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ABSTRACT

Abstract

The rhizosphere, the region of soil near the roots, plays a crucial role in water and nu-

trient uptake by plants because root exudates enhance microbial activity and nutrient

availability to plants. The degree to which root exudates can interact positively with

plants depends on their spatiotemporal distribution around the roots. The objective of

this work was therefore to understand what factors control the spatiotemporal distri-

bution of root exudates in soil. We investigated how root traits such as root hairs and

mucilage secretion and rhizosphere water related properties mediate the distribution

of root exudates in soil.

The first experiment focused on the effect of soil drying on rhizosphere extension.

We coupled 14CO2 labelling and phosphor imaging of plants with neutron radiography

to image 14C allocation and rhizosphere water content (WC). Exudate distribution

around growing roots was predicted by a numerical model. Plants grown in dry and

wet soil allocated similar amounts of 14C into roots but root elongation decreased by

48% in dry soil, reducing longitudinal rhizosphere extension. Rhizosphere WC was

identical in dry and wet soils, presumably because of the high water retention by

mucilage. The increase in rhizosphere WC enhanced root exudation in dry soil and

enlarged the radial rhizosphere extension. The release of mucilage may be beneficial

to plants because it maintains fast diffusion of exudates and high rhizospere extension

under water limitation.

Alongside low molecular carbon compounds, roots release enzymes to mineralize

nutrients. The objective of the second experiment was therefore to test how the local

soil WC affects phosphatase activity in soil. Barley plants were grown in rhizoboxes

and subjected to a drying cycle, while soil water content (WC) and phosphatase activ-

ity were monitored by neutron radiography and soil zymography.. Phosphatase activ-

ity and soil WC were strongly correlated in rhizosphere and bulk soil. The power-law

relation between soil WC and enzyme activity confirmed our hypothesis that enzyme

activity is controlled by diffusion. Phosphatase activity in the rhizosphere, having a

high WC compared to the bulk soil, was significantly larger than phosphatase activity

in the bulk soil. This can be explained by mucilage released into the rhizosphere which

retain water upon soil drying.

The first tow studies highlight the effect of mucilage on root exudate distribution.

However, so far no method is available to measure the spatial distribution of mucilage
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in soil. The aim of the third experiment was therefore to test whether the C-H signal

caused by fatty acids in mucilage can be measured with infrared (IR) spectroscopy to

determine the spatial distribution of mucilage in soil. Measurements were carried out

along transects of 1.5 mm perpendicular to root channels of plants grown in rhizoboxes.

We measured distinct profiles of C-H and the amounts of mucilage we measured were

comparable with results obtained in previous studies. IR spectroscopy is therefore a

promising tool to measure the spatial distribution of mucilage in soil.

The aim of the fourth study was to test whether root hairs exude C to enlarge

rhizosphere extension. Barley wild type (WT) and its root-hairless mutant (brb)

were grown in rhizoboxes and labelled with 14CO2. Root exudates were captured on

filter paper and quantified by phosphor imaging. WT plants allocated more carbon

(C) below ground while the hairless mutant allocated more C to shoots. Root hairs

increased the radial rhizosphere extension 3-fold, from 0.5 to 1.5 mm. Total exudation

was 3 times greater for WT plants compared to the hairless mutant. The increase in

rhizosphere extension may enhance the positive effect of root exudates to plants.

While 14C imaging of root exudates on filter paper was successfully applied in the

fourth study, this approach is restricted to moist soil conditions. In the last study

we therefore tested whether 14C imaging on the soil-root surface can be applied to

quantify root exudates. The attenuation coefficient of 14C in soil was calculated and

the expected 14C profiles were calculated. The profiles were strongly affected by: a)

the 14C activity in the root, b) the root radius, c) the position of the root, d) the

amount of root exudates and e) by the presence of air gaps between soil and imaging

screen. Inaccurate measurements of any of these parameters would cause artefacts

in the estimation of root exudates distribution in the rhizosphere using phosphor

imaging.

By combining complementary imaging methods and numerical modelling we showed

that root hair production and mucilage release increase rhizosphere extension and to-

tal exudation. Mucilage movement was restricted to shorter distances from the root

surface (0.6 mm) compared to overall exudates (1.2 mm). Nevertheless, mucilages

water retention strongly affects the diffusion of low molecular root exudates and en-

zymes. Root hairs increase total exudation and rhizosphere extension, which probably

enhances rhizosphere interactions in larger soil volumes. Breeding for long and dense

root hairs as well as increased mucilage secretion may be suitable strategies for future

agriculture where nutrients are expected to become scarce.
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Zusammenfassung

Die Rhizosphäre, der Boden der die Pflanzenwurzeln umgibt, spielt eine zentrale

Rolle für die Nähstoff- und Waseraufnahme der Pflanzen da Wurzelexsudate, die von

der Wurzel abgegeben werden die mikrobielle Aktivität und die Nährstofverfgbarkeit

erhöhen. Das Ausmaß, mit dem Wurzelexsudate positiv mit der Pflanze interagieren

können, hängt vor allem von der räumlichen und zeitlichen Verteilung der Wurzelex-

sudate in der Rhizosphäre ab. Das Ziel dieser Arbeit war es daher, zu untersuchen

welche Faktoren die räumliche und zeitliche Verteilung der Wurzelexsudate im Boden

bestimmen. Der Fokus lag dabei sowohl auf Wurzeleigenschaften wie der Produktion

von Wurzelhaaren und der Abgabe von Mucilage als auch auf der Wasserverteilung in

der Rhizosphäre.

Der Schwerpunkt des ersten Experiments lag auf der Untersuches des Effekt von

Trockenstress auf die Verteilung von niedermolekularen Wurzelexsudaten im Boden.

Pflanzen wurden mit 14CO2 markiert um die 14C Verteilung in Pflanzen und Bo-

den mithilfe von Phosphor Imaging zu untersuchen. Der Wassergehalt in der Rhi-

zosphäre wurde mithilfe von Neutronenradiographie quantifiziert. Die Abgabe und

Verteilung der Exsudate wurde durch ein numerisches Modell vorhergesagt. Pflanzen

im trockenen und feuchten Boden verlagerten gleich viel 14C in die Wurzeln allerdings

war das Wurzelwachstum für Pflanzen im trockenen Boden um 48% reduziert. Das

fuührte zu einer starken Reduzierung der longitudinalen Rhizosphärenausdehnung.

Der Wassergehalt in der Rhizosphäre war identisch im trockenen und feuchten Boden

was durch Mucilage erklärte werden kann, die große Mengen an Wasser im Boden

zurückhält. Der erhöhte Wassergehalt in der Rhizosphäre steigerte die Wurzelexsu-

dation und die Rhizosphärenausdehnung besonders im trockenen Boden. Die Abgabe

von Mucilage ist daher vorteilhaft für die Pflanze da sie die Diffusion von Wurzelex-

sudaten und die Rhizosphärenausdehnung besonders bei Wasserknappheit erhöht.

Neben niedermolekularen Wurzelexsudaten scheiden Wurzeln Enzyme aus um Nährstoffe

zu mineralisieren. Das Ziel der zweiten Studie war es daher, zu untersuchen, wie

der lokale Bodenwassergehalt die Phosphataseaktivität im Boden beeinflusst. Ger-

stenpflanzen wurden in Rhizoboxen angezogen und Neutronenradiographie mit Zy-

mography kombiniert. Die Messungen wurden während eines Trockenzyklus durchgeführt.

Die Phosphataseaktivität korrelierte stark mit dem Bodenwassergehalt sowohl im Rhi-

zosphärenboden als auch im Gesamtboden. Die Tatsache, dass die Korrelation zwis-
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chen Enzymaktivität und Wassergehalt durch eine Potenzfunktion beschrieben wurde,

bestätigte unsere Hypothese, dass die Enzymaktivität im Boden vor allem durch Dif-

fusion bestimmt wird. Die Phosphataseaktivität in der Rhizosphäre war im Vergleich

zum Gesamtboden erhöht, da diese einen erhöhen Wassergehalt im Vergleich zum

Gesamtboden aufwies. Diese Beobachtung kann durch Mucilage und EPS erklärt

werden, die in die Rhizosphäre abgegeben werden und besonders under trockenen

Bedingungen Wasser im Boden zurückhalten.

Die ersten beiden Studien heben die Bedeutung von Mucilage für die Verteilung

der Wurzelexsudate im Boden hervor. Allerdings gibt es bisher keine Methode um

die räumliche Verteilung von Mucilage im Boden zu messen. In der dritten Studie

testeten wir daher ob das C-H Signal, das durch Fettsäuren verursacht wird, die in

Mucilage enthalten sind, mithilfe von infrarot Spektroskopie (IR) gemessen werden

kann und ob mit dieser Methode die räumliche Verteilung von Mucilage im Boden

bestimmt werden kann. Die Messungen wurden entlang von 1.5 mm langen Transek-

ten durchgeführt, die rechtwinklig zum Wurzelkanal der Pflanzen gelegt wurden. Die

Ergebnisse zeigten deutliche Profile des C-H Signals, das von der Wurzel weg ab-

fiel. Der gemessene Mucilagegehalt im Boden war vergleichbar mit den Ergebnissen

voriger Studien. IR Spektroskopie stellt daher eine vielversprechende Methode für die

Messung der räumlichen Verteilung von Mucilage im Boden dar.

Das Ziel der vierten Studie war es, zu testen ob Wurzelhaare organische Substanzen

in den Boden abgeben und daher die Rhizosphärenausdehnung vergrößern. Gerste

(WT) mit Wurzelhaaren und der vergleichbare Mutant ohne Wurzelhaare (brb) wur-

den in Rhizoboxen angezogen und mit 14CO2 markiert. Die Wurzelexsudate wurden

auf Filterpapier aufgefangen und mithilfe von Phospor Imaging quantifiziert. Pflanzen

mit Wurzelhaaren verlagerten mehr Kohlenstoff (C) in den Boden, während Pflanzen

ohne Wurzelhaare mehr C in den Spross verlagerten. Wurzelhaare führten zu einer

3-fach erhöhten Rhizosphärenausdehnung von 0.5 zu 1.5 mm. Die gesamte Exsuda-

tion war ebenfalls 3-fach erhöht für Pflanzen mit Wurzelhaaren verglichen mit dem

Mutanten ohne Wurzelhaare. Die erhöhte Rhizosphärenausdehnung erhöht vermut-

lich die positiven Interaktionen zwischen Wurzelexsudaten und Pflanzen und ist daher

vorteilhaft für die Pflanzen.

Während 14C Imaging von Wurzelexsudaten auf Filterpapier erfolgreich in der

vorigen Studie angewandt wurde, ist dieser Ansatz auf feuchte Bodenbedingungen

beschränkt. Das Ziel der letzten Studie war es daher zu testen, ob 14C Imaging
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direkt auf der Boden-Wurzeloberfläche angewandt werden kann um Wurzelexsudate zu

visualisieren und zu quantifizieren. Der Abschwächungskoeffizient von 14C im Boden

wurde berechnet und die zu erwartenden 14C Profile berechnet. Die Profile waren

stark beeinflusst von a) der 14C Aktivität der Wurzel, b) dem Wurzelradius, c) der

Position der Wurzel im Boden, d) der Menge der Wurzelexsudate im Boden und e) von

möglichen Luftspalten zwischen Boden und Imaging Screen. Eine ungenaue Messung

von einem dieser Parameter würde zu Artefakten in der Schätzung der Verteilung der

Wurzelexsudate in der Rhizosphäre führen.

Durch die Kombination von verschiedenen bildgebenden Verfahren und numerischer

Modellierung konnten wir zeigen, dass die Abgaben von Mucilage und die Produktion

von Wurzelhaaren zu einer Erhöhung der Wurzelexsudation und der Rhizosphären-

ausdehnung führt. Mucilage war in einem engeneren Umkreis um die Wurzel verteilt

(0.6 mm) als die gesamten Wurzelexsudate (1.2 mm). Es kann allerdings angenom-

men werden, dass sie aufgrund ihrer Wasserhaltefähigkeit trotzdem einen großen Ein-

fluss auf die Verteilung von niedermolekularen Wurzelexsudaten und von Enzymen

hat. Wurzelhaare führten zu einer erhöhten Wurzelexsudation und erweiterten die

Ausdehnung der Rhizosphäre was vermutlich zu erhöhten Interaktionen in größeren

Bodenvolumina führt. Die Züchtung auf sowohl erhöhte Mucilage Sekretion als auch

auf lange und dichte Wurzelhaare könnte daher eine angemessene Strategie für die

zukünftige Landwirtschaft sein, da Nährstoffe voraussichtlich knapper werden.
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EXTENDED SUMMARY

1 Extended Summary

1.1 Introduction

Crop production will have to be increased during the coming 40 years to meet the

global food demand of the growing population (Sposito, 2013). Food security will

probably be endangered by climate change, which will lead to higher temperatures,

drought spells and lower potential productivity (Parry and Hawkesford, 2010; FAO,

2012; Trenberth et al., 2014). In the past, food production has mainly been increased

by expanding the cultivated land area or by increasing yields through intensive agri-

culture. However, as most of the land is already under agricultural use and intensive

cultivation inevitably leads to degradation of soil and lowers its fertility and produc-

tivity (Baligar et al., 2001) this is not an option for the future.

One strategy to increase food production is to grow crops that are adapted to

low fertility environments (Lynch, 2007). In fact, availability of water and nutrients

are the major constraints to world crop productivity (Parry and Hawkesford, 2010;

White et al., 2013). Plant roots employ various mechanisms to increase their access

to limited soil resources. Examples of such strategies include the production of root

hairs, the development of an appropriate root architecture and the improvement of

physical and biological soil conditions in the soil near the root, the so called rhizo-

sphere (George et al., 2014; White et al., 2013). The rhizosphere differs in its chemical,

physical and biological properties from those of the bulk soil (Hinsinger et al., 2005).

These differences occur as a consequence of root growth (Aravena et al., 2014), rhi-

zodeposition, microbial activity and the repeated wetting and drying of the soil at the

root-soil interface (Gregory, 2006; Hinsinger et al., 2009). According to Jones et al.

(2009) rhizodeposition is the starting point from which the rhizosphere develops and

it is therefore important to improve our understanding of mechanisms and functions

of rhizodeposition.

Up to one third of the carbon (C) that plants allocate to their roots is transferred to

the soil as rhizodeposits (Nguyen, 2003). Plants release different compounds into the

soil, for example: (1) low molecular root exudates, (2) secondary metabolites such as

phytosiderophores, (3) mucilage and root cap cells (4) enzymes and (5) C allocated to

symbionts (Fig. 1.1). These compounds are released by various mechanisms including

secretion, diffusion and cell lysis and they play a diverse ecological role (Jones et al.,

2009; Weston et al., 2012; Haichar et al., 2014).
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1) Exudation of simple sugars

3) Release of mucilage and root cap cells

4) Enzymes mineralize nutrients

5) C loss toss to symbionts such as mycorrhiza

1

→
Root exudates attract 
microbes   nutrient 
mobilizaton

→
2) Secondary metabolites such as 
phytosiderophores    increase 
nutrient accessibility

Figure 1.1: Examples of organic compounds released by the root into the rhizosphere.

Soluble root exudates in form of low molecular weight exudates play a crucial role

for rhizosphere processes. On the one hand, they directly improve nutrient acquisition

by mobilisation of nutrients such as phosphorus (Lynch, 2007; Marschner et al., 2011).

On the other hand, they strongly affect the microbial activity and turnover of microbial

biomass (Bertin et al., 2003; Helal and Sauerbeck, 1986; Kuzyakov et al., 2003), hereby

indirectly influencing nutrient availability (Grayston et al., 1997) (Fig. 1.1). Several

studies showed that nutrient availability increased due to a higher microbial activity in

the rhizosphere compared to the bulk soil (Hamilton and Frank, 2001; Herman et al.,

2006; Landi et al., 2006).

We conclude that root exudates are important agents that have positive effects on

plant nutrient availability. As such, it is essential to estimate their spatial and tem-

poral distribution in the rhizosphere because the degree to which they can positively

feed back to plants, depends on the volume of soil that they occupy.

The distribution of root exudates in soil is controlled by (a) the amount of exudates

released by the roots, (b) the diffusion of exudates, (c) convection, i.e. the fluxes of

water to the root, (d) the soil water content, (e) decomposition of root exudates by

microorganisms and (f) sorption (Jones et al., 2009; Kuzyakov et al., 2003). The water
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content has a particularly strong effect on the distribution and release of root exudates

as it controls its diffusion (Raynaud, 2010) and a low water content would lead to

reduced C release and rhizosphere extension. Drought may additionally affect root

exudation by changing the allocation of C in the plant-soil system (Reid and Mexal,

1977; Sanaullah et al., 2012), reducing microbial activity in the rhizosphere (Palta and

Gregory, 1997; Zhu and Cheng, 2013) or by decreasing root elongation (Sharp et al.,

2004). These processes may act in opposite directions and it is therefore still not clear

whether drought will lead to increased or decreased root exudation or whether it will

leave rhizodepostion unaffected (Preece and Penuelas, 2016).

Figure 1.2: Mucilage exuded from the

root tips of 4 days old wheat seedlings.

Additionally, the mentioned processes

may imapact differently on varying types

of exudates. While low molecular weight

exudates which are mainly released at the

root tip (Jones et al., 2004) will certainly

be strongly affected by changes in root elon-

gation, exudates like enzymes, which are

also released from older root parts (Razavi

et al., 2016) may be less affected by changes

in root elongation. Similarly, low molecu-

lar root exudates which are lost passively

from roots (Jones et al., 2004) may be more

strongly affected by diffusion (i.e. soil water content) while high molecular exudates

which are actively secreted from roots (Weston et al., 2012) may be less strongly

affected as plants can actively regulate their release.

Considering water dynamics in the rhizosphere, everything gets even more com-

plex. Studies investigating the spatial distribution of root exudates have so far as-

sumed a constant water content in rhizosphere (Darrah, 1991b,a; Raynaud, 2010).

However, it has been shown that mucilage exuded by the root tip (Fig. 1.2) increases

water content in the rhizosphere (Young, 1995; North and Nobel, 1997; Carminati

et al., 2010; Carminati and Vetterlein, 2013). Mucilage is mainly composed of polysac-

charides which are responsible for its gel-like properties (Watt et al., 1993) and its

capacity to retain large volumes of water (McCully and Boyer, 1997). McCully and

Boyer (1997) measured the capacity of mucilage to hold water under negative water

potentials and concluded that mucilage per se has not the capacity to retain water,
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Figure 1.3: Root hairs extending the root surface (left) and root hairs covered by

mucilage (right).

as most if its water is drained at water potentials higher than -10 kPa. However,

the remaining water is still sufficient to increase the soil water content of a few per-

centages, which in turn has an important role on the hydraulic conductivity of the

rhizosphere (Carminati, 2012). These small changes of soil water content induced by

mucilage may have a significant effect on the distribution of root exudates in the rhi-

zosphere which strongly depends on diffusion and therefore on soil water content. It

seems therefore reasonalbe to assume that the release of mucilage is a plant strategy

to maintain fast diffusion of exudates and therefore an increased rhizosphere extension

even under water limitation.

Plants may not only positively affect the distribution of root exudates by releasing

mucilage but also by changing root morphology (Nguyen, 2003). Presumably, the

production of root hairs is one strategy to increase the release of root exudates and

its spatial distribution in the rhizosphere as root hairs increase the root surface from

where root exudates can potentially be released (Fig. 1.3). Root hairs, releasing

mucilage may further help plants to keep favourable rhizosphere conditions in dry

soil. Carminati et al. (2017) showed that plants with root hairs are more efficiently

taking up water from dry soil than plants without root hairs and suggested that
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mucilage released from roots may play a role in this context. However, there is little

direct evidence on the role of root hairs on C exudation. Although it has been shown

that root hairs are covered by mucigels (Dart, 1971; Greaves and Darbyshire, 1972;

Sprent, 1975) (Fig. 1.3) it is not clear whether the observed materials were released by

the root hairs or just transported there simply as a result of root elongation. Moreover,

there is nearly no information as to whether root hairs exude other substances apart

from the observed mucigels such as low molecular exudates. Pausch et al. (2016)

studied the impact of root hairs on rhizosphere priming effects (RPE). They found that

the presence of root hairs increased RPE at least for young plants hinting to an increase

in rhizodeposition. However, direct experimental evidence is lacking particularly on

the effect of root hairs on the spatial distribution of exudates in the rhizosphere.

In conclusion, the effect of soil water dynamics on rhizodeposition and on the

spatial distribution of root euxdates is still not well understood. In particular it re-

mains unclear how plants actively, by modifying there root morphology or by releasing

mucilage, control the distribution of root exudates in the rhizosphere.

1.2 Objectives and Outline

The main objective of this work was to test factors controlling the spatial distribution

of root exudates in soil. We focused on the effect of drought on root exudation and

how plants, for example by releasing mucilage, maintain favourable soil conditions in

the rhizosphere and maintain high rhizosphere extension. The main hypotheses of the

present work are summarized in Figure 1.4)

In Chapter 2 and 3 we focused on the effect of drought on root exudation and

exudate distribution in the rhizosphere. In the first study (Chapter 2), we employed

a numerical model to predict the release of low molecular weight exudates and its

distribution in the rhizosphere depending on soil water content. In Chapter 3 we

focused specifically on enzymes and how their activity is affected by soil drying and

rhizosphere water retention. In these two studies, mucilage was hypothesized to retain

water during soil drying (Fig. 1.4). The aim of the third study was therefore to

test whether DRIFT spectroscopy can be applied to measure profiles of mucilage

around roots grown in soil. While the first two chapters focused on drought, the aim

of Chapter 5 was to quantify the effect of root hairs on C exudation and exudate
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Figure 1.4: Illustration, summarizing the main hypothesis of the present work. Re-

duced soil water content may reduce root elongation and C allocation to root, herby

reducing root exudation and radial rhizosphere extension (left). However, mucilage,

may partly compensate for that effect by retaining water in the rhizosphere during soil

drying. This increases diffusion of exudates and enzymes (bottom, right). Apart from

soil water content and mucilage, root hairs (top, left) are likely to increase exudation

of C and rhizosphere extension, herby increasing rhizosphere extension.

distribution using 14C phosphor imaging of exudates collected on filter paper. In

the last Chapter we finally tested whether 14C phosphor imaging can be used to

measure profiles of exudates around roots growing in soil which has been proven

difficult previously.
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With regard to the particular Chapters, the objectives of the present work were to

• test how soil water content changes the spatiotemporal distribution of root exu-

dates in the rhizosphere and to predict root exudation by applying a numerical

model (Chapter 2)

• assess whether plants maintain a high phosphatase activity in the soil close to

the roots during periods of drought by retaining moisture in the rhizosphere

(Chapter 3).

