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Abstract – The dynamics of fluid vesicles is studied under flow in microchannels, in which
the width varies periodically along the channel. Three types of flow instabilities of prolate
vesicles are found. For small quasi-spherical vesicles —compared to the average channel width—
perturbation theory predicts a transition from a state with orientational oscillations of a fixed
prolate shape to a state with shape oscillations of symmetrical ellipsoidal or bullet-like shapes
with increasing flow velocity. Experimentally, such orientational oscillations are observed during
the slow migration of a vesicle towards the centerline of the channel. For larger vesicles, mesoscale
hydrodynamics simulations and experiments show similar symmetric shape oscillation at reduced
volumes V ∗ � 0.9. However, for non-spherical vesicles with V ∗ � 0.9, shapes are found with two
symmetric or a single asymmetric tail.

                    

Introduction. – Soft deformable objects such as liquid
droplets, vesicles, and cells show a complex behavior
under flow. For example, in simple shear flow, fluid
vesicles exhibit tank-treading, tumbling, and swinging
(also called vacillating-breathing, or trembling) motions,
depending on parameters such as shear rate, viscosity
contrast, and internal volume [1–9]. Understanding the
flow behavior of lipid vesicles and red blood cells (RBCs)
is not only an interesting problem of the hydrodynamics of
deformable, thermally fluctuating membranes, but is also
important for medical applications. In microcirculation,
the deformation of RBCs reduces the flow resistance of
microvessels. In diseases such as sickle cell anemia, RBCs
have reduced deformability and often block microvascular
flow [10]. Lipid vesicles are considered as a simple model
of RBCs and also have applications as drug-delivery
systems.
The recent development of microfluidic techniques [11]

allows the investigation and manipulation of individual
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cells and vesicles, e.g. the measurement of the dynamic
pressure drop for single-cell deformation [12], the sepa-
ration of RBCs from the suspending plasma [13,14], and
the control of oxygen concentration to investigate sickle
cells [10]. There are many potential applications such as
blood diagnosis on chip. Under steady flows in homo-
geneous glass capillaries and rectangular microchannels,
vesicles [15] and RBCs [14,16–18] deform into a bullet
(with a flattened rear end) or parachute (with an inside
bulge at the rear end) shape. Compared to these steady-
flow conditions, the vesicle dynamics in time-dependent
flow is much less explored. Only very recently, phenomena
like the wrinkling of vesicles after inversion of an elon-
gational flow [19,20] or shape oscillation of RBCs [21,22]
and fluid vesicles [23] under oscillatory shear flow have
been discovered.
In this paper, we propose a structured microchannel

system to study vesicle dynamics. The width of a
microchannel is spatially modulated along the channel,
so that a flowing vesicle is exposed to an oscillatory
elongational flow. We have fabricated such microchannels
and observe the time-dependent vesicle deformation via
optical microscopy. In parallel, we use perturbation theory
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Fig. 1: (Color online) Side view of the channel setup with
the reservoirs. The inset shows a top view of the modulated
channel. The length of the modulation is Lx = 100µm.

for quasi-spherical vesicles and mesoscale hydrodynamics
simulations for non-spherical vesicles to predict several
flow instabilities. In particular, we predict for wider
channels (compared to the vesicle size) a transition from
shape oscillations of symmetrical bullet-like shapes to
orientational oscillations with decreasing flow velocity;
for narrower channels, we observe stable shapes with two
symmetric or with a single asymmetric tail. Our results
demonstrate that structured channels are well suited to
investigate the dynamical behavior of vesicles.

