r′ ].

By expressing these parts using the Liouville formalism one can obtain [83, 87]

JEr = iTr
D
L+HD

WrρD − iTr
D
WΓ,rρD. (67)

Here the first term on the right-hand side is evaluated in the same manner as Eq. 64, and
the second term is given by

WΓ,r = Tr
R
L+T,rLT

( 1
z− LD − LR

LT
)k
ρR

∣∣∣∣
irred.

. (68)

The leading order contribution of this term will be proportional to Γ2 and as a result it
does not contribute when considering only first order processes. In order ∝ Γ2 the kernel
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WΓ,r is given by⁵ [83, 87]

Tr
D
W(4)

Γ,r =
∑
1,2,j

r=r1,r1 ̸=r2

−iΓj,j2
2 Γ

j,j1
1

4π
Tr
D
G−
1

γ−1
−η1ω1 + i0− LD

G+
2 δσ1,σ2δη1,η2−

∑
1,2,j

r=r2,r1 ̸=r2

−iΓj,j2
2 Γ

j,j1
1

4π
Tr
D
G−
1

γ−1
−η1ω1 + i0− LD

G+
2 δσ1,σ2δη1,η2

, (69)

where Γj,j1
1 = 2πνr1 tσ1,r1,jtσ1,r1,j1/ℏ.

As with the charge current there will be numerical gains from using the conservation laws
to obtain the energy current according to equation 67. If JEr is evaluated inside a reser-
voir a new kernel must be set up where the evaluation of matrix elements requires solving
double integrals without known analytical solutions. When calculating JEr as described in
this section Wr is then already calculated when solving for ρD, and in addition the integ-
rals needed when setting up WΓ,r are analytically solvable, one dimensional integrals very
similar to those used in Eq. 58.

The expressions given in this section describe the calculation of charge and energy current,
from which the heat current is obtained through the first law of thermodynamics

JQr = JEr −
µr
e
Ir. (70)

5 Lindblad master equation

A master equation can only generate density matrices that represent physical systems if it
is a trace preserving and completely positive map, which is not guaranteed in most tech-
niques. Trace preservation ensures that Trρ = 1, i.e. probability normalization, at all times,
whereas complete positivity results in the density matrix only having positive numbers on
its diagonal. In ρ these numbers correspond to the probability of the system being in dif-
ferent states and negative values have no physical meaning. ρ calculated using the RTD
theory in the previous section will always have the correct trace, but negative probabilities
can occur.

⁵The trace is always present in the calculations and is included here since it has been used to simplify the
expression.
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The most general form of master equation that always yields a physical density matrix is
the (time dependent) Lindblad master equation⁶ [89]

dρD
dt

= −i[HD(t), ρD(t)]− +
∑
i

(
Ai(t)ρD(t)A

†
i (t)−

1
2

[
A†
i (t)Ai(t), ρD(t)

]
+

)
, (71)

which can also account for non-unitary evolution, e.g. the inclusion of dissipative pro-
cesses. Here Ai(t) are the collapse, or jump, operators accounting for the physical processes
one wishes to include, which will be different for each problem. Problems that are well
suited for the Lindblad equation includes a QD coupled to an environment where energy
exchange induces stochastic jumps between different energy levels, as will be the case in
paper III.

When deriving Eq. 71 (see e.g. Ref. 90) the following assumptions are commonly made
(which limits its applicability to a subset of possible problems). The density matrix is as-
sumed to be separable at t = 0, i.e. ρ(0) = ρD(0) ⊗ ρR and the system-environment
coupling is assumed to be weak so that the state of the environment remains constant and
the density matrix is approximately separable at all times. Furthermore, the Markov ap-
proximation is used where the relaxation time of the environment is much shorter than that
of the QD. Finally, the secular approximation needs to be fulfilled, i.e. the smallest energy
separation between non-degenerate states is larger than the coupling to the environment.
These conditions are very similar to those used when setting up the RTD theory where the
separability and Markov approximations are always valid. When only leading order terms
in Eq. 52 are kept and the secular approximation is imposed the RTDmaster equations will
even be of Lindblad form.

⁶It is also known as the GKSL equation after Gorini, Kossakowski, Sudarshan [88] and Lindblad.
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Thermoelectric engines

A thermoelectric device is a heat engine in the sense that it can convert thermal energy into
useful electrical energy. It does, however, not belong to the same category of engines as
its cyclic counterparts discussed in the introduction, but is instead classified as a particle-
exchange heat engine [91]. Engines in this class do not use a working gas, but operate
by continuously exchanging particles directly between the reservoirs. Its operation relies
on some mechanism making the particle transport energy selective, and work is extracted
when the particles move against some field increasing their potential energy. The engines
can in theory be operated reversibly, and reversibility is found when the particle transfer
is isentropic, requiring that all matter and energy flows vanish [92, 93]. As a consequence,
reversibility is only possible when there is a tight coupling between charge and heat flow,
resulting in completely interdependent currents that vanish at the same time [94]. This
requirement makes QDs excellent candidates for reversible solid-state generators, as will be
discussed later in this chapter. The chapter begins with an introduction to the thermoelec-
tric effects in bulk materials as well as nanostructures, and ends with summaries of papers
I and II in which QD-based thermoelectric generators are studied.

6 Traditional thermoelectrics

The thermoelectric effects describe interconnections between a material’s electrical and
thermal properties. The effects are three in total; the Seebeck effect, the Peltier Effect and
theThomson effect. The Seebeck effect bears the name of Thomas Seebeck who discovered
that a persistent current runs through a closed electric circuit consisting of two dissimilar
conductors joined at two places if one of the junctions is heated⁷ [96]. If the conductors are
only joined in a single place such that the electrical circuit is not closed, and this junction
is heated, an open circuit voltage is generated. It was soon identified that this effect does
not require two conductors but is present also in standalone materials where a temperature

⁷Although the discovery is attributed to Seebeck, it was actually first discovered by Alessandro Volta who
found that he could inducemuscle twitches in dead animals using ametallic rod with one of its ends heated [95].
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difference, or gradient, generates a difference in electric potential. The magnitude of this
effect is quantified using the Seebeck Coefficient

α =
ΔV
ΔT

∣∣∣∣
I=0
, (72)

relating the generated voltage ΔV to the temperature bias ΔT for a vanishing charge current
I. The next effect, the Peltier effect, is the inverse of the Seebeck effect where a voltage or
current through a conductor generates a temperature difference, i.e. transports heat [97].
In time-reversal symmetric systems, e.g. where no external magnetic field or magnetic
ordering is present, the Peltier coefficient is given by

Π = αT. (73)

The third effect, the Thomson effect, is a continuous version of the Peltier effect present
when a temperature gradient results in a gradient of α, as it generally depends on T. The
Thomson coefficient measures the rate of local heating resulting from an inhomogeneous
Seebeck coefficient [98]

K = T
∇α
∇T

. (74)

In this chapter only energy harvesting, i.e. converting thermal energy to electrical energy,
is of interest and of the three effects only the Seebeck effect is relevant. The others will not
be discussed further.

