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Abstract. Spatial information on past weather contributes
to better understanding the processes behind day-to-day
weather variability and to assessing the risks arising from
weather extremes. For Switzerland, daily resolved spatial in-
formation on meteorological parameters is restricted to the
period starting from 1961, whereas prior to that local station
observations are the only source of daily long-term weather
data. While attempts have been made to reconstruct spatial
weather patterns for certain extreme events, the task of creat-
ing a continuous spatial weather reconstruction dataset for
Switzerland has so far not been addressed. Here, we aim
to reconstruct daily high-resolution precipitation and tem-
perature fields for Switzerland back to 1864 with an ana-
logue resampling method (ARM) using station data and
a weather type classification. Analogue reconstructions are
post-processed with an ensemble Kalman fitting (EnKF) ap-
proach and quantile mapping. Results suggest that the pre-
sented methods are suitable for daily precipitation and tem-
perature reconstruction. Evaluation experiments reveal ex-
cellent skill for temperature and good skill for precipitation.
As illustrated with the example of the avalanche winter of
1887/88, these weather reconstructions have great potential
for various analyses of past weather and for climate impact
modelling.

1 Introduction

Historical meteorological measurements are invaluable not
just for studying climate variability, but also for long-term
variability in weather, its extremes, and its relation to the
large-scale circulation. Day-to-day weather data allow for
the calculation of targeted indices (e.g. consecutive dry days,
growing degree days), which are more useful than monthly
climate data for assessing climate impacts. Moreover, daily
data feed into current impact models and allow for the
study of crop growth, water availability, and the impacts of
droughts, floods, or avalanches numerically. However, his-
torical station observations only capture local weather condi-
tions. Most of the applications mentioned above require spa-
tial fields of meteorological parameters.

For Switzerland a long-term, high-resolution, and time-
consistent spatial dataset of precipitation and temperature
starting in 1864 is available only with monthly resolution,
as introduced recently by Isotta et al. (2019). A compara-
ble daily dataset, however, which is needed to analyse past
weather, covers a relatively short period starting in 1961
(MeteoSwiss, 2016a, b). Prior to 1961, observations from
weather stations are the only sources that provide contin-
uous information on daily weather. Today’s dynamical and
stochastic models offer new possibilities to make use of this
sparse information and enable us to create spatial recon-
structions of past weather. In recent years, several efforts
have been made to create high-resolution temperature and
precipitation reconstructions for historical extreme events in
Switzerland using dynamical (Brugnara et al., 2017; Stucki
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664 L. Pfister et al.: Statistical reconstruction of daily precipitation

et al., 2018) and statistical (Flückiger et al., 2017) down-
scaling methods. While for Switzerland, the task of creating
long-term, high-resolution daily spatial weather reconstruc-
tions has not been addressed so far, Caillouet et al. (2016,
2019) have presented a continuous dataset of daily precip-
itation and temperature fields for France starting in 1871
by statistically downscaling data from the 20CR reanalysis.
This study aims to create such a dataset of long-term, high-
resolution daily spatial reconstructions of precipitation and
temperature for Switzerland by extending the currently avail-
able datasets backwards in time until 1864.

We use a statistical approach that has been applied in var-
ious research areas related to climate sciences: the so-called
analogue method (Lorenz, 1969; Zorita and von Storch,
1999; Ben Daoud et al., 2016; Barnett and Preisendorfer,
1978; Kruizinga and Murphy, 1983; Horton et al., 2012).
In recent years, this method has also been introduced to
local-scale weather reconstruction using historical station
data (Flückiger et al., 2017; Rössler and Brönnimann, 2018).
It is based on the assumption that over time similar spa-
tial patterns of atmospheric states occur that produce similar
local effects (Lorenz, 1969; Horton et al., 2017). The ana-
logue approach makes use of this statistical relationship be-
tween large-scale and local weather or meteorological pat-
terns, while one can be used to predict the other. To predict
a certain atmospheric feature, e.g. precipitation and temper-
ature fields for a given day of interest (predictand), the ana-
logue method looks for the day with the most similar pre-
dictor values (best analogue) and takes the atmospheric fea-
ture from this (or multiple) best analogue day(s) as a pre-
diction (Zorita et al., 1995). As it is basically a resampling
of observed states of the atmosphere (spatial weather data)
along the time axis to optimally fit certain predictors (Gra-
ham et al., 2007; Franke et al., 2011), the term analogue re-
sampling method (ARM) is used in this paper.

In our approach, analogue reconstructions are further im-
proved. Using techniques borrowed from data assimilation,
reconstructed temperature fields are adjusted towards sta-
tion measurements with a so-called ensemble Kalman fit-
ting approach (Whitaker and Hamill, 2002; Franke et al.,
2017) that is adapted to analogue reconstructions. The com-
bination of the analogue method with a Kalman filter was
tested, e.g. in Tandeo et al. (2014) and Lguensat et al. (2017),
for Lorenz models and has proven to provide good results.
Reconstructed precipitation data are bias-corrected using a
quantile mapping method (Gudmundsson et al., 2012) by fit-
ting reconstructed to observed precipitation distributions.

The result is a long-term, daily resolved spatial dataset
of precipitation and temperature with a 2.2× 2.2 km spa-
tial resolution for the period of 1 January 1864–31 De-
cember 2017. Reconstructions are evaluated against grid-
ded data from MeteoSwiss and against station observa-
tions. To demonstrate the potential of the reconstructions,
we analyse the avalanche winter in 1887/88 by comparing
reconstructions to previous studies and documentary data

(Vieli, 2017; Coaz, 1889). This paper accompanies the on-
line publication of the reconstructed precipitation and tem-
perature datasets at the open-source repository PANGAEA
(https://doi.org/10.1594/PANGAEA.907579).

The paper is organised as follows: Sect. 2 provides an
overview of the data used. Section 3 describes the methods of
weather reconstruction and post-processing and presents the
validation strategy as well as the measures applied for assess-
ing the reconstructions. In Sect. 4, results from the validation
of reconstructed and post-processed temperature and precip-
itation fields are presented and discussed before analysing
the avalanche winter of 1887/88 in Sect. 5. Conclusions are
drawn in Sect. 6.