Experimental systems and methods. – Lipid vesi-
cles, consisting of 1,2-dioleoyl-sn-glycero-3-phosphocholine
(DOPC, Avanti Polar Lipids) with 0.1mol% fluorescently
labeled T-Red DHPE (Texas Red 1,2-dihexadecanoyl-
sn-glycero-3-phosphoethanolamine, triethylammonium
salt, Invitrogen, USA), were prepared in aqueous sucrose
solution (200mM) by electroformation, as described
elsewhere [24]. Using this method, many giant unil-
amellar vesicles with diameter larger than 10µm were
produced. Prior to the experiments, the vesicles were
introduced into a slightly hypertonic aqueous glucose or
sucrose solution. This procedure enables control of the
volume-to-surface ratio by inflation and deflation of the
vesicles. The vesicles in sucrose solution are perfectly
density matched. The density difference between sucrose
and glucose solutions at 200mM is ∆ρ/ρ= 0.012, which
implies a small buoyancy force.
Microchannels were fabricated by soft lithography [25].

The structure of an AutoCAD designed mask was
transferred by illumination to a photoresist (SU-8,
microresist, Berlin), which serves as a master to cast
poly(dimethylsiloxane) (PDMS) replicas. After treatment
with an O2-plasma, the PDMS mold was bonded onto
a thin coverslip. The assembly was connected to a
reservoir containing the vesicle solution (inlet) and a
water reservoir (outlet) to adjust the hydrostatic pressure
difference, which drives the fluid through the structured
microchannel (see fig. 1). All channels have a height
Lz = 50µm and a periodic length Lx = 100µm.

Due to the lift force from a wall [26–28] and the
migration in a parabolic Poiseuille flow [29,30], vesicles are
aligned close to the center of the channel. In the glucose
solutions, the buoyancy force leads to a displacement
of the vesicles from the center of the channel in the
z-direction (see fig. 1). The balance of the buoyancy
force and the lift force [26,28] implies a distance ��
(ηγ̇R0/(∆ρg))

1/2 between membrane and wall, where γ̇
is an effective shear rate, R0 a mean vesicle radius, η
the fluid viscosity, and g the gravitational acceleration.
For R0 = 10µm, γ̇ = 1 s

−1 (corresponding to a mean flow
velocity of about 20µm/s) and the viscosity of water,
we obtain the order-of-magnitude estimate of �= 10µm,
comparable to the channel size Lz. The displacement
from the center implies an asymmetric deformation of the
vesicle shape in glucose solution under flow.

Theory for quasi-spherical vesicles in modulated
channels. – We consider vesicles which have the same
viscosity η of the outer and inner fluids. Vesicles have
constant volume V and constant surface area S, so that the
reduced volume V ∗ and the excess area ∆S are defined by
V ∗ = (RV/RS)3 = (1+∆S/4π)−3/2 and ∆S = S/R2V− 4π,
where RV = (3V/4π)

1/3 and RS = (S/4π)
1/2.

First, we derive an analytical description of the flow
behavior of small quasi-spherical vesicles with ∆S� 1,
based on the theory for linear flows [2,5–7,20]. The
microchannel has a constant height Lz and a periodically
modulated width with walls at ±hy(x), where

hy(x) =
Ly

2

{
1+ ay cos

(2πx
Lx

)}
. (1)

Here, Lx is the periodicity length along the channel (see
fig. 1). The flow field v(r) for weakly modulated channels
(ay�Lx/Ly) is obtained from lubrication theory,

vx = (9vmLy/8hy){1− (y/hy)2}{1− (2z/Lz)2},
vy =−πvxyLyay sin(2πx/Lx)/hyLx, (2)

vz = 0,

where vm is the mean flow velocity. Furthermore, we
consider small vesicles with RV�Ly, Lz, and neglect
backflow effects due to the channel wall.
The vesicle shape is expanded in spherical coordinates

as r=RV(1+
∑
l,m ul,mYl,m), with the spherical har-

monics Yl,m(θ, ϕ) and the polar axis in the z-direction. We
consider a vesicle shape which is mirror symmetric in the
z-direction, which implies, e.g., u2,±1 = u3,0 = u3,±2 = 0.
The curvature energy of the membrane with bending
rigidity κ and reduced surface tension σ is given by