6.1 Linear response

When modeling transport properties of bulk materials, be it electric or thermoelectric, it
is very common to use linear response theories in which non-equilibrium conditions are
taken into account by expanding to linear order around the local equilibrium. This is a good
approach whenever ΔV and ΔT is small compared to the overall temperature T. Within a
linear response description the charge current is given by

I = G · ΔV+ αG · ΔT, (75)

where G = ΔI
ΔV

∣∣
ΔT=0 is the linear conductance. The validity of linear response can some-

times be questioned, e.g. for thermoelectric generators which can operate at ΔT ∼ T ∼
300K, but it holds surprisingly well for bulk materials. This can be explained by consid-
ering the short relaxation lengths of the charge carriers inside these materials. Crucial for
a linear response treatment is that the carrier distributions should not deviate much from
equilibrium distributions. The short relaxation length, on the order to the mean free path
∼ 100 nm, compared to the generator’s macroscopic size ensures that the carriers always
stay close to equilibrium. Thus, as long as ΔT ≪ T on the on the order of the mean

38



free path a linear response treatment can be motivated [99]. It will, however, break down
in nanoscale systems whose sizes are smaller than a typical electron mean free path, and a
non-linear treatment based on a complete microscopic description of the system is often
necessary. In the research presented in this chapter linear response is not assumed, although
paper II explores how well such a treatment would work for a QD-based thermoelectric
device.

Since Eq. 75 is almost always valid for bulk materials it has become common practice to
measure the thermoelectric performance using only linear response quantities. Typically,
it is quantified using the dimensionless figure of merit

ZT =
α2GT
κ

, (76)

in which κ is the thermal conductance relating the heat flux JQ to the temperature differ-
ence κ = κel + κph =

JQ
ΔT

∣∣
I=0, with contributions from both charge carriers and phonons.

A large ZT corresponds to high performance of a thermoelectric element, and ideal per-
formance, i.e. a Carnot efficient engine, is found when ZT → ∞. However, in systems
where a linear response description is invalid ZT can no longer be used as a reliable meas-
ure of engine performance [100–102], and one is best to resort to other means of measuring
performance. For example using the power and efficiency.

6.2 Bulk thermoelectrics

Maximizing ZT in Eq. 76 requires increasing α and G while reducing κ. Unfortunately,
this is far from an easy task as all parameters are more or less interdependent. For ex-
ample, in high conductivity materials G · κ−1 is constant, a phenomenon known as the
Wiedemann-Franz law [103], which makes all improvements to G in order to improve ZT
futile. For lower carrier concentrations κph starts to dominate the thermal transport [104],
which is detrimental for the performance as κph is not tied toG and phonons are uncharged
quasiparticles that only contribute to a dissipative heat leak.

Even though increasing ZT has proven cumbersome there have been continuous (small)
improvements ever since the discovery of thermoelectric materials. The first major leap
forward came with the introduction of semiconductors and semiconducting technologies
in the 1950s [105]. Prior to that only metals had been considered, which generally ex-
hibit a too weak thermoelectric response to be useful. Thermoelectric elements based on
semiconductors found several uses in niche applications throughout the late 20th century.
Common for these applications is that robust performance (i.e. low maintenance) and a
fast response time have a higher priority than high conversion efficiency, which is the case
in e.g. space technologies when solar power is not an option [106]. Thermoelectric ele-
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ments have also found some uses in cooling applications where their robustness and lack
of moving parts are sought after properties, or where spot-cooling of electronic circuits
is needed [107]. The best thermoelectric elements today use semiconductor materials with
highly optimized electronic structures and transport properties, andmuch of the research in
the field focus on finding newmaterials with the best attributes for increasing ZT [108, 109].
State of the art thermoelectric generators today have a ZT-value around 1.5-2.5 [110], and
it is believed that they might become a commercially viable option for large scale energy
conversion and waste heat recovery when ZT reaches ∼ 3-4 [111].

7 Nanoscale thermoelectrics

Thermoelectrics reached the nanoscale in the early 1990s when Hicks and Dresselhaus real-
ized that the electronic structures of quantum wells [112] and quantum wires [113] would
be very suitable for increasing the ZT (the underlying mechanisms will be discussed be-
low). In addition, the increased surface and interface area in small systems compared to
bulk materials has been shown to be disruptive for phonon transport and thus reduces un-
wanted heat leaks [114–116]. Some nanoscale systems have the added benefit of being able
to violate Wiedemann-Franz law, making it possible to somewhat independently tune the
conductance and the thermal conductance of the device, see e.g. Refs. 117-118 and references
therein.

7.1 Energy filtering

The principle behind nanoscale systems potentially having good thermoelectric perform-
ance is that of energy filtering. Energy filtering relies on unequal transport probabilities of
charge carriers at different energies. This is most easily understood using the view of ballistic
transport where particles are transported without dissipation, i.e. collisionless transport
where the particles do not gain or lose any energy. This picture is not a good description
for all nanoscale devices, in particular quantum wells and wires where the mean free path
can be shorted than the size of the device, but it is a fairly accurate picture for QDs.