2 Data

Statistical weather reconstruction methods require long-term
and if possible homogeneous series of station measurements.
In Switzerland, we can benefit from the network of Me-
teoSwiss going back to the year 1864 (Füllemann et al., 2011;
Begert et al., 2005). All 68 meteorological stations used for
reconstruction are part of the Swiss National Basic Clima-
tological Network (Swiss NBCN), a network of long-term,
continuous, and high-quality measurements used for climate
monitoring (Begert et al., 2007; Begert, 2008). To ensure
the consistency of the reconstructions over time, the set of
meteorological stations and parameters used is ideally not
changed over time. Therefore, only measurement series start-
ing prior to 1901 and continuing until today with interrup-
tions of no longer than 5 years were selected. One exception
is the MeteoSwiss station of Col du Grand St-Bernard (GSB),
for which data show a gap from 30 July 1925 to 31 De-
cember 1933. This station was included, as it lies within
a data-scarce region and represents higher altitudes. In all
cases, homogenised daily mean temperature and precipita-
tion sums were used, as were daily mean pressure values at
station height (QFE). An overview of measurement locations
and variables, as well as their vertical distribution is given in
Fig. 1.

In total we used 10 pressure, 25 temperature, and 67 pre-
cipitation series. The large number of precipitation measure-
ments was chosen to account for the high spatial variabil-
ity of this variable, while 10 stations are enough to cover
surface pressure. Most stations are located at lower eleva-
tions and in valleys, while higher altitudes (hillsides, moun-
tains) are under-represented. Two independent measurement
series (yellow) from the Swiss Plateau and the Alpine region
were used for validation: Schaffhausen (SHA, 438 m a.s.l.)
with measurements from 1 January 1864–31 December 2017
and Grimsel Hospiz (GRH, 1980 m a.s.l.), covering the pe-
riod from 1 January 1932–31 December 2017. Note that data
from Schaffhausen are not homogenised.

Furthermore, the ARM requires spatial data, from which
the best analogue reconstructions are drawn. Here we used
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Figure 1. Station map. (a) Measured variables are indicated as colours. Labelled pie charts represent NBCN climate monitoring stations.
Additional NBCN precipitation stations are indicated as small blue dots. Stations that were used for temperature assimilation are marked by
an asterisk. Yellow dots represent series used for station-based validation. (b) The vertical distribution of measurement series is indicated by
altitude class for each variable.

daily gridded precipitation and temperature data provided by
MeteoSwiss (MeteoSwiss, 2016a, b) with a spatial resolu-
tion of 2.2 km, covering the period 1 January 1961–31 De-
cember 2017. Precipitation data (RhiresD) indicate accumu-
lated precipitation (rainfall and snowfall water equivalent)
from 06:00 to 06:00 UTC of the following day (MeteoSwiss,
2016a), spatially interpolated from daily precipitation sums
measured at the MeteoSwiss high-resolution rain-gauge sta-
tion network. Topographic effects and differences in station
distribution are accounted for. Errors are estimated to be of
the order of factor 1.7 for precipitation below the 20 % quan-
tile (tendency towards overestimation) and 1.3 for precipi-
tation above the 90 % quantile (tendency towards underesti-
mation); they are higher in mountainous areas (MeteoSwiss,
2016a). A detailed description of this dataset and the methods
to derive it can be found in MeteoSwiss (2016a) and Schwarb
(2001).

Gridded temperature (TabsD) displays daily mean (00:00
to 00:00 UTC) air temperature measured in degrees Celsius
(◦C) at 2 m above the ground (MeteoSwiss, 2016b). As ho-
mogenised station data were used for interpolation, errors re-
sulting from changes in measurement location or instruments
are corrected. Regional differences in vertical temperature
gradients, as well as the effects of warm boundary layers
and temperature inversions are taken into account. Standard
errors in the TabsD dataset range from 0.6 to 1.1 ◦C in the
Swiss Plateau (smaller in summer) and reach values of 4 ◦C
in inner Alpine valleys in winter. For further information on
the interpolation method and validation, the reader is referred
to Frei (2014) and MeteoSwiss (2016b).

Furthermore, a daily weather type (WT) classification is
used (Schwander et al., 2017), covering the period of inter-
est. These WT reconstructions are based on the CAP9 clas-

sification used by MeteoSwiss that distinguishes nine differ-
ent WTs for central Europe (Weusthoff, 2011), which show
good skill at predicting daily weather, especially precipita-
tion in the Alpine region (Schiemann and Frei, 2010). Merg-
ing two pairs of similar CAP9 WTs, Schwander et al. (2017)
reconstructed WTs from 1763 to 2009 using homogenised
instrumental measurement series from different locations in
Europe. For each day, this dataset provides the probabilities
of each CAP7 WT. WTs from 2010 onwards were calculated
from the CAP9 data from MeteoSwiss (Weusthoff, 2011).

As argued by Schwander et al. (2017), reconstructed WTs
are more reliable for winter than for summer months, as
the underlying meteorological patterns are more pronounced
during winter. For weather reconstruction, this property has
to be taken into account.

3 Methods

3.1 The analogue resampling method

The application of the ARM in this paper is based on the
work by Flückiger et al. (2017). The ARM requires two me-
teorological archives: data to predict the spatial fields and a
record of the spatial data from which the reconstructions are
drawn. To predict the spatial fields we used daily station ob-
servations, while the RhiresD and TabsD datasets for 1961–
2017 from MeteoSwiss serve as records of spatial data (see
Sect. 2). For a given day in the past, we screen the period
for which we have spatial data (analogue pool) for the most
similar day in terms of station data (best analogue). Precipita-
tion and temperature fields from this day serve as an estimate
for the day in the past. Predictands of the analogue method
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are thus the unknown spatial fields, while station data and
weather types serve as predictors.

Given a sufficiently large analogue pool, the ARM gener-
ally has the advantage of reproducing the mean and variance
of the target, as well as naturally occurring spatial patterns
(Zorita and von Storch, 1999). With input from both more
coarsely resolved data, e.g. reanalyses or weather types, and
local information (station data), it can make use of more data
sources than the simple downscaling or interpolation of sta-
tion observations alone.

In order to maintain the physical consistency of the recon-
structions, further conditions are established.

