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Lake Constance (47° 38’ N, 9° 22’ E) is a deep (max. depth 251m) and large (surface area 536 km2) 

postglacial lake in Central Europe. Originally, it harboured two charr species – Salvelinus umbla and 

S. profundus. The first is a medium-sized, colourful, winter spawning charr, which is widespread 

across Central European lakes, the second a small, pale, summer spawning, deepwater charr, which is 

endemic to Lake Constance (Schillinger 1901, Kottelat and Freyhof 2007). S. profundus has 

exceptionally large eyes and the upper jaw strongly overlaps the lower jaw. These traits are both 

considered adaptations to its life in the deep where it mostly feeds on profundal benthos (Schillinger 

1901). During the second half of the last century, Lake Constance became eutrophic, resulting in 

oxygen-depletion in deep waters (IGKB 2004). The anoxic conditions harmed the development of 

eggs by profundal spawning fish (Baer et al. 2017). Thanks to strict management interventions, the 

lake has returned to an oligotrophic state, and oxygen is again available in the water column down to 

the greatest depth (IGKB 2004). 

However, during peak eutrophication in the late 1970s, deepwater species such as the whitefish 

Coregonus gutturosus and the charr S. profundus disappeared (Freyhof and Kottelat 2008a,b). While 

both species were common and commercially harvested before eutrophication, intense targeted 

sampling over a decade after re-oligotrophication remained fruitless, and they were therefore declared 

extinct according to IUCN criteria (Freyhof and Kottelat 2008a,b). Today, C. gutturosus is considered 

a prime example for speciation reversal, whereby a change in environmental conditions, which are 

necessary to maintain reproductive isolation among evolutionarily young species, causes species to go 

extinct by collapsing into a hybrid swarm (Vonlanthen et al. 2012, Frei et al. unpublished data). The 

simultaneous disappearance of the ecologically similar S. profundus led to the conclusion that it 

shared the fate of C. gutturosus (Vonlanthen et al. 2012).

However, in 2012, a colleague, Jasminca Behrmann-Godel, informed us about a small, pale, summer 

spawning charr that she and others had caught. On several previous occasions, small individuals of S. 

umbla had wrongly been identified as S. profundus (Kottelat and Freyhof, 2007), so in this case, we 

were hopeful that it could be the presumably extinct species, since it showed several of its traits. In 

2010, a large project (“Projet Lac”) started to assess the fish community for each of the large pre-A
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alpine lakes in and around Switzerland through habitat stratified random fishing (Alexander et al. 

2015). We were therefore very much looking forward to autumn 2014, when it was Lake Constance’s 

turn in that project (Alexander et al., 2016). Besides the standardized random fishing program, we 

also set two additional nets to target the extinct species, at the same location and depth where Dörfel 

had caught the last specimens in 1972. Surprisingly, we caught seven charr at this location that closely 

matched the description of S. profundus (Fig. 1A-C), and an additional one during the large fishing 

campaign (Fig. 1E). The other charr species, S. umbla (N=12) was caught across entire Lake 

Constance. At the historically known S. profundus hotspot, we even had the two distinct species in the 

same net. Nonetheless, S. profundus was found at deeper depths than S. umbla (median depth: 90m 

vs. 37m, Wilcoxon test p<0.001). The rediscovery of this ecologically unique species that has 

survived a major environmental perturbation has prompted us to reassess its phenotypic and genetic 

differentiation relative to its sympatric relative.

Our morphological data suggest that the rediscovered charr species differs considerably from S. umbla 

in many traits, including ecologically important ones, and that is has maintained most of these traits 

through the period of eutrophication. We measured 24 linear morphometric distances (Appendix S1: 

Fig. S1) on preserved charr caught in autumn 2014 (8 S. profundus and 11 S. umbla). The two species 

clearly differ in overall morphology, as revealed by a morphological PCA based on all traits (Fig. 

2A). The rediscovered deepwater S. profundus specimens have significantly larger eyes, wider upper 

jaws at the front, and a more subterminal mouth than S. umbla individuals (Fig. 2B), all of which were 

characteristic for S. profundus before the eutrophication period (Schillinger 1901). Furthermore, they 

have longer anal fins, and marginally longer snout, longer maxilla, and shallower body depth at the 

anterior insertion of the anal fin (Appendix S1: Table S1). Colours also match historical descriptions: 

while S. umbla has green-brown body coloration with red-yellow spots and prominent white fin 

margins, S. profundus has a pale body with faint spots, and no or only faint white fin margins (Fig. 1; 

Schillinger 1901, Kottelat and Freyhof 2007). 

However, the two species no longer differ in a previously distinguishing trait: namely S. profundus, 

which historically had very low gill raker numbers (median: profundus 22, umbla 28; Dörfel 1974) no A
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longer differs from that of S. umbla (Fig. 1C; profundus 23; umbla 23; Wilcoxon test p = 1). The two 

species converged in this trait, thereby both undergoing a significant (Wilcoxon test: profundus p = 

0.043, umbla p < 0.001) and rapid phenotypic change (profundus -0.04 haldanes, CI95 = -1.84 to -

0.002; umbla: 0.31 haldanes, CI95 = 0.24-0.38; generation times were estimated from average age of 

pre-eutrophication charr (Dörfel 1974)). These rates are comparable to those of Alpine whitefish 

during eutrophication (significant absolute rates of 0.07 - 0.59 haldanes, Bittner et al. 2010), and the 

pattern of convergence (Fig. 1C) is reminiscent of partial speciation reversal in Alpine whitefish 

(Vonlanthen et al. 2012). Interestingly, convergence was asymmetric in that S. umbla shifted strongly 

towards gill raker numbers of the historical S. profundus. Given the rate and magnitude of change, 

this shift was probably influenced by introgression and might be adaptive for feeding on more benthic 

prey.