How the actual filtering works can be understood from the examples in Fig. 12 where two
macroscopic electronic reservoirs are connected and allowed to exchange particles and en-
ergy through a central region whose transport properties account for the filtering. The
system in Fig. 12.a transports particles at all energies equally well, and thus performs no
filtering at all. As a result, a charge current consisting mostly of high energy electrons flow-
ing from hot to cold is exactly canceled by the charge flow of low energy electrons moving
in the opposite direction. However, all particles contribute with a positive amount of heat
to the total heat current (c.f. Eq. 70). A temperature difference in this system thus gener-
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(a)

(c)

(b)

(d)

Figure 12: The principle of energy filtering illustrated by considering ballistic electron transport between two reservoirs at differ-
ent temperatures. The temperature of the red reservoir is higher than that of the blue. The electrons are transported
through a central area with transport properties as illustrated in the figure where gray means electron transport is
not allowed. The arrows indicate the magnitude and direction of the particle currents. a) No filtering. b) Transport of
low energy electrons is blocked. c) Electrons can only be transported in a narrow energy range. In (c) a bias voltage
eV = Δµ is included such that the system generates electrical power P = I · V. d) Only electrons at a single energy
can contribute to the transport.

ates no charge current, but a maximally large heat current, exactly the opposite of what we
want. The situation is drastically improved in Fig. 12.b where no transport is allowed below
µ of the reservoirs. This yields a large net charge current and the magnitude of the heat
current is half of that in the previous example. When used in a thermoelectric generator
this system would generate a large output power (P = I ·V ), but at a fairly low efficiency as
the large charge current comes at the cost of a large heat current. The heat current will be
reduced further in Fig. 12.c where transport is only allowed in a narrow energy band, and
thus forbidden also for electrons with a very high energy. This is referred to as a box car
transport function, which provides optimal energy filtering if one wishes to maximize the
efficiency at a given power [119]. It has been predicted that this transport function can be
approximated in e.g. a superlattice of QDs [120–122], in quantum hall devices with energy
selective scattering of edge states [123], as well as in an Aharonov-Bohm interferometer [124].
Fig. 12.c also shows how power is generated as it includes a voltage bias forcing the trans-
ported electrons to travel electrically “upstream”. This increases the electrons’ potential
energy and electrical work equal to eV is generated per transported electron, highlighting
the principle behind thermoelectric energy generation. Finally, in Fig. 12.d the width of
the box car function is reduced yielding a delta function. Mahan and Soho [125] showed
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that such a delta function yields the highest possible ZT and thus also the highest possible
efficiency. As a discrete energy spectrum is the trademark of QDs this created a hope of po-
tentially using them in future thermoelectric energy converters, which we will explore next.

From the principle of energy filtering one can also deduce that 1D and 2D samples should
exhibit a strong thermoelectric response since their DOS in Fig. 5 contain parts with strong
energy dependences that can be used to filter out unwanted electrons.

7.2 QD thermoelectrics

One of the driving forces behind the fairly large interest in QD thermoelectrics today is the
promise of being able to create small, but highly efficient, heat engines and heat pumps [92,
126]. The operating principle of a single QD thermoelectric engine based on a SET is shown
in Fig. 13 where it is assumed that the QD couples weakly to its reservoirs limiting electron
transport to sequential tunneling. In that case any life-time broadening of the QD orbitals
is negligible and electron transport occurs only at energy ε. For the conditions illustrated
in the figure there is a net flow of electrons from the hot to the cold reservoir, and each
transported electron is associated with an amount of heat QH = ε − µH leaving the hot
reservoir. When the electron reaches the cold reservoir a part of QH has been used to
increase the potential energy of the electron by eV = µC − µH, and the remaining energy
is deposited as heat in the cold reservoir QC = QH− eV = ε− µC. Note that this working
principle is very similar to that of a traditional heat engine in Fig. 1, with the difference that
not only heat, but also particles, are exchanged between the two reservoirs. The efficiency
of the engine is given by the ratio of the power output and the heat flowing out from hot
reservoir, which in this case is identical to the ratio of the work output and absorbed heat
per transported electron, see Eq. 5,

η =
P
JQH

=
eV
QH

=
µC − µH
ε− µH

. (77)

Since charge and heat transport are tightly coupled in this setup, i.e. every transported
charge is associated with a quantized, fixed, amount of absorbed heat, the QD should
be an ideal heat engine and be able to reach the Carnot efficiency [14, 94, 127]. Carnot
efficiency requires reversible operation, and thus ΔS = 0, which in a steady-state device
means that all flows of matter and heat between the two reservoirs must vanish. Because
of the tight coupling between the two they conveniently vanish at the same time. In the
device shown in Fig. 13 this requires that the electron distributions of the reservoirs must
take the same value at ε. From the Fermi-Dirac distribution in Eq. 11 one can see that this
is only possible when

ε− µH
TH

=
ε− µC
TC

. (78)
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Figure 13: Schematic of a QD heat engine. Every electron transported from the hot to the cold reservoir removes heat QH from
the hot reservoir and deposits heat QC in the cold reservoir if electron transport is limited to a single energy. The
difference in absorbed and deposited heat is the work done on the electron when increasing its potential energy by
eV, thus converting thermal energy into electrical energy.

Solving for ε and plugging it into Eq. 77 yields η = ηC [92]. When the QD is instead
operated at maximum power its efficiency has been predicted to be close to the Curzon-
Ahlborn efficiency⁸ ηCA introduced in Eq. 8 [13].

The tight coupling between charge and heat flow will be broken when higher order tun-
neling effects become important, which will increase the heat flow and reduce the max-
imum efficiency. This is evident from the uncertainty relation in Eq. 32 since the energy
of transported electrons is no longer fixed due to a finite life-time of electrons on the QD.
An intuitive picture of this mechanism is that the transport function acquires an effective
broadening due to the higher order tunneling effects. The effect a finite broadening has
on the power and efficiency have been investigated in Refs. 128 and 129 where the tunnel
coupling is treated exactly but electron-electron interactions are treated perturbatively, or
are ignored. Those studies show that the efficiency decreases with increasing tunnel coup-
ling (and broadening) while the power increases up until ℏΓ ∼ kBT, after which the QD
starts to lose its energy filtering properties. Since the highest η is reached when electrons
are transported only at a single energy η is also reduced when more of the QD states start
to contribute to the transport, i.e. when Δε or EC ≲ kBT [130, 131].

It is worth noting that the preceding argumentation only regards the electronic part of
the transport. Any phononic flow between the two reservoirs will act as a pure heat leak
lowering the efficiency. However, the electronic efficiency is in itself interesting from a
fundamental point of view, as well as for practical applications where the electrons are not
in equilibrium with their phononic environment [118, 132].