1. The day of interest and possible analogue days are
required to be of the same WT to ensure similar
synoptic-scale atmospheric conditions, e.g. wind fields
(Weusthoff, 2011). To account for the uncertainty in WT
reconstructions, we did not restrict the analogue to the
most probable WT but accepted additional WTs such
that they cover the true WT with a combined probability
of at least 95 % according to Schwander et al. (2017).

2. The day of interest and possible analogue days are re-
quired to be within the same season to account for sea-
sonally different spatial patterns. The time window is
set to ±60 d centred at the target day.

Following these conditions, the best analogue is defined as
a day within the analogue pool, with the same weather type,
and within the same time window that shows the most similar
values of certain meteorological variables from a defined set
of stations to the day of interest.

Before the application of the ARM, station and gridded
data are preprocessed. As observed variables have differ-
ent scales, each measurement series is standardised. Fur-
thermore, temperature data from weather stations and spa-
tial fields are decomposed into a smoothed mean climatology
and the respective anomalies. For each observation series and
each cell of the gridded data, a smoothed mean seasonality
curve is estimated by fitting the first two harmonics of tem-
perature time series following Eq. (1) using linear regression.

S = c0+ c1 sin
(

2πdoy
ndoy

)
+ c2 cos

(
2πdoy
ndoy

)
+ c3 sin

(
4πdoy
ndoy

)
+ c4 cos

(
4πdoy
ndoy

)
(1)

Here, doy denotes the day of year, ndoy is the number of days
in a year, and c0, c1, c2, c3, and c4 are parameters to esti-
mate. After the calculation of the analogue reconstructions
using temperature anomalies, mean climatology is then again
added to the reconstructed temperature deviation fields to get
absolute temperature data. This procedure slightly alters the
characteristics of the ARM, as adding climatology and re-
sampled temperature deviations not only resamples known
temperature fields, but also creates new ones. An elimination

of the signal from climatic temperature changes over the last
centuries did not improve the results and was not further pur-
sued in this study.

With preprocessed data, the analogue method is applied.
Following Horton et al. (2017), the root mean squared error
(RMSE) is used as a measure of similarity (Eq. 2). This dis-
tance measure was chosen to reduce the levelling-out of sta-
tion data resulting in decreased variance of reconstructions.
As the RMSE is sensitive to large deviations, station data
of the best analogues will closely follow observed ones, thus
also reproducing local phenomena and extremes. To a certain
extent, however, an underestimation of variance due to the
levelling-out of station observations cannot be avoided, es-
pecially for days with less suitable analogues and for skewed
distributions like precipitation.

d(x,y)=

√√√√ n∑
i=1

(xi − yi)2 (2)

Here, x and y are vectors of observations from the day of
interest and a day within the analogue pool, respectively; i
denotes the different observations within this vector. Other
measures of similarity like the Mahalanobis distance were
not examined.

There are some limitations to the method, the most crucial
one being the size of the analogue pool, which has to be large
enough to provide reasonably matching analogues to a given
atmospheric state (Zorita and von Storch, 1999). This is espe-
cially relevant for extreme events as they occur more rarely,
and therefore less suitable analogues exist. Also, the cover-
age by observation series plays an important role, as stations
might fail to capture local events like thunderstorms. Fur-
thermore, the methodological setting described above, e.g.
the coupling of precipitation and temperature reconstructions
and the choice of the similarity measure, can have an impact
on the capability of the ARM to correctly reproduce the vari-
ance and mean, as well as spatial distribution of the variables.
As the coupling was established for reasons of physical con-
sistency and the distance measure was chosen to maintain
natural variability, these effects are not further assessed in
Sect. 4. Finally, temporal consistency is not guaranteed.

3.2 Post-processing methods

The best analogue may not perfectly fit all observations. To
further improve the temperature reconstructions, we borrow
from data assimilation techniques (see, e.g. Daley, 1999;
Kalnay, 2007). The method used here is based on the en-
semble Kalman filter (Kalman, 1960; Evensen, 1994; Burg-
ers et al., 1998), which is applied e.g. for data assimilation
of ensemble forecasts from dynamical models. Here we use
the best analogue in the same way as the forecast (termed
background or first guess) and best n analogues as an ensem-
ble. However, neither the analysis nor the covariance matrix
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(see below) is passed on to the next time step. This simpli-
fication is called ensemble Kalman fitting (EnKF) (Bhend
et al., 2012; Franke et al., 2017) or offline data assimilation
(Matsikaris et al., 2015). The EnKF essentially minimises a
least-squares problem (Franke et al., 2017). The state vector
x that minimises the following cost function J is optimal in
the case of Gaussian errors:

J (x)=
(
x− xb)T (Pb)−1(

x− xb)
+
(
y−H [x]

)TR−1(y−H [x]), (3)

where xb is the first guess (background), in this case recon-
structions from the best analogue. Pb is the background er-
ror covariance matrix that in this particular case is estimated
from an “ensemble” of the best n analogues, i.e. temperature
fields from the nmost similar days to the day of interest. Vec-
tor y contains station observations, and operatorH is used to
extract the observations from the model space. R is the er-
ror covariance matrix of y−H (x). With station observations
and the ensemble of the best n analogues, a new estimation
of temperature xb that is the best estimate for the true atmo-
spheric state x is calculated from Eq. (4):

xb
= xb

+K(y−Hxb), (4)

where xb denotes the updated state vector (analysis), xb and
y are as described above, and K is the Kalman gain or in-
novation matrix calculated from the ensemble. In this and
the following equations, H describes the Jacobian matrix of
H (x) and extracts the values from the grid cell closest to the
observation site of y.

We use an implementation (Whitaker and Hamill, 2002;
Bhend et al., 2012) in which each observation is assimilated
sequentially (Eqs. 5a, 5b–7). The fitting procedure is into two
steps: an update of the ensemble mean x (Eq. 5a) and an
update of the anomalies x′ with respect to the ensemble mean
(Eq. 5b). Equations (6a) and (6b) depict the calculation of
the Kalman gain K for the ensemble mean and K̃ for the
anomalies.

xa
= xb

+K(y−Hxb) (5a)

x′
a
= x′

b
+ K̃(y′−Hx′

b) with: y′ = 0 (5b)

K= PbHT (HPbHT
+R)−1 (6a)

K̃= PbHT

[(√
HPbHT +R

)−1
]T

×

(√
HPbHT +R+

√
R
)−1

(6b)

Here, xa and xb denote the analysis and background of the
ensemble mean and x′

a and x′
b the corresponding anoma-

lies. Pb and R are the error covariance matrices as in Eq. (3).
The observation error R is roughly estimated to be 1 ◦C. The

background error covariance matrix Pb is calculated from the
best n analogues following Eq. (7), where i and j denote grid
boxes and k the ensemble members.