• test a method to measure the spatial distribution of mucilage in the rhizosphere

using DRIFT spectroscopy and FTIR (Chapter 4)

• investigate how root hairs affect the C allocation in the soil-plant system, the

exudation of C and its spatial distribution in the rhizosphere (Chapter 5)

• test whether phosphor imaging directly of the soil-root surface can be used to

quantify C exudation and calculate profiles of root exudates around roots in soil

(Chapter 6).

1.3 Material and Methods

Soil and plant material and plant growth

The soil used for the experiments described in Capters 5, 4 & 6 was a sandy soil

collected close to Göttingen, Germany. TOC was 20 g kg−1, TN was 1.7 g kg−1

and the pH amounted to 4.9. Soil particle size was distributed as follows: Clay:

8.6%, silt: 18.5%, sand: 73%. In Chapter 2 we used a mixture of fine quartz sand

(70%) and silt (30%) as a soil with low organic matter content was needed. The

quartz sand was collected from Duingen (Germany) and the particle size was 100-200

µm. The silt was collected from the B-horizon (2 m depth) from a field side close

to Reinhausen, Göttingen (Germany) under beech forest. The particle size of the

substrate mixture was distributed as follows: sand: 68.1%, silt: 25.4%, clay: 6.5%.

TOC was 0.48 g kg−1 soil and TN was 0.019 g kg−1 soil. The soil pH was 4.8. In

Chapter 4, a material with a relatively fine particle size and free of organic matter was

needed. We therefore used a quartz material consisting of 70% quartz sand (collected
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from Duingen (Germany), particle size: 0.1-0.2 mm) and 30% quartz powder (Carl

Roth, particle size: <0.125 mm).

In Chapter 2 & 4 we used maize plants (Zea mays L.) of the seed company KWS

(Variety No. 2376). In Chapter 5, 3 & 6 Barley (Hordeum vulgare L. cv. Pallas - wild

type) and its root-hairless mutant were used (brb). After immersion in a 10%H2O2

solution for 10 minutes, the seedlings were germinated and transferred into rhizoboxes.

The plants were grown in a climate chamber for approximately 4 weeks. The tem-

perature in the climate chamber was 25 ◦C during day and 22 ◦C during night. The

photoperiod was 14 hours and the photosynthetic photon flux density was 200-300

µmol m−2 s−1.

14C labelling of plants, 14C allocation and phosphor imaging

14C labelling and phosphor imaging was applied in Chapter 2 to identify those root

regions where C is allocated to, in Chapter 5 to estimate the effect of root hairs on C

exudation and in Chapter 6 to estimate the attenuation of 14C in soil.

The plants were labelled in a plexiglas chamber. The label (Na142 CO3 dissolved in

1M NaOH) was placed into a glass vial which was connected through plastic tubes

with the chamber. By adding phosphoric acid (50%) to the label, 14CO2 was released

and pumped into the chamber where it was circulated for 2.5-5 h. 4 times during

labelling 30 ml of chamber air were collected and 14C in the air was measured to

calculate plant 14C uptake. 14C imaging was conducted by placing an imaging plate

on the rooted soil surfaces of the pots after labelling the plants. In Chapter 5, root

exudates were additionally collected on a moist filter paper that was attached to the

rhizobox for 24 h. To obtain a good signal, the screens were attached to the plant

for 15 - 18 h. After this time the screens were scanned (FLA 5100 scanner, Fujifilm).

The images had a spatial resolution of 50 - 100 µm.

Total dry weight as well as 14C in bulk shoots, roots, root tips, rhizosphere soil

and soil were measured to quantify total 14C uptake and 14C allocation into the

plant. To collect the rhizosphere soil, the rhizoboxes were opened after 14C scanning.

The roots were taken out and the soil attached to the roots after gently shaking was

considered as rhizosphere soil. To remove rhizosphere soil, the roots were washed with

deionized water. To measure 14C activity, ground shoots, roots, rhizosphere and bulk

soil samples were combusted in an Oxymat OX500. The released 14CO2 was captured

in a scintillation cocktail (C400, Zinsser) and quantified using a liquid scintillation

8
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analyzer (Tricarb, 3180, PerkinElmer). In Chapter 5 we additionally measured CO2

efflux from soil. Immediately after labelling, the rhizoboxes where packed in a plastic

bag which was closed with modelling clay at the lower part of the stem of the plants.

Inside the bag a 20 ml 1 M NaOH trap was placed to trap the 14CO2 released from

soil. The 14C activity in NaOH was determined using a liquid scintillation counter

(Hidex, 300 SL). Total CO2 respiration from soil was measured from a subsample (1

ml) of the NaOH trap: The carbonate in the NaOH solution was precipitated with

barium chloride and the trapped CO2-C was determined by back titration with 0.05

M HCl.

Neutron radiography

Neutron radiography was applied in Chapter 2 & 3 to monitor changes in soil water

content in the bulk and rhizosphere soil based on the spatial distribution of neutrons

that are transmitted through the samples. The neutron radiographs were taken in Paul

Scherrer Institute (PSI), Switzerland, in the imaging stations ICON and NEUTRA.

The samples were placed in front of the imaging beam and the neutrons transmit-

ting the sample were captured by a CCD camara and transformed into a digital image.

By accounting for the attenuation coefficients of soil, water and the aluminum of the

rhizoboxes, the water content in the sample can be calculted with a high spatial reso-

lution of 100 µm. This is possible because water has a very high neutron attenuation

coefficient compared to soil and aluminum.

Soil zymography

We used soil zymography in Chapter 3 to quantify phosphatase activity around the

roots of plants grown in rhizoboxes. Polyamide membrane filters were soaked in

phosphatase substrate (4-methylumbelliferyl-phosphate (MUF-P)) and attached to

the rhizobox surface for 1h. The membranes were removed from the sample and

pictures were taken at 360 nm wavelength.

For calibration, solutions with different MUF concentrations were imaged. The

equation that described the correlation between MUF activity (µmol cm−2 h−1) and

the grey value from the images was used to calibrate the images and to quantify

phosphatase activity (µmol cm−2 h−1) in soil.
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Image analysis

The analysis of the images was done similarly for 14C images, neutron radiography and

zymographs, with only small differences between the methods. The aim of the image

analysis was to calculate radial or longitudinal profiles of activities/water content from

the root surface. Therefore, the roots we were interested in (root tips vs. old root

parts, main roots vs. lateral roots) were segmented. The segmentation was done

based on the contrast between roots and soil, using either the SmartRoot plugin in

ImageJ (Lobet et al., 2011) or roottracker2D (Menon et al., 2007). Possible artefacts

caused by overlapping roots or roots detached from the soil were removed from the

segmentation. For each image 2-10 roots were segmented depending on how many

roots were clearly visible. The signal was averaged as a function of distance from the

root center up to a distance of 4 cm from the root surface using the Euclidean distance

mapping functions in MATLAB (The MathWorks).

DRIFT spectroscopy

Diffuse reflectance infrared spectroscopy (DRIFT) measurements in the mid-infrared

range (wavelength: 2.5-25 µm, wave numbers (WN): 4000-400 cm−1) was applied in

Chapter 4 to measure profiles of mucilage around roots in soil. DRIFT spectra were

conducted using an Agilent Cary series 600 FTIR microscope moving in the perpen-

dicular direction from the root channel center towards the bulk soil. The spectra were

recorded as 64 co-added scans at a spectral resolution of 4 cm−1 in steps of 100 µm

from sample areas of 0.1 mm x 0.1 mm. For the rhizosphere samples, one root was

chosen per plant and spectra were measured at three positions along each root (0, 1,

and 3 cm behind the tip). After preprocessing of the spectra (Ellerbrock et al., 2009;

Leue et al., 2010), the local peak heights of the C-H bands were normalized for the

absolute peak height of the SiO2 band at WN 1350 cm−1.

Statistical approaches and modelling of root exudation

The data on C allocation in plant and soil were analysed by analyses of variances

(ANOVA). To test for differences in the radial profiles of exudates in Chapter 5, a

mixed effect model was used with treatment (i.e. plant type) as fixed effect and plant

as random effect. To account for the differences in numbers of roots sampled per plant,

the restricted maximum likelihood (REML) method was applied. In 3 we applied a
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mixed effect model to account for the fact that each plant was repeatedly measured

for each adjusted water content. All statistical analysis were conducted using R 3.3.1.

To model the exudation of C depending on soil water content (Chapter 2) we

used the approach proposed by Kim et al. (1999) and Carminati et al. (2016). The

reference system was fixed to the root tip and the diffusion-convection equation was

solved numerically. The model accounted for root elongation, microbial decompostion

of exudates, diffusion of exudates in soil and through the root tissue depending on

soil water content. The values for rhizosphere and bulk soil water content were taken

from neutron measurements. As a boundary condition we assumed zero flux at the

outer boundary and a constant C concentration in the root which was calculated for

plants grown in wet and in dry soil based on the 14C distribution in root tips. The

root segment from which exudates are released was set to 1 cm for wet plants and

0.5 cm for dry plants (Sharp et al., 2004) because we found that the root elongation

rate was correlated to the length of the root zone where 14C was transported to and

presumable exuded from. Based on this, the amount of exudates released as well as

their spatial distribution in soil was calculated.

1.4 Results and Discussion

The effect of drought on root exudation (Study 1)

The aim of this study was to investigate how the exudation of C and its spatial

distribution in the rhizosphere changes with soil water content. We coupled 14C

imaging, neutron radiography and numerical modelling to predict root exudation.

14C was allocated to root tips of main and lateral roots (Fig. 1.5). Plants grown

in dry and wet soil allocated similar amounts of 14C into roots but root elongation

decreased by 48% in dry soil which is in line with previous findings (Sharp et al.,

2004). Because the root elongation strongly correlated with the region of the root

where C was allocated to and released from, the model predicted that the reduction

in root elongation would result in a strong decline in root exudation for plants in dry

soils. This resulted in a total exudation after the simulation time of two days that

was approximately twice as high (1.78 and 1.75 µg C cm−3) in wet soil compared

to dry soil (0.72 and 0.9 µg C cm−3). The soil water content, measured by neutron

radiography differed strongly among the treatments for the bulk soil (6% vs. 20%), but

was identical for the rhizosphere (31%). This may be explained by mucilage released
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Figure 1.5: 14C allocation in the root system visualized by phosphor imaging two

days after plant labelling. Bright indicates high 14C activity, dark indicates low 14C

activity.

from the root tips that can retain large amounts of water in the rhizosphere due to

its gel-like structure (McCully and Boyer, 1997; Carminati and Vetterlein, 2013).

To assess the effect of the changes in rhizosphere water content, two model scenar-

ios where tested. One scenario accounted for an increase in rhizosphere water content

as observed in the experiment. As a control, another scenario was tested, assuming a

constant water content towards the root. While the increase of water content towards

the roots had nearly no effect for plants grown in wet soil, it increased root exudation

for the dry treatment and extended its radial distribution. This can be explained by

the increased diffusion of exudates in the rhizosphere due to the increased water con-

tent (Raynaud, 2010). This effect is particularly strong if the bulk soil water content

is low. The changes in water content towards the root therefore partly compensated

for the reduced exudation due to reduced root elongation in dry soil.

We showed that root growth and rhizosphere water content play an important role

in C release by roots and in shaping the profiles of root exudates in the rhizosphere.

The release of mucilage may be a plant strategy to maintain fast diffusion of exudates

and high microbial activity even under water limitation.
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Figure 1.6: Left: Modelled axial distribution of exudates in the rhizosphere after

two days of simulation. const = constant water content towards the root surface is

assumed. For all other scenarios an increase in soil water content towards the root is

assumed as measured with neutron radiography. decomp = microbial decomposition.

Right: Modelled radial distribution of exudates in the rhizosphere after two days of

simulation.

Soil drying and its effect on rhizosphere enzyme activity (Study 2)

We tested whether plants maintain a high phosphatase activity around roots dur-

ing periods of drought by retaining moisture in the rhizosphere which facilitates fast

diffusion of exoenzymes and thus high rates of enzymatic catalysis.

The WC in bulk soil and rhizosphere measured by neutron radiography (Fig. 1.7b,

1.8) differed significantly between the adjusted WC levels. Rhizosphere WC was

approximately 2 times higher than in the bulk soil at all adjusted WCs. Particularly

under dry conditions, these differences were high which resulted in an increase in the

ratio between the WC in the rhizosphere and in the bulk soil of up to 2.8 with soil

drying.

Similar trends as for soil WC were found for phosphatase activity (Fig. 1.7c ). In

bulk soil and rhizosphere, phosphatase activity decreased by 97% when the adjusted

WC of the rhizoboxes dropped from 40% to 5% WC (Fig. 1.8, left). The power-law

13



EXTENDED SUMMARY

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.1

100

200

300

400

500

600

V
ol

. 
w

at
er

 c
on

te
n
t 

(-
)

E
n
zy

m
e 

ac
ti
vi

ty
 (

p
m

ol
 
cm

-2
h

-1
)

a) b) c)

Figure 1.7: Exemplary images of a) barley roots in an open rhizobox, b) the same

root system imaged by neutron radiography showing the volumetric water content

and c) zymography depicting the distribution of the phosphatase activity of the same

sample.

relation between soil WC and enzyme activity, which is similar to the relation between

soil WC and diffusion coefficient proposed by Millington-Quirk model (Milllington and

Quirk, 1961) confirms the hypothesis by Manzoni et al. (2012) that enzyme activity

with soil drying is mainly controlled by diffusion. In accordance with this finding, the

phosphatase activity in the rhizosphere, having a high WC compared to the bulk soil,

was significantly greater than phosphatase activity in the bulk soil. With increasing

soil drying, the ratio of phosphatase activity in the rhizosphere-to-phosphatase activity

in the bulk soil increased. It was 9.7 at 40% adjusted WC, and reached 63.4 at 5%

WC (Fig. 1.8, right).

The reason for this might be mucilage and EPS released into the rhizosphere (Carmi-

nati and Vetterlein, 2013; Young, 1995; Or et al., 2007) which retain water upon soil

drying (Ahmed et al., 2014; Carminati and Vetterlein, 2013; Or et al., 2007) and

therefore keep the rhizosphere moister than the bulk soil. The enhanced rhizosphere

WC does not only increase the diffusion of phosphatase, but also the diffusion of in-

organic phosphorus, increasing its chances to be taken up by the plant. The increase

in rhizosphere WC due to mucilage and EPS has therefore a twofold positive effect
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Figure 1.8: Left: Enzyme activity in the rhizosphere (red) and in bulk soil (blue) as

a function of the volumetric WC to which the rhizoboxes were adjusted. Error bars

indicate the standard error. Significant differences are indicated by different letters.

Right: Ratio of enzyme activity of the rhizosphere to enzyme activity of the bulk soil

as a function of the gravimetric WC, to which the rhizoboxes were adjusted. Error

bars indicate the standard error. Significant differences are indicated by different

letters.

to the plant in terms of nutrient availability in dry soil conditions, first, it increases

enzyme activity, and second, it leads to a facilitated movement of phosphate towards

the plant root.

Infrared spectroscopy to measure the spatial distribution of mucilage in

soil (Study 3)

The aim of this study was to test a method to determine the spatial distribution of

mucilage in the rhizosphere.

We used the C-H/SiO2 ratio measured by IR spectroscopy as a proxy for mucilage

content in soil, as mucilage contains fatty acids (Read et al., 2003). The calibration

measurements on object slides with soil mixed with given amounts of mucilage re-

vealed a linear relationship between mucilage content and the C-H/SiO2 ratio. The

calibration was used to convert the measured C-H/SiO2 ratios perpendicular to the

roots into mg dry mucilage per g dry soil. The measurements in the maize rhizosphere

showed a distinct gradient of mucilage from the center of the root channel towards

the bulk soil. The highest values of 0.02 mg g −1 were found in the center of the root
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Figure 1.9: Mucilage concentration (mg dry mucilage per g dry soil) starting from

the root channel center in radial direction towards the bulk soil. Mean values and

standard errors of 5 replicates.

channel.

Mucilage content decreased to approximately 0 mg g −1 at about 0.6 mm from

the root surface (Fig. 1.9). This rhizosphere extension was lower compared to results

obtained from 14C imaging analyses (Holz et al., 2017) where root exudates diffused

up to 1 mm into the bulk soil. The fact that mucilage did not move as far from the

root surface as compared to overall exudates may be explained by the higher viscosity

of mucilage (Read and Gregory, 1997) and reduced diffusion coefficient of mucilage

compared to root exudates. Based on recalculation from the literature, we can expect

a mucilage exudation rate of 0.056 mg dry mucilage per g dry soil (Chaboud, 1983).

This theoretic value is 3 times higher than the values obtained by DRIFT spectroscopy;

however, they still appear comparable. IR spectroscopy is therefore a promising tool

to measure the spatial distribution of mucilage in soil.

Root hairs increase rhizosphere extension (Study 4)

The aim of the fourth study was to test whether root hairs lead to increased root

exudation and rhizosphere extension.

The region of roots where 14C was allocated correlated well with the region where
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14C was found on the filter paper used for the collection of root exudates (Fig. 1.10).

For plants with root hairs, rhizosphere extension in radial direction reached up to

1.5 mm from the root surface, while for the mutant without hairs it reached only

0.5 mm. The increase in radial rhizosphere extension is of particular importance

because it expands the volume of soil where root exudates can interact with the soil

matrix and with microorganisms which may improve nuturient availibility (Hamilton

and Frank, 2001; Herman et al., 2006; Landi et al., 2006).

Figure 1.10: Left: 14C phosphor images of the root system of barley plants (top) and

of root exudates that diffused into the filter paper (bottom) which was attached to

the plant during labelling. The intensity of the grey value corresponds to 14C activity.

The sketch on the right side indicates the changes in rhizosphere extension due to root

hairs.

To separate the effect of different root elongation rates between genotypes on the

axial rhizosphere extension, the ratio between axial rhizosphere extension and root

elongation was calculated. The ratio was around 2 for plants with root hairs and

around 1 for plants without root hairs. This indicates that the presence of root hairs

extended the zone of exudation to slightly older root segments and that the root hairs

themselves exude organic substances into the soil. Therefore, for plants with root
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hairs, root exudation is high over a longer distance from the root tip compared to

plants without root hairs. This may be considered in models of nutrient uptake which

assume that nutrients are mobilized behind the zone of root exudation (Marschner

et al., 2011; Kuzyakov and Xu, 2013).

Plants with root hairs allocated twice as much 14C to roots and 5 times more 14C

to rhizosheaths compared to the mutant without hairs which corresponds with the

findings from the imaging experiment. In contrast, hairless plants allocated more C

to shoots (wild type: 65%; brb: 75%) than the wild type. 14C activity in CO2 as well

as the total CO2 respiration from soil was similar for the wild type and the hairless

mutant. As plants with root hairs allocated more C belowground, while 14C efflux as

well as total CO2 efflux remained unchanged, more C derived from roots was retained

in soil for WT plants. The greater C allocation belowground in the presence of root

hairs may therefore foster C sequestration.

Challenges and artefacts in visualization and quantification of rhizodepo-

sition using phosphor imaging (Study 5)
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Figure 1.11: Radial profiles of 14C activity of dry roots removed from soil and placed

on a plane surface without soil (red line) and of the same roots placed into dry soil

(grey line). Variation is given as standard error, n=4.
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Figure 1.12: Calculated profiles of 14C activity around roots. The profiles were calcu-

lated for three scenarios, first, assuming that only the root is radioactive (blue line),

second, assuming that the root and root exudates in the soil around the root are

radioactive (red line) and third, assuming that only the root is radioactive and that

there is an airgap of 0.03 mm between the root and the imaging screen (green line)

(b). c) shows the distribution of the actual root exudates in soil (black line) compared

to the signal that is seen after imaging root and root exudates (red line). d) displays

the relative contribution of root exudates to the 14C signal measured. 1 indicates that

100 % of the signal is caused by root exudates, while 0 indicates that 100 % of the

signal is caused by the activity of the root.

Because the 14C filter paper approach is restricted to moist soil conditions, we

tested whether phosphor imaging directly on the soil-root-surface can be used to

estimate profiles of root exudates around roots in soil. Profiles of 14C activity were

calculated for dried roots of labelled plants that were either placed in dry soil or

imaged without soil.

Profiles of 14C were broader (0.5 vs. 0.25 m) and the signal intensity was higher

for roots imaged without soil compared to roots placed in dry soil (Fig. 1.11). These

differences reflect different attenuation of 14C in soil and in air. However, the fact that

even for roots placed in soil, the 14C signal reached regions beyond the root surface

indicates that the soil attenuated only part of the 14C signal originating from roots.
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To calculate the 14C signal that can be assumed to originate from root exudates, we

measured the attenuation of 14C in soil and in water. The 14C attenuation coefficient

was 148 cm−1 for soil and 67 cm−1 for water which corresponds to the differences in the

density of the materials which is 1 g cm−3 for water and 2.65 g cm−3 for quartz. Based

on these coefficients, we calculated profiles of 14C that can be expected around roots

in soil. The profiles of 14C were strongly affected by a) the 14C activity in the root and

the root radius, b) the position of the root in soil, c) the amount of root exudates in

soil and d) by the presence of air gaps between sample and imaging screen. Knowing

the root 14C activity, its radius and position in soil, it may be possible to calculate

the contribution of root exudates to the profiles of 14C. However, the blurring effect

of air gaps between sample and imaging screen that are difficult to quantify, makes it

difficult to use 14C imaging to quantify profiles of root exudates around roots in soil.