⁸The actual value is slightly higher than ηCA due to the non-linear nature of transport in the device.
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7.3 Open questions in the field

Much of the early interest in QD thermoelectrics did not regard the potential of high power
and efficiency, but rather explaining the outcome of thermoelectric experiments, often fo-
cusing on the open circuit voltage or α [133, 134]. Beenakker and Staring were the first
to calculate and explain the behavior of α for a QD, which was done in Ref. 60 where
they considered a QD with many orbitals and strong electron-electron interactions. By
using a sequential tunneling approach they found α(VG) to have a saw-tooth shape at low
temperatures where the periodicity of the oscillations follows that of the Coulomb peaks
in the conductance. When instead only a single orbital is included, and EC is very large,
α(VG) will be a linear function. This can be understood by considering that α is defined
for I = 0, which requires that the condition in Eq. 78 is fulfilled. Re-arranged the variables
in the equation provides a linear relationship between ε and eV. Although this is theor-
etically sound it does not always describe a physical system particularly well as it would
mean an arbitrary large V can be generated at will, and several experiments have observed
an α(VG) that is far from linear [135–137]. The problem was re-tackled in Refs. 138 and 139
where transport is calculated by including both sequential and cotunneling effects. The ef-
fective broadening induced by cotunneling processes makes α(VG) approach zero for large
ε, in better agreement with the experiments [140]. However, even though second order
tunneling effects are very important for a proper description of a strongly interacting QD
close to the open circuit conditions, which is where the efficiency is highest, they are only
included in a few cases [135, 138, 139, 141–143]. Usually studies of weakly coupled QDs as-
sume that a sequential tunneling approach is sufficient and that a QD device inherently has
a high efficiency. In order to evaluate whether this is a good assumption Paper II explores
to which degree the second order effects influence the maximum efficiency and efficiency
at maximum power of a single QD heat engine.

Today there exists a large body of theoretical literature on QD thermoelectrics, much of
which go beyond considering only a single QD or include also additional physical effects
such as magnetism or superconductivity. These works will not be discussed in detail here
as the devices used in papers I and II are based on a single QD, but two trends will be com-
mented on. A review of the status of the field from a few years ago can be found in Ref. 144.
Many works published since then investigate the thermoelectric performance of multi-QD
and multi-terminal devices. The first identified trend is to spatially decouple the charge
and heat flow using thermal fluctuations on e.g. a QD or a reservoir to drive a current
through another QD [142, 143, 145–152]. The other trend involves studying devices where
a hot reservoir is sandwiched in-between two QDs, each of which couples to a cold reser-
voir [153–155]. Both of these designs have been experimentally implemented and shown to
able to generate power [156, 157]. However, experiments remain scarce and any new exper-
iment is always a welcome addition to the field as there is a very large discrepancy between
the amount of theoretical and experimental works. New experimental devices that actually
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operate as energy harvesters are particularly interesting since most experiments have his-
torically focused on measuring α [133–137, 158–160]. Measuring the generated power can
often be straight-forward, but determining the efficiency is still a very challenging task as
accurate heat current measurements have only been demonstrated in a few systems under
specific operating conditions [118, 161–164]. An alternative approach is to estimate the heat
current using theory, which requires a very high quantitative agreement between e.g. the
measured and calculated charge current to verify that the theoretical model describes the
system well enough. Nevertheless, experiments determining the efficiency are important
as the promise of high performance is a cornerstone of the field. Paper I takes a step in
this direction by providing the first experimental efficiency estimate of a QD heat engine,
verifying that it can operate at ηCA at maximum power and approach ηC when tuned for
high efficiency. It was subsequently followed by Ref. 157 which also included an efficiency
estimate, albeit at lower η, and Ref. 165 where ZT = 35 was observed for a device similar
to the one used in paper I, but at a higher overall temperature resulting in two orbitals
contributing to the transport.

8 Summary of paper I

The purpose of this study was to explore the performance limits of an experimental im-
plementation of a QD heat engine and hopefully validate the predicted high conversion
efficiency. The results show that QDs can in fact be highly efficient thermal-to-electrical
steady state energy converters, a conclusion drawn from the fact that we observed η ≈ ηCA
at maximum power and η > 0.7ηC while still maintaining a finite output power roughly
equal to half of the maximal amount.

8.1 Experimental setup

TheQDused in this study was defined as a segment in a heterostructured nanowire, see Fig.
14.a, where electrons in the conduction band of the InAs nanowire were confined by InP
barriers, as explained in Sec. 2.5. The ends of the nanowire were connected to an external
circuit via metallic contacts deposited on top of the wire to create a SET setup. An elevated
temperature of one of the reservoirs, as required to study thermoelectric effects, was created
by running a current through an additional heater contact located on top of a contact for
electrical biasing, separated only by a thin oxide layer for electric insulation. Furthermore,
in order for the device to produce electric power a resistive load R was connected in series
to the QD, see Fig. 14.b for a circuit diagram. Any current Ith that is thermoelectrically
generated by the device then induces a bias voltage VQD across the QD due to the presence
of the load, and any power that is generated by the engine gets dissipated in the load Pth =
−Ith · VQD = I2th · R, making a direct measurement of Pth possible. To get an extensive
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picture of the thermoelectric performance wemeasured the power asVG,R andVheat (which
sets the current running through the heater contact) were varied.

(a) (b)

Figure 14: a) Transmission electron micrograph image of a similar QD to the one used in paper I. The electrons in the conduction
band are confined between the InP barriers. b) Circuit diagram of the experimental setup where the heating circuit
is electrically isolated from the QD circuit. A voltage across the heater, |Vheat| > 0, creates a temperature difference
across the QD. All of the power that is thermoelectrically produced by the QD gets dissipated in the load R as long
as Vext = 0. The figure is adapted from paper I.

8.2 Analysis

The measured power allowed us to estimate the efficiency by combining Pth with the cal-
culated heat current JQH evaluated for the same values of the parameters Γ,TH,TC,VG,R.
This was possible since the device could be gated to a regime where its behavior was accur-
ately described as a QD containing only a single spin-degenerate orbital with large electron-
electron interactions. However, finding the perfect conditions for the experiment required
performing thermoelectric measurements over large gate voltage regimes in several devices.

All performed measurements were of DC charge currents. The current was primarily meas-
ured as a function of VG where other parameters such as Vheat or Rwere changed in between
Ith(VG) measurements. From the current we obtained the conductance by differentiating
with respect to bias voltageG = dI

dVext
at ΔT = 0 and R = 0, and the generated power from

Pth = R · I2th at Vext = 0 V. Once the measurements were performed the steps involved in
the analysis and the efficiency estimations were as follows.

1) Extract basic QD parameters from the conductance at ΔT = 0. These parameters are
the gate lever arm αG and charging energy EC, both obtained from a stability diagram, as
well as Γ, which is extracted by fitting the conductance calculated using the RTD theory
to the measured Coulomb peaks.
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2) Extract TH and TC by fitting the calculated current to Ith(VG) measured at a finite
Vheat and Vext = 0, as will be discussed in section 8.3. This step was performed for each
measurement of Ith(VG).

3) Calculate JQH(VG) for the set of parameters extracted in steps 1-2 and combine with
the measured Pth(VG) to obtain η(VG).