F = (κ/2)
∑
l,m

El|ul,m|2+κ(12+2σ/3)u(3)2 , (3)

where El = (l+2)(l− 1){l(l+1)+σ}. Here, the third-
order term u

(3)
2 = (

√
5/π/7)(u2,0

3− 6u2,0|u2,2|2) for l= 2
is necessary to obtain a prolate shape as thermal-
equilibrium state [7,31]. With the Stokes approximation
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and the Lamb solution for the flow field, the dynamics
of the amplitudes ul,m of a vesicle moving along the
center line (y= z = 0) of the channel with velocity
v(xG, 0, 0) = (9vmLy/8hy, 0, 0) is governed by [2,7,20]

∂ul,m

∂t
= sl,m(xG)−κ∗Γlfl,m (4)

with reduced bending rigidity κ∗ = κLy/(ηR3Vvm) =
Ly/(vmτ) and Γl = l(l+1)/(2l+1)(2l

2+2l− 1). Here,
τ = ηR3V/κ is the characteristic relaxation time of a vesicle.
Two kinds of forces determine the membrane deformation
in eq. (4), the curvature force fl,m =Elul,m− (12+2σ/3)
∂u
(3)
2 /∂ul,m, and the force sl,m(xG) due to the elonga-

tional flow. The force sl,m(xG) is given by sl,m(xG) =
(al,m+Blbl,m)Ly/RVvm [2,7,20]. Here, Bl = 1/(2l

2+
2l− 1), and al,m and bl,m are the spherical harmonics
expansion of vr(r) and RV∂vr(r)/∂r at |r− rG|=RV,
respectively, where vr(r) is the radial components of the
flow field v(r) in the absence of the vesicle. The tension
σ is determined by the area constraint ∂∆S/∂t= 0 with

∆S =
∑
l,m(l+2)(l− 1)|ul,m|2/2− 2u(3)2 /3. We consider a

vesicle with a small excess area ∆S = 0.1 (corresponding
to V ∗ = 0.988), where it is sufficient to take into account
l= 2, 3 modes, and a channel with Ly =Lz = 20RV and
various Lx and ay.
In fast flow, where flow forces dominate and the reduced

bending rigidity is small, κ∗� 1, the analysis of eq. (4)
shows that the shape is mirror symmetric with respect to
both xz and xy planes, and that the vesicle lengths lx
and ly oscillate (see fig. 2). The flow elongates the vesicle
in the y- and x-direction for −Lx/2<x< 0 and 0<x<
Lx/2, respectively. In the regime κ

∗� 1, the extremal
elongations are determined by the balance of the flow
forces, sl,m(xG), and the area constraint. The forces
|s2,2(xG)| and |s3,3(xG)| have maxima at xG =±0.38Lx
and xG =±Lx/2 for ay = 0.5, respectively. The resulting
positions of extremal elongations are found to be close to
xG = 0 and xG =Lx/2 (see fig. 2(b)).
In contrast, in slow flow with κ∗� 1, the vesicle is

predicted not to change its shape, but to display a periodic
oscillation of its orientation. The tilt angle θ oscillates
around π/4 (or −π/4 depending on initial positions), see
snapshot in fig. 2(a). Thus, a symmetry breaking occurs
with decreasing flow velocity.
Both types of vesicle motions are limit cycles. A sharp

but continuous transition between these two motions
occurs at a critical reduced bending rigidity κ∗c , where
the tilt angle θ vanishes (see fig. 2(a)). The critical
value κ∗c increases with increasing corrugation ay of the
channel, but is almost independent of Lx for Lx/Ly > 2
(see fig. 2(c)). The symmetric vesicle deformation reduces
the disturbance of the original flow but increases the free
energy of the vesicle. At small or large κ∗, the former or
latter contribution dominates, respectively.