1.5 Summary, Conclusion and Outlook

The aim of the present work was to test biophysical factors, controlling the spatiotem-

poral distribution of root exudates in the rhizosphere. The following factors have been

identified to influence root exudation and the spatial distribution of root exudates in

soil: a) root elongation, b) the local soil water content, c) release of mucilage and EPS

and d) the production of root hairs. It is important to consider that all these factors

interact with each other and that they may not be considered independently when

evaluating their effects on root exudation.

Chapter 2 and 3 highlighted the importance of soil water content for the distribu-

tion of root exudates. In Chapter 2, soil drying reduced root elongation and therefore

total exudation and axial exudate distribution. In this sense, the water content had

an indirect effect on root exudation. However, by reducing diffusion, soil drying di-

rectly affected root exudation and strongly reduced rhizosphere extension and total

exudation. Similarly, phosphatase activity was strongly correlated with the local soil

water content and declined with soil drying (Chapter 3). In both studies, we observed

an increase in water content towards the roots. The increase in rhizosphere water

content was attributed to mucilage, a gel-like substance released by the root tips that

is able to retain large amounts of water (McCully and Boyer, 1997; Carminati and

Vetterlein, 2013). By incraesing the rhizosphere water content, mucilage enhanced

diffusion of exudates and enzymes. This resulted in an increase in total exudation
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and radial exudate distribtution particularly under dry conditions (Chapter 2) and

maintained enzyme activities even under severe soil drying (Chapter 3). By retaining

water in the rhizosphere and maintaining the diffusion of exudates, both substances

may therefore be beneficial to plants, particulary under dry conditions.

Despite the fact, that mucilage may be have positive effects to plants due to its

water related properties, so far no method is available to estimate its distribution in

the rhizosphere. In Chapter 4, we showed that the signal of C-H groups, contained in

mucilage, can be measured by DRIFT spectroscopy and used as a proxy to quantify

the spatial distribution of mucilage in the rhizosphere. The measured mucilage con-

tents and the spatial extent of the mucilage-affected rhizosphere were comparable to

calculated and published values. A limitation of this method, however, is that it can

be applied only in soil organic matter (SOM) free material and is therefore restricted

to relatively artificial soil conditions.

Apart form the factors mentioned so far, the production of root hairs also affects

root exudation and rhizosphere extension. Using phosphor imaging of root exudates

collected on filter paper, we showed that root hairs strongly increaese the radial and

axial rhizosphere extension. The increase in axial rhizosphere extension may be con-

sidered in models of nutrient uptake where it is commonly assumed that nutrients

are mobilized behind the zone of root exudation in axial direction (Marschner et al.,

2011; Kuzyakov and Xu, 2013). The greater radial rhizosphere extension for plants

with root hairs might be beneficial to plants because it favours plant-microbial in-

teractions and therefore nutrient mobilization in larger soil volumes. The increase in

root exudation for plants with root hairs was confirmed by the 14C allocation in plant

and soil. Barley with root hairs allocated more C belowground compared to plants

without hairs, but this did not increase CO2 efflux. As root C has a longer mean

residence time in soil compared to shoot C (Rasse et al., 2005), it is likely that plants

with root hairs foster C sequestration.

Finally, we evaluated whether phosphor imaging of soil-root surfaces can be used to

visualize and to quantify root exudates around growing roots. This has proven difficult

so far because of the scattering of the 14C signal from the root that easily overshadows

that of the root exudates. The following factors have to be considered when calculating

the contribution of root exudates to the 14C signal of a phosphor image taken: a) the

14C activity in the root, b) the root radius, c) the position of the root, d) the amount of

root exudates and e) by the presence of air gaps between soil and imaging screen. The
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calculation of profiles of root exudates is highly sensitive to airgaps between sample

and screen, which can hardly be quantified. It may therefore not be reliable to use

such an approach in practice. Instead, the collection of root exudates on filter paper

and their visualization seems to be a more trustworthy method.

By combining complementary imaging methods and numerical modelling we showed

that plants engineer a suitable soil environment by the release of mucilage or by the

production of root hairs. Mucilage may have positive effects on plant growth particu-

larly in periods of drought as it retains water in the rhizosphere, herby increasing the

diffusion and extension of low molecular root exudates and enzymes. Root hairs, on

the other hand increase C exudation and rhizosphere extension and they may there-

fore enhance rhizosphere interaction in greater soil volumes which positively affects

nutrient accessibility.

We tested two methods with regard to their applicability to image and quantify

rhizodeposits. IR spectroscopy was successfully applied to estimate the distribution of

mucilage in soil while phosphor imaging of root exudates collected on filter paper was

applied to image root exudates. These methods will help to better understand factors

controlling the spatial distribution of root exudates in soil. Future studies should

investigate whether the root traits studied here (mucilage, root hairs, water related

rhizosphere properties) do have a direct impact on nutrient accessibility. This could

be done by measuring the mentioned root traits in combination with measurements of

nutrient uptake or nutrient availability. Additionally, different plant varieties should

be tested for their ability to increase the release of mucilage or to produce long and

dense root hairs. This would enable plant breeders to develop plant varieties which

are able to cope with difficult growth conditions such as water scarcity and nutrient

limitation. Both are expected to occur more often in the future due to climate change.
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Abstract

Aims Rhizodeposition is an important energy source for soil microorganisms. It is

therefore crucial to estimate the distribution of root derived carbon (C) in soil and

how it changes with soil water content.

Methods We tested how drought affects exudate distribution in the rhizosphere by

coupling 14CO2 labelling of plants and phosphor imaging to estimate C allocation in

roots. Rhizosphere water content was visualized by neutron radiography. A numerical

model was employed to predict the exudate release and its spatiotemporal distribution

along and around growing roots.

Results Dry and wet plants allocated similar amounts of 14C into roots but root

elongation decreased by 48% in dry soil leading to reduced longitudinal rhizosphere

extension. Rhizosphere water content was identical (31%) independent of drought,

presumably because of the high water retention by mucilage. The model predicted that

the increase in rhizosphere water content will enhance diffusion of exudates especially

in dry soil and increase their microbial decomposition.

Conclusions Root growth and rhizosphere water content play an important role

in C release by roots and in shaping the profiles of root exudates in the rhizosphere.

The release of mucilage may be a plant strategy to maintain fast diffusion of exudates

and high microbial activity even under water limitation.

2.1 Introduction

The rhizosphere is the small soil volume around the roots where nutrient accessibility is

increased due to a higher microbial abundance and turnover compared to the bulk soil

(Hamilton and Frank, 2001; Herman et al., 2006; Landi et al., 2006). Low molecular

weight root exudates (hereinafter referred to as root exudates), are one important

energy source for soil microorganisms (Gunina and Kuzyakov, 2015). It is therefore

important to estimate the radial and longitudinal distribution of root exudates in the
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rhizosphere (Toal et al., 2000; Darrah, 1991b). The distribution of C in the rhizosphere

is affected by: (a) the amount of exudates released by the roots, (b) the diffusion of

exudates, (c) convection, i.e. the fluxes of water to the root, (d) decomposition of root

exudates by microorganisms, (e) sorption (Kuzyakov et al., 2003; Jones et al., 2009)

and the presence of root hairs (Holz et al., 2017b). Although all these processes are

affected by soil water content, it is still not known how drought events affect the spatial

distribution of root exudates in the rhizosphere. Recently, Preece and Penuelas (2016)

reviewed that rhizodeposition is increased, decreased or unaffected by drought. These

contradictory results may arise because it is not yet understood how soil water content

affects the complex interactions between processes and because these processes may

work in opposite directions.

Diffusion has a strong influence on exudate distribution and on root exudation

rate (Jones et al., 2004). It is reduced at low soil water content (Raynaud, 2010).

Studies investigating the spatial distribution of root exudates have assumed a constant

water content in rhizosphere (Darrah, 1991a,b; Raynaud, 2010). However, mucilage, a

mixture mainly composed of polysaccharides (Chaboud, 1983) and secreted by the root

tip, increases water content in the rhizosphere compared to the bulk soil (McCully and

Boyer, 1997; Young, 1995; North and Nobel, 1997; Carminati and Vetterlein, 2013).

By secretion of mucilage, plants may therefore augment release of low molecular weight

exudates by maintaining their diffusion into the rhizosphere even at low bulk soil water

contents.

Changes in root elongation (Sharp et al., 2004), which modify the length and veloc-

ity of the exuding root zone, additionally affect rhizodeposition. Preece and Penuelas

(2016) showed that reduced exudation under drought can often be explained by a

reduction in root growth. As low molecular weight root exudates are released from

the growing tip (Jones et al., 2009; Pausch and Kuzyakov, 2011), changes in root

elongation will strongly affect the distribution of root exudates. When predicting

root exudation under drought, it is therefore important to consider root elongation

rates. Kim et al. (1999) showed that the distribution of solutes in the rhizosphere is

very different if the location of exudate release in soil is fixed or, as in real roots, it

moves in the soil. The authors concluded that root exudation should be treated as a

moving source term in rhizosphere models.

Drought also affects the amount of recently assimilated C, which is transported

to the roots. Most studies investigating the effect of drought on the translocation
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of recently assimilated C found that plants allocate relatively more C to roots when

subjected to drought (Reid and Mexal, 1977; Palta and Gregory, 1997; Sanaullah et al.,

2012). As root exudates are mainly lost passively (Dilkes et al., 2004), the amount of

C allocated to roots will strongly affect the C loss into the soil and should therefore

be considered when modelling the distribution of plant derived C in the rhizosphere.

The aim of this study was to test how soil water content changes the spatio-

temporal distribution of root exudates in the rhizosphere. We considered changes in

root growth, C allocation to roots and rhizosphere water content (which might be

different than the average water content and which affects the diffusion coefficient).

We grew maize plants in rhizoboxes and used 14C imaging to identify the root parts

where C was allocated and where recently assimilated C could be released into the soil.

Neutron radiography was applied to measure changes in soil moisture around the roots

which indirectly reflect mucilage concentration (Carminati et al., 2010). The amount

of C translocated into the roots, root elongation as well as the changes in soil water

content towards the roots were used as parameters for a numerical model of exudate

diffusion and degradation in the rhizosphere. The application of the model enabled

us to quantify the radial and longitudinal distribution of exudates in the rhizosphere

for varying parameters such as root growth rate, soil water content and degradation

rate.

Our hypotheses were: i) mucilage increases the water content close to the root,

hereby increasing exudate diffusion in the rhizosphere. This increase will be more

pronounced in dry soil. The higher water content will additionally increase microbial

activity and exudate decomposition; ii) drought reduces root elongation and the length

of the root exudation zone leading to reduced longitudinal rhizosphere extension and

reduced total exudation. These hypotheses were tested combining the imaging results

with the simulation.

2.2 Materials and Methods

Soil preparation and plant growth

Before germination, maize seeds (KWS 2376) were immersed in a 10% H2O2 solution

for 10 minutes to avoid seed-borne diseases. Seedlings were planted after 3 days of

germination. Maize plants were grown for six weeks in rhizoboxes with a size of

either 12 x 30 x 1 (for neutron radiography) or 30 x 30 x 1 cm (14C imaging). The
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boxes were kept at an angle of approximately 55◦ to make sure that the roots were

growing close to the lower side of the rhizoboxes. The soil was a mixture of fine quartz

sand (70%) and silt (30%). The quartz sand was collected from Duingen (Germany)

and the particle size was 100-200 µm. The silt was collected from the B-horizon (2

m depth) from a field side close to Reinhausen, Göttingen (Germany) under beech

forest. The texture of the material was the following: sand: 68.1%, silt: 25.4%, clay:

6.5%. The total C content of the soil was 0.48 (± 0.027) g kg−1 soil and the total

N content was 0.019 (± 0.0013) g kg−1 soil. The soil pH was 4.8 (± 0.47). Prior

to plant growth the following nutrients were added per kg of soil: NH4NO3-N: 0.3

g, Ca(H2PO4)2-P: 0.06 g, K2SO4-K: 0.03 g, CaSO4-Ca: 0.05 g, MgSO4-Mg: 0.05 g,

H3BO4-B: 2 mg, CuSO4-Cu: 0.03 mg, MnSO4-Mn: 1.5 mg, (NH4)2MoO4-Mo: 0.03

mg, ZnCl4-Zn: 1.2 mg, FeNaEDTA-Fe: 3.6 mg. Soil water content in the samples

was checked gravimetrically each day and it was adjusted by adding water from the

top with a syringe. A 1 cm thick layer of gravel was added on top of the samples to

prevent evaporation and to avoid strong fluctuations in soil water content. The soil

water content was kept to 1% in the first five weeks of plant growth. One week before

measurements, the volumetric soil water content was brought to either 20% or 6%,

which correspond to a soil matric potential of -89 hPa and -500 hPa, as measured

using a pressure plate apparatus. The two treatments are referred to as wet and dry

treatment. The temperature in the climate chamber was 25 ◦C during day and 22

◦C during night, the photoperiod was 14 hours and the photosynthetic photon flux

density was 200 µmol m−2 s−1. During the growth period, photos of the root system

were taken in regular intervals to monitor root elongation. For each plant a photo one

day before labelling, at the day of labelling and one day after labelling was chosen.

The elongation rate was calculated using the Smart Root plugin in ImageJ: Roots

from each image were segmented and the length of the segment was calculated by

the program. From the differences in root length at different days the elongation

rate was calculated. Four replicates per treatment were used for neutron radiography

measurements, and five were used for 14C imaging.

Plant labeling, 14C imaging and quantification of 14C in plant and soil

14C imaging was conducted with plants grown under same conditions as for neu-

tron radiography. Each plant was labelled with 1 MBq 14CO2 (specific activity of

2,205,200 MBq mmol C−1). The labelling procedure was done according to Kuzyakov
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et al. (2006). The plants were labelled in a plexiglas chamber (0.6 x 0.6 x 0.8 m) in

which a fan was placed in order to distribute the 14C in the whole chamber. The label

(NaH14CO3 dissolved in 1M NaOH) was placed into a glass vial which was connected

through plastic tubes with the chamber. By adding phosphoric acid (50%) to the

label, 14CO2 was released and pumped into the chamber where it was circulated for

2.5 h. 4 times during labelling (after 5, 30, 60 and 120 min) 30 ml of chamber air were

collected from the chamber with a syringe. After injection of this air into a scintilla-

tion cocktail (C 400, Zinsser Analytics) and measurement of the 14C in the liquid by

a 14C counter (Hidex, 300 SL), 14C activity in the chamber air was back-calculated.

To capture the 14C that was remaining in the chamber in the end of labelling, the

chamber air was pumped through a 1M NaOH solution for 30 minutes. The 14C in the

solution was determined with a 14C counter (Hidex, 300 SL) after adding scintillation

cocktail to the solution. These measurements showed that the plants had taken up

approx. 80% of the added 14C at the end of labelling.

14C imaging was conducted by placing an imaging plate (Storage phosphor screen,

BAS-IP MS 2040 E, VWR) on the rooted soil surfaces of the pots after labelling the

plants. Images of each root system were taken 2, 3 and 4 days after labelling. To

obtain a good signal, the screens were attached to the plant for 17 h. After this time

the screens were scanned (FLA 5100 scanner, Fujifilm). The images had a spatial

resolution of 100 µm. Total dry weight as well as 14C in bulk shoots, roots, root

tips, rhizosphere soil and soil were measured to quantify total 14C uptake and 14C

allocation into the plant. To collect the rhizosphere soil, samples were opened after

14C scanning. The roots were taken out and the soil attached to the roots after gently

shaking was considered as rhizosphere soil. To remove rhizosphere soil, the roots were

washed with deionized water. The rhizosphere soil was collected and freeze dried to

avoid microbial decomposition of exudates. Similarly, root material was freeze dried

to avoid microbial decomposition. To measure the 14C content in the root tips we

chose the same tips chosen for 14C image analysis - i.e. the tips of crown roots which

showed a high 14C activity in the images (Fig. 2.1,2.2). The segmentation procedure is

explained in detail in the paragraph Quantification of 14C images. The roots were cut

3 cm behind the tip. Root material and rhizosphere soil was freeze dried and ground.

Shoot material and bulk were dried at 40 ◦C and ground. To measure 14C activity,

ground shoots, roots, rhizosphere and bulk soil samples were combusted in an Oxymat

OX500. The released 14CO2 was captured in a scintillation cocktail (C400, Zinsser)
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and quantified using a liquid scintillation analyzer (Tricarb, 3180, PerkinElmer).

Quantification of 14C images

To quantify the length of the root segments, where 14C was allocated to, we segmented

those regions of the crown roots which showed a high 14C activity (i.e. the same

root tips which were later on destructively sampled for 14C analysis). The roots were

segmented based on the contrast between roots and soil using the program Roottracker

2D. As the program segments the whole root system, the regions with high 14C which

we were interested in were chosen for analysis visually thanks to the high contrast in

14C content between the apical growing regions and the more proximal segments: the

starting point of this region was set to the location where the 14C signal started to

increase compared to the average signal of the bulk root (i.e. the proximal root parts).

The procedure of segmentation is exemplary shown in Figure 2.2. The length of this

region with high 14C was quantified using image processing toolbox in MATLAB (The

MathWorks). Overlapping roots were excluded from the analysis. We assumed that

the root region which showed a high 14C activity was the region where 14C was exuded

from, as shown by Dennis et al. (2010).

Neutron radiography

Neutron radiography experiments were performed at the ICON imaging station (Kaest-

ner et al., 2015) at Paul Scherrer Institute (PSI) in Switzerland. We used a CCD

camera detector with an array of 2160 by 2560 pixels, a field of view of 11.7 cm by

13.8 cm, and a spatial resolution of 0.1 mm. We took 12 radiographs (for the big

rhizoboxes) and 6 radiographs (for the small rhizoboxes) with 39% horizontal and

27% vertical marginal overlaps to scan the entire samples. Neutron radiography was

used to quantitatively measure the distribution of water in the rhizosphere based on

the spatial distribution of neutrons that are transmitted through the samples. As soil

mixed with mucilage has a higher water holding capacity than soil without mucilage, it

is possible to relate the soil water content to mucilage concentration (Kroener et al.,

2014). After keeping the samples at water contents of 6% and 20% for one week,

neutron radiography measurements were conducted.

A detailed description of quantification of neutron radiographs can be found in Zare-

banadkouki et al. (2012). Briefly, neutron radiographs were corrected for the flat field
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Figure 2.1: 14C images of a plant grown in wet soil (left side) and a plant grown in

dry soil (right side). Bright color indicates high 14C activity; dark color indicates low

14C activity. The sample size was 20 x 30 cm.

Figure 2.2: Process of image segmentation: (a) original image, (b) segmented image

(blue: segmented root, green: noise), that is excluded from the analysis (e.g. crossing

roots). Note that this is exemplary shown for 14C imaging. However, the procedure

is the same for neutron radiographs.
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(Iff , radiograph taken without any sample) and the dark current (Idc, signal recorded

by the camera when there was no beam) according to:

Inorm =
I − Idc
Iff − Idc

(2.1)

where Inorm is the corrected image and I is the original image. The signal ob-

tained in the neutron radiographs included the attenuation of the three compounds

of the sample: (a) the aluminum container, (b) soil and (c) water (including the

roots). The attenuation coefficient of dry soil (µsoil) and aluminum (µAl) was ob-

tained from neutron radiography of an unplanted dry sample (packed in similar way

as for planted container). The neutron attenuation of water (µH2O) was calculated

from neutron radiography of a control sample with known thickness of water (0.3 cm).

The calculated attenuation coefficients were µsoil = 0.28 cm−1, µAl = 0.02 cm−1 and

µH2O = 4.72 cm−1. For the pixel containing no root the contribution of H2O to the

neutron attenuation was calculated as

− log
(Inorm
Idry

)
= µH2OdH2O (2.2)

where Idry is the unplanted dry sample and dH2O is the thickness of water (cm).

Volumetric water content in the soil was defined as

θ =
dH2O

dtot
(2.3)

where dtot is the inner thickness of the container in beam direction (dtot = 1 cm).

The roots were segmented based on the contrast between roots and soil using the

program Roottracker 2D. Noises (e.g. crossing roots or cracks in soil) were also re-

moved by the segmentation. The calculation of water content in the rhizosphere was

done for main roots and lateral roots separately. For the lateral roots, segments of

0.5-1 cm were chosen, for the main roots segments of 1-2 cm were chosen. Per sam-

ple 2-15 roots were segmented, depending on how many roots were clearly visible.

The length and diameter of roots and of rhizosphere soil were calculated using the

Euclidean distance map (Soille, 2003) (MATLAB, The MathWorks). The average of

signal was calculated for each distance from the root surface up to a distance of 3 cm

from root surface. To calculate the profile of water content in soil as a function of

distance from the root we needed the radial profile of soil water content while the 2D

radiographs give Cartesian profiles. Neutron attenuation projected in each pixel of the
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2D radiographs contains information on the average water content across the sample

in the beam direction. The pixels close to the root therefore are an average of the

water content in the rhizosphere and in the portion of the soil in front of and behind

of the rhizosphere. Assuming radial symmetric profiles of water content around the

roots, the actual 3D (radial) profile of water content in the rhizosphere was calculated

following the approach given in Zarebanadkouki et al. (2016)

θ(x) =
2

dtot

∫ √
x2+
(

dtot
2

)2
x

θ(r)

√
r2

r2 − x2
dr (2.4)

where dtot is the inner thickness of the sample, r is the radial distance from the

root center, and x is the apparent distance from the root center in the radiograph.