Pb
i,j =

1
nens− 1

nens∑
k=1

(
xb
i,k − xb

k

)(
xb
j,k − xb

k

)
(7)

Following Whitaker and Hamill (2002), instead of the full er-
ror covariance matrix, the conversion PbHT is calculated di-
rectly in order to save computational resources. Covariance
matrices estimated from small samples may exhibit spurious
covariances far away from the observation. Spatial locali-
sation is often used to minimise these effects. In our case,
the study areas is too small and the ensemble size sufficient
such that localisation is not necessary (tests using a Gaussian
weighting function did not show improvement).

For each day, the EnKF is applied to the analogue re-
constructions using a selection of measurement series that
exhibit an average monthly correlation with co-located data
from TabsD above 0.975 (see Fig. 1). This is to avoid mea-
surement series subject to local influences, which are not re-
solved by spatial data and would thus lead to erroneous as-
similations. To account for a bias between local measured
temperature at a weather station and spatially aggregated
temperature values of the corresponding grid cell, station
data are adjusted by subtracting the mean bias between the
measurement and grid cell value from the TabsD dataset over
the period 1961–2017 for each month. This procedure pre-
vents systematic biases in fitted temperature fields. The en-
semble size is set to the 50 best analogues.

Given the limitations of the ARM described in the previ-
ous section, precipitation reconstructions might also be af-
fected by difficulties, e.g in reproducing extreme events due
to the limited availability of matching analogues, and as a
consequence have biases in the mean and issues regarding ar-
eas that are sparsely covered by weather stations. Therefore,
analogue reconstructions of precipitation are post-processed.
Although attempts have been made to assimilate precipi-
tation with the application of a Kalman filter (Lien et al.,
2013, 2016), in this paper, a much simpler approach is used:
quantile mapping (QM). This method of model output statis-
tics aims to transform the cumulative distribution functions
(CDFs) of modelled precipitation to match the CDFs of ob-
served precipitation by finding a statistical transfer function h
(Maraun et al., 2010; Maraun, 2013); i.e. it is mapping mod-
elled to the observed distribution. As pointed out by Can-
non (2018), this procedure is asynchronous; that is, it does
not consider any chronological aspects of precipitation. In its
simplest application, QM corrects the model bias according
to observed precipitation values (Piani et al., 2010) and can
be generally expressed by Eq. (8):

P o = h(P m), (8)

where P o and P m are observed and modelled precipitation,
respectively, and h the transfer function (Gudmundsson et al.,
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2012). Based on the probability integral transform theorem
(Angus, 1994), the transformation can be described as

P o = F
−1
o (Fm(P m)), (9)

with Fm the CDF of modelled precipitation and F−1
o the in-

verse CDF of the observed precipitation. To solve this equa-
tion, the distribution of the variable of interest has to be de-
fined. In this paper, a parametric transformation using an ex-
ponential asymptotic function to estimate precipitation dis-
tribution was chosen following Gudmundsson et al. (2012).
This parametric transformation is described by Eq. (10),
where P̂ o denotes the best estimate of P o and parameters
a, b, x, and τ are to be determined.

P̂ o = (a+ bP m)
(

1− e−(P m−x)/τ
)

(10)

The best prediction of parameters a, b, x, and τ is esti-
mated by minimising the residual sum of squares for wet
days (Gudmundsson et al., 2012). To define wet days, a
threshold for P > 0.1 mm was set. Precipitation values be-
yond 0.1 mm were set to zero. Parametric transfer functions
were calculated from all data within the calibration period
1 January 1961–31 December 2017 for each grid cell after
Piani et al. (2010), with P m the values from the analogue
reconstructions and P o the values from the RhiresD dataset.
No discrimination between different seasons has been made.
Based on the assumption that the transfer function derived
from this period is robust, i.e. precipitation distribution is not
subject to changes in time, these functions can then be ex-
trapolated in time to transform the precipitation distributions
of the reconstructed datasets back to 1864.

Note that the method as applied in this paper only cor-
rects model bias. This simple application of QM was cho-
sen to be able to extrapolate distribution correction in time,
as more complex approaches would likely be less robust. To
substantially improve e.g. dry–wet day discrimination or ex-
treme values, other approaches have to be applied (Cannon
et al., 2015).

3.3 Validation

The validation of precipitation and temperature reconstruc-
tions follows common measures and strategies used in
the validation of field forecasts (Wilks, 2009; Jolliffe and
Stephenson, 2012). If not indicated otherwise, validation
measures and skill scores are computed on absolute values.

We use the Pearson correlation coefficient for temperature,
while for non-Gaussian-distributed precipitation the Spear-
man correlation is calculated. Note that for temperature, cor-
relation is computed on anomalies from mean seasonality
(compare Sect. 3.1), so it reflects day-to-day variability rather
than the seasonal cycle. Error magnitudes are indicated as
root mean squared error (RMSE), as this measure is sensi-
tive to larger errors. Furthermore, systematic biases between
reconstructions and observations are evaluated.

Additionally, the mean squared error skill score (MSESS)
or reduction of error statistic (RE value) is calculated for tem-
perature reconstructions following Eq. (11), allowing us to
analyse the skill of reconstructions compared to mean clima-
tology in terms of the mean squared error:

MSESS= 1−

n∑
i=1

(
xrec
i − x

ref
i

)2
n∑
i=1

(
x0
i − x

ref
i

)2 , (11)

with xrec the reconstruction, x0 a “no knowledge predic-
tion” (in this case mean climatology), xref the reference data
from TabsD, and i the time step (validation over time) or
grid cell (validation over space). An MSESS value of 1 indi-
cates a perfect reconstruction. With an MSESS of zero, the
prediction skills of reconstruction and climatology are equal
and values below zero denote a decline in skill compared to
climatology (Jolliffe and Stephenson, 2012). Note that this
measure punishes variance; i.e. a reconstruction with the cor-
rect variance but zero correlation will have an MSESS of−1.