At same age, S. profundus individuals were consistently smaller than S. umbla individuals (Fig. 2D). 

We obtained age data from otoliths immersed in water, read under a binocular microscope (two 

readings by CJD; if different, lower estimate was used). Growth models revealed greater asymptotic 

growth for S. umbla than for S. profundus. However, confidence intervals of asymptotic length 

overlapped (umbla La = 383mm, CI=301-464mm; profundus La = 289mm, CI = 112-467mm), 

potentially due to small sample sizes. Our results are consistent with the historically described smaller 

size and slower growth of S. profundus as compared to S. umbla (Schillinger 1901, Dörfel 1974).

We found significant genetic differentiation between the two sympatric species, suggesting 

reproductive isolation between them. For this study, tissue samples for genetic analyses were 

available for all 8 S. profundus and for 7 S. umbla individuals caught in September 2014. To increase 

sample size, we added 10 S. umbla samples obtained from spawning fisheries in November 2012. For 

all 25 samples, we extracted whole-genomic DNA using phenol-chloroform extraction and genotyped 

them at nine microsatellite loci as described in Doenz et al. (2019). The two species were significantly 

genetically differentiated at two of nine (Appendix S1: Table S2) and at all microsatellite loci 

combined (multilocus FST = 0.058, p < 0.001, Arlequin v. 3.11 with 1000 permutations, Excoffier and 

Lischer 2010). This multilocus FST value lies in the range of other sympatric charr species (Moccetti A
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et al. 2019, Doenz et al. 2019). In line with genetic differentiation, the two species occupied different 

areas in genetic PC1-2 space (Fig. 2E). 

Before the eutrophication period, resource polymorphism within S. profundus was described: some 

individuals fed at great depths on benthic invertebrates, others in the pelagic on a now extinct 

zooplankton species (Elster, 1936). Polymorphism in S. profundus is also supported by our 

morphological and genetic data: The seven S. profundus from the historically known location match 

the description of S. profundus better than the individual caught far away (Fig. 1). Furthermore, one of 

the seven individuals from the S. profundus hotspot was large and had extremely long teeth, both of 

which are typical for piscivorous charr (Fig. 1D). Upon exclusion of these two atypical S. profundus, 

genetic differentiation between S. umbla and S. profundus increased (multilocus FST = 0.086, p < 

0.001; also at most individual loci, Appendix S1: Table S2). Accordingly, in genetic PC1-2 space, 

these two individuals were at the boundary of the two species (Fig. 2E). This is consistent with recent 

introgression between S. profundus and S. umbla, or with the existence of more than one profundal 

charr species in Lake Constance, as it is known from charr radiations elsewhere in the world 

(Knudsen et al. 2016, Moccetti et al. 2019).

The rediscovery of the endemic deepwater charr of Lake Constance is great news at a time where 

endemic species diversity of lacustrine fish is rapidly eroding (WWF 2018). Strong management 

interventions recovered an oligotrophic state of Lake Constance, thereby contributing to rescuing S. 

profundus. Given that many morphological traits of the historical S. profundus are still present, its 

unique ecological functions have likely survived eutrophication. A major question arising is: what 

allowed this species to survive eutrophication while its ecological analogue in the genus Coregonus in 

Lake Constance went extinct? One could hypothesize that the sympatrically evolved whitefish species 

(Hudson et al. 2010) are younger than the charr species. Furthermore, spawning ecology or genomic 

architecture of differentiation may differ, whereby whitefish may have a more environment-dependent 

reproductive isolation which may also be more polygenic in architecture. Any of these factors or their 

combination would make the persistence of the profundal whitefish species more sensitive to 

environmental change and hybridization. Combining ecological and genomic data could help to A
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elucidate this question in the future. Finally, this rediscovery also showcases that the profundal habitat 

in large lakes is still one of the least explored environments that deserves our attention in terms of 

research and conservation even in Central Europe. 
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Figure 1. A) Drawing of the deepwater charr species S. profundus from Vogt and Hofer, 1909. B,C) 

Male and female S. profundus caught in 2014 at the historically known S. profundus site. D) S. umbla 

caught together with B,C). E) S. profundus caught far away from the historically known S. profundus 

site. F) A piscivorous looking S. profundus caught together with B,C).

Figure 2. The rediscovered profundal charr species S. profundus (darkblue) differs in morphology and 

genetics from its sympatric relative S. umbla (orange). A) The two species are distinguishable in 

morphospace of a PCA based on 24 linear morphometric distances (centred and normalized). Each 

trait was size-corrected by taking residuals from a pooled regression of log(trait) against log(standard 

length). B) Like before the eutrophication period (Schillinger, 1901), S. profundus has a stronger 

overlap of the upper jaw, larger eyes (size corrected), and wider upper jaws (size corrected) than the 

sympatric S. umbla. C) The two species do not differ in gill raker numbers anymore (counted on the 

first left gill arch). D) S. profundus shows smaller asymptotic growth than S. umbla. We fitted von 

Bertalanffy growth models (solid lines) using the function “growthmultifit” of the R-package 

“fishmethods”, assuming group-specific asymptotic length (Nelson, 2018). Sample size was too small 

to estimate group specific growth coefficients. E) S. profundus and S. umbla are separated in genetic 

(9 microsatellite loci) PC1-2 space, while the two atypical S. profundus lie at the boundary of the two 

groups (light blue asterix: Fig. 1E; blue asterix: Fig. 1F). We performed the genetic PCA using the 

“dudi.pca” function of the R-package “adegenet” (Jombart, 2008) with default settings (centering and 

scaling the data). Missing data were replaced by mean allele frequencies. Generally, all analyses were 

performed in R v.3.6.0 (R Core Team, 2019), if not stated differently.
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