Equation 2.4 is derived by changing the Cartesian coordinate into radial coordinate.

The average signal measured at the position x on the detector is the average of the

actual water content between the distances of x and
√
x2 +

(
dtot
2

)2
from the root

surface, which are the limits of integration in Equation 2.5. The term
√

r2

r2−x2 comes

from the transformation into the radial coordinates. Finally, the profiles of water

content from the root surface were calculated in the same way as described for 14C

images.

Model

We used the approach proposed by Kim et al. (1999) and Carminati et al. (2016) to

predict the distribution of root exudates in soil. The reference system was fixed to the

root tip and the diffusion-convection equation was solved numerically. The following

equation was used:

θ
δ

δt
C =

1

r

δ

δr

(
rD(θ)

δC

δz

)
+
(
D(θ)

δC

δz

)
−
(
θv
δ2C

δz2

)
− kC (2.5)

where t is the time, v is the root elongation (wet: 2 cm d−1; dry 1 cm d−1) and

k is the degradation coefficient of glucose (0.01) (Gunina and Kuzyakov, 2015). We

used glucose to represent root exudates as the degradation coefficient and the diffusion

coefficient for this compound are available in literature. The degradation coefficient

was defined in a way that it decreased with soil water content (Palta and Gregory,

1997; Zhu and Cheng, 2013). More precisely, we assumed that k decreased as the

cubic root of the water content. r and z are the radial and longitudinal directions of

the system. D(θ) is the coefficient of diffusion of exudates (cm2 s−1) at varying water
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contents θ and it is calculated using the equation proposed by Millingtion and Quirk

(1961):

D(θ) = D0
θ

10
3

φ2
(2.6)

where θ is the soil water content (cm3 cm−3), D0 is the diffusion coefficient of

glucose in pure water (5x10−6 cm2 s−1), and φ is the soil porosity (0.366 %). The

boundary conditions were zero flux at the outer boundary and constant C concen-

tration in the root C0. To calculate C0 the 14C activity per gram of root tip (wet:

193 kBq; dry: 279 kBq) was converted into ng of labelled C g−1 root: The specific

activity of the NaHCO3 tracer (2205200 MBq mmol C−1) was converted into the

weight of 14C per 14C activity which gave 3.24 x 10−5 ng C Bq−1. By multiplying

the 14C activity g−1 root (kBq) by this number we obtained the amount of 14C g−1

root (ng). To obtain the total amount of Carbon (12C + 14C) we multiplied this num-

ber by 617570 which was the ratio between 12C and 14C in the chamber air during

labelling. Finally the value was multiplied by the root tissue density of herbaceous

plants of 0.22 g cm−3 (Birouste et al., 2014) to obtain volumetric units (µg cm−3).

This resulted in a C concentration of 852.25 (± 370.54) µg C cm−3 for plants grown

in wet soil and 1222.78 (± 123.51) µg C cm−3 for plants grown in dry soil. As these

differences were not statistically different the average of both (1037.52 µg C cm−3)

was used for the C concentration (C0) in the root. The exudation rate per root surface

was given by:

E(z) = Droot

[
Croot − C(r = rroot, z)

]
(2.7)

where E (µg C cm−2 s−1) changes along the root, Droot = 1.15 x 10−4 cm h−1 is the

diffusion coefficient of the root, taken from (Farrar et al., 2003), and C (R = rroot, z)

is the concentration in the soil at the root surface at a given distance z from the

root tip. The root segment from which exudates are releases was set to 1 cm for

wet plants and 0.5 cm for dry plants (Sharp et al., 2004) because we found that the

root elongation rate was correlated to the length of the root zone where 14C was

transported to and presumable exuded from. This zone was half as long as for plants

in dry soil compared to plants in wet soil. The spatial discretization was 0.1 cm in

longitudinal direction and 0.01 cm in radial direction.
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Table 2.1: Shoot, root and rhizosphere (rhizo) dry weight and total 14C as well as 14C

translocated from the shoot (14C per gram shoot (kBq)) into the root (14C per gram

root (kBq)) and from the root into the rhizosphere (14C per gram rhizo (rhizosphere

soil) (kBq)). Variation is given as standard error. The number of replicates was 5 per

treatment. The p value is presented as follows: ns: p ≥ 0.05, *: p < 0.05.

Wet plants Dry plants p-value

Dry weight shoot (g) 2.97 (0.23) 2.29 (0.22) ns

Dry weight root (g) 1.34 (0.12) 0.95 (0.03) *

Dry weight rhizo(g) 19.00 (3.83) 7.60 (0.38) *

Total 14C in shoot (kBq) 340.8 (60.0) 209.2 (12.3) *

Total 14C in root (kBq) 69.07 (13.34) 34.44 (8.23) *

Total 14C in rhizo (kBq) 4.61 (1.45) 2.87 (1.28) ns

14C per gram shoot (kBq) 113.3 (9.88) 96.3 (12.35) ns

14C per gram root (kBq) 51.32 (5.81) 36.47 (8.11) ns

14C per gram rhizo (kBq) 0.25 (0.054) 0.37 (0.13) ns

14C per gram root tip (kBq) 193.67 (28.11) 279.79 (83.89) ns

14C translocated from shoot to root (%) 46.21 (5.81) 15.93 (2.70) *

14C translocated from root to rhizo (%) 6.77 (1.72) 8.11 (2.50) ns

Statistics

The significances of differences in plant biomass and 14C allocation between the treat-

ments (dry/wet soil) were tested using R 3.3.1. A one way ANOVA followed by a post

hoc test (Tukey-Test) was used. The level of significance was α = 0.05. To test for

significances in root elongation between treatments a mixed effect model (α = 0.05)

with treatment as fixed effect and plant as random effect was applied. To account

for the differences in numbers of roots sampled per plant, the restricted maximum

likelihood (REML) method was applied.
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Figure 2.3: Correlation between the root elongation rate (cm d−1) and the length of

the root zone which showed a high 14C activity in the phosphor images (cm d−1). The

correlation between the two variables was significant based on a level of p < 0.05.

2.3 Results

Plant biomass and 14C allocation in plants

Shoot biomass was similar for plants grown in wet and in dry soil. Root biomass and

dry weight of rhizosphere soil were higher for plants grown in wet soil (Table 2.1) com-

pared to plants grown in dry soil. Wet plants showed a higher 14C activity in shoots

and roots, while the 14C activity in rhizosphere was independent on soil moisture.

Similarly, 14C activity per gram of root and rhizosphere soil as well as in the root

tips was similar for both moisture levels. While plants grown in wet soil transported

higher amounts of assimilates (14C) from the shoot to the root compared to the dry

treatment, 14C transported from root to rhizosphere was similar for both soil water

contents (Table 2.1).

14C imaging and root growth

Root elongation of main roots was twice as high in wet compared to dry soil (2 cm d−1

vs. 1 cm d−1) (Table 2.2). For lateral roots elongation rates were similar for plants

grown in dry and in wet soil. 14C was mostly allocated to the root tips of either
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Figure 2.4: Water content (WC) for the 6 week old maize plants measured by neutron

radiography. Left side: moist soil and closeup (20% vol. WC), right side: dry soil (6%

vol. WC). The inner size of the sample was 15 x 30 cm.
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Table 2.2: Root elongation rate for main and lateral roots of plants grown under dry

and wet conditions. Variation is given as standard error. The number of replicates

was 5 per treatment. The p value is presented as follows: ns: p ≥ 0.05; *: p < 0.05.

Main roots Lateral roots

Wet Dry p-value Wet Dry p-value

Root elongation 2.06 1.08 * 0.23 0.16 ns

(cm d−1) (0.57) (0.23) (0.02) (0.04)

main roots or lateral roots (Fig. 2.1). Nearly no 14C activity was found around old

root segments. The length of the segments of the main roots with high 14C activity

correlated well with the root elongation rates (R2 = 0.65) (Fig. 2.3.)

Neutron radiography

Neutron radiography showed that the water content close to the root surface was

similar for both treatments although the samples had different bulk soil water content

(Fig. 2.4). The water content in the rhizosphere was always higher than in the bulk

soil (Fig. 2.5). It increased 7 times for the main roots and 6 times for lateral roots in

dry soil at the root surface compared to the bulk soil. In wet soil, the water content

in the rhizosphere was 1.5 times higher compared to bulk soil. At the root surface,

water content ranged around 30%. The water content reached the bulk soil value at

a distance of 0.3-0.4 from the root surface (Fig. 2.5).

Model

Total exudation after the simulation time of two days was approximately twice as high

in wet soil compared to dry soil (Table 2.3, Fig. 2.6). For wet soil it ranged around

1.78 and 1.75 µg C cm−3, for dry soil between 0.72 and 0.9 µg C cm−3. The amount

of total exuded C did not change even if microbial decomposition of exudates was

included in the model. Only in the scenario with a constantly low water content of

6%, the microbial decomposition resulted in a slightly higher total C exudation (no

decomposition: 0.72 µg C cm−3; with decomposition: 0.77 µg C cm−3). Unlike total

exudation, microbial decomposition reduced the amount of exudates that were found
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Table 2.3: Modelled results on total exudation and the amount of exudates which

remained in soil after the simulation time of two days. The Wet and Dry treatments

assume a water content which increases towards the roots (as seen in neutron radio-

graphs). For the constant water content we assumed that the water content does not

change in the rhizosphere and is constantly 15% (wet) and 6% (dry).

Exudates remaining in Tot. exudation after

soil after 2 days (µg C) 2 days (µg C)

Wet No decomposition 1.78 1.78

Decomposition 0.12 1.77

Wet const. WC No decomposition 1.77 1.75

Decomposition 0.12 1.77

Dry No decomposition 0.88 0.89

Decomposition 0.05 0.90

Dry const. WC No decomposition 0.72 0.72

Decomposition 0.07 0.77

in soil after two days of simulation of approximately 10 times for wet soil and of 15

times for dry soil. These changes were independent of changes in rhizosphere water

content for wet soil. Instead, in dry soil an increased rhizosphere water content resulted

in a lower amount of exudates remaining after two days (0.72 µg C cm−3) compared to

the scenario with constant rhizosphere water content (0.88 µg C cm−3). The decrease

in root elongation (and in the exuding root segment) caused a strong reduction in

longitudinal rhizosphere extension (Fig. 2.7) the predicted longitudinal extension of

rhizosphere in wet soil was around 6 cm, in dry soil it was ca. 4 cm. Microbial

decomposition further decreased the extension to around 2 cm in wet soil and ca. 1 cm

in dry soil. (Fig. 2.6, 2.7). Assuming increased soil water content towards the root

enhanced the longitudinal rhizosphere extension in dry soil if microbial decomposition

was not considered. The radial extension of rhizosphere was highest in wet soil if

microbial decomposition was not considered. Decomposition strongly reduced the

extension to 0.25 cm for wet soil and 0.1 cm for dry soil. Radial profiles were steeper

in dry soil compared to wet soil if constant water content was assumed (Fig. 2.7).
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Figure 2.5: a) Water content in the rhizosphere of the proximal parts (i.e. the old

parts) and the distal part (i.e. root tips) of a) the main roots and b) of the lateral

roots. Variation is given as standard error, n = 5.

However, the diffusion of exudates into the soil was higher (Fig. 2.7) if the increase of

water content towards the root was considered: this resulted in an increase in radial

rhizosphere extension in dry soil. In the wet soil however, the change in rhizosphere

water content had minor effects on the radial distribution of exudates.

2.4 Discussion

Drought is expected to increase the translocation of recently assimilated C to roots

(Sanaullah et al., 2012; Palta and Gregory, 1997; Reid and Mexal, 1977). Similarly

to Canarini and Dijkstra (2015), we found that the amount of C allocated in the

roots was equal for plants grown in wet and in dry soil when normalized for the root

biomass. In contrast, the total 14C input into roots was reduced under dry conditions.

The reduced photosynthesis and the reduction of biomass probably decreased the

total C input into the soil (Canarini and Dijkstra, 2015). It should be considered that

drought in our study lasted for only one week and therefore the effects on C allocation

were less strong compared to studies with longer drought periods (Fuchslueger et al.,

2013). 14C activity was highest around the tips of main and lateral roots (Fig. 2.2).

The region of high 14C activity on the images corresponds well with the root zone

where 14C is exuded (Dennis et al., 2010). We therefore conclude that exudation

took place at the root tips, which showed a high 14C activity (Haichar et al., 2014;

Personeni et al., 2007). High exudation at root tips can be explained by their high
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Figure 2.6: Left: Modeled axial distribution of exudates in the rhizosphere after

two days of simulation. const = constant water content towards the root surface is

assumed. For all other scenarios an increase in soil water content towards the root is

assumed as measured with neutron radiography. decomp = microbial decomposition.

Right: Modeled radial distribution of exudates in the rhizosphere after two days of

simulation.

sugar concentration compared to older root zones, as well as by their high diffusional

permeability compared to older root parts (Nguyen, 2003; Jones et al., 2009).

The modeled exudation rates were comparable with rates measured in other stud-

ies (Toal et al., 2000; Nguyen, 2003) but at the lower range. The reason might be that

the model did not consider root hairs or mycorrhization, which increase C release.

Root hairs increase the spatial extend of root exudates in soil (Holz et al., 2017b)

however, for simplicity they were not considered in the model. The radial rhizosphere

extension of 1.5-6 mm was comparable with values reported in other studies (Hafner

et al., 2014; Schweinsberg-Mickan et al., 2012; Kuzyakov et al., 2003; Toal et al., 2000).

Total root exudation was higher for the wet soil compared to the dry soil because:

a) exudate diffusion increased with water content, and b) the increased length of ex-

udation zone for plants in moist soil caused a higher exudation compared to plants

in dry soil. Decomposition decreased the amount of exudates that remained in soil
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Figure 2.7: Simulated distribution of exudates two days after release from root tip into

the soil for all modelled scenarios: a, b) no microbial decomposition, c, d) constant

rhizosphere water content, i.e. the water content does not increase towards the root

surface. Yellow indicates high concentration and blue indicates null concentration.

Note that the differences in the lengths of the roots for wet and dry soil are caused

by differences in root elongation rate.
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after two days but did not change the total exudation. This was unexpected because

microbial decomposition may increase root exudation due to the removal of exudates

that increases the concentration gradient (Nguyen, 2003; Meharg and Killham, 1995).

However, the exudation in our model depended solely on the concentration gradient

between C inside the root and C in the first node of soil at the tip where exudates

were released. The differences in concentration gradients in this zone were relatively

small between scenarios with and without microbial decomposition. Therefore higher

gradients (i.e. higher decomposition rates) or increased root permeability would have

been needed for decomposition to increase total exudation.

The length of the zone with active exudation was reduced by 50% for plants grown

in dry soil compared to plants under optimal moisture. This caused a strong reduc-

tion in the longitudinal rhizosphere extension for plants in dry soil. The decrease in

the length of the exuding root zone and the shortening of longitudinal rhizosphere

extension was one of the strongest effects that the drought treatment had. However,

the increase in water content close to the root, which was more pronounced in dry

soil, partly compensated this effect: the increase in exudate diffusion in the vicinity

of the roots increased a) the total exudation and b) the radial extension in the rhizo-

sphere. Most likely, the increase in water content close to the root was caused by the

large water retention capacity of mucilage. Mucilage is a mixture of polysaccharides

and some lipids exuded by the root tip and it increases the soil water holding capac-

ity (Carminati and Vetterlein, 2013; Carminati et al., 2010; North and Nobel, 1997;

Young, 1995). Little is known about the effect of soil drying on mucilage release. Iijima

et al. (2000) found that mechanical impedance increases the number of sloughed root

cap cells and the amount of mucilage. Additionally, reduced root elongation rate

in dry soil will lead to a higher mucilage concentration per rhizosphere soil volume

(assuming that mucilage release per time is not decreased in dry soil). We therefore

expect that a higher mucilage concentration in the rhizosphere of the dry soil led to

a strong increase in local soil moisture resulting in comparable water contents under

dry and wet conditions.

Although we expected that increasing water content towards the root would in-

crease the spread of exudates, the opposite was true if microbial decomposition was

included into the model: microbial activity increases with soil water content that are

comparable with the wet treatment used in our study (Zhu and Cheng, 2013; Palta

and Gregory, 1997). This led to faster decomposition of root exudates in wet soil.
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The fast decomposition of exudates might be beneficial for plants because increased

microbial abundance and turnover will lead to increased nutrient release from microor-

ganisms (Kuzyakov and Xu, 2013; Herman et al., 2006; Hamilton and Frank, 2001)

and from microbial decomposition of soil organic matter (Chen et al., 2013).

2.5 Conclusions

The distribution of root exudates in the rhizosphere depends on various processes

including root elongation rate and exudation rates which are both affected by the

local water content in the rhizosphere. Soil water content increased towards the root

particularly in dry conditions, most likely due to an increased secretion of mucilage

that holds high amounts of water in the rhizosphere. The increased water content had

the following effects: a) it enhanced the total exudation especially for plants grown

in dry soil, b) it extended the rhizosphere volume in the radial direction and c) it

accelerated microbial decomposition of exudates in the vicinity of roots.

Drought directly affected exudation by reducing the root growth and the zone,

where exudates are released, and caused a strong decrease in total exudation in dry

soil. However, this negative effect of drought on exudation was partly compensated by

the increase of water content towards the root. We conclude that roots enhance the

diffusion of exudates into the soil by releasing mucilage which increases the local water

content in the rhizosphere. Hereby, they stimulate interactions with microorganisms

and contribute to a higher nutrient accessibility.
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Abstract

Severe soil drying negatively impacts nutrient uptake and enzyme activity in the

rhizosphere and it is not clear how plant roots adjust to it. Here we propose that water

retention in the rhizosphere is functional to maintain high enzyme activity around

roots under dry conditions. We show that plants maintain a high phosphatase activity

around roots during periods of drought by retaining moisture in the rhizosphere, which

facilitates fast diffusion of exoenzymes and thus high rates of enzymatic catalysis.

Barley plants were grown in rhizoboxes and subjected to a drying cycle, while soil

water content (WC) and phosphatase activity were monitored by neutron radiography

and soil zymography. The rhizosphere WC increased with soil drying relative to the

WC of the bulk soil probably due to plant-derived mucilage. Enzyme activity increased

in the rhizosphere compared to the bulk soil from a ratio of 10 at 40% WC to a

ratio of 63 at 5% WC. Enzyme activity and local soil WC were strongly correlated

(rhizosphere: R2 = 0.53, bulk: R2 = 0.63), indicating that diffusion controls soil

enzyme activity. Our study demonstrates that the activity of exoenzymes in soil

strongly depends on the local soil WC and that by retaining water in the rhizosphere

plants maintain an increased enzyme activity around roots exposed to drought. This

is beneficial for plant nutrition because the high WC of the rhizosphere facilitates

a high rate of phosphatase activity and phosphorus (P) diffusion, and thus plant P

acquisition.

3.1 Introduction

Although drought events will likely occur more frequently in the future (FAO, 2012;

Trenberth et al., 2014), little is known about the effect of soil drying on plant nutrient

acquisition and about plant strategies to adjust to soil drying and limited nutrient
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availability. A key place where still unknown adaptation strategies take place is the

rhizosphere, the interface between soil and roots (Gregory, 2006; Neumann et al.,

2009). Studying the rhizosphere is difficult using traditional methods. However, novel

imaging techiques allow to explore the effect of soil drying on processes of nutrient

acquisition in the rhizosphere in situ (Oburger and Schmidt, 2016).

Plants release organic compounds such as exoenzymes into the soil. Some of them,

namely phosphatases, are of great importance for plant nutrition because they catalyze

the hydrolysis of organic phosphorus (P), which results in the formation of inorganic

P that can be taken up by plants. Phosphatases are produced and released into the

soil by soil microorganisms and by plant roots (Nannipieri et al. 2011; Rejsek et al.

2012, and references therein). Plants increase phosphatase activity in the rhizosphere

directly by the release of phosphatases (George et al., 2002; Tarafdar and Claassen,

1988) and indirectly (Rejsek et al., 2012) by stimulating microbial activity in the

rhizosphere (Landi et al., 2006) and therefore phosphatase production (Spohn and

Kuzyakov, 2013). In short, the rhizosphere is a hot spot of enzyme activity (Richard-

son et al., 2009).

Exoenzyme movement in soil is mainly controlled by diffusion and consequently

by soil WC. The higher the soil WC, the higher the diffusion rate, and thus the higher

the chance that an enzyme and a substrate molecule meet, and that the substrate is

enzymatically transformed (Allison et al., 2011; Koch, 1990). In drying soils, water

films become thinner and increasingly discontinuous, the water-filled cross-section for

the substrates to diffuse decrease and becomes more tortuous, and thus diffusion of

solutes and enzyme activity is strongly decreased (Burns et al., 2013; Manzoni et al.,

2012). In a meta-analysis Manzoni et al. (2012) revealed that diffusion rather than

biological processes impede microbial and enzyme activity in dry conditions. However,

direct experimental evidence of such effects in the rhizosphere is lacking, which is

in part because until recently there has been no method to determine soil enzyme

activity in situ. Only a recently developed imaging technique allows for determining

soil enzyme activity at different soil WCs (Spohn et al., 2013).

For the rhizosphere to act as a hot spot of enzyme activity, it has to maintain high

soil moisture content to sustain diffusion of enzymes. An increased soil WC in the

rhizosphere compared to the bulk soil has been repeatedly reported (Carminati et al.,

2010; Holz et al., 2017a; North and Nobel, 1997; Young, 1995) and was explained

by the release of mucilage by plant root tips (Ahmed et al., 2014; Carminati et al.,
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Figure 3.1: Conceptual model describing the change in enzyme activity and water

content in bulk soil and rhizosphere with soil drying. The bulk soil dries more strongly

than the rhizosphere, in which water is retained by mucilage and EPS. Thus, enzyme

activity, which strongly depends on diffusion, decreases less with soil drying in the

rhizosphere than in the bulk soil.
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2010; McCully and Boyer, 1997) and of extracellular polymeric substances (EPS) by

soil microorganisms (Or et al., 2007). Both substances are able to store an amount of

water up to 1000 times of their own dry weight due to their gel-like structures (McCully

and Boyer, 1997; Roberson and Firestone, 1992). When the soil dries, these substances

retain water and thus keep the rhizosphere moist, while the bulk soil dries out more

quickly.