For precipitation reconstructions, another property of in-
terest is the discrimination between wet and dry. For this
purpose, the Brier score (BS) was calculated (Eq. 12) that
compares the predicted probability of an event to observa-
tions (Wilks, 2009):

BS=
1
n

n∑
i=1

(yi − oi)2, (12)

where y and o denote the probability of rain in reconstruc-
tions and observations, respectively, and i is as above. As
reconstructions do not provide probabilities, y and o are bi-
nary with 1= rain and 0= no rain with a wet–dry threshold
of 0.1 mm. The BS describes the percentage of time steps (or
grid cells) wrongly assigned as wet or dry.

In a first part, a leave-one-out validation was performed
on daily gridded data within the period 1 January 1961–
31 December 2017. For each day, the best analogue day is
calculated, excluding data from 5 d before and after the day
of interest, as spatial patterns from neighbouring days can
be similar. Precipitation and temperature reconstructions are
then validated against the RhiresD and TabsD dataset, re-
spectively. To analyse the full time span of the dataset, recon-
structions are compared to station observations in a second
part. For this purpose, two independent station series from
Schaffhausen and Grimsel Hospiz (see Sect. 2) were used.
Measurements were compared to reconstructions by extract-
ing values from the corresponding grid cells without interpo-
lation.

4 Results and discussion

As described in Sect. 3.3, a leave-one-out validation over the
period 1961–2017 was performed, and reconstructions were
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compared to the MeteoSwiss RhiresD and TabsD datasets,
as well as station data. In this section, we will illustrate
and discuss general results from the grid-based validation
of precipitation and temperature reconstructions for 1961–
2017. Of particular interest are seasonal differences and ex-
treme events, for which we also evaluate the accuracy of
reconstructions to reproduce spatial patterns. Furthermore,
we compare reconstructed time series for Schaffhausen and
Grimsel Hospiz to corresponding station observations.

4.1 Leave-one-out validation in time

Figure 2 shows results from the validation over time for
analogue precipitation reconstructions (a–d) and quantile-
mapped data (e–h) against RhiresD data. Depicted are the
rank correlation (a, e), RMSE (b, f), mean bias (c, g), and
Brier score (d, h). The Spearman correlation coefficient for
analogue reconstructions is 0.79 on average and attains val-
ues from 0.62 to 0.86, with maximum values in central
Switzerland (a). Quantile mapping does not change the ranks
of precipitation distribution, therefore the two correlation
maps are identical. Regarding the RMSE (e, f), an average
error magnitude of less than 5 mm in the Swiss Plateau, as
well as the inner-alpine valleys and large parts of the canton
of Grisons can be observed. Errors are larger in mountain-
ous areas and in Ticino, reaching values of 6–15 mm. Post-
processed data (f) reveal a negligible increase in these errors
in the range of 0.1–0.6 mm. Analogue reconstructions show
a negative bias between 0.2 and 0.5 mm in the Swiss Plateau
(c). The underestimation is more pronounced in mountainous
regions and in Ticino, with values of 0.5–1.6 mm. Using the
quantile mapping approach described in Sect. 3.2, this bias
could be eliminated for the given time span (g). The Brier
score indicates relatively high error rates in the discrimina-
tion between wet and dry days at individual locations, with
values between 0.13 and 0.23 (d). Post-processed data reveal
slightly negative changes in terms of Brier scores (h).

While rank correlation values show satisfying results, the
bias and RMSE patterns of ARM reconstructions could pos-
sibly be explained by an underestimation of extreme and con-
vective precipitation, which occur in the Alpine region and in
southern Switzerland, especially in summer. While quantile-
mapped data correct the bias, error values still remain large.
We will elaborate on this issue below by looking at seasonal
patterns and extremes. Another problem of the reconstruc-
tions is indicated by the Brier score: on average, 17 % of
days are wrongly assigned as wet or dry. This relatively high
fraction is not improved with post-processing, as the quantile
mapping approach used here is not designed to address this
particular problem.

The validation of temperature reconstructions over time in
Fig. 3 reveals a good correlation for unprocessed data, rang-
ing between 0.76 and 0.95 with a mean of 0.91 (a). Corre-
lation is slightly lower in Ticino and the southern valleys of
Grisons. With ensemble Kalman fitting, the Pearson correla-

tion could be increased to values between 0.83 and 0.99 with
a mean of 0.96, showing similar spatial patterns (e). The er-
ror (RMSE) could also be reduced with post-processing from
1.52 to 0.96 ◦C on average (b, f). In the Swiss Plateau, the er-
ror attains values below 1 ◦C, while in the Alpine region, in
the Jura Mountains, and in southern Switzerland RMSE val-
ues up to 2.7 ◦C can be observed. Unprocessed reconstruc-
tions show a systematic overestimation of temperature in the
Swiss Plateau, in the Rhone valley in Valais, and in the north-
ern valleys of Ticino with values up to 0.06 ◦C (c). On the
other hand, temperatures at higher altitudes and in southern
Ticino are underestimated by 0.05 to 0.15 ◦C. Post-processed
data (g) show less bias and a more balanced spatial pattern,
with values ranging between −0.08 and 0.03 ◦C and a mean
of −0.01 ◦C. The MSESS compared to mean seasonality (d,
h) is high all over Switzerland and could be increased from
0.83 to 0.93 on average using EnKF. The pattern follows cor-
relation.

Overall, reconstructed temperature fields can be consid-
ered to very accurately reproduce the temporal evolution of
the weather. Errors are relatively low, although in regions
with sparse meteorological observations, larger errors are ob-
served. Station coverage thus plays a crucial role for ana-
logue reconstructions. The local field of larger errors in the
western Jura near La Brévine might be explained by cold air
pooling, which occurs frequently in this region during winter
(Vitasse et al., 2017) and is not captured by any of the mea-
surement series used for reconstruction. Bias patterns sug-
gest that ARM reconstructions have problems correctly re-
producing vertical temperature gradients. A major issue here
could also be inversions. In the vertical distribution of the
temperature stations used, higher altitudes are only sparsely
covered (see Fig. 1), making the correct determination of ver-
tical gradients and inversion heights difficult. Post-processed
data seem to solve large parts of this problem, but this needs
further investigation.