Unfortunately, a small signal-to-noise ratio of the current close to the theoretical maximum
efficiency points gave rise to very large fluctuations of η(VG). We therefore chose to mainly
focus on Pth maximized with respect to VG, henceforth called Pmax, and the corresponding
efficiency ηPmax .

8.3 Thermometry

Due to the nanoscale size of our system, the low temperatures at which the experiment was
conducted, and a non-trivial answer as to where to probe the local temperature there was
no straight-forward way of measuring the temperatures of the electronic reservoirs in our
setup. In order to extract information of the temperatures we therefore performed a least
square fit of the current calculated using the RTD theory to the measured Ith(VG) with TH
and TC as free parameters. This was done by minimizing

r =
∑
i

(Iexperiment(VG,i)− Itheory(VG,i))
2. (79)

The fits acquired this way produce unique temperatures, as can be seen from an example
of r(TH,TC) in Fig. 15.a, and the agreement between the measured data and the theory is
excellent, see Fig. 15b. These results, together with the fact that the analysis yielded consist-
ent temperatures over wide ranges of Vheat and R, make for convincing evidence that this
approach can be used as a valid thermometry tool.

It is, however, worth to mention two alternative approaches for performing thermometry
in a thermally biased QD. First, an alternative way of obtaining the temperatures would
be to bias the QD so that the energy level only samples the thermal distribution of one of
the reservoirs [166]. However, this requires additional measurements, and the large voltage
needed puts the QD outside of the regime where it can be operated as a heat engine. When
instead fitting the theory to the measurements using Eq. 79 these problems are avoided.
Second, it could be possible to use a normal metal-insulator-superconductor (NIS) junc-
tion to obtain the temperature of the metallic contact(s) [167], if the temperatures are low
enough. This would have the benefit that it would be possible to operate the QD as a
heat engine and measure the temperature at the same time. The drawback would be that
the temperatures of the contacts are not necessarily the ones sought after as the reservoirs
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(a) (b)

Figure 15: a) Logarithm of the summed squared residues in Eq. 79 normalized by its minimum value. Since r has one global
minimum it produces a unique set of {TH, TC}. For this example the best fit was given by TH = 1.46 K and TC = 0.89
K. b) The thermometry technique yields excellent fits which is exemplified by showing three Ith(VG) traces measured
for R = 14.4 kΩ. The applied Vheat and the resulting temperatures are indicated in the figure. The figure is adapted
from paper I.

will consist of both parts of the contacts and the nanowire. Alternatively, a macroscopic
metallic contact could be exchanged for a microscopic counterpart. By performing NIS
thermometry on the microscale metal contact the heat flow through the QD can be dir-
ectly measured [118, 164], which would be a very interesting extension to the work in paper
I, albeit at the cost of needing a more complicated setup.

8.4 Results

The main results from the study are summarized in Fig. 16, which includes both experi-
mental and theoretical data. First, it is shown how Pmax depends on the external load R
for two settings of Vheat, see 16.a. The power has a clear maximum for a specific value of
R, around 1.0 − 1.5 MΩ for this device, and one can also see that this value depends on
the temperatures. This figure hints at the fact that it is important to optimize the load in
order for the engine to show its full potential. The temperatures and thermal bias in the
experiment were around T ∼ ΔT ∼ 1 K, from which the engine can generate a few fW of
electrical power.

In Fig. 16.b Pmax is instead plotted against the corresponding efficiency ηPmax as R is be-
ing swept. Both cases show that the efficiency at maximum power is very close to ηCA,
confirming the theoretical predictions. Furthermore, for larger R the engine gets tuned to
a point where it produces half of the maximal power, at an efficiency of 0.7ηC. These results
show that a QD can in fact be used as a highly efficient heat engine.
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Figure 16: a) Pmax (Pth maximized with respect to VG) as a function of R shows an optimal load where the power production
reaches a maximal value. The markers are measured data and the solid lines theoretical predictions. b) Parametric plot
of Pmax and the estimated ηpmax as the load is increased. The arrow points in the direction of increasing R. The markers
are based on measured Pmax and calculated JQH , while the solid lines are pure theoretical results. The dashed lines
indicate ηCA, which is close to the estimated efficiency at the measured maximum power for the engine. Parameters
used are Γ = 8.9 GHz and TC = 0.69 K, TH = 1.02 K for Vheat = 750 mV whereas TC = 1.13 K, TH = 1.83 K for
Vheat = 1250 mV. The figure is adapted from paper I.

9 Summary of paper II

This study contains a more detailed analysis of the conditions required to optimize the
power and efficiency of devices similar to the one used in paper I. The paper contains two
parts. The first investigates how one best determines the load RP that maximizes the output
power. This was motivated by Fig. 16.a showing that there is a large performance penalty for
choosing a sub-optimal load, and sweeping the load in order to maximize the power can be
a tedious task. The analysis included both theoretical calculations using the RTD theory
as well as additional power measurements on the same device that played the lead role
in paper I. The second part of the study quantifies the efficiency decrease from including
second order tunneling effects and how this decrease scales with the tunnel coupling. As
such it provides a measure for when a sequential tunneling approach is sufficient to model
a thermoelectric QD device. Both the theoretical and experimental methods are the same
as in paper I and they will not be discussed further, we instead jump straight to the results.

9.1 Linear response - load matching

In electrical circuit theory any energy source with a linear IV characteristic, or network
of linear components, can be modeled as a Thevenin or Norton equivalent circuit which
contain only an internal resistance and an ideal voltage or current source. The ideal sources
are characterized be the device’s open circuit voltage and short circuit current, and the
internal load by the quotient of the two. The power transferred from an energy source to an
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external load is maximal when the size of the external load matches that of the internal load,
a principle known as loadmatching. In paper II it is investigated whether such a description
can be valid for the QD heat engine. This is done by comparing the load and voltage at
maximum power calculated using nonlinear effects to the equivalent circuit counterparts,
both obtained using the RTD theory including second order tunneling effects. The results
are shown in Fig. 17 where it is evident that any differences between the two cases are very
small, and the principle of load matching is, to a good approximation, valid.
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Figure 17: Comparison of the load and voltage at maximum power for a linear (solid lines) and a non-linear model (dots). The
engine can in the linear regime be modeled as a Thevenin equivalent circuit with internal load Vth/Ith, for which the
voltage at maximum power is half of the open circuit voltage Vth. Parameters used are ℏΓ = 0.1kBT in (a), ΔT = T
in (b) and T = TC in both figures. The figure is adapted from paper II.