The aim of this study was to test whether plants maintain a high phosphatase

activity in the soil close to the roots during periods of drought by retaining moisture

in the rhizosphere that allows for fast diffusion of exoenzymes and substrate, and thus

high rates of enzymatic catalysis (Fig. 3.1). This would be beneficial for plant nutrition

because it allows plants to maintain a high rate of P mineralization in the rhizosphere

even during periods of drought. To test this concept, we grew barley plants in rhi-

zoboxes and subjected them to a drying cycle. During the drying cycle phosphatase

activity was monitored by soil zymography, which allows for measuring soil enzyme

activity under in situ WCs (Spohn and Kuzyakov, 2013), and soil WC in the soil-root

system was visualized over time using neutron radiography (Zarebanadkouki et al.,

2012).

We hypothesized that: (i) barley maintains a high WC in the rhizosphere compared

to the bulk soil during periods of drought due to the effect of mucilage and EPS that

keep the rhizosphere moist; and (ii) phosphatase activity in the rhizosphere changes

less with soil water content (WC) than phosphatase activity in the bulk soil due

to mucilage and EPS that retain water in the rhizosphere, and thus facilitate fast

diffusion.

3.2 Material and Methods

Experimental design

Barley plants were grown in rhizoboxes that allowed us to determine the distribution

of water and exoenzyme activity in soil. Barely seeds were immersed in a 10% H2O2

solution for 10 min to avoid seed-borne diseases before germination. Seedlings were

planted 3 days after germination. The barley plants were grown in rhizoboxes with

an inner size of 10x20x0.6 cm for 27 days (Figure 3.2a). The boxes were inclined by

55 ◦C during the entire cultivation, to make the roots grow along the bottom wall of

the boxes. The soil was a sandy soil collected from an A horizon of a cropland close
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to Göttingen, Germany. TOC was 2.0%, TN was 0.17% and the pH amounted to 4.9.

Soil particle size was distributed as follows: Clay: 8.6%, silt: 18.5%, sand: 73% (Holz

et al., 2017b). The plants were kept in a climate chamber and during the total growth

period, the volumetric soil WC was maintained at 23-25%. The temperature was

25◦C during the day and 22◦C during the night, the photoperiod was 14 hours and

the photosynthetic photon flux density was 300 µmol m−2 s−1. After transferring

the plants for neutron radiography and zymography measurements to Paul Scherrer

Institute (Switzerland), they were adjusted to different WCs. In order not to stress

the plants due to many repeated measurements, the plants were divided into two

groups. Each group comprised 12 plants, 6 wild type plants with root hairs (WT)

and 6 plants without root hairs (brb) (n = 6). The reason for using genotypes with

and without hairs was to estimate the effect of root hairs on both local water content

and enzyme activity as well as potential artefacts originating from the root hairs

being interpreted as regions with higher water content or enzyme activity. Group one

was adjusted to 5% WC, and after the neutron and zymography measurement were

completed, it was rewetted to 40% WC. Group two was adjusted to 30% WC, and

after the measurements to 15% and finally to 10%. At each WC, enzyme activity and

WC were determined. The adjustments of the WCs were done as fast as possible,

and the WC of the rhizoboxes was changed from 30 to 10% within 10 hours. Neutron

radiography and zymography measurements were performed directly after each other

with not more than 1.5 hours of difference.

Neutron radiography

The distribution of water was determined by neutron radiography, which quantifies

the spatial distribution of neutrons that are transmitted through the samples (Fig-

ure 3.2b). Neutron radiography measurements were performed at the NEUTRA imag-

ing station at the Paul Scherrer Institute (PSI) in Switzerland. We used a CCD camera

detector with an array of 2160 x 2560 pixels, a field of view of 15.3 x 18.1 cm, and

a spatial resolution of 0.07 mm. We took two radiographs per rhizobox with 39%

vertical overlap to scan the entire sample.

A detailed description of quantification of neutron radiographs can be found in Zare-

banadkouki et al. (2012). Briefly, neutron radiographs were corrected for the flat field

(Iff , radiograph taken without any sample) and the dark current (Idc, signal recorded

by the camera when there was no beam) according to:
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Figure 3.2: Exemplary images of a) barley roots in an open rhizobox, b) the same

root system imaged by neutron radiography showing the volumetric water content

and c) zymography depicting the distribution of the phosphatase activity of the same

sample.

Inorm =
I − Idc
Iff − Idc

(3.1)

where Inorm is the corrected image and I is the original image. The signal ob-

tained in the neutron radiographs included the attenuation of the three compounds

of the sample: (a) the aluminum container, (b) soil and (c) water (including the

roots). The attenuation coefficient of dry soil (µsoil) and aluminum (µAl) was ob-

tained from neutron radiography of an unplanted dry sample (packed in similar way

as for planted container). The neutron attenuation of water (µH2O) was calculated

from neutron radiography of a control sample with known thickness of water (0.3 cm).

The calculated attenuation coefficients were µsoil = 0.28 cm−1, µAl = 0.02 cm−1 and

µH2O = 4.72 cm−1. For the pixel containing no root the contribution of H2O to the

neutron attenuation was calculated as

− log
(Inorm
Idry

)
= µH2OdH2O (3.2)

where Idry is the unplanted dry sample and dH2O is the thickness of water (cm).

Volumetric WC in the soil was defined as
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θ =
dH2O

dtot
(3.3)

where dtot is the inner thickness of the container in the beam direction (dtot = 0.6 cm).

To calculate the profile of WC in soil as a function of distance from the root, the ra-

dial profile of soil WC was needed while the 2D radiographs give Cartesian profiles.

Neutron attenuation projected in each pixel of the 2D radiographs contains informa-

tion on the average WC across the sample in the beam direction. The pixels close to

the root are therefore an average of the WC in the rhizosphere of the soil in front of

and behind of the rhizosphere. Assuming radial symmetric profiles of WC around the

roots, the actual 3D (radial) profile of WC in the rhizosphere was calculated following

the approach given in (Zarebanadkouki et al., 2016):

θ(x) =
2

dtot

∫ √
x2+
(

dtot
2

)2
x

θ(r)

√
r2

r2 − x2
dr (3.4)

where dtot is the inner thickness of the sample, r is the radial distance from the

root center, and x is the apparent distance from the root center in the radiograph.

Equation 3.4 is derived by changing the Cartesian coordinates into radial coordinates.

The average signal measured at the position x on the detector is the average of the

actual WC between the distances of x and
√
x2 +

(
dtot
2

)2
from the root surface, which

are the limits of integration in Equation 3.5. The term
√

r2

r2−x2 comes from the

transformation into the radial coordinates.

The roots were segmented based on the contrast between roots and soil using the

program Roottracker 2D (Menon et al., 2007). In cases where the contrast between

roots and soil was too low for the program to detect roots, they were segmented

manually. The root diameter of segmented roots was calculated using the Smart

Root plugin (Lobet et al., 2011) in ImageJ (https://fiji.sc/). Noises (e.g. crossing

roots or cracks in the soil) were also removed by segmentation. Per image, 2-8 roots

were segmented, depending on how many roots were clearly visible. The length and

diameter of roots and of rhizosphere were calculated using the Euclidean distance

map (Soille, 2003) (MATLAB, The MathWorks). The average signal was calculated

for each distance from the root surface up to a distance of 3 cm from the root surface.

The first 0.5 mm of the radial measurements were averaged as rhizosphere WC, while

the measurements in 0.55-30 mm distance from the root surface were averaged as bulk

soil WC.
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Zymography

The distribution of phosphatase activity was determined by soil zymography. The

measurements were conducted according to Spohn and Kuzyakov (2013) but with-

out an agarose gel as in Razavi et al. (2016). Briefly, polyamide membrane filters

(Tao Yuan, China) with a pore size of 0.45 µm were cut into 10 x 20 cm pieces.

Each membrane filter was placed in a solution of 5 ml of water containing 2.2 mg

4-methylumbelliferyl-phosphate (MUF-P), which is a substrate for phosphatases that

turns fluorescent after hydrolyzation. The membrane was soaked with the solution

and then quickly dried for 3 min at room temperature before attaching it to the soil

in the rhizoboxes for 60 min. Subsequently, the membrane was removed from the soil

surface and remaining soil was carefully removed with a small brush. The membranes

were placed on an epi-UV-desk (Desaga) in the dark, and pictures were taken at 360

nm wavelength (Figure 3.2c) with a digital camera (Nikon D3100). Additionally to

the actual membrane, a small piece of membrane (2x6 cm) without substrate was also

imaged to control for the background signal.

For calibration, solutions with 0, 19, 37, 62, 87 and 125 µM 4-methylumbelliferone

(MUF) were prepared. Pieces of membranes with a size of 4 x 4 cm were cut and

coated with the solutions and imaged in the same way as the zymographs. From the

amount of solution taken up per cm of membrane and the MUF concentration of the

solution, the concentration of MUF per area was calculated. For the calculation of

the phosphatase activity, the amount of MUF per area was divided by the incubation

time. The correlation between MUF activity (µmol cm−2 h−1) and the grey value

from the images was described be the following equation:

y = 94.5x2.069 (3.5)

where y is the phosphatase activity (pmol cm−2 h−1) and x is the grey value of

the image. The equation obtained from the calibration (Eq. 3.5) was applied to all

images to convert the grey value to phosphatase activity. The signal of the control

membrane was subtracted from the image to remove the background signal. Based

on the contrast between roots and soil, root segments of 3 - 5 cm were segmented

using the SmartRoot plugin in ImageJ. Possible artefacts caused by overlapping roots

or roots detached from the soil were removed from the segmentation. 2 - 8 roots per

image were segmented depending on how many roots were clearly visible. The signal
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was averaged as a function of distance from the root center up to a distance of 4 cm

from the root surface using the Euclidean distance mapping functions in MATLAB

(The MathWorks). The first 0.5 mm of the radial measurements were averaged as

phosphatase activity in rhizosphere, while the measurements in 0.55 - 50 mm were

averaged as phosphatase activity in bulk soil.

Statistical analysis

The significances of differences between plant types (WT, brb) were tested by fitting

a linear model in R (version 3.3.1.) The model included plant type (WT, brb), WC

(5%, 10%, 15%, 30%, 40%) and soil region (rhizosphere, bulk soil) as fixed factors

and plant number (i.e. replicate 1 - 6) as random factor to account for the fact

that measurements on different WCs and soil regions were conducted on the same

plants (i.e. repeated measurements). The model revealed that the plant genotype did

not have a significant influence on phosphatase activity. The factor plant genotype

was therefore removed from the model, which increased the power of the model by

increasing the degrees of freedom. The final model included WC and soil region as

fixed factors and plant number as random factor and the number of replicates was

12. To achieve a normal distribution of the residuals of the model, zymography data

were log transformed while WC data (from neutron measurements) were square root

transformed. Following the model, a post hoc test (Tukey HSD) was conducted to

test for significant differences between factor levels. The level of significance was p <

0.05. To test for significances in the correlation between WC and phosphatase activity

in rhizosphere and bulk soil, a Pearson correlation test was conducted in R. The test

revealed that both correlations were significant. The level of significance was p < 0.05.

3.3 Results

The WC in bulk soil and rhizosphere measured by neutron radiography differed sig-

nificantly between all adjusted WC levels (Fig. 3.3, left) with only one exception. The

WC in the rhizosphere was approximately 2 times higher than in the bulk soil at all

adjusted WCs (Fig. 3.3, right). The differences between rhizosphere and bulk soil

WC were particularly high under dry conditions. The WC in the bulk soil decreased

7.6 times as the adjusted WC of the rhizoboxes decreased from 40% to 5%, while it

decreased only 3.8 times in the rhizosphere. This resulted in a change in the ratio of
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Figure 3.3: Left: Volumetric water content (vol. WC) of the rhizosphere (red) and of

the bulk soil (blue) measured with neutron radiography as a function of the volumetric

water content (vol. WC), to which the rhizoboxes were adjusted. Error bars indicate

the standard error, n = 12. Significant differences (p < 0.05) are indicated by different

letters. Right: Ratio between volumetric water content (vol. WC) of the rhizosphere

to (vol. WC) of the bulk soil measured by neutron radiography as a function of

the gravimetric WC, to which the rhizoboxes were adjusted. Error bars indicate the

standard error, n = 12. Significant differences (p < 0.05) are indicated by different

letters.

the WC in the rhizosphere and in the bulk soil. While the rhizosphere-to-bulk soil

WC ratio was 1.4 at 40% adjusted WC of the rhizoboxes, it increased to 2.8 at an

adjusted WC of 10%.

Similar trends as for soil WC were found for phosphatase activity. In bulk soil

and rhizosphere, phosphatase activity decreased significantly when the adjusted WC

of the rhizoboxes dropped from 40% to 5% WC (Fig. 3.4, left). Phosphatase activity

in the rhizosphere was significantly larger than phosphatase activity in the bulk soil

at all WCs. While the ratio of phosphatase activity in the rhizosphere-to-phosphatase

activity in the bulk soil was 9.7 at 40% adjusted WC, it increased to 63.4 at 5% WC

(Fig. 3.4, right). Phosphatase activity strongly increased both in the rhizosphere and

in the bulk soil when the WC of the rhizoboxes was adjusted from 5 to 40% (Fig. 3.4),

confirming a strong, reversible effect of WC on phosphatase activity.

We found a significant relationship between phosphatase activity and WC both
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Figure 3.4: Left: Enzyme activity in the rhizosphere (red) and in bulk soil (blue) as

a function of the volumetric WC to which the rhizoboxes were adjusted. Error bars

indicate the standard error, n = 12. Significant differences (p < 0.05) are indicated by

different letters. Please note that enzyme activity in rhizosphere and bulk soil refer

to different y-axes. Right: Ratio of enzyme activity of the rhizosphere to enzyme

activity of the bulk soil as a function of the gravimetric WC, to which the rhizoboxes

were adjusted. Error bars indicate the standard error, n = 12. Significant differences

(p < 0.05) are indicated by different letters.

for rhizosphere and bulk soil that could be approximated by quadratic equations

(Fig. 3.5). While for the rhizosphere, the factor (1936.4) was higher than for the

bulk soil (308.3), the coefficient of determination was slightly higher for the bulk soil

(R2 = 0.63) compared to rhizosphere (R2 = 0.55).

3.4 Discussion

Here we showed that barley maintains a high enzyme activity close to the root during

periods of drought by retaining water in the rhizosphere that allows for fast diffusion

of exoenzymes (Fig. 3.1). This is beneficial for plant nutrition because the high WC

of the rhizosphere facilitates a high rate of phosphatase activity, and thus plant P

acquisition. Moreover, we showed for the first time based on a novel in situ imaging

method that diffusion of enzymes is highly dependent on the local soil WC.

Previous studies also reported reduced enzyme activity with decreasing soil WC

(Sanaullah et al., 2011; Sardans and Peñuelas, 2005; Steinweg et al., 2012). However, in

these studies, enzyme activity was determined in soil solution, which until recently was
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Figure 3.5: Correlation between vol. water content and enzyme activity in rhizo-
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for the rhizosphere. Please note that enzyme activity in rhizosphere and bulk soil
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the only way to determine soil enzyme activity (Burns et al., 2013). Thus, the previous

studies reflect changes in the enzyme concentration resulting most likely from changes

in the enzyme release rates of the organisms in response to drought. In our study,

moisture levels were adjusted rapidly to avoid biological adaptation such as a change

in enzyme release from plants or microorganisms. The power-law relation between

soil WC and enzyme activity (Fig. 3.5), which is similar to the relation between soil

WC and diffusion coefficient proposed by Millington-Quirk model (Milllington and

Quirk, 1961) confirms our hypothesis that enzyme activity with soil drying is mainly

controlled by diffusion. Particularly the fact that immediately after rewetting of the

samples, enzyme activity rose to the original activity under moist conditions (Fig. 3.4,

left), highlights the importance of diffusion for enzyme activity. Therefore, previous

studies that determined enzyme activity in soil solution strongly overestimated enzyme

activity because they oversaw the effect that soil WC has on enzyme activity through

modified diffusion rates. Our study demonstrates that a decreased soil WC from nearly

saturated to 5% can decrease enzyme activity by 97% exclusively due to the effect of

soil WC on the diffusion rate of the enzymes. Thus, our study confirms the hypothesis

67



ENZYMES DROUGHT

stated by Manzoni et al. (2012) that diffusion rather than biological processes controls

enzyme activity in dry soils.

In our study, the driest conditions corresponded to a soil water potential below -3.9

MPa at which plant roots and microorganisms experience strong stress (Manzoni et al.,

2012). However, in the rhizosphere this stress was alleviated since the rhizosphere

had a higher WC than the bulk soil and this difference increased with increasing soil

drying. Increased rhizosphere WCs have been observed in previous studies (Carminati

et al., 2010; Holz et al., 2017a; Young, 1995). The reason for this is mucilage released

from the root tips (Carminati and Vetterlein, 2013; Young, 1995) and possibly also

EPS released from microorganisms (Or et al., 2007) whose activity and abundance

is increased in the rhizosphere compared to the bulk soil (Dennis et al., 2010; Jones

and Hinsinger, 2008). Both substances, mucilage and EPS retain water upon soil

drying (Ahmed et al., 2014; Carminati and Vetterlein, 2013; Or et al., 2007) and

therefore keep the rhizosphere moister than to the bulk soil. Moreover, it is possible

that release of water from the root tips might have further increased the water content

and water potential in the rhizosphere. The difference between rhizosphere and bulk

soil WC increased with soil drying (Fig. 3.3, right). This can be explained by the fact

that with soil drying, the concentration of mucilage and EPS increases in the liquid

solution.

The enhanced rhizosphere WC does not only increase the diffusion of phosphatase,

but also the diffusion of inorganic phosphorus, increasing its chances to be taken

up by the plant. The increase in rhizosphere WC due to mucilage and EPS has

therefore a twofold positive effect to the plant in terms of nutrient availability in dry

soil conditions, first, it increases enzyme activity, and second, it leads to a facilitated

movement of phosphate towards the plant root.

In conclusion, our study demonstrates that the activity of exoenzymes in the

rhizosphere strongly depends on soil WC and that plants that retain water in the

rhizosphere during periods of drought maintain an increased enzyme activity in the

rhizosphere. This is beneficial for plant nutrition because the high WC of the rhizo-

sphere facilitates a high rate of phosphatase activity, and thus plant P acquisition.

Thus, in the light of an increasing frequency of droughts, our findings suggests that

plant species that release high amounts of mucilage will be able to maintain high rates

of nutrient mineralization and acquisition in the rhizosphere. This has direct impli-

cations for the selection of agricultural plants because it suggests that varieties that
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release large amounts of mucilage will be able to better cope with drought.

3.5 Acknowledgements

We thank Bea Burak and Ian Dodd for providing the seeds for the experiments and

Joscha Becker for advice concerning the statistical analysis. The authors acknowledge

the German Research Foundation for granting the projects CA 921/3-1 and SP1389/6-

1, and the ev. Studienwerk Villigst for granting a stipend for MH.

References
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4 Spatial distribution of mucilage in the rhizosphere mea-

sured with infrared spectroscopy

written by Maire Holz, Martin Leue, Mutez A. Ahmed, Pascal Benard, Horst H. Gerke

and Andrea Carminati

The method described in this chapter has been published, in a peer-reviewed version,

in Frontiers in Environmental Science as Holz M, Leue M, Ahmed MA, Benard P,

Gerke HH and Carminati A (2018) Spatial Distribution of Mucilage in the Rhizo-

sphere Measured With Infrared Spectroscopy. Front. Environ. Sci. 6:87. doi:

10.3389/fenvs.2018.00087

Abstract

Mucilage is receiving increasing attention because of its putative effects on plant

growth, but so far no method is available to measure its spatial distribution in the

rhizosphere. We tested whether the C-H signal related to mucilage fatty acids is de-

tectable by infrared spectroscopy and if this method can be used to determine the

spatial distribution of mucilage in the rhizosphere. Maize plants were grown in rhi-

zoboxes filled with soil free of organic matter. Infrared measurements were carried out

along transects perpendicular to the root channels. The profiles of the C-H propor-

tions showed a decrease of C-H with increasing distance: 0.8 mm apart from the root

the C-H signals achieved a level near zero. The measured concentrations of mucilage

were comparable with results obtained in previous studies, which encourages the use

of infrared spectroscopy to quantitatively image mucilage in the rhizosphere.

4.1 Introduction

Mucilage is a gel-like substance released from the root-cap cells of plants (Oades, 1978).

It has been claimed to provide several benefits for plant growth, such as the lubrication

during root penetration (Iijima et al., 2004) or the increase in water uptake due to

its high water-holding capacity (Ahmed et al., 2014; Carminati and Vetterlein, 2013).

The extent of such benefits depends on the spatial distribution of mucilage around

roots. To date, there is no experimental method to non-invasively and quantitatively

image mucilage in soils and our knowledge of mucilage spatial distribution remains

largely speculative.
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Figure 4.1: Conceptual model describing the hydrophobicity around root after soil

drying caused by fatty acids contained in mucilage.

Among the many effects of mucilage on soil properties, one spectacular effect is

the rhizosphere water repellency (Ahmed et al., 2016; Carminati and Vetterlein, 2013;

Hallett, 2003; Moradi et al., 2012; Whalley et al., 2004). Mucilage has been claimed

to be responsible for the observed hydrophobicity (Ahmed et al., 2015; Benard et al.,

2017) as it contains phospholipids (Read et al., 2003), which are hydrophobic due to

their nonpolar fatty acid chains (C-H groups) (Figure 4.1). Diffuse reflectance infrared

Fourier transform (DRIFT) spectroscopy can be used to map functional groups such

as C-H groups at intact soil surfaces at the mm-scale (Leue et al., 2010, 2015). In

combination with microscopic techniques, DRIFT spectroscopy can be used to de-

termine organic functional groups also at the µm-scale. The objective of this study

was to test whether DRIFT spectroscopy and Fourier-transform infrared spectroscopy

(FTIR) microscopy allow rapid identification of the distribution of mucilage in the rhi-

zosphere.