To find possible explanations behind the issues mentioned
above and to gain more insight into the dataset, precipitation
and temperature reconstructions are assessed in detail for dif-
ferences between seasons and extremes.

Figure 4 depicts the rank correlation (a–d), RMSE (e–h),
and averaged bias (i–l) over time of post-processed precipi-
tation for each season. We see a relatively uniform correla-
tion pattern over all seasons, with slightly higher values for
summer (JJA) along the northern Prealps (c). Correlation val-
ues are lowest on the southern side of the Alps, especially
in winter (a). Error values (e–h) show a similar spatial pat-
tern throughout the year and are smallest from December to
February (DJF) and slightly higher in spring (MAM) and au-
tumn (SON); maximum values of the RMSE occur during the
summer months and reach values of 8–15 mm in Ticino. The
mean bias over time (i–l) still shows minor seasonal differ-
ences. In the Swiss Plateau and the Jura Mountains, the mean
deviation is approximately zero. The largest differences oc-
cur in the Alpine region and in southern Switzerland, where
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Figure 2. Validation over time of precipitation during 1961–2017 for analogue reconstructions (a–d) and quantile-mapped data (e–h). Shown
are the Spearman correlation (a, e), RMSE (mm) (b, f), mean bias (mm) (c, g), and Brier score (d, h).

Figure 3. Validation of temperature over time during 1961–2017 for ARM (a–d) and EnKF (e–h) reconstructions. Shown are the Pearson
correlation (a, e), RMSE (◦C) (b, f), mean bias (◦C) (c, g), and MSESS (d, h).

autumn and winter precipitation show a tendency towards
overestimation, while in spring and summer post-processed
precipitation fields exhibit a mostly negative bias in western
Valais and the Gotthard region.

The pattern of RMSE, with higher values during the
warmer periods of the year and maxima in summer, supports
the previous assumption that reconstructions have problems
reproducing intensive or convective precipitation. The latter,
which are local-scale phenomena, may not be detected by
measurement stations, making station coverage an important
issue in terms of obtaining reliable reconstructions.

Analysing the same for temperature (Fig. 5), we see that
Pearson correlation values (a–d) exhibit maximum correla-
tion values in spring and summer, while in autumn and win-
ter these values are slightly lower. The RMSE (e–h) is higher
in winter than during the other seasons and reaches minima
in the summer months. Maximum errors of up to 3 ◦C occur
during winter in the Alpine region and the Jura Mountains
(e). Overall, average bias (i–l) is only marginal for all sea-

sons, with values between −0.2 and 0.1 ◦C. Generally, ver-
tical temperature gradients seem to be corrected by Kalman
fitting. However, we can see higher values and a distinct spa-
tial pattern related to topography in winter, as can also be
seen in the RMSE (e). This indicates that inversions, which
occur more frequently during this season, also remain a prob-
lem in post-processed reconstructions.

The above-mentioned issue with cold air pools in the west-
ern Jura seems to be confirmed by the seasonal error patterns,
although larger errors for this region persist throughout the
year. Interestingly, the mean bias shows an underestimation
of winter temperature for this region.

4.2 Leave-one-out validation in space

Post-processed temperature and precipitation data were fur-
ther assessed by quantiles of Swiss mean temperatures and
precipitation during 1961–2017 calculated from the Me-
teoSwiss TabsD and RhiresD datasets to analyse the accuracy
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Figure 4. Validation of quantile-mapped precipitation over time by season. Shown are the Spearman correlation (a–d), RMSE (mm) (e–h),
and bias (mm) (i–l).

Figure 5. Results of validation over time of EnKF temperature reconstructions for each season. Shown are the Pearson correlation (a–d),
RMSE (◦C) (e–h), and bias (◦C) (i–l).

of reconstructions in reproducing extremes (Fig. 6). Note
that, as quantiles were calculated for average values over
Switzerland, local extremes do not necessarily correspond
to the highest or lowest quantiles for the whole area. In the
following, results from validation over space are shown to
analyse the capability of reconstruction methods to repro-
duce spatial patterns. For comparison, validation results from
the analogue method are indicated in grey.

The spatial correlation of precipitation (Fig. 6, top) is rel-
atively low for low to moderate precipitation events and in-
creases with precipitation quantiles. Looking at the RMSE,
the mean and the spread of errors also increase with increas-
ing precipitation. While the RMSE shows a median of less

than 5 mm up to the 70 % quantile, for extreme precipita-
tion events above the 95 % quantile errors attain values of
10–15 mm in the interquartile range. Compared to unpro-
cessed data, a slight decrease in correlation and increase in
the RMSE are visible. However, the bias is considerably im-
proved. While, as argued before, analogue reconstructions
indeed reveal a strong underestimation of extreme events,
the median bias becomes approximately zero for all quan-
tiles. Uncertainties, however, remain large. The Brier score
reveals that for days with zero to low precipitation as well as
for extreme events, the precipitation area is well represented
in the reconstructions. The problems here lie in the cor-
rect reconstruction of precipitation areas for moderate events.
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Figure 6. Validation over space of precipitation (top) and temperature (bottom) for ARM reconstructions (grey) and post-processed data
(red), separated by quantile groups of spatial average precipitation and temperature, respectively. Shown are the Spearman (precipitation)
and Pearson (temperature) correlation, RMSE, bias, Brier score (precipitation), and MSESS (temperature). Boxes range from the first to the
third quartile, and whiskers extend to 1.5 times the interquartile range outside the box.

Compared to unprocessed data, quantile mapping leads to a
slightly better discrimination between wet and dry grid boxes
for upper quantiles, while the BS becomes larger for lower
quantiles.

From this, we can conclude that reconstructions provide
accurate precipitation fields for low to moderate precipita-
tion events. For the benefit of unbiased reconstructions, a
slight decrease in correlation and an increase in the RMSE
and BS have to be accepted. Extreme events, however, are
underestimated by ARM reconstructions and also show large
errors for post-processed data. As extreme events by defini-
tion occur more rarely, the number of suitable analogues is
limited. As argued in Sect. 3, more station data and a bigger
analogue pool would also lead to more accurate results for
extremes. Different post-processing methods might help to
improve reconstructions, especially regarding wet–dry dis-
crimination and extremes.