Mesoscale hydrodynamics simulations of vesicles
under flow. – We employ mesoscale hydrodynamics
simulations to study the flow behavior of vesicles in narrow

0

2

4

1.8

2

0

0.2

0.4

1 10 100κ*

κ*=0.01
(a)

(b)

l /
 R

V

lx

ly

lz

lx

κ*=100

x   / LxG
0-0.5 0.5

(c)

a y

<
si

n 
 (

2θ
)>

2
κ*

0 0.2 0.4

L   / Lxy

2

4

8

16

0

2

4

0 5 10 15

0.3

0.1

0.4

ya   = 0.5
cκ*

c

Fig. 2: (Color online) Dynamics of a quasi-spherical vesicle
at V ∗ = 0.988. (a) Dependence of the tilt angle θ of a vesicle
on κ∗, for Lx/Ly = 4 and ay = 0.5. Here, 〈sin2(2θ)〉=
〈(Im(u22)/|u22|)2〉 describes the deviation from symmetric
shape (with respect to the xz-plane). The insets show sliced
snapshots of vesicles in the xy-plane for κ∗ = 0.01 and κ∗ = 50.
Solid and dashed lines indicate shapes of extremal elongation
or tilt. (b) Maximum vesicle lengths in the x, y, z directions as
a function of the center-of-mass position xG, for κ

∗ = 0.01 and
ay = 0.5. Solid and dashed lines represent results for Lx/Ly = 4
and Lx/Ly = 16, respectively. (c) Critical reduced bending
rigidity κ∗c as a function of the corrugation amplitudes ay for
channel geometry Lx/Ly = 2, 4, 8, and 16. The inset shows κ

∗
c

as a function of Lx/Ly for ay = 0.1, 0.3, 0.4, and 0.5.

channels. A dynamically triangulated surface model for
the membrane [32] is combined with a particle-based
mesoscale simulation technique —multiparticle collision
dynamics (MPC) [33–35]— for the embedding fluid. A
detailed description of this approach to model vesicles
dynamics under flow can be found in refs. [4,18]. In
MPC, the fluid is described by Ns point-like particles
of mass ms. After free streaming of every particle for a
time step ∆t, the fluid particles collide in cubic boxes of
lattice constant a=Lx/16, which is also the mean length
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Fig. 3: (Color online) Sequence of snapshots (at equal time
intervals) of vesicles with V ∗ = 0.96 and RS/Ly = 0.21 moving
through a microchannel, experimentally observed by optical
microscopy (in sucrose solution) for κ∗ = 0.04 (vm = 38µm/s,
Ly = 75µm) (top), and in simulation for κ

∗ = 0.08 (bottom).
For the experimental data, the time interval between images is
0.97 s.

between membrane vertices. We use the fluid viscosity
η= 550

√
mskBT/a

2 (with number density n= 100a−3 and
the time step ∆t= 0.01a

√
ms/kBT ), corresponding to low

Reynolds numbers, to simulate experimental conditions.
We study vesicles with bending rigidity κ= 20kBT , where
kBT is the thermal energy. The flow velocity is chosen to
be vmτ/Ly = 170(RV/Ly)

3 for a channel with Ly =Lz =
Lx/2, corresponding to a slow vesicle relaxation compared
to the passage time through a channel segment. For
vesicles with RS/Ly = 0.36 and RS/Ly = 0.46 at V

∗ = 0.9,
the reduced bending rigidity is κ∗ = 0.14 and κ∗ = 0.07,
respectively. In this regime, the vesicle dynamics is not
very sensitive to κ∗.
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Fig. 4: (Color online) Maximum lengths lx, ly, and lz of vesicles
in experiments (solid lines) and simulations (dashed lines) from
the same data as shown in fig. 3.