In order to achieve this goal we mapped the spatial distribution of mucilage across

maize root channels grown in rhizoboxes by evaluating the signals from the C-H

groups.
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4.2 Material and Methods

Quartz material consisting of 70% quartz sand (collected from Duingen (Germany),

particle size: 0.1-0.2 mm) and 30% quartz powder (Carl Roth, particle size: <

0.125 mm) was used as a growth medium free of soil organic matter. For the cal-

ibration, maize root mucilage was extracted as described in Zickenrott et al. (2016).

Dried quartz material was mixed with different amounts of mucilage at concentra-

tions of 0.0, 0.025, 0.05, 0.1, 0.25, 0.5, and 1 mg/g (gram of dry mucilage per gram

of dry soil). The mixtures were applied on object slides in four replicates and were

air-dried. For the mapping of the spatial distribution of mucilage across root channels,

maize (Zea mays L.) plants (KWS 2376) were grown in rhizoboxes with an inner size

of 10 x 20 x 1.5 cm filled with the same quartz substrate as used for the calibration.

Before germination, maize seeds were immersed in a 10% H2O2 solution for 10 minutes

to avoid seed-borne diseases. Prior to plant growth the following nutrients were added

per kg of soil: N: 0.3 g, P: 0.06 g, K: 0.03 g, Ca: 0.05 g, Mg: 0.05 g, B: 2 mg, Cu:

0.03 mg, Mn: 1.5 mg, Mo: 0.03 mg, Zn: 1.2 mg, Fe: 3.6 mg. During plant growth,

the water content was adjusted to 20% and the rhizoboxes were kept at an angle of

approximately 55 C ◦ to make sure that the roots were growing close to the lower side

of the rhizoboxes. The temperature in the climate chamber was 25 ◦C during day

and 22 ◦C during night, the photoperiod was 14 hours and the photosynthetic photon

flux density was 300 µmol m−2 s−1. After four weeks of growth, plants were cut, the

soil samples were dried at 35 ◦C and the roots were removed from the soil manually

(Fig. 4.2).

Diffuse reflectance infrared spectroscopy (DRIFT) measurements in the mid-infrared

range (wavelength: 2.5 - 25 µm, wave numbers (WN): 4000 - 400 cm−1) was applied

to the calibration samples at the object slides using a BioRad FTS 135 spectrom-

eter (Cambridge, Massachusetts, USA). Each DRIFT spectrum was recorded by 16

co-added scans with a spectral resolution of 4 cm−1 against a gold background (Leue

et al., 2015). At the intact root channels and surrounding substrate, DRIFT spec-

tra were conducted using an Agilent Cary series 600 FTIR microscope (Agilent Cary

series 600, Agilent Technologies, Inc., Santa Clara, CA, USA) moving in the perpen-

dicular direction from the root channel center towards the bulk soil. The spectra were

recorded as 64 co-added scans at a spectral resolution of 4 cm−1 in steps of 100 µm

from sample areas of 0.1 x 0.1 mm. For the rhizosphere samples, one root was chosen
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Figure 4.2: Rhizobox with soil and plants before (left side) and after the roots were

excavated from the soil (right side). Measurements were conducted after removing

the roots at three position along the root (0, 1 and 3 cm behind the tip) as indicated

by the red arrows.

per plant and spectra were measured at three positions along each root (0, 1, and

3 cm behind the tip). After preprocessing of the spectra (Ellerbrock et al., 2009; Leue

et al., 2010), the local peak heights of the C-H bands were normalized for the absolute

peak height of the SiO2 band at WN 1350 cm−1. The relationship between mucilage

content and C-H signal intensities obtained from the calibration samples was used to

quantify the mucilage content in the rhizosphere of the maize roots. After calibration,

the background signal (i.e., the average signal in the bulk soil where no mucilage was

expected) was subtracted from each measured value.

4.3 Results and Discussion

The calibration measurements on the object slides revealed a linear relationship be-

tween mucilage concentration and the C-H/SiO2 ratio (Figure 4.3). The measurements

in the maize rhizosphere showed a distinct gradient of mucilage from the center of the

root channel towards the bulk soil. The highest values of 0.02 mg g−1 were found in

the center of the root channel. Mucilage concentration decreased to approximately 0

mg g−1 with increasing distance from the root channel (Figure 4.4). This pilot exper-

iment showed that infrared spectroscopy can be applied to detect profiles of mucilage
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Figure 4.3: Ratio between CH and SiO2 signal for soil mixed with different maize-

mucilage concentrations ranging from 0 to 1 mg dry mucilage per g dry soil.

around roots grown in soil. The profiles of mucilage content were relatively steep:

at 0.6 mm distance from the center of the root channel, mucilage content decreased

below the limit of detection. The extent of the rhizosphere affected by mucilage

(0.6 mm) was smaller compared to results obtained from 14C imaging analyses. Holz

et al. (2017) showed that overall root exudates diffused up to 1 mm into the bulk

soil. The fact that mucilage did not move as far from the root surface as compared

to overall exudates may be explained by the higher viscosity of mucilage compared to

root exudates (Read and Gregory, 1997) and reduced diffusion coefficient of mucilage

compared to root exudates.

We found contents (i.e., average values for channel) of up to 0.02 mg dry mucilage

per g dry soil inside the root channel. Based on the literature, we can expect a

mucilage exudation rate of 15 µg d−1 per root tip (Chaboud, 1983). Assuming a

maximum diffusion length of 1 mm into the soil, a mean root radius of 0.5 mm, a soil

bulk density of 1.43 g cm−3 as for our samples and a root elongation of 3 cm d−1 we

expect a mucilage concentration in the rhizosphere of 0.056 mg dry mucilage per g

dry soil. This theoretic value is 3 times higher than the values obtained by DRIFT

spectroscopy; however, they still appear comparable.
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Figure 4.4: Mucilage concentration (mg dry mucilage per g dry soil) starting from

the root channel center in radial direction towards the bulk soil. Mean values and

standard errors of 5 replicates.

One opportunity for increasing the precision of the DRIFT measurements could

be the use of the same DRIFT spectrometer (here: FTIR microscope) for both, the

calibration and intact sample measurements. The use of a finer substrate to optimize

the application of the DRIFT technique could improve the spectral analysis of the

mucilage and the identification resolution.

Along the axial direction of the root channels, the mucilage concentration inside the

channels as well as the gradient perpendicular to the channels remained constant (data

not shown). Probably the measured root channel segments at distances of 0, 1, and

3 cm behind the tip were still too young to show differences in mucilage concentration

and distribution. Probably longer time intervals (i.e. older root segments) would be

necessary to detect changes in mucilage quantity or quality due to decomposition.

Future studies with older plant roots should test if the distribution or quantity of

mucilage changes along the root channels (in the axial direction).

4.4 Conclusions

The results suggest that DRIFT spectroscopy and FTIR microscopy are promising

techniques to quantify the spatial distribution of mucilage in the rhizosphere. The
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measured mucilage contents and the spatial extent of the mucilage-affected rhizosphere

were comparable to calculated and published values. Future studies could investigate

the effect of factors such as: root hairs, root age, root type, plant species, soil texture

and soil water content on the spatial distribution of mucilage in the rhizosphere.
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Abstract

Background and Aims Although it is commonly accepted that root exudation enhances

plant-microbial interactions in the rhizosphere, experimental data on the spatial dis-

tribution of exudates are scarce. Our hypothesis was that root hairs exude organic

substances to enlarge the rhizosphere farther from the root surface.

Methods Barley (Hordeum vulgare L. cv. Pallas - wild type) and its root-hairless

mutant (brb) were grown in rhizoboxes and labelled with 14C. A filter paper was placed

on the soil surface to capture, image and quantify root exudates.

Key Results Plants with root hairs allocated more carbon (C) to roots (wild type:

13%; brb: 8% of assimilated 14C) and to rhizosheaths (wild type: 1.2%; brb: 0.2%),

while hairless plants allocated more C to shoots (wild type: 65%; brb: 75%). Root

hairs increased the radial rhizosphere extension 3-fold, from 0.5 to 1.5 mm. Total

exudation on filter paper was 3 times greater for wild type plants compared to the

hairless mutant.

Conclusion Root hairs increase exudation and spatial rhizosphere extension, which

probably enhance rhizosphere interactions and nutrient cycling in larger soil volumes.

Root hairs may therefore be beneficial to plants under nutrient limiting conditions.

The greater C allocation belowground in the presence of root hairs may additionally

foster C sequestration.
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5.1 Introduction

Future agriculture will be limited by drought in many parts of the world due to climate

change (FAO, 2012; Parry and Hawkesford, 2010; Parry et al., 2005). It is therefore

crucial to improve our understanding of processes that have the potential to increase

the ability of plants to extract water and nutrients from the soil. Root traits, such as

length and density of root hairs, have been proposed to increase plant productivity

especially when soil resources are limited (Bardgett et al., 2014; Jungk, 2001; Pausch

et al., 2016).

Root hairs are tubular extensions of epidermal cells (Peterson and Farquhar, 1996),

which emerge right behind the zone of root elongation (Jungk, 2001). For cereals,

approximately 20-90 root hairs emerge per mm of root length (Gahoonia and Nielsen,

1997) and they grow 0.2-1.0 mm into the soil (Schweiger et al., 1995; Haling et al., 2010;

Brown et al., 2012). Root hairs contribute between 70-90% of the total root surface

area and there is evidence that they improve nutrient acquisition (Bates and Lynch,

1996; Gilroy and Jones, 2000; Brown et al., 2012). However (Jungk, 2001) calculated

that the increase in root surface due to root hair length alone could not explain

increased nutrient influx into the root. The author proposed that other processes

such as exudation of organic substances by root hairs might additionally increase

nutrient availability.

Little is known about the role of hairs in root exudation. Root exudates were

defined as materials released from the roots such as simple sugars, amino acids or

polysaccharides but did not include dying root cells or root hairs (Leinweber et al.,

2008). Although it has been shown that root hairs are covered by mucigels (Dart,

1971; Greaves and Darbyshire, 1972; Sprent, 1975) it is not clear whether the ob-

served materials were released by the root hairs or just transported there simply as a

result of root elongation. Moreover, there is nearly no information as to whether root

hairs exude other substances apart from the observed mucigels such as low molecular

exudates. Pausch et al. (2016) studied the impact of root hairs on rhizosphere priming

effects (RPE). They found that the presence of root hairs increased RPE at least for

young plants hinting to an increase in rhizodeposition. However, the contribution of

root hairs to the total root exudation and to the spatial distribution of exudates in

the rhizosphere remains unclear.

The aim of this study was to test how root hairs affect the carbon allocation in the
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soil-plant system and the root exudation. We grew barley (Hordeum vulgare L. cv.

Pallas - wild type WT) and its root-hairless mutant (brb) for four weeks and labelled

them with 14CO2 to trace the carbon allocation in plant and soil. 14C imaging was

used to quantify the effect of root hairs on exudation and rhizosphere extension. We

hypothesized that: i) the presence of root hairs increases the amount of 14C allocated

to the roots (relative to the total assimilated 14C) because carbon is needed for root

hair production and maintenance; ii) root exudation is greater in the wild type because

of the presence of root hairs; and iii) direct exudation from root hairs increases the

radial and axial (longitudinal) rhizosphere extension.

5.2 Material and Methods

Sample preparation and plant growth

Before germination, barley seeds (wild type: WT, bald root barley: brb) were im-

mersed in a 10% H2O2 solution for 10 min to avoid seed-borne diseases. Seedlings

were planted after 3 days of germination.

The growth of plants was staggered over time for all experiments: per sowing time,

3 - 4 plants were grown. This was done because the exemption limit for radioactive

substances allows the handling of only limited amounts of 14C at a time in a laboratory.

Further, the chamber for labelling could not fit more than a maximum of 5 plants.

The sowing dates were between April and June 2016. The two treatments (WT, brb)

were randomly distributed within and between the sowing times. The barley plants

were grown for four weeks in rhizoboxes with a size of 12 x 20 x 3.5 cm for 30-31 days

(Fig. 5.1). The soil used was a sandy soil (A-horizon) collected from a field site close

to Reinhausen (Göttingen, Germany). Ctot was 2.0% and Ntot was 0.17% and pH was

4.9. The soil texture was distributed as follows: Clay: 8.6%, silt: 18.5%, sand: 73%.

The volumetric soil water content was kept at 23 - 25% vol. water content during

plant growth. The temperature in the climate chamber was 25 ◦C during the day and

22 ◦C during the night, the photoperiod was 14 hours and the photosynthetic photon

flux density was 200 µmol m−2 s−1. During the growth period, photographs of the

root system were taken at regular intervals to monitor root elongation.
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Wild type (WT) Mutant (brb)

Figure 5.1: Top: Close up of the root system of barley plants after four weeks of

growth. Left side: wild type with root hairs (WT); Right side: mutant without root

hairs (brb). Bottom: rhizosheaths around barley roots after taking them out of the

soil and gently shaking them. Left side: wild type with root hairs (WT); Right side:

mutant without root hairs (brb).
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14CO2 pulse labelling and CO2 measurement

After four weeks of plant growth each plant was labelled with 0.5 MBq 14CO2 (specific

activity of 59.6 mCi mmol C−1) for 4.5 hours. Labelling was always conducted at noon

for plants of all sowing times. The labelling technique has been described in detail

elsewhere (Kuzyakov et al., 2006). At the end of labelling, approximately 70% of the

added 14C had been taken up by the plants. This was tested by collecting 30 ml of

chamber air with a syringe 4 times during labelling (after 5, 30, 60, 120 min) and

injecting it into a scintillation cocktail (C 400, Zinsser Analytics).14C activity was

quantified by a liquid scintillation counter (Hidex, 300 SL). The activity of 14C in the

30 ml of chamber air that had been taken out of the chamber was back calculated to

the volume of the whole chamber. Doing this for all 4 measuring times, we calculated

the amount of 14C in the chamber over time which is inversely proportional to the

uptake of 14C.

For the measurement of 14C allocation in the soil-plant systems (Exp. 1) we used

five replicates of each barley type (WT and brb) and four replicates for the measure-

ment of 14C respiration over time (Exp. 2). For 14C imaging of roots and exudates

three replicates were used (Exp. 3). Immediately after labelling, the rhizoboxes used

for the first and second experiment where packed in a plastic bag which was closed

with modelling clay at the lower part of the stem of the plants. Inside the bag a 20

ml 1 M NaOH trap was placed to trap the 14CO2 released from soil.

For the first experiment the trap was left inside the bag for 24 hours. After that

time, the trap was removed and a scintillation cocktail (Eco Plus) was added to NaOH

with the ratio of 4:1. 14C activity in NaOH was determined using a liquid scintillation

counter (Hidex, 300 SL). Shoots were cut and dried at 40 ◦C. The roots were taken out

of the soil and the soil attached to the roots after being gently shaken (rhizosheath)

was collected. Roots were dried at 40 ◦C. Rhizosheath and bulk rhizosphere soil (the

soil not adhering to the roots) were freeze dried to avoid microbial degradation of

labile carbon compounds. The terminology bulk rhizosphere soil was chosen as the

root density in the rhizoboxes was high so that we assume that the whole soil volume

was affected by the activity of the roots. However, it is important to bear in mind that

the so defined bulk rhizosphere also contains some small roots and root hairs because

it is technically impossible to remove all the roots from the soil after harvesting the

plants. Care must therefore be taken when interpreting the results on 14C in bulk
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rhizosphere soil as a considerable amount might be caused by 14C in root debris.

The biomass of the dried plant samples was determined gravimetrically. To measure

14C activity, ground shoots, roots, rhizosheath and bulk rhizospere soil samples were

combusted in an Oxymat OX500. The released 14CO2 was captured in a scintillation

cocktail (C400, Zinsser) and quantified using a liquid scintillation analyzer (Tricarb,

3180, PerkinElmer). Total CO2 respiration from soil was measured from a subsample

(1 ml) of the NaOH trap: The carbonate in the NaOH solution was precipitated by

barium chloride and the trapped CO2-C was determined by back titration with 0.05

M HCl.

In the second experiment (Exp. 2), 14CO2 production in soil was measured over

17 days. The NaOH traps were exchanged after 1, 2, 4, 9 and 17 days and 14C in

the traps was measured as described above. After 17 days, plant biomass and 14C in

plant and soil material was determined as described above.

For the third experiment (Exp. 3), rhizoboxes were opened immediately before

labelling and a moist filter paper (Whatman, 1001 - 917, 11 µm) was attached to

the root surface in order to capture root exudates (Dennis et al., 2010). Note that,

although we defined root exudates in this study as materials released from the roots

such as simple sugars, amino acids or polysaccharides, we cannot exclude that sloughed

off root cells or the contents of damaged root hairs are also contained in the material

captured in the filter paper. As the mechanical stress at the rhizobox surface is rather

low, we assume that those compounds make up only a small portion of 14C captured

at the filter paper and that the 14C in the filter paper is mainly due to root exudates.

The presence of root hairs on the filter paper was checked with a microscope. The filter

paper was covered by a thin plastic film to avoid drying of the filter paper. Finally, a

thin layer of foam material was placed between the plastic film and the cover of the

rhizobox to achieve a good contact between soil surface and filter paper. 18 hours

after labelling, the filter paper was carefully removed from the soil surface and dried

in an oven (40 ◦C) to avoid the decomposition of root exudates captured in the filter

paper. 14C imaging was conducted by placing an imaging plate (Storage phosphor

screen, BAS-IP MS 2040 E, VWR) both on the filter paper and on the rooted soil

surfaces of each rhizobox. A thin plastic film was placed between the sample (or filter

paper) and the imaging screen to protect the imaging screen against the moist soil.

The screens were attached to the roots (or filter paper) for 15 h. After this time the

screens were scanned (FLA 5100 scanner, Fujifilm) with a spatial resolution of 50 µm.
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Quantification of root elongation and image analysis

During the growth period, photographs of the root system were taken at regular

intervals to monitor root elongation. For each plant photographs taken one day before

labelling, on the day of labelling and one day after labelling were analyzed. The

elongation rate was calculated using the Smart Root plugin (Lobet et al., 2011) in

ImageJ (https://fiji.sc/): Roots from each image were segmented and the length of

the segment was calculated. Root elongation rate was calculated based on the changes

in root length over time.

For quantification of 14C images, the images were converted from a log into a linear

system by applying the following equation:

PSL =
(Res

100

)2
∗ 4000

S
∗ 10L∗

(
QL
G

− 1
2

)
(5.1)

where PSL (Photostimulated Luminescence) is the quantified value of the image

in linear scale, Res is the resolution of the image in µm (Res = 50 µm), S is the

sensitivity (S = 5000), L is the latitude (L = 5) and G is the gradation (G = 65535).

After conversion of the images, the background noise was removed: The part of the

image where the screen was not in contact with the sample was selected and subtracted

from the part of the image where the root system was visible. Based on the contrast

between roots and soil/filter paper the root tips that showed a high 14C signal in

the images were segmented using the SmartRoot plugin in ImageJ. In this way only

the roots that were at the sample surface were selected. Possible artifacts caused by

overlapping roots or roots detached from the soil were removed from the segmentation.

2 - 5 roots per sample were segmented depending on how many roots were clearly

visible. The signal was averaged as a function of distance from the root center up to a

distance of 4 cm from the root surface using the Euclidean distance mapping functions

in MATLAB (The MathWorks). To quantify total exudation, the PSL values around

each root tip were summed up and a mean of total exudation per tip and treatment

was calculated.

Statistical analysis

The significances of differences between treatments (WT, brb) were tested using R

3.3.1. After testing for normal distribution and homogeneity of variances, a one-

way ANOVA was conducted followed by a post hot test (Tukey-Test). The level of
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Figure 5.2: 14C recovered in shoots, roots, rhizosphere, bulk soil and CO2 of the barley

wild type (WT) and the mutant without root hairs (brb) one day after labelling.

Variation is given as standard error. The number of replicates was 5. The p value is

presented as *: p < 0.05.
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Figure 5.3: 14C recovery (% ± SE) in CO2 from soil and root respiration over a period

of 17 days. Differences between treatments were not significant ( p < 0.05).

significance was α = 0.05. To test for significances in the radial rhizosphere extension,

total exudation and the ratio between axial rhizosphere extension and root elongation

between treatments a mixed effect model (α = 0.05) with treatment as fixed effect

and plant as random effect was applied. To account for the differences in numbers

of roots sampled per plant, the restricted maximum likelihood (REML) method was

applied.

5.3 Results

Plant Biomass, 14C recovery and total CO2 efflux

Shoot biomass measured in the first experiment was similar for plants with and without

root hairs. Root biomass was 3 times greater in plants with root hairs compared to

the hairless mutants and the rhizosheath was 10 times greater in WT compared to the

hairless mutants. The specific 14C activity of shoots was similar in both plants, while

it was 22% greater in the roots and 80% greater rhizosheath of brb plants compared

to WT plants (Table 5.1). Similarly, total 14C in shoots did not differ between the
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Table 5.1: Shoot, root and rhizosheath dry weight and specific and total 14C activity

for the barley wild type (WT) and the mutant without root hairs (brb) one day after

labelling. Variation is given as standard error. n = 5. The p value is presented as

follows: ns: p ≥ 0.1, (*): p < 0.1, *: p < 0.05, **: p < 0.01, ***: p < 0.001.

