Potential for a GNSS-based Determination of the Terrestrial Scale

A. Villiger¹, F. Dilssner², P. Rebischung³, R. Dach¹, F. Zimmermann⁴,
H. Kuhlmann⁴, A. Jäggi¹

¹ Astronomical Institute of the University of Bern, Bern, Switzerland

- ² European Space Operations Centre (ESOC), Germany
- ³ Institut National de l'Information Géographique et Forestière, Laboratoire LAREG, France
- ⁴ Institut für Geodäsie und Geoinformation, Universität Bonn

Contact: arturo.villiger@aiub.unibe.ch 10. July 2018, Montreal, Canada

Scale determination Why do we need calibrated antennas?

- PCO to Scale: [Zhu et al. 2002] 1m = -7.8 ppb 1 ppb = -0.13 m
- PCO's: -4 m Δ PCO
- Stations: 20 cm offset

Current status of antenna calibrations Overview IGS14

b

UNIVERSITÄT BERN

3

Current status of antenna calibrations Overview chamber calibrations

b

UNIVERSITÄT

Cha. : chamber receiver antenna calibrations

Reprocessing 3: will include multi-GNSS calibrations from roboter calibrations

 In June 2019 GSA released the chamber calibrated PV and PCO for the last 8 Galileo FOC satellites

→ full constellation with calibrated PV and PCOs available!

- Galileo shall be included into IGS reprocessing effort for the next ITRF solution:
 - What about the receiver antenna calibrations?
 - Are the estimated PCO for GPS and GLONASS compatible with the Galileo PCOs?
 - If not, how can we address this issue?

→ Can we use Galileo to define a GNSS scale?

Dedicated test campaings Overview

- For the IGS AC Workshop 2019 dedicated test solutions were created to address those issues
- Based on:
 - Chamber calibrated receiver antennas
 - The final reprocessing will be based mainly on robot calibration provided by Geo++ and extended by chamber calibrations (they were not available at the time of the test solution)
- Test solutions:
 - COD: 2017 / 2018 (GE, G, E)
 - ESA: 2017 / 2018 (GE, G, E)

Chamber calibrated receiver antennas TRF scale contribution from GNSS?

^b UNIVERSITÄT BERN

- Creation of type-mean antenna pattern from chamber calibrations (more than 250 individual calibrations)→ 37 type-mean calibrations (covering ~49% of the IGS network)
- Differences between robot and chamber calibrations?
- Comparison of satellite PCO and scale determination using robot or chamber calibrated ground antennas

Case study:

- Study on the scale determination using data from 2017-2018
- GPS/Galileo solution (COD / ESA)

Chamber vs. robot calibrations Comparison: GPS PV: BONN – Geo++

UNIVERSITÄT BERN

Comparison receiver antenna PCOs IF Galileo - GPS (PCO up [mm])

		ETH Zürich ¹	IGS14 (L1/L2)	BONN
JAV_GRANT-G37	NONE	6.7	-1.3	
JAV_RINGANT_G3T	NONE	-10.6	+1.2	-7.6
SEPCHOKE_B3E6	SPKE	-8.0	+4.7	
TRM57971.00	NONE	-2.94	-1.7	-5.2
		Geo++	IGS14 (L1/L2)	BONN
LEIAR25.R4	LEIT	-3.6	1.09	-2.45

¹ [Willi et al. 2019, open access, https://doi.org/10.3929/ethz-b-000332282]

UNIVERSITÄT

Consistency of antenna calibrations Based on ESA solutions

Systematic errors between GPS and Galielo (E1/E5a) only solutions:

- Systematic differences for some receivers
- Robot calibrations have to be tested and, if needed, to be adjusted!

<u>NB</u>: The solutions were differenced after having brought them to a common origin, orientation and scale. Station position differences are thus shown up to an unknown global translation, rotation and scale factor.

station **Robot calibrations [cm]** Chamber calibrations [cm] Galileo GPS Galileo GPS **GPS PCO fixed** -0.2 ± 1.8 $+24.7 \pm 1.3$ -

Scale study CODE (2017-2018) PCO (system-wise, Z-component)

Scale study (2017-2018) PCO (system-wise, Z-component)

	Robot Calibration [cm]		Chamber Calibration [cm]	
	GPS	Galileo	GPS	Galileo
GPS PDO fixed	-	-0.2 ± 1.8	-	+24.7 ± 1.3
Gal PCO fixed	-0.6 ± 2.5	-	-22.0 ± 2.1	-

Scale study (2017-2018) PCO (system-wise, Z-component)

	Robot Calibration [cm]		Chamber Calibration [cm]	
	GPS	Galileo	GPS	Galileo
GPS PCO fixed	-	-0.2 ± 1.8	-	+24.7 ± 1.3
Gal PCO fixed	-0.6 ± 2.5	-	-22.0 ± 2.1	-
ITRF 2014 fixed	+1.4 ± 3.6	+1.9 ± 4.7	-10.9 ± 3.4	+12.7 ± 4.6

Scale study (2017-2018) Impact of IF-PCO values

b UNIVERSITÄT BERN

Scale study (2017-2018) Scale w.r.t ITRF 2014 – GAL/GPS fixed

Solution	IGS14 ANTEX	Chamber
GPS PCO fixed	2.58 mm	-3.00 mm
GALILEO PCO fixed	2.09 mm	7.27 mm
Difference GAL-GPS	+0.49 mm	+10.27 mm
	VLBI	SLR
	VLBI	SLR

 $1 \text{ ppb} \cong 6.4 \text{ } mm$

→ Chamber calibrations: scale of +4.7 mm (+7.3 with a priori value 0)

¹ [Altamimi et al. 2016, J. Geophys. Res.]

SINEX combination ESA / COD (2017 & 2018)

b UNIVERSITÄT BERN

Fix Galileo satellite z-PCOs; solve for an average correction to igs14.atx GPS satellite z-PCOs

Consistency of antenna calibrations Based on ESA solution

- Systematic errors between GPS and Galielo (E1/E5a) only solutions:
- Systematic differences for some receivers
- Robot calibrations have to be tested and, if needed, to be adjusted!

<u>NB</u>: The solutions were differenced after having brought them to a common origin, orientation and scale. Station position differences are thus shown up to an unknown global translation, rotation and scale factor.

Outcome / outlook

^b UNIVERSITÄT BERN

Calibrations:

- Reprocessing will be based mainly on robot calibrations
- Including E1/E5 calibrations
- Chamber calibrations for Galileo
- Satellite PCO
 - GPS/GLO PCO (z-component) rescaled to Galileo
 - Based on SINEX combination from various AC contributions

Receiver PCO

- Comparison of GPS and Galileo only solutions
- Adjustment of PCO (z-component) if needed for Galileo