Vesicles in sawtooth-shaped channels in fast
flows. – We investigate the dynamics of large prolate
vesicles in fast flows, corresponding to small κ∗, both by
experiments and simulations. In this case, hydrodynamic
interactions between the vesicle and wall are not negli-
gible. We consider now a periodically patterned
microchannel with a sawtooth shape (see figs. 1 and 3), for
which the walls are located at

hy(x) =
Ly

2

{
1+ ay

(
1± 4x
Lx

)}
(5)

for −Lx/2<x� 0 and 0<x�Lx/2, respectively. Two
types of channels are used, which are characterized by
Ly = 50µm, ay = 0.2 and Ly = 75µm, ay = 0.33 (as well
as Lz = 50µm and Lx = 100µm). The glucose and sucrose
solutions are used for the experiments with the narrower
and wider channels, respectively. Typical experimental
flow velocities are in the range vm = 10–100µm/s.
First, we describe the dynamics in the wider channel

(Ly = 75µm). Experimental and simulation results for
the shape deformation are shown in figs. 3 and 4. As
expected, the vesicles change their shapes periodically.
For V ∗ � 0.9, vesicle shapes vary continuously between an
almost ellipsoidal (in the narrow part of the channel) and
a cone-like (in the wide part of the channel) bullet shape,
see fig. 3. This is in contrast to the behavior for unbounded
steady Poiseuille flow, where perturbation theory predicts
a coexistence between bullet- and parachute-like shapes
at the center line [30]. The amplitudes and phases of the
deformations in the x- and y-directions (see fig. 4) agree
well between simulations and experiments, while very little
deformation is seen in the z-direction. The small difference
of amplitudes between the experiment and simulation
is probably due to the somewhat different values of
the reduced volume and radius of the vesicle, since an
accurate experimental estimation is difficult (because the
length in the z-direction could not be measured). The
dynamics also agrees qualitatively with the theoretical
predictions for quasi-spherical vesicles, compare fig. 2,
although the parameters are outside the range of validity
of the theoretical approximations.
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Fig. 5: (Color online) Normalized oscillation amplitudes ∆l/〈l〉
in the x (red) and y (blue) directions. Open symbols represent
simulation data for RS/Ly = 0.36 (◦, �) and RS/Ly = 0.46
(�, �) at ay = 0.2, respectively. Closed symbols represent
experimental data for Ly = 50µm with ay = 0.2 in glucose
solution (•, �) and Ly = 75µm with ay = 0.33 in sucrose
solution (�, �), respectively. The solid lines are guide to
the eye. The lower part shows snapshots of simulations (s1,
s2, s3, s4) and experiments (e1, e2, e3, e4) for Ly = 50µm.
All snapshots are displayed with the same length scale. The
pictures e1 and e2 show the same vesicle before and after the
transformation from ellipsoid to tailed shape, respectively. All
images (e1–e4) are vesicles in glucose solution.

At reduced volumes V ∗ � 0.9, we find that the vesicles
deform into novel shapes, while they are still ellipsoidal in
the absence of flow. At V ∗ ∼ 0.85, the simulated vesicles
develop two tails in the xy-plane (see fig. 5(s3)). This tail
position is very stable; the tails quickly return to the xy-
plane, even from an initial state with the tails in xz-plane
(obtained by π/2 rotation). At V ∗ ∼ 0.80, the symmetric
tails become unstable; they are replaced by a stable shape
with a single asymmetric tail (see fig. 5(s2)). In this case,
the configuration with a tail in the xz-plane is also stable
within the accessible simulation time (see fig. 5(s1)). A
single-tail shape is also observed in our experiments with
vesicles in glucose solution (see fig. 5(e2)); here, the off-
center motion induced by the buoyancy force implies that
the tail is found in the z-direction. Recently, Abkarian
et al. [14] found a similar asymmetric tail for RBCs in very
fast flows in homogeneous capillaries (with flow velocity