9.2 Optimal load - practical considerations

The fact that loadmatching is approximately valid is good news for an experimentalist want-
ing to optimize the load. This is because the optimal load then can be obtained from the
equivalent circuit’s internal load Vth

Ith
evaluated at the VG that maximizes the linear response

power 1
4GV

2
th . Here, Vth, Ith and G are the thermally induced open circuit voltage, short

circuit current and conductance (for ΔT = 0), respectively. An alternative approach to
load matching is to experimentally determine the effective internal load of the device. This
can be done by measuring I as a function of both VG and Vext while maintaining a thermal
bias across the QD. The optimal load is then given by the value of Vext/I that maximizes
−IVext. Data generated by this approach can be seen in Fig. 18, where the predicted values
for the best R coincide with those from paper I where the load was physically varied, verify-
ing this technique. Finally, by using linear response and sequential tunneling assumptions
it is possible to derive a simple expression for the optimal load

RP ≈ 1.25
kB(TH + TC)

ℏΓ
h
e2
, (80)
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which worked surprisingly well for the experimental device. The results from the three
approaches are compared in Tab. 1, which show only minor differences between them.
The best way of finding the optimal load thus comes down to the experimental tools and
measurements that are available for a particular experiment.

(a) (b) (c)

(d) (e) (f )

Figure 18: Power production p = −IVext and effective load r = Vext/I. (a)-(c) Experimentally measured p as a function of Vext
and VG. Experimental parameters are Γ = 5.8 µeV, U = 4.9 meV, α = 0.05 and T = 0.75 K, ΔT = 0.45 K
in (a),T = 0.9 K, ΔT = 0.6 K in (b), and T = 1.15 K, ΔT = 0.7 K in (c). Only regions where the QD produces
power are shown in color. (d)-(f) Black dots show the data in (a)-(c) plotted in coordinates of p and r where each dot
corresponds to the p and r for a set of {VG, Vext}. The measured r that maximizes p are roughly the same as obtained
when actually varying the load and measuring power. The figure is adapted from paper II.

Table 1: Calculated optimal load for high power for the three measurements a, b and c in Fig. 18. RP is calculated using
non-linear and second order tunneling effects. Vth/Ith represent the linear response, second order tunneling results.
Equation 80 is based on linear response and first order tunneling.

Measurement RP [MΩ] Vth/Ith [MΩ] Eq.  [MΩ]
a . . .
b . . .
c . . .
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9.3 Efficiency

The second part of paper II investigates how the efficiency scales with Γ when also second
order tunneling effects are included, i.e. how much the effective broadening reduces the
efficiency. The main results from this part can be seen in Fig. 19 where the maximum η and
η at maximum power are plotted against Γ. From the figure one can see that the efficiency
can only be said to approach ηC if ℏΓ is many orders of magnitude smaller than the thermal
energy. The efficiency at maximum power is not as sensitive to increases in Γ due to the
operating conditions being further away from open circuit conditions where the broadening
plays a large role. Furthermore, we can see that even though we did not manage to probe
the highest efficiency points for the device in paper I, we came fairly close as the maximum
efficiency would be around 0.8ηC for that experiment since 20ℏΓ = 2kBTC = kBTH.
The figure also includes the exact solution for the efficiency calculated for U = 0 as a
comparison, which has been presented in earlier studies [128, 129].

10-4 10-3 10-2 10-1 100 101
0

0.2

0.4

0.6

0.8

1 LB
RTD, U=0
RTD

Figure 19: Maximum efficiency ηmax and efficiency at maximum power ηPmax as a function of Γ. Input parameters for the
calculations are ΔT = TC = T and U = 1000kBT to ensure that the doubly occupied state is unavailable for
transport (blue line). Results for RTD theory with U = 0 (purple line) and Landauer-Büttiker transport theory (black
line) are also included in the plot as references. The dashed lines indicate ηC and ηCA. The figure is taken from paper
II.
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Single bath quantum engine

Heat from a single heat bath can be converted perfectly into work if the entropy decrease
of the bath is compensated for by another part of the system. This principle is exploited in
this chapter where an experimentally feasible quantum engine based on coupled quantum
dots is introduced and analyzed. The chapter starts with a more detailed look into the
work extraction step in the Szilard engine, which is followed by an introduction to relevant
parts of quantum thermodynamics. Finally, paper III, in which the double QD engine is
proposed, is summarized.

10 Information and Landauer’s bound

Our discovery of the intricate connection between information and thermodynamics can
be dated back to Maxwell’s demon and the Szilard engine introduced in Sec. 1.4. In the
Szilard engine, information about a particle’s position allows one to convert kBT ln 2 of
heat into work at the expense of increasing the entropy of another part of the system (the
demon’s memory). In general, the upper bound of how much work can be extracted from
a system is given by the difference in free energy of its initial and final states

ΔF = ΔU− TΔS. (81)

The conundrum with the Szilard engine was that it seemed like ΔF = 0 even though
work was extracted. A proposed solution to this contradiction is to consider the demon’s
memory to be part of the system, which ensures ΔF ̸= 0. In paper III an engine with close
similarities to the Szilard engine is proposed, and in order to understand its operation it
is illustrative to analyze the free energy change of the work extraction step in the Szilard
engine (ignoring the memory). When evaluating ΔF we can consider the particle to be in
one of two well-defined states: in the left or right half of the compartment. The occupation
probabilities for the two states will be denoted pL and pR. Work extraction begins after the
demon observes the particle’s state, e.g. pL = 1 and pR = 0, which results in complete
certainty of the particle’s position and thus S = 0 according to Eq. 10. After work has been
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extracted we no longer know where the particle is, and it must be considered to have equal
probabilities of being in both states. In that case pL = pR = 1

2 , for which S = kB ln 2. The
total difference in internal energy is ΔU = 0 since Szilard considered an ideal gas where
U only depends on the number of particles and T, which do not change. Thus, we end
up with ΔF = −kBT ln 2 where a decrease in F indicates that the process is spontaneous,
allowing us to extract work.