The validation of temperature by spatial mean tempera-
ture quantiles (Fig. 6, bottom) shows a considerable improve-
ment for post-processed data compared to analogue recon-
structions. Correlation values exhibit slightly better correla-
tions for extreme temperatures, while reconstructed fields for
medium temperatures are less correlated with TabsD data.
RMSE values are higher for upper and lower extreme values.
In general, errors could be significantly reduced with Kalman
fitting. The average bias reveals that while analogue recon-

structions tend to overestimate negative extreme values and
underestimate extremely high temperatures, post-processed
temperature data show a median of approximately zero for
all quantiles. The bias pattern of the ARM can be explained
as for precipitation by a limited number of suitable ana-
logues for extreme events. Kalman fitting solves this prob-
lem. Furthermore, the spread of bias values is within ±1 ◦C
for 4 times the interquartile range. Post-processed tempera-
ture reconstructions are thus also accurate and precise for ex-
treme temperatures. MSESS values are better for upper and
lower quantiles and show worse results around the median.
As days around the median temperature are closer to average
climatology, this pattern has to be expected. Nonetheless, the
MSESS of post-processed data is still within the area of nat-
ural variability (see Sect. 3.3).

4.3 Validation against independent observations

In Fig. 7, reconstructed precipitation and temperature are
compared to station observations from Schaffhausen (left)
and Grimsel Hospiz (right) over the full length of the re-
spective series. Plotting reconstructed values against obser-
vations, we see a large spread of values for analogue recon-
structions (grey) and for post-processed data (red). While for
Schaffhausen, quantile-mapped precipitation exhibits a dis-
tribution closer to station observations in the Q–Q plot (cen-
tre) compared to ARM reconstructions, we can see a ten-
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Figure 7. Comparison between reconstructions and station observations of precipitation (mm) and temperature (◦C) for Schaffhausen (left)
and Grimsel Hospiz (right) with ARM reconstructions (grey) and post-processed data (red). Shown are observed vs. reconstructed values
(top), quantile–quantile plots (centre), and box plots of the deviation between the reconstruction and observation by season (bottom).

dency towards overestimation in post-processed precipitation
reconstructions for Grimsel Hospiz. The seasonal pattern
(bottom) reveals the lowest differences in autumn, whereas
the uncertainty is highest during summer, which is again in
line with more frequent convective activity during the latter
season as discussed before. The systematic underestimation
of precipitation by the ARM is adjusted by post-processing
for all seasons. The larger uncertainty in the Alpine region
discussed before is also visible in station data for which the
spread of bias values over all seasons (bottom) is larger for
Grimsel Hospiz. This is also the case for the RhiresD gridded
dataset used for reconstruction (see Sect. 2). The differences
between reconstructions and station observations might at
least partly be explained by the high spatial variability of
precipitation; thus, spatially coarser gridded data can differ
considerably from local measurements. For reasons of higher
spatial variability, a less perfect fit has to be expected com-
pared to temperature reconstructions. These are closer to ob-
served values compared to precipitation and show a smaller
spread of deviations. Kalman-fitted reconstructions are even
more precise; not only is the spread of values reduced, but the
tilt in distribution could also largely be corrected. Seasonal
patterns of ARM reconstructions show larger deviations dur-
ing spring and autumn. These seasonal differences are elim-
inated by EnKF. Reconstructed temperature fields thus accu-
rately reproduce local temperature measurements, even for
remote locations. With precipitation data, however, one has
to be more careful when generating station series at individ-
ual locations.

4.4 The avalanche winter of 1887/88

The winter of 1887/88 was one of the most severe avalanche
winters during the last 150 years, boosting efforts in
avalanche prevention in Switzerland (SLF, 2000; Margreth,
2019). Intensive snowfall in February and March 1888
brought large snow masses to Switzerland, leading to 1094
disastrous avalanches, damaging 850 buildings, destroying
over 1300 ha of forest, and burying 49 people under the snow
(Coaz, 1889; Laternser and Pfister, 1997). Documentary data
from Coaz (1889) provide a detailed description of this win-
ter and a comprehensive survey of avalanche activity gath-
ered by cantonal forestry offices. From a historical perspec-
tive, it has recently been assessed by Vieli (2017). However,
quantitative data on the weather of this avalanche winter are
restricted to sparse station observations so far. The gridded
weather reconstructions presented in this paper can help to
analyse the 1887/88 winter weather quantitatively, thus help-
ing to better understand the weather patterns leading to such
an event. For demonstration purposes, we performed some
simple calculations of monthly averages, mean snow pre-
cipitation, and the zero-degree level that are summarised in
Fig. 8.

Shown are post-processed precipitation reconstructions
aggregated over 1 month (a–d) for winter 1887/88 and the
recently published monthly precipitation reconstructions by
MeteoSwiss (Isotta et al., 2019) (e–h). Both datasets reveal
similar patterns of monthly precipitation, although regional
differences occur. More deviations between the datasets can
be observed in the amount of reconstructed precipitation.
From both datasets, large precipitation sums can be deter-
mined in December 1887 on the northern flank of the Alps
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Figure 8. Avalanche winter 1887/88: monthly mean precipitation from December 1887 to March 1888 calculated from post-processed daily
reconstructions (top, a–d) compared to monthly reconstructions from Isotta et al. (2019) (top, e–h). At the bottom, estimations of the zero-
degree level are indicated for ARM (red lines) and EnKF (blue lines) reconstructions, as is average snow precipitation (blue bars) calculated
from post-processed data. Grey shaded areas depict periods of increased avalanche activity as determined by Coaz (1889).

and in the Jura Mountains. January shows little precipitation,
with the highest values in the north-eastern Alps. February
and March show extreme precipitation values in Ticino and
the Gotthard region, as well as in March over the remaining
part of Switzerland.

Daily reconstructions allow for going more into detail.
For example, we can calculate the development of the zero-
degree level from gridded temperatures by taking the inter-
cept of a linear regression between temperature and altitude
(bottom of Fig. 8). Altitude data used here were aggregated
from the Shuttle Radar Topography Mission (SRTM) 90 dig-
ital elevation dataset (Jarvis et al., 2008) to fit the resolu-
tion of reconstructions. Another value of interest is the in-
tensity of snowfall precipitation. In Fig. 8 (bottom), the aver-
age snow precipitation per snowfall area is shown, calculated
from post-processed reconstructions and assuming an esti-
mated 1 ◦C threshold (Jennings et al., 2018), below which
precipitation falls as snow. Grey shaded areas depict periods
of high avalanche activity as reported by Coaz (1889).