WT brb p-value

Dry weight shoot (g) 0.37 (0.07) 0.31 (0.06) ns

Dry weight root (g) 0.13 (0.03) 0.05 (0.01) *

Dry weight rhizo(g) 5.75 (0.83) 0.49 (0.09) *

14C in shoot (kBq g−1) 492 (32.3) 494 (39.2) ns

14C in root (kBq g−1) 273 (29.9) 333 (29.2) *

14C in rhizosheath (kBq g−1) 0.55 (0.1) 0.99 (0.16) ***

14C in bulk rhizosphere (kBq g−1) 0.03 (0.007) 0.01 (0.002) *

Total 14C in shoot (kBq) 173 (27.1) 143 (16.9) ns

Total 14C in root (kBq) 37.5 (9.64) 16.2 (2.38) (*)

Total 14C in rhizosheath (kBq) 3.43 (1.00) 0.45 (0.06) *

Total 14C in bulk rhizosphere (kBq) 3.68 (0.46) 2.90 (0.39) ns

14C in CO2 41.1 (9.74) 33.8 (5.45) ns

genotypes, while total 14C in root and rhizosheath soil was greater in WT compared

to brb. 14C activity in CO2 as well as the total CO2 respiration from soil was similar

for the wild type and the hairless mutant. 14C recovery was calculated as percentage

of total 14C measured in all pools one day after labelling. On average, 70% of the 14C

was recovered in shoots, 10% in roots, 1% in rhizosheath, 9% in bulk rhizosphere soil

and 10% in CO2. Plants without root hairs allocated relatively more 14C to shoots

compared to plants with root hairs. In contrast, WT allocated twice as much 14C

into roots compared to brb and allocated 5 times more 14C into rhizosheath (Fig. 5.2).

For both plant genotypes, similar amounts of 14C were found in the respired 14CO2.

The cumulative 14C respiration over the sampling period 17 days after labelling was

measured in Exp. 2 and was similar for WT and brb (Fig. 5.3). After 17 days, 21% of

14CO2 was recovered for plants with root hairs and 19% for plants without root hairs.
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Figure 5.4: 14C phosphor images of the root system of the barley plants (top) and of

the root exudates that diffused into the filter paper (bottom) which was attached to

the plant during labelling. The intensity of dark colour corresponds to 14C activity.
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Figure 5.5: Radial profiles around the roots in the soil (top) and of 14C activity (i.e.

root exudates) on filter paper (bottom). The data sets were fitted using a linear model

(solid lines). Confidence intervals are shown as dashed lines. Differences between the

profiles were significant for the profiles on filter paper (bottom) but not for those of

the roots in soil (top). Two to five roots were analyzed from each of 3 replicate plants.
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14C imaging and rhizodeposition

Root hairs were clearly visible along all the roots of WT plants grown in rhizoboxes

(Fig. 5.1, top). Root hairs reached a length of up to ca. 1 mm and were in general

longer around older root parts (visual, qualitative impression). Root hairs favored

rhizosheath formation while nearly no soil was attached to the roots for the mutant

without root hairs after their removal from soil (Fig. 5.1 bottom). 14C was allocated

to growing root tips of main and lateral roots (Fig. 5.4, top). The region of roots

where 14C was allocated correlated well with the region where 14C was found on

the filter paper (Fig. 5.4, bottom). The radial profiles of 14C activity around roots

imaged directly on the soil samples were similar for plants with and without root hairs

(Fig. 5.5, top). The activity decreased to zero at a distance of 1 mm from the root

center. The 14C activity on filter paper (i.e. root exudates) at the location of the root

center was approximately 3 times lower compared to the 14C activity of roots in soil

for WT plants and was approximately 10 times lower for the hairless mutant (Fig. 5.5,

bottom). This is because only a small portion of the 14C taken up by roots is exuded

as exudates. Plants with root hairs showed broader profiles of exudates compared to

plants without root hairs. The 14C activity at the location of the root center was on

average around 2 PSL for WT plants and 0.5 PSL for plants without root hairs. For

plants with root hairs 14C activity decreased to zero at a distance of 1.5 mm from the

root center, while for the mutant without hairs it decreased to zero at a distance of

0.5 mm from the root center (Fig. 5.5, bottom).

To separate the effect of different root elongation rates between genotypes on the

axial rhizosphere extension, the ratio between axial rhizosphere extension and root

elongation was calculated. This ratio was around 2 for plants with root hairs and

around 1 for plants without root hairs (Fig. 5.6, left). This means that the presence of

root hairs extended the zone of exudation to slightly older root segments. Root hairs

caused a 3-fold increase in total exudation on filter paper compared to plants without

root hairs (Fig. 5.6, right).

5.4 Discussion

Root exudates can increase nutrient availability in soil. On the one hand, they directly

improve nutrient acquisition by mobilisation of nutrients such as phosphorus, iron and

micronutrients (Dakora and Phillips, 2002; Hinsinger, 2001; Lynch, 2007; Marschner
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Figure 5.6: Left: Ratio between axial rhizosphere extension and root elongation for

the barley wild type (WT) and the mutant without root hairs (brb). Variation is given

as standard error (n = 3). The p value is presented as follows: *: p < 0.05. Right:

Total exudation of barley plants with root hairs (WT) and without root hairs (brb)

calculated based on the 14C activity on the filter paper, which was attached to the

roots and soil in the rhizobox during labelling. Variation is given as standard error

(n = 3). The p value is presented as follows: **: p < 0.01.

et al., 2011), particularly in nutrient-poor soils. On the other hand, they strongly

affect soil microbial activity and turnover of microbial biomass (Bertin et al., 2003;

Gunina and Kuzyakov, 2015). Several studies have shown that nutrient availability

increases due to higher microbial activity in the rhizosphere compared to the bulk

soil(Hamilton and Frank, 2001; Herman et al., 2006; Landi et al., 2006). It is likely

that increased rhizodeposition by plants with root hairs increases nutrient availability

under nutrient limiting conditions. Apart from the increase in total exudation for WT

plants, the increase in radial rhizosphere extension is of particular importance because

it expands the volume of soil where root exudates can interact with the soil matrix

and with microorganisms.

Root hairs also increased the axial extension of the rhizosphere as indicated in

Figure 5.7. Commonly, root exudation is highest at the root tip and immediately

behind the tip (Jones et al., 2009). Conceptual models of plant-microbe interactions

along the root axis assume that root exudation and microbial activity are high in

immediate vicinity of the root tip where nutrients are immobilized by microorganisms
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(Kuzyakov and Xu, 2013). Behind the root tip, in the root hair zone, exudation is

assumed to be low and microbes start to starve so that nutrients are mobilized and can

be taken up by the plants (Marschner et al., 2011; Kuzyakov and Xu, 2013). We found

that plants with root hairs increase axial rhizosphere extension compared to hairless

plants. This indicates that the root hairs themselves exude organic substances. We

conclude that root exudation is high over a longer distance from the root tip compared

to what is commonly expected. For models of nutrient uptake this would imply that

nutrients are mobilized farther behind the root tip than so far assumed.

We used 14C imaging to estimate rhizosphere extension and total exudation on

filter paper. Based on the distribution of 14C on filter paper, we found that root exu-

dation was approximately 3 times greater for the wild type compared to the hairless

mutant. These differences are smaller than the 8 times difference in the total carbon

found in the rhizosheaths (Table 5.1). This great difference can be explained by the

10 times larger rhizosheath mass for WT plants which confirms former experiments

with the same genotypes (Haling et al., 2010). Indeed, a good part of organics might

move farther away from the root surface and still contribute to rhizosphere processes,

which is likely to happen for plants without root hairs. 14C allocation in the rhi-

zosheath should therefore not be confounded with 14C allocation in the rhizosphere.

A more extensive discussion on the differences between rhizosheath and rhizosphere

terminology is given in (York et al., 2016).

14C imaging allows estimating the spatial distribution of C in the soil-plant system.

However, care must be taken when interpreting the images in terms of root exudation.

When calculating the profiles of 14C as a function of distance from the root center for

images taken from the soil-root surface (i.e. intact samples with roots in the soil) we

did not find differences between the treatments (Fig. 5.5, top). In contrast, significant

differences between treatments where found when analyzing the spatial distribution

of 14C on filter paper. Possibly, the 14C signal originating from the roots in the

intact samples is so strong that it overshadows the signal from root exudates. This is

particularly problematic if the soil-root surface is not perfectly flat (which normally

is the case). In this case small gaps are present between the soil-root surface and

the imaging screen and the β electrons from 14C decay from the roots travels in any

direction through air where it is barely attenuated. Consequently, the β signal hits the

screen at a position farther away from the root, where it actually does not originate

from. Using filter paper we avoided those two sources of errors because: a) the signal
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of roots is excluded from the image; b) the surface of the paper is perfectly flat and

air gaps between the surface and the screen can be excluded.

So far, rhizodeposition from root hairs has been observed for specific compounds

such as mucigels (Dart, 1971; Greaves and Darbyshire, 1972; Sprent, 1975), acid com-

pounds (Yan et al., 2004) and sorgoleone (Czarnota et al., 2003; Dayan et al., 2009).

Sorgoleone secretion is specific for Sorghum plants and was seldom observed at root

hairs of other graminaceous plants (Weston et al., 2012). There is less information on

the effect of root hairs on total rhizodeposition. Pausch et al. (2016) quantified the

effect of roots hairs on rhizosphere priming effect (RPE). Priming was increased for

plants with root hairs at tillering stage compared to plants without root hairs which

showed negative RPE. Because plants had similar root biomass the authors concluded

that the presence of root hairs may explain differences in RPE. Possibly priming was

increased in WT plants because the extension of the rhizosphere and because the ex-

tension of the rhizosphere by root hairs accelerated SOM decomposition (Pausch et al.,

2016). We found that barley plants with root hairs exuded significantly more C than

hairless mutants, which suggests that exudates are not only released from the tips of

main and lateral roots but also from root hairs. The increase in RPE found by Pausch

et al. (2016) may therefore not only be explained by a shift in microbial utilization of

exudates but also by an increase in total exudation for plants with root hairs. The

images showing increased root exudation for WT plants fitted well with the data on

14C recovery: plants with root hairs allocated more carbon to roots and rhizosheath

soil while plants without root hairs allocated relatively more C to shoots. For both

plant types 14CO2 efflux from soil was similar although root exudation was increased

for WT plants. It follows that more C derived from roots was retained in soil for WT

plants compared to plants without root hairs. There are two possible explanations for

this observation: 1) roots hairs decrease the local soil water content in the rhizosphere,

as shown by (Segal et al., 2008), which might result in a slower decomposition of 14C

labeled compounds in the rhizosphere (Sanaullah et al., 2012), thus reducing 14CO2

efflux from soil; .2) alternatively, or additionally, the metabolic quotient (qCO2) of

microorganisms in the rhizosphere of WT plants decreased, i.e. microorganisms used

C more efficiently for the build-up of biomass and respired relatively less C compared

to the brb plants. As plants with root hairs allocated more C belowground, while

14C efflux as well as total CO2 efflux remained unchanged, more C derived from roots

remained in soil for WT plants. Considering that the mean residence time in soils of
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Figure 5.7: Distribution of root exudates in radial and axial direction for plants with

root hairs (right) and the mutant without root hairs (left)

root-derived C is 2.4 times greater than that of shoot-derived C (Rasse et al., 2005)

root hairs may play a significant role in soil C sequestration.

5.5 Conclusions

Plants with root hairs exuded significantly more carbon into the soil compared to

plants without hairs and extended the rhizosphere in radial and axial directions

(Fig. 5.7). The higher exudation and the increased rhizosphere extension might be an

advantage for plants with root hairs because both favor plant-microbial interactions

and therefore nutrient mobilization in the rhizosphere. Barley with root hairs allo-

cated more C belowground compared to plants without hairs, but this did not increase

CO2 efflux. As root carbon has a longer mean residence time in soil compared to shoot

carbon, it is likely that plants with root hairs foster C sequestration. Breeding for

long root hairs and a high root hair density may be a suitable strategy for future

agriculture, where nutrients are expected to become scarce and where C sequestration

is a major issue due to climate change and resource depletion.
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6 Challenges and artefacts in visualisation and quantifi-

cation of rhizodeposition using phosphor imaging

written by Maire Holz, Mohsen Zarebanadkouki, Yakov Kuzyakov and Andrea Carmi-

nati

Plant and Soil, major revision

Abstract

Root exudates are an important energy source for soil microorganisms but quantifying

their spatial distribution in soil is challenging. We tested whether phosphor imaging

of labelled C can be used to accurately estimate profiles of root exudates in the

rhizosphere. First, the attenuation coefficient of 14C in soil and in water was measured.

Secondly, barley plants were labelled with 14C and a set of experiments were conducted

to determine the origin of the 14C signal detected with phosphor imaging. Selected

roots of the labelled plants were imaged in soil, in air and after being replaced in

a dry soil. Profiles of 14C were broader for roots in air compared to those for the

same roots replaced in a dry soil. However, even after replacing the roots in dry soil,

the 14C signal reached regions beyond the root surface, indicating that the 14C signal

was only partly attenuated by the soil. This was confirmed by the measured 14C

attenuation coefficient which was 148 cm−1 for soil and 67 cm−1 for water. Based on

these coefficients we calculated profiles of 14C that can be expected in the rhizosphere.

The profiles of 14C are strongly affected by: a) the 14C activity in the root, b) the root

radius, c) the position of the root in soil, d) the amount of root exudates in soil and e)

by the presence of air gaps (or regions with high porosity) between soil and imaging

screen. Inaccurate measurements of any of these parameters would cause artefacts

in the estimation of root exudates distribution in the rhizosphere using phosphor

imaging.

6.1 Introduction

Phosphor imaging is used in many scientific fields to quantify the distribution of

radioactive tracers in samples (Amemiya and Miyahara, 1988). It has been applied

in geology to detect radioactive elements in rocks (Cole et al., 2002), in molecular

biology to image DNA adducts (Ottow et al., 2005; Reichert et al., 1992; Story et al.,

1994) or in quantitative whole-body autoradiography to determine the distribution
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of pharmaceutical substances in rodents (Richards, 2006; Solon and Lee, 2001). To

obtain images, a phosphor imaging screen that is coated with BaFBr:Eu2+ crystals

is placed on the sample (Amemiya and Miyahara, 1988). Once, electrons from β-

decay hit the screen, their energy is stored in the BaFBr:Eu2+ crystals and they are

released upon photo stimulation with light with a wavelength of 350 - 450 nm (Leblans

et al., 2011). The spatial resolution of the obtained image is controlled by the imaging

process itself rather than by the characteristics of the storage phosphor reader or by

the imaging plates (Johnston et al., 1990). This is for two reasons; first, in case of

small gaps between the sample and the imaging screen the recorded signal will be

diffused in all directions (Fig. 6.1, top). Secondly, depending on the energy of the

radioactive substance, the radiation will go through the sample in any direction, at

least if part of the radioactive source is below the surface of the sample (Fig. 6.1,

bottom). The distances that the radiation can go through the sample depends on its

energy and will blur the image (Holz et al., 2017b; Johnston et al., 1990) (Fig. 6.1).

Recently, phosphor imaging has been applied in soil science to estimate 14C-carbon

allocation in plants and soil. While the imaging of C allocation into the plant roots

works well (Pausch and Kuzyakov, 2011), it has proven more difficult to map C

exudation from roots and the spatial distribution of the exuded C in rhizosphere soil

(Holz et al., 2017b). Because so far, there is no method available to determine the

spatial distribution of root exudates in soil in situ, it is tempting to apply 14C imaging

to image root exudates in the rhizosphere. Holz et al. (2017b) used 14C imaging to

Barley plant with and without root hairs after labelling the shoots with 14C-CO2.

The radial profiles of 14C from the root surface towards the bulk soil did not differ

when images where taken from the rhizobox surface. However, when a filter paper

was placed on the rhizobox surface and the captured root exudates where images, the

radial profiles increased dramatically for plants with root hairs compared to plants

without root hairs. This indicates that the images taken from the rhizobox surface do

not reflect the real 14C distribution in the rhizosphere and can therefore not easily be

used to estimate profiles of root exudates around roots. This is probably due to the

above mentioned reasons, which would lead to an overshadowing of the root exudates

in the rhizosphere by the 14C signal that is originally coming from the 14C activity in

the root itself. However, this assumption has not been proved experimentally.

The aim of this study was to test whether phosphor imaging can be used to cal-

culate profiles of root exudates around growing roots. The study was divided in two
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experiments. The aim of the first experiment was to test whether what is seen as 14C

signal around roots can be considered to be root exudates. To test this, barley plants

where labelled with 14C-CO2. Root tips, showing a high 14C activity were removed

from soil one day after labelling and images were taken from the rhizobox soil, pre-

sumably containing the root exudates. After this, the removed root tips were dried

and placed into dry soil and imaged to estimate the contribution of 14C to the profiles,

originating actually from the root itself and not from root exudates. The aim of the

second experiment was to calculate an attenuation coefficient of 14C in soil and water.

Defined amounts of 14C were given to different soil depths to calculate the attenuation

of the 14C signal. The advantage of such a coefficient would be that the proportion of

the signal of the 14C originating from the root instead of from root exudates could be

calculated and the 14C imaging could be used to actually quantify the distribution of

root exudates in the rhizosphere.

6.2 Material and Methods

Sample preparation and plant growth

For the first experiment four barley plants (Hordeum vulgare L. cv. Pallas) were

grown in rhizoboxes. The seeds were immersed in a 10% H2O2 solution for 10 min

before germination to avoid seed-borne diseases. The barley plants were grown in

rhizoboxes with a size of 12 x 20 x 3.5 cm for 30 - 31 days. The soil used was a sandy

soil (A-horizon) collected from a field site close to Reinhausen (Göttingen, Germany).

Ctot was 2.0% and Ntot was 0.17% and pH was 4.9. The soil texture was distributed

as follows: Clay: 8.6%, silt: 18.5%, sand: 73%. The volumetric soil water content

was kept at 23 - 25% vol. water content during plant growth. The temperature in the

climate chamber was 25 ◦C during the day and 22 ◦C during the night, the photoperiod

was 14 hours and the photosynthetic photon flux density was 200 µmol m2 s1.

14CO2 pulse labelling and 14C imaging of plants

The procedure of 14C labelling is described in detail in (Holz et al., 2017b). After four

weeks of plant growth each plant was labelled with 0.5 MBq 14CO2 (specific activity

of 59.6 mCi mmolC−1) for 4.5 hours. Labelling was always conducted at noon for

plants of all sowing times. At the end of labelling, approximately 70% of the added

14C had been taken up by the plants. This was tested by collecting 30 ml of chamber
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Figure 6.1: Conceptual model of artefacts that may occur during phosphor imaging

and that may blur the image and reduce the spatial resolution. Scenario 1 shows the

diffusion of radiation trough air, in case of small gaps between the sample and the

imaging screen. Scenario 2 describes the travelling of radiation trough the sample

from deeper sample layers which again leads to a blurring of the image.

air with a syringe 4 times during labelling (after 5, 30, 60, 120 min) and injecting

it into a scintillation cocktail (C 400, Zinsser Analytics).14C activity was quantified

by a liquid scintillation counter (Hidex, 300 SL). The activity of 14C in the 30 ml

of chamber air that had been taken out of the chamber was back calculated to the

volume of the whole chamber. Doing this for all 4 measuring times, we calculated the

amount of 14C in the chamber over time which is inversely proportional to the uptake

of 14C.

After labelling, one phosphor image was taken per rhizobox to detect root parts

with high 14C activity. This was done by placing an imaging plate (Storage phosphor

screen, BAS-IP MS 2040 E, VWR) on the samples. A thin plastic film was placed

between the sample and the imaging screen to protect the imaging screen against
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the moist soil. The screens were attached to the samples for 15 h. After this time

the screens were scanned (FLA 5100 scanner, Fujifilm) with a spatial resolution of

50 m. Those root parts, showing a high 14C activity (i.e. the growing root tips)

were carefully removed from the soil and dried in a drying oven at 40 ◦C for 48 h.

After removal of the root tips, the rhizoboxes were imaged again as described above

to test, whether the signal originating from root exudates would be detectable in the

soil regions where the root tips had been growing (Fig. 6.2a,b). The dried roots where

imaged twice. First, they were placed on a plexiglas plate without any soil to estimate

the effect of the air gap between the sample and the imaging screen on the blurring

of the 14C signal around the roots (Fig. 6.2c). After this, the roots were placed on

a rhizobox surface filled with dry soil. The roots were carefully pressed in the soil in

order to obtain a totally plane surface. This was done to test whether there would

be a 14C signal detectable outside the root radius which would indicate that the β-

radiation from 14C decay was going through the soil (Fig. 6.2d).

Image analysis

The quantification of 14C images was done as described in Holz et al. (2017b). First,

the images were converted from a log into a linear system by applying the following

equation:

PSL =
(Res

100

)2
∗ 4000

S
∗ 10L∗

(
QL
G

− 1
2

)
(6.1)

where PSL (Photostimulated Luminescence) is the quantified value of the image

in linear scale, Res is the resolution of the image in µm (Res = 50 µm), S is the

sensitivity (S = 5000), L is the latitude (L= 5) and G is the gradation (G = 65535).

After conversion of the images, the background noise was removed: The part of the

image where the screen was not in contact with the sample was selected and subtracted

from the part of the image where the root system was visible. Based on the contrast

between roots and soil, the root tips that showed a high 14C signal in the images

were segmented using the SmartRoot plugin in ImageJ. Possible artefacts caused by

overlapping roots or roots detached from the soil were removed from the segmentation.

2 - 5 roots per sample were segmented depending on how many roots were clearly

visible. The signal was averaged as a function of distance from the root center up to a

distance of 4 cm from the root surface using the Euclidean distance mapping functions
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in MATLAB (The MathWorks). To quantify total exudation, the PSL values around

each root tip were summed up and a mean of total exudation per tip and treatment

was calculated.