The process just described is the inverse of a Landauer erasure [20]. Landauer’s principle
states that the minimum average energy required to erase an arbitrary bit of information
is kBT ln 2. In that case one considers the initial state to be the most general state where
the physical system encoding the information has equal probabilities of being in both the
0 and 1 state (in the Szilard engine this is given by pL = pR = 1

2 ). The final state is a
predetermined state of the bit, e.g. 0 ( pR = 0). Hence, an empty memory is represented
as a string of 0s, which is a well-defined state with zero entropy. An empty memory can
thus be used as an entropy sink making it possible to use it as a resource [168, 169]. The
beauty of Landauer’s principle, and its inverse, is that it is completely system agnostic, and
the dissipation limit for memory erasure has recently been experimentally verified by very
delicate measurements in different systems [170–175]. Alternative versions of the principle
have been identified where the resource spent is not in the form of energy, but rather some
other quantity such as angular momentum [176, 177]. Common for all approaches is, how-
ever, that the resource needed is determined by the entropy (information) change of the
system.

The link between information and thermodynamics, especially in small systems with few
degrees of freedom, is being studied extensively today and there is a plethora of sugges-
tions of different systems with Maxwell’s demon-like abilities. There are also experiments
probing the concept of using information to convert heat from a single heat bath into
work. Most notable are several experimental implementations of electronic engines acting
as information driven generators and coolers [172, 178–183]. Engines utilizing electrons are
particularly interesting as they can potentially be incorporated into electronic circuits.

11 Quantum thermodynamics

Up until this, nearly final, section only classical thermodynamics has been required to ana-
lyze the various systems. It remains a perfectly valid tool as long as the possible microstates
of a system are well defined pure states and fluctuations remain small compared to average
quantities. However, the picture can be quite different when the system under considera-
tion exhibit strong quantum properties such as quantum coherence and correlations. The
classical definitions of the thermodynamic quantities are not always valid in these cases and
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the problem needs to treated within the framework of quantum thermodynamics (QTD).
The research field of QTD is extraordinarily active at the moment and a comprehensive
overview of it is well beyond the scope of this thesis. A curious reader is instead encouraged
to consult Refs. 184 and 185. One of the big open questions in QTD is how to approach
unified definitions of work and heat in quantum systems. There are currently several defin-
itions, sometimes valid for different systems in different regimes, but no general and un-
ambiguous definition exists [184]. For our purposes only ensemble averages are of interest
for which work and heat can be defined as (assuming weak system-bath coupling) [186]

W =

∫ tfinal

to
Tr
[
dH(t)
dt

ρ(t)
]
dt, (82)

Q =

∫ tfinal

to
Tr
[
H(t)

dρ(t)
dt

]
dt, (83)

where H(t) is the system’s Hamiltonian and ρ(t) its density matrix. This definition is con-
sistent with the first law of (classical) thermodynamics.

One branch of QTD focuses on studying how to create machines that are driven by (see e.g.
Refs. 187–190), or generate [191], quantum resources making them true quantum engines.
Ideally one wants the quantum engine to outperform its classical counterpart, however the
bounds set by classical thermodynamics, such as ηC and Landauer’s bound remain valid
also in the quantum regime. The latter has even been experimentally verified [192, 193].
However, there is in general a lack of experiments in the field, both when it comes to
testing fundamental principles and creating quantum engines, and it would thus benefit
greatly from any new experiment. This is where paper III aims at making a contribution
by proposing an experimentally feasible quantum engine.

12 Summary of paper III

In paper III we propose a quantum engine that extracts work from a single heat bath by
letting initial, entangled, states act as the entropy sink. The final state of the cycle has the
same energy as the initial state, just like in the Szilard engine, but will be a mixed thermal
state instead of a pure entangled state. Since the entanglement is destroyed in the process
we use the terminology that it acts as the engine’s fuel.

The physical system we have in mind for the proposed engine consists of two electrons
on a double QD. Double QD systems are commonly studied in research environments,
mostly for their interesting transport and spin properties. For example, they can be used
to create qubits where information is encoded in the entangled spin states of two elec-
trons [53, 55, 194], which happen to be the same states that our engine is based on. Qubits
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based on spins in QDs is an experimentally mature technology and an implementation of
the proposed engine should thus be fairly straight forward and possible in the near future.

12.1 Double quantum dot

A schematic of the double QD system studied in paper III is shown in Fig. 20.a where two
plunger gates can be used to individually tune the potential energies of electrons on the
QDs. A third gate is used to control the tunnel coupling λ between the QDs. Electrons
in the system interact with one another through Coulomb interactions on the same and
different QDs with strengthsU andULR, respectively. One spin-degenerate orbital per QD
is included, which results in a six-dimensional Hilbert space for the two-electron states.
Energetically, two of the states will be split off from the remaining four by ∼ U, which we
take to be very large (U ≫ kBT). For simplicity we also set the single particle energies to
ε1 = ε2 = 0 as well as ULR = 0 .

λ

εL εR

t

λ

λM

(a) (b)

Figure 20: a) Schematic of a double QD where plunger gates (gray) control the single particle energies ε of each QD, as well as
the inter-QD tunnel coupling λ. b) Tunnel coupling λ as a function of time for both cycles. The green lines indicate
the parts common for both cycles, the dashed black line represents cycle (i) and the solid black line cycle (ii). (a) is
adapted from paper III.

When λ = 0 the four lowest energy eigenstates, all at E = 0, can be written

|S0⟩ =
1√
2

(
c†1↑c

†
2↓ − c†1↓c

†
2↑

)
|0⟩, |T+⟩ = c†1↑c

†
2↑|0⟩, (84)

|T0⟩ =
1√
2

(
c†1↑c

†
2↓ + c†1↓c

†
2↑

)
|0⟩, |T−⟩ = c†1↓c

†
2↓|0⟩, (85)

where S and T denote whether the spin-state is a singlet or a triplet. When λ is in-
creased all Ts remain eigenstates, but |So⟩ gets mixed with the high energy state |S+⟩ =

56



1√
2

(
c†1↑c

†
1↓ + c†2↑c

†
2↓

)
to form

|Sm⟩ =
1√

E 2
Sm + 4λ2

(2λ|S0⟩+ ESm |S+⟩) . (86)

The energy of the triplets is still ET(λ) = 0 whereas the mixed singlet’s energy is

ESm(λ) =
U
2
−
√

U 2

4
+ 4λ2 < 0. (87)

This energy spectrum and its dependency on λ constitutes the basis of the engine.