Analogue reconstructions (red) and assimilated tempera-
ture data (blue) show similar values. The extreme precipita-
tion event in December 1887 coincides with a high altitude
of the zero-degree level, thus leaving a snow-covered area re-
stricted to higher altitudes. This event was followed by sev-
eral cold episodes and low precipitation in January. The first

avalanche period was dominated by low temperatures and in-
tensive precipitation. During the second avalanche period,
the reconstructed zero-degree level rises to approximately
600 m a.s.l. with almost no snow precipitation. March shows
two periods of high temperatures and intensive precipitation
in the middle of the month and during the third avalanche
period.

Reconstructed precipitation patterns and the development
of temperature are in line with the findings from documen-
tary data (Coaz, 1889) that report strong snowfall during De-
cember, a dry January, and intensive precipitation again dur-
ing February and March, especially in the Southern Alps.
While the first two avalanche periods are determined by low
temperatures, Coaz describes a sharp rise in the zero-degree
level to about 2000 m a.s.l. preceding the third period that
led to a high number of wet avalanches, which can clearly
be seen in the reconstructions. However, during the second
period, reconstructions show relatively low snow precipita-
tion values, contesting the high avalanche activity. Nonethe-
less, avalanches are not only triggered by intensive precipi-
tation. For example, the intensive snowfall period in Decem-
ber 1887 and the first two in March 1888 are not accompa-
nied by more frequent avalanches. To analyse this, other fac-
tors like temperature and wind as well as the composition of
different snow layers also play an important role and have to
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be assessed. A closer look at these periods would probably
reveal more about the processes that triggered or prevented
avalanches.

From precipitation and temperature reconstructions, new
insight on the avalanche winter of 1887/88 can already be
gained with simple methods. Using more sophisticated snow
models that also take into account evaporation and snowmelt,
high-resolution daily spatial data of the snow cover could be
established that may be able to further explain avalanche ac-
tivity. This is but one example of what the new daily recon-
structions of temperature and precipitation could be used for.
Analogue reconstructions have already been applied as input
to numerical models, such as crop modelling (e.g. Flückiger
et al., 2017) and hydrological modelling (e.g. Brönnimann
et al., 2018), but the list could be extended. Many other phe-
nomena, e.g. heatwaves and droughts, can be analysed spa-
tially, and making use of the long time span changes in cli-
mate and extreme events over time could be investigated.

5 Conclusions

As shown in this paper, the analogue resampling method
is a suitable and efficient approach for reconstructing daily
precipitation and temperature fields from station obser-
vations. Using CAP7 weather types as a criterion for
physical consistency and a set of observations from 68
weather stations, we present a long-term, physically con-
sistent, high-resolution spatial dataset of these meteorolog-
ical parameters for Switzerland since 1864. The datasets
are published at the open-access repository PANGAEA
(https://doi.org/10.1594/PANGAEA.907579; Pfister, 2019).
Analogue reconstructions for temperature and precipitation
show good results but experience difficulties in reproducing
vertical temperature gradients and show a general negative
bias for precipitation arising mainly from the underestima-
tion of extreme events. Furthermore, analogue reconstruc-
tions reveal difficulties in correctly distinguishing between
wet and dry days. On average, 17 % of days were wrongly
assigned. Temperature reconstructions could be consider-
ably improved by assimilating station data using an ensem-
ble Kalman fitting approach. Assimilated temperature fields
show average error magnitudes of less than 1 ◦C and are
nearly unbiased for the mean. The issue with vertical tem-
perature gradients could be largely eliminated, although in
winter some problems remain that could probably be at-
tributed to difficulties of reconstructions in determining in-
version heights. Precipitation data were post-processed with
quantile mapping, adjusting the distributions of daily precip-
itation for each grid cell to obtain more accurate values. The
mean bias could be successfully reduced, while a larger un-
certainty for extreme events persists. However, error values
show a slight increase in post-processed data. With the sim-
ple approach of quantile mapping presented in this paper, the

problem of wet and dry day discrimination could not be ad-
dressed.

There are some limitations to the analogue method, as
the availability and coverage of station observations af-
fect the accuracy of the results, especially for precipita-
tion reconstruction. In regions with sparse information from
weather stations, the uncertainty of reconstructions is larger.
In Switzerland, this mostly regards mountainous areas. A
second constraint is the comparatively small size of the ana-
logue pool that is available for this application, which is es-
pecially relevant for extreme events as for such events less
suitable analogues exist. To reconstruct extremes more ac-
curately, notably for precipitation, a longer series of spatial
data and a denser station network would be needed. An op-
tion to address the problem of small analogue pools as pro-
posed by Van Den Dool (1994) is to construct more similar
analogues through the linear combination of several possi-
ble analogue dates. With more sophisticated post-processing
methods for precipitation, errors in wet and dry day discrim-
ination could also be reduced. As mentioned, the analogue
approach does not guarantee temporal consistency and there-
fore is not completely suitable to analyse trends. However,
the dataset presented in this study complements the monthly
reconstructions by Isotta et al. (2019), which were specifi-
cally designed for this purpose, very well.

The assessment of the avalanche winter of 1887/88 in
Switzerland shows that the reconstructed development of
temperature and precipitation corresponds well to documen-
tary sources and to monthly reconstructions by Isotta et al.
(2019). Possible applications of our daily high-resolution
precipitation and temperature reconstructions range from
crop modelling to the reconstruction of river runoff and
the study of weather phenomena in the context of climate
change.

Could daily reconstructions be extended even further back
in time? For Switzerland, a recent survey brought to light
a large amount of early instrumental data (Pfister et al.,
2019). An extension of the dataset to the pre-industrial period
is therefore envisaged, although larger measurement errors
and less consistent measurement series make this endeav-
our rather challenging. The method should also be suitable
to reconstruct daily meteorological fields for other regions of
central and western Europe.

Data availability. Reconstructed daily precipitation and temper-
ature datasets over the period 1 January 1864–31 Decem-
ber 2017 are published at the open-access repository PANGAEA
(https://doi.org/10.1594/PANGAEA.907579; Pfister, 2019).
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