Calculation of the 14C attenuation coefficient and of 14C profiles

To measure the 14C attenuation in soil and in water, we used 2.5 cm deep PVC plates

into which rectangular holes with a size of 8 x 12 cm were placed. The holes had the

following depths: 0.5, 1, 2, 4, and 8 mm. 1 x 1 cm sized pieces of filter paper were

soaked in 2 ml solution containing 1 MBq of 14C-glucose, The pieces of filter paper

were dried for one hour at 60 ◦C and 4 pieces of filter paper were placed into each hole

of the PVC plates, covered with a thin plastic film and then covered with dry soil.

After placing an imaging plate on the soil surfaces for 18 hours, phosphor imaging was

conducted as described above. To measure the attenuation of 14C in water, the same

pieces of filter paper were covered with water instead of soil and the imaging was done

similarly as for soil. To calculate the attenuation coefficients, the signal of 14C coming

from the filter papers was related to the respective soil thickness (Fig. 6.5). The data

were fitted to a falling exponential function according to the Beer-Lambert-Law:

I = Exp−µ∗x (6.2)

where I = is the 14C signal obtained from the image, µ is the attenuation coefficient

of 14C and x is the soil thickness. Knowing I and x, it was possible to calculate

the attenuation coefficient of 14C for soil and for water. Based on the attenuation

coefficient in soil, we calculated the 14C signal that would be captured by the imaging

screen. We considered a soil region with a size of 200 pixel in x direction and 100

pixel in y direction having a pixel size of 0.01. The root had a diameter of 0.6 mm

and it was placed in the center of the soil region. It was assumed to be either slightly

below, right at the soil surface or slightly above the soil surface, creating a small air

gap between the sample and the imaging screen (Fig. 6.6, left). The activity of the

root was assumed to be 1000 PSL and the soil in the first pixel at the root surface

had a 14C activity that corresponds to 5 - 30% of the 14C activity of the root. Root

exudates were assumed to decreased exponentially from the root surface (Fig. 6.8c).

We assumed a volumetric soil water content of 15% and a bulk soil density of 1.5

g cm−3 which yielded an effective attenuation of 14C in soil of 95.4 cm−1. The signal
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of 14C was calculated for one position of the root in radial direction from the root

surface into the bulk soil. In this sense, we assumed that the 14C was homogeneously

distributed in the root in axial direction. For each pixel in y direction, the 14C signal

was calculated considering the 14C activity in the root, in the root exudates and the

attenuation of the 14C signal travelling through the soil. For the air gap between the

sample and the screen in that cases where the root was placed slightly above the soil

surface, an attenuation coefficient of 0 was assumed.

Statistical analysis

Statistical analyses were done using R 3.3.1. To test for significances in the radial

rhizosphere extension (Fig. 6.3,6.4) between treatments, a fixed effect model (α = 0.05)

with treatment as fixed effect was applied.

a) b)

c) d)

Figure 6.2: Exemplary 14C images of the barley roots. a) image of a rhizobox with

roots and b) after removing the root tip with high 14C activity. c) shows an imaged

root placed on plexiglas without soil and d) shows the same root after placing it in

dry soil. Dark indicates high 14C activity, bright indicates low 14C activity.
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6.3 Results and Discussion

High 14C activity was found around the root tips of young, growing roots (Fig. 6.2).

This is in line with previous studies which showed that root tips are important hotspots

in soil (Kuzyakov and Blagodatskaya, 2015) and that recently assimilated C within

the root system is mainly allocated to root tips and released from there (Dennis et al.,

2010; Holz et al., 2017a; Jones et al., 2004; Pausch and Kuzyakov, 2011).

The radial profiles of 14C activity around roots grown in rhizoboxes extended up

to 0.5 mm from the root surface into the bulk soil. At the root surface they reached

values of around 40 PSL and the activity decreased to approximately 0 after 1 mm

(Fig. 6.3). In contrast, no profiles of 14C were found after removing the roots and

the signal scattered around 0, even at the positions where the root tip had formerly

been seen (Fig. 6.3). One reason might be that root exudates are easily available to

microbes and that microbial activity in the rhizosphere is high compared to the bulk

soil (Gunina and Kuzyakov, 2015; Landi et al., 2006). Therefore, a high proportion

of root exudates might have been decomposed already at the time of 14C imaging.

Furthermore, it is possible that during the removal of the root, a small portion of

rhizosphere soil, and with it some root exudates, were accidentally removed. However,

even though it might be possible that microbial decomposition of exudates or partly

removal of rhizosphere soil reduced root exudates, we would still have expected to

see some signal of 14C in the soil region where the roots had been. The fact that no

14C was seen around roots after removing them from soil although broad 14C profiles

are seen around roots in soil raises the question whether profiles of 14C around roots

in soil can be interpreted as root exudates. Although it has been suggested that 14C

imaging can be used to detect root exudates in soil (Pausch and Kuzyakov, 2011), it is

not clear whether the imaged 14C around roots is actually the signal originating from

root exudates or rather the blurred signal originating from the root (Dennis et al.,

2010; Holz et al., 2017b).

The profiles of 14C for dried roots placed into dry soil were steeper and showed a

smaller extension (0.25 vs. 0.5 mm) than the profiles of dried roots imaged without

soil which reflect different attenuation of 14C in soil and in air. The fact that even

for roots in soil, the 14C signal reached regions beyond the root radius, confirms our

assumption that 14C originating from the plant root is not totally attenuated in soil

but is scattered over short distances in all direction, blurring the 14C image (Fig. 6.1,
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Figure 6.3: Radial profiles of roots in rhizoboxes (red line) and of the 14C signal after

removal of the root tips (grey line). Variation is given as standard error, n=4. The

treatments differed significantly (α = 0.05).

bottom). Additionally, air gaps between the sample surface and the imaging screen

would further extend the profiles of 14C measured. This may happen if the root is

placed slightly above the soil surface or if there is some loose soil around the root in

the rhizobox. These findings indicate that the profiles of 14C around roots visualised

by phosphor imaging may not simply be used to calculate profiles of exudates around

roots because a) air gaps may blur the signal (Fig. 6.1, top) and b) the 14C signal

detected by the screen at a given position may not come from that position but

from a deeper soil layer and eventually from the root while it might be interpreted

as root exudates (Fig. 6.1, bottom). We therefore aimed to quantify the effect of

both effects on profiles of 14C around roots by calculating the attenuation of 14C in

soil. The 14C activity with thickness of soil and water followed a strong exponential

decay (Fig. 6.5) which is in accordance with previous findings on attenuation of β-

radiation in different materials (Özmutlu and Ahmet Cengiz, 1990). While for soil,

the signal decreased to 0 with a soil thickness of around 0.25 mm, water attenuated

less 14C and the signal reached 0 with a water thickness of around 0.5 mm. The
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Figure 6.4: Radial profiles of dry roots removed from soil and placed on a plane surface

without soil (red line) and of the same roots after they were replaced into dry soil (grey

line). Variation is given as standard error, n=4. The treatments differed significantly

(α = 0.05).

calculated attenuation coefficient was 67 cm−1 for water and 148 cm−1 for soil which

corresponds to the differences in the density of the materials which is 1 g cm−3 for

water and 2.65 g cm−3 for quartz. The 14C signal obtained during 14C imaging was

calculated for different scenarios with regard to the position of the root in the soil and

the amount of exudates present around the root. For the first scenario we assumed

that the root was placed either below the soil surface (0.1 and 0.05 mm), right at

the soil surface or slightly above the soil surface (0.02 and 0.05 mm), creating an air

gap between the sample imaging screen (Fig. 6.6, left). In this scenario we considered

only the 14C activity of the root and assumed that there were no exudates in the soil

surrounding the root. The position of the root strongly influenced the distribution

of the 14C signal. Changing the root position from 0.1 mm below the surface to

the soil surface increased the 14C signal in the middle of the root from around 1000

to 4000 14C (PSL) cm−2. The extends of the radial profiles were not affected by

these changes and the profiles extended around 0.5 mm into the soil starting from
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Figure 6.5: Attenuation of 14C signal by soil and water of increasing thickness. The

x axis shows the thickness of soil and/or water while the y axis depicts the normal-

ized 14C activity: 1=14C activity without soil (thickness = 0). Variation is given as

standard error, n=4.

the middle of the root (i.e. x = 1.0 mm). However, assuming that the root was

placed slightly above the soil surface strongly increased the radial extend of the 14C

profiles. Placing the root 0.05 mm above the soil surface resulted in an extension

of the 14C profile of around 1 mm (Fig. 6.6). These results prove that the signal of

14C extends beyond the root surface, because soil does not completely attenuates 14C.

This makes the interpretation of the images difficult. Additionally, the root position

is very important for the interpretation of 14C images. Particularly the existence of

air gaps between the sample and the imaging screen strongly broadens the profiles of

14C around roots.

In the second scenario, we considered different amounts of root exudates in the

soil around the root which correspond to 5 - 30% of C allocated to the roots (Holz

et al., 2017b; Jones et al., 2004; Nguyen, 2003). The amount of root exudates did

not influence the 14C signal obtained close to the root but did have a strong influence

on the radial extend of the profiles. For the lowest concentration of exudates, which
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Figure 6.6: Calculated profiles of 14C activity around roots in soil. The roots were

assumed to be in five different positions in the soil, either below the soil surface (blue

lines), right at the soil surface (light blue line) or above the soil surface, assuming an

air gap between the sample and the imaging screen (red lines).

corresponds to 5% of 14C in the root, the profile nearly corresponded to that obtained

assuming that only the root contains 14C (Fig. 6.7a, black dashed line). Doubling the

amount of root exudates resulted in an increase of the radial extend of 14C from 0.5 mm

(low exudation) to around 0.75 mm for medium exudation (Fig. 6.7a). Doubling the

amount of exudates again, increased the radial profile of 14C up to 1 mm from the

middle of the root (i.e. x = 1.0 mm). The amount of root exudates placed into soil

affected the relative contribution of root exudates to the total 14C signal which is

displayed in Figure 6.7b. When considering rather low root exudation, even far from

the root the contribution of root exudates to the total 14C signal was relatively low

and reached only 60%. In contrast, assuming high exudation, the contribution of root

exudates to total 14C reached almost 1 already at a distance of 0.5 mm from the

root surface. These results highlight the importance of the amount of root exudates

released from roots for interpretation of 14C images. For high root exudation it may be

possible to calculate back the contribution of exudates from the profiles of 14C because
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Figure 6.7: Calculated profiles of 14C activity around roots in soil assuming low,

medium and high root exudation. The black dashed line in a) corresponds to the 14C

activity by the root, assuming no root exudates in soil.

the contribution of root exudates to the total signal is relatively high (Fig. 6.5b).

However, assuming low exudation, this calculation may be prone to errors because

the contribution of root exudates to the 14C signal will be negligible. Figure 6.8
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Figure 6.8: b) Calculated profiles of 14C activity around roots. The profiles were

calculated for three scenarios, first, assuming that only the root is radioactive (blue

line), second, assuming that the root and root exudates in the soil around the root are

radioactive (red line) and third, assuming that only the root is radioactive and that

there is an airgap of 0.03 mm between the root and the imaging screen (green line).

c) shows the distribution of the actual root exudates in soil (black line) compared to

the signal that is seen after imaging root and root exudates (red line). d) displays the

relative contribution of root exudates to the 14C signal measured. 1 indicates that

100% of the signal is caused by root exudates, while 0 indicates that 100% of the

signal is caused by the activity of the root.

sums up the results for three different scenarios of 14C activity. We assumed that

either only the root contained radioactive material, emitting β- radiation or that

both, root and root exudates emitted β- radiation. The last scenario considered only

the root to be radioactive, however, a small airgap of 0.03 mm was assumed to be

in between the sample and the imaging screen (Fig. 6.8b). Comparing the radial

profile of 14C that considers root and root exudates to be radioactive, with those one

where only the root is radioactive but there is a small air gap in between the imaging

screen, it is noticeable that both lines show an almost similar curve shape. This result

confirms that the interpretation of 14C signal around roots as root exudates is only

possible if any air gaps around the roots can be excluded. This is because the low
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attenuation of β- radiation in the air leads to an extreme blurring of the 14C signal.

Figure 6.8c compares the radial profile of 14C assuming the root and root exudates to

be radioactive with the actual distribution of root exudates in soil. While for distances

farther than 0.75 mm from the root surface, both profiles correspond well, close to the

root the profile of the actual root exudates in soil was below that profile of 14C that

would be seen after imaging. This finding corresponds well with the distribution of

the contribution of root exudates to the total 14C signal (Fig. 6.8d) which shows that

with increasing distance from the root, the relative contribution of root exudates to

the total 14C signal increases. The interpretation of 14C signal around roots as root

exudates may therefore be possible if relatively high root exudation can be expected

and will be more precise with increasing distance from the root. Close to the root, the

calculation will be prone to errors because the contribution of 14C signal originating

from the root is high compared to the signal originating actually from root exudates.

However, root exudates follow a concentration gradient from the root surface and have

high concentrations close to the root surface that decrease with increasing distance

from the root. The fact that the interpretation of 14C signal is particularly difficult

close to the root surface where the concentration of root exudates is actually high, is

a severe drawback of the method.

6.4 Conclusions

We showed that the interpretation of profiles of 14C around roots measured by 14C

imaging as profiles of root exudates can be confounded by several factors. In general,

the profiles of 14C extended beyond the root surface. This is because the 14C signal

originating from the root is not completely attenuated by the soil surrounding the root

and hits the imaging screen beyond the root surface, thereby blurring the profiles.

Knowing the root radius, the shape of the root, its exact position in soil and the

14C activity in the root, it would be possible to calculate the contribution of root

exudates to the profiles of 14C signal. This calculation is realistic assuming a high

root exudation and is more reliable with increasing distance from the root surface.

However, in practice, it is unlikely to measure all the needed information for the

calculation precisely. Particularly in rhizobox experiments it would be unrealistic to

assume a cylindrical root shape as roots in rhizoboxes are commonly slightly flat.

Additionally, the presence of air gaps between soil and imaging screen or regions with
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high porosity around the roots leads to extreme blurring of the images. As potential

air gaps between the sample and the imaging screen and the soil porosity around the

roots are barely quantifiable, the interpretation of 14C profiles as root exudates is

questionable.
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M. Brosché, J. Kangasjärvi, X. Jiang, and A. Polle (2005): “Populus

euphratica Displays Apoplastic Sodium Accumulation, Osmotic Adjustment by De-

creases in Calcium and Soluble Carbohydrates, and Develops Leaf Succulence under

Salt Stress,” Plant Physiology, 139, 1762–1772.
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APPENDIX

A Mucilage exudation facilitates root water uptake in

dry soils1

written by Mutez A. Ahmed, Eva Kröner, Maire Holz, Mohsen Zarebanadkouki and

Andrea Carminati

published in Journal of Functional Plant Biology (Ahmed et al., 2014)

Abstract

As plant roots take up water and the soil dries, water depletion is expected to occur in

the rhizosphere. However, recent experiments showed that the rhizosphere was wetter

than the bulk soil during root water uptake. We hypothesise that the increased water

content in the rhizosphere was caused by mucilage exuded by roots. It is probably that

the higher water content in the rhizosphere results in higher hydraulic conductivity

of the rootsoil interface. In this case, mucilage exudation would favour the uptake of

water in dry soils.

To test this hypothesis, we covered a suction cup, referred to as an artificial root,

with mucilage. We placed it in soil with a water content of 0.03 cm3 cm−3, and

used the root pressure probe technique to measure the hydraulic conductivity of the

rootsoil continuum. The results were compared with measurements with roots not

covered with mucilage.

The root pressure relaxation curves were fitted with a model of root water uptake

including rhizosphere dynamics. The results demonstrated that when mucilage is

added to the root surface, it keeps the soil near the roots wet and hydraulically

well conductive, facilitating the water flow from dry soils towards the root surface.

Mucilage exudation seems to be an optimal plant trait that favours the capture of

water when water is scarce.

1M.H. was responsible for the measurement of the drying rate of mucilage in soil
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B Effect of soil drying on mucilage exudation and its

water repellency: A new method to collect mucilage2

written by Mutez A. Ahmed, Maire Holz, Susanne K. Woche, Jörg Bachmann and

Andrea Carminati

published in Journal of Plant Nutrition and Soil Science (Ahmed et al., 2015)

Abstract

Despite the importance of mucilage for soilplant relations, little is known about the

effect of soil drying on mucilage exudation. We introduce a method to collect mucilage

from maize growing in wet and dry soils. Mucilage was collected from brace roots. The

amount of mucilage exuded did not change with soil water content and transpiration

rate. Mucilage exuded in dry soils had a higher degree of hydrophobicity, suggesting

that the wetting properties of mucilage change in response to soil drying.

2M.H. helped to develop the setup for the collection of mucilage and partly conducted the mucilage

collection
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APPENDIX

C Warming increases hotspot areas of enzyme activity

and shortens the duration of hot moments in the root-

detritusphere3

written by Xiaomin Ma, Bahar S. Razavi, Maire Holz, Evgenia Bladodatskaya and

Yakov Kuzyakov

published in Soil Biology and Biochemistry (Ma et al., 2017)

Abstract

Temperature effects on enzyme kinetics and on the spatial distribution of microbial

hotspots are important because they are crucial to soil organic matter decomposition.

We used soil zymography (in situ method for the two dimensional quantification

of enzyme activities) to study the spatial distributions of enzymes responsible for P

(phosphatase), C (cellobiohydrolase) and N (leucine-aminopeptidase) cycles in the

rhizosphere (living roots of maize) and root-detritusphere (7 and 14 days after cutting

shoots). Soil zymography was coupled with enzyme kinetics to test temperature effects

(10, 20, 30 and 40 ◦C) on the dynamics and localization of these three enzymes in the

root-detritusphere.

The percentage area of enzyme activity hotspots was 1.9 - 7.9 times larger and their

extension was broader in the root-detritusphere compared to rhizosphere. From 10 to

30 ◦C, the hotspot areas enlarged by a factor of 2 - 24 and Vmax increased by 1.5 - 6.6

times; both, however, decreased at 40 ◦C. For the first time, we found a close positive

correlation between Vmax and the areas of enzyme activity hotspots, indicating that

maximum reaction rate is coupled with hotspot formation. The substrate turnover

time at 30 ◦C were 1.7 - 6.7-fold faster than at 10 ◦C. The Km of cellobiohydrolase and

phosphatase significantly increased at 30 and 40 ◦C, indicating low affinity between

enzyme and substrate at warm temperatures.

We conclude that soil warming (at least up to 30 ◦C) increases hotspot areas of

enzyme activity and the maximum reaction rate (Vmax) in the root-detritusphere.

This, in turn, leads to faster substrate exhaustion and shortens the duration of hot

moments.

3M.H. partly supervised the experiment and helped with the data analysis and the writing of the

manuscript
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D Effects of mucilage on rhizosphere hydraulic funtions

depend on soil particle size4

written by Eva Kroener, Maire Holz, Mohsen Zarebanadkouki, Mutez Ahmed and An-

drea Carminati

published in Vadose Zone Journal (Kroener et al., 2017)

Abstract

Mucilage secreted by roots alters hydraulic properties of soil close to the roots. Al-

though existing models are able to mimic the effect of mucilage on soil hydraulic

properties for specific soils, it has not yet been explored how the effects of mucilage

on macroscopic soil hydraulic properties depend on soil particle size.

Here, we propose a conceptual model of how mechanistic pore scale interactions of

mucilage, water and soil depend on pore size and mucilage concentration and how these

pore scale characteristics result in changes of macroscopic soil hydraulic properties.

Water retention and saturated hydraulic conductivity of soils of different ranges of

particle sizes mixed with various mucilage concentrations were measured and used to

validate the conceptual model.

We found that (a) at low mucilage concentrations the saturated conductivity of a

coarse sand was a few orders of magnitude higher than in a silt; (b) at an intermediate

concentration, the hydraulic conductivity in a fine sand was lower than in a coarse sand

and in a silt; and (c) at a high concentration, all soils had a hydraulic conductivity

of same magnitude. At low matric potentials mucilage increased the water content in

all soils, with higher mucilage concentrations being needed in coarser soils to induce

an increase in water content of > 0.05 g g−1.

This study shows how pore-scale interactions between mucilage, water and soil

particles affect bulk soil hydraulic properties in a way that depends on soil particle size.

Including such effects in quantitative models of root water uptake remains challenging.

4M.H. conducted the measurements of the water retention curves together with E.K.
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Selbstkontrolle stattfinden können. (§8 Satz 2 Nr. 8 PromO Fakultät)

Berlin, 10. Dezember 2018

.......................................................................

(Maire Holz)


	Acknowledgements
	Abstract
	Zusammenfassung
	List of Figures
	List of Tables
	List of Abbreviations
	Extended Summary
	Introduction
	Objectives and Outline
	Material and Methods
	Results and Discussion
	Summary, Conclusion and Outlook
	Contributions to the included manuscripts

	References
	Rhizodeposition under drought is controlled by root growth rate and rhizosphere water content
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusions
	Acknowledgement

	References
	Coping with drought: Plant roots maintain enzyme activity in drying soils by increasing water retention in the rhizosphere
	Introduction
	Material and Methods
	Results
	Discussion
	Acknowledgements

	References
	Spatial distribution of mucilage in the rhizosphere measured with infrared spectroscopy 
	Introduction
	Material and Methods
	Results and Discussion
	Conclusions
	Acknowledgements

	References
	Root hairs increase rhizosphere extension and carbon input to soil 
	Introduction
	Material and Methods
	Results
	Discussion
	Conclusions
	Acknowledgements

	References
	Challenges and artefacts in visualisation and quantification of rhizodeposition using phosphor imaging
	Introduction 
	Material and Methods 
	Results and Discussion
	Conclusions
	Acknowledgements

	References
	Mucilage exudation facilitates root water uptake in dry soils
	Effect of soil drying on mucilage exudation and its water repellency: A new method to collect mucilage
	Warming increases hotspot areas of enzyme activity and shortens the duration of hot moments in the root-detritusphere
	Effects of mucilage on rhizosphere hydraulic funtions depend on soil particle size