12.2 Engine operation

We consider two cycles for work extraction, both relying on only changing λ, albeit in
different manners as is shown in Fig. 20.b. Both cycles start with the electrons in the state
|S0⟩ at λ = 0. The |S0⟩ state is assumed to be provided by some external entity, e.g. as
a left-over from a computation or simulation in future quantum computers. In the next
step λ is quickly increased to large value λM. This step needs to be fast enough to inhibit
heat exchange with the environment (i.e. thermodynamically adiabatic), but slow enough
that the system remains in |Sm⟩ (i.e. quantum mechanically adiabatic). Since this changes
the energy spectrum, i.e. the Hamiltonian, but not the occupation probabilities, i.e. the
density matrix, work is being extracted from the system in accordance with Eq. 82. Next
one waits at λ = λM for a long time such that the system relaxes and the electrons end
up in thermal equilibrium with their environment, which is treated as a heat bath. The
occupation probabilities for the different states is then given by the Boltzmann distribution
in Eq. 9. Since the relaxation does not change the Hamiltonian but only reshuffles the
probabilities this step corresponds to absorbing heat from the heat bath, see Eq. 83. For
the final step the two cycles differ. In the first cycle, called (i), λ is quickly decreased to
λ = 0 in order to avoid further interactions between the electrons and the bath. In (ii) λ
is instead decreased very slowly such that the process is isothermal (and hence quasistatic).
The energy changes during these final steps are associated with both work and heat.

12.3 Performance

When evaluating the total work output for the (ideal) cycles one obtains

W (i) = − 3
Z
δE, (88)

W (ii) = −δE− kBT (ln 4− lnZ) , (89)
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Figure 21: a) Work output for cycle (i), dashed line, and cycle (ii), solid line, as a function of the singlet-triplet energy split δE
at λM. Cycle (ii) provides the largest work output, which is equal to ΔF for large δE. b) Power output as a function
of cycle time for the two cycles (same labels as in (a)) when finite time effects are included. Time is given in units
of 1/Γ0 where Γ0 = γν0/kBT corresponds to the transition time between (almost) degenerate states when the
double QD is coupled to a phonon bath with linear dispersion ν(εk) = ν0εk. An initialization time tinit for the qubits
is included when calculating power. tinit is 0.04Γ−1

0 in the top figure and 0.4Γ−1
0 in the bottom one. The figure is

adapted from paper III.

where δE = ET(λM)−ES(λM) and Z = 3+exp(δE/kBT) denotes the partition function.
How the output work per cycle depends on δE is shown in Fig. 21.a where it is clear that
cycle (ii) always generates more work than cycle (i). In the limit of large δE the engine is
thermodynamically ideal when using cycle (ii) as the work output equals ΔF, which in this
case is −kBT ln 4 due to the four possible final states and the fact that ΔU = 0.

Paper III also includes an analysis of the engine including finite-time effects. These are
taken into account by including a microscopic description of a phononic heat bath and an
explicit system-bath coupling of the form

HB =
∑
ω

εkb
†
kbk +

∑
i,k

γc†i,σci,σ̄(b
†
k + bk) + h.c., (90)

where interactions with some magnetic environment are assumed to cause spin-flips of the
individual electrons. The energy required to transition between the different states is sup-
plied, or absorbed, by the phonon bath. In Eq. 90 bk is a boson field operator for mode k, γ
is the system-bath coupling strength and c a fermion field operator. The system’s dynamics
is calculated by solving the time-dependent Lindblad master equation in Eq. 71 using |S0⟩
as the initial state. This provides the density matrix ρ(t), which together with the double
QD Hamiltonian is used to evaluate the work in Eq. 82.

The power output of the engine is shown in Fig. 21.b where it is evident that the two
cycles have different regimes where they are advantageous. As a rule of thumb cycle (ii)
is preferable is when the cycle time is longer than the relaxation time of almost degenerate
states, i.e. the relaxation time of the initial state, otherwise cycle (i) is better.
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Outlook

These are exiting times for everyone interested in nanoscale heat engines and quantum
thermodynamics. We, as in the research community, are at a place where technological
advancements will make many novel experiments possible in the near future, and the-
oretical breakthroughs will most certainly increase our understanding of heat and work
in the quantum realm. We will thus – hopefully – see working implementations of both
new and existing engine designs rather soon. These will be both nanoscale heat engines
driven as generators or coolers, as well as truly quantum engines. The scientific contri-
butions discussed in this thesis all aim at increasing our understanding of QD-based heat
engines as well as lowering the bar for performing new experiments.

Specifically, the results of the studies in papers I and II verify that QDs can be used as
the central components in highly efficient solid-state heat engines, and shine light on how
to best operate such engines. These are very timely contributions as the large body of the-
oretical research on different QD heat engines often rely on the fact that QDs are perfect
energy filters and that engines based on them are optimal thermodynamic engines. We
now know that this is a fairly good approximation in many, but not all, cases. In contrast
to the devices studied in this thesis most of the future experimental implementations will
probably have a more complicated design than a single QD in a SET setup. However,
they will all use QDs as the minimal component allowing a high efficiency, and the res-
ults presented here remain valid also for those cases. Regarding practical usefulness of the
devices it is unlikely that QDs will be used as energy filters in room temperature energy
harvesters. This is due to their small level spacings and interaction energies compared to the
thermal energy, which drastically lowers the efficiency. However, it is possible that other
QD-like systems with more favorable energy scales could be useful, for which the results
in this thesis would also be applicable. An example is single molecules, which have both
large interaction energies and level spacings, and where quantum interference effects can
further boost the thermoelectric performance [195]. It is also possible that QD devices will
be used as refrigerators spot-cooling electronic or quantum circuits at cryogenic temperat-
ures where these issues are not present.
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A subtler lesson from papers I and II, at least for the authors, is that when conducting
studies like these good performance can require a tight coupling also between theoretical
and experimental scientists. We are currently at a point where a high degree of control of
experimental devices and advanced theoretical methods allow for quantitative comparisons
to be used as a probe of otherwise inaccessible parameters. In general, this requires flex-
ibility and diverse toolboxes from both parties. From a broader scientific view new results
are of course more robust if the analyses of the experiments can be free from theoretical
assumptions, but where the observed data can later be fully explained even using said as-
sumptions. However, results derived from a combination of theory and experiment can be
ever so important when the experiments are limited by present-day technology.

Paper III did not verify or optimize the performance of an existing device but instead
proposed a completely new type of engine and experiment. It is unknown whether the
experiment will ever be conducted, but it nevertheless contributes to the field as there is
currently a lack of even theoretical propositions of quantum engines that are feasible with
current technologies. On the other hand, it is not unreasonable to argue that engines sim-
ilar to this one can be practically useful, especially in future quantum computers where
specific quantum (entangled) states may be abundant and can thus be used as a resource.
Exactly how the engines would work in that case will depend on several things, e.g. the
implementation of a qubit, but the physical principles used in paper III can be used also
for systems not based on QDs.
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