vm = 10–35 cm/s and capillary diameter 10µm). Such a
long tail is much more difficult to form in RBCs due to
the shear resistance of the spectrin network, and may even
require a local separation of the lipid bilayer from the
spectrin network. Thus, the formation of an asymmetric
long tail is a generic feature in capillary flows. Structured
channels promote tail formation already at smaller flow
velocities. The low contrast and the blurry contour in the
rear part of the vesicles in the experimental micrographs
of fig. 5 (e3, e4) indicates that vesicles exhibit enhanced
shape fluctuations at the rear part, due to a locally
reduced membrane tension; the low contrast regions in
the shapes of fig. 5 (e1, e2) is probably due to a tilt of the
vesicle axis and a vesicle asymmetry induced by off-center
motion with a buoyancy force.
Our experimental and simulation results for the oscil-

lation amplitude ∆l, displayed in top part of fig. 5, show
that the difference between maximum and minimum of lx
or ly is quite insensitive to the reduced volume V

∗ and
the vesicle size RS. In the experiments, V

∗ is estimated
from the prolate ellipsoid shape with the lengths 〈lx〉
and 〈ly〉 of the long and the two short axes, respectively.
The finite amplitudes for V ∗ � 1 are caused by errors
in the estimation of V ∗. The velocity vves and average
size lm = (〈lx〉+ 〈lx〉)/2 of liposomes are varied in experi-
ments in the ranges vves = 14–45µm/s and lm = 20–40µm,
respectively. The amplitude ∆ly of the vesicle with asym-
metric tail in the xy-plane (s2) is smaller than in the
xz-plane (s1), since its tail is still at the wide part of
the channel and elongated when the main body is at its
narrowest part.
For vesicles, which flow in the center of the channel,

similar symmetric shape oscillations are observed in the
narrow and wide channels (in agreement with our predic-
tions for fast flows from perturbation theory). However,
when the vesicle is slightly displaced from the center
(y= 0) in the wider channel it displays orientational
oscillations, as shown in fig. 6. Here, the asymmetry of
the flow field acts to magnify the orientational oscilla-
tions, which are accompanied by strong shape oscillations
between slipper and ellipsoidal shapes. Thus, a mixed state
of orientational and shape oscillations appears for κ∗ � 1;
it appears to be long-lived due to the small lift force for
wider channels.

Vesicles in sawtooth-shaped channels in slow
flows. – Finally, we want to briefly discuss the dynamics
of large vesicles at slow flows, with κ∗� 1. If the vesicle
size is larger than the smallest channel width Lminy ,
vesicles cannot flow through the channel without a shape
deformation. Thus, with decreasing flow velocity, the
dynamics changes from shape oscillations to a trapped
state [36] (instead of the orientational oscillation). The
transition velocity depends on RS/L

min
y , V

∗, and κ∗. A
microchannel with a strong variation of channel width (for
instance the channel in fig. 6(a) of ref. [14]), is suitable for
a study of this trapped-escape transition.
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Fig. 6: (Color online) Oriental oscillation of a vesicle (in
sucrose solution) in a wide structured channel with Ly = 75µm.
(a) Micrograph of an oscillating vesicle with RV = 24µm,
v= 34µm/s, corresponding to κ∗ = 0.0132. The image is a
superposition of video frames taken at time intervals of 1 s.
(b) Orientational angle as a function of the center-of-mass
position xG. The (red) circles (◦) represent the same data as in
(a). The vesicle oscillates between the extrema of θmin = 0.07π
and θmax = 0.3π. The (blue) triangles represent another vesicle
(with RV = 18µm, v=±55µm/s). Here, we have inverted the
direction of the fluid flow; symbols indicate angles before (�)
and after (�) flow inversion.

Summary. – We have studied the dynamics of vesi-
cles in structured microchannels, both theoretically and
experimentally. For large reduced volumes, the vesicles
periodically change their shape (large flow rates) or their
orientation (small flow rates), depending also on the
channel geometry. For smaller reduced volumes, we find a
novel shape with a long asymmetric tail. The good agree-
ment of theoretical and experimental results shows that
flow of vesicle suspensions in complex flow geometries can
now be understood quantitatively.
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