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Abstract: Community-acquired pneumonia (CAP) is one of the most frequent infectious diseases
worldwide, with high lethality. Risk evaluation is well established at hospital admission,
and re-evaluation is advised for patients at higher risk. However, severe disease courses may
develop from all levels of severity. We propose a stochastic continuous-time Markov model describing
daily development of time courses of CAP severity. Disease states were defined based on the
Sequential Organ Failure Assessment (SOFA) score. Model calibration was based on longitudinal
data from 2838 patients with a primary diagnosis of CAP from four clinical studies (PROGRESS,
MAXSEP, SISPCT, VISEP). We categorized CAP severity into five disease states and estimated
transition probabilities for CAP progression between these states and corresponding sojourn times.
Good agreement between model predictions and clinical data was observed. Time courses of mortality
were correctly predicted for up to 28 days, including validation with patient data not used for model
calibration. We conclude that CAP disease course follows a Markov process, suggesting the necessity
of daily monitoring and re-evaluation of patient’s risk. Our model can be used for regular updates of
risk assessments of patients and could improve the design of clinical trials by estimating transition
rates for different risk groups.

Keywords: community-acquired pneumonia; prognosis; sepsis; SOFA score; stochastic model;
continuous-time Markov model; medical decision making
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1. Introduction

Community-acquired pneumonia (CAP) is the most frequent cause of death among infectious
diseases worldwide and a very frequent cause of hospital admissions in developed countries,
with 289,633 hospitalizations for CAP in 2018 in Germany [1]. Lethality of hospitalized CAP has
remained high at around 13% in developed countries [2,3]. The course of CAP in the hospital can
be heterogeneous and highly dynamic with disease deteriorations frequently occurring within a few
hours and requiring immediate intensive care [4]. In the context of CAP, several scoring systems
have been proposed. For evaluation of CAP severity in regard to mortality, CURB-65 [5,6] and PSI [7]
have been well established. SCAP [8] has been developed to support clinical prediction of severe
CAP. SMART-COP [9] and IDSA/ATS minor criteria [10] predict need for intensive care treatment,
while criteria according to Halm [11,12] allow evaluation of reaching clinical stability. CURB-65 and
IDSA/ATS major and minor criteria are part of the German CAP guidelines [13]. In patients with
sepsis, monitoring of IDSA/ATS minor criteria and organ function has been suggested [2,3,14,15].
In contrast, a general scheme of daily risk reevaluation for CAP patients is not established. As mortality
risk increases from 6% for improving CAP to 34% for nonresolving CAP or clinical failure [16],
regular updates of patient’s risk evaluation during a hospital stay are warranted.

We here propose a stochastic mathematical model of the disease course of hospitalized CAP
patients of different initial disease severity including prediction of mortality. In particular, we choose
continuous-time Markov modelling, which was used in different disease contexts. One of the first papers
proposing this type of model for medical applications was Chiang [17]. Since then, Markov models
proved to be a valuable tool in medicine to describe and analyze time courses of different diseases such
as cancer survival [18], survival after heart transplantation [19], or more recently, success of incontinence
treatment procedures [20] and repeated hospitalization and death in heart failure patients [21]. In the
field of infectious diseases, the concept was applied to modelling of immunologic states of HIV
patients [22] and sepsis severity [23]. The major idea of this modelling approach is to describe
random transitions between different disease states and to calculate corresponding sojourn times.
Given a sulfficiently rich database for testing model assumptions, for parametrizing the model, and for
validation, a quantitative model of disease progression can be established which allows updating
patient’s risk evaluation at any time.

We here consider disease states based on the sequential organ failure assessment (SOFA) score,
which recently was shown to be a good operationalization of CAP severity [24]. We used time series
data of CAP patients with different initial disease severity taken from four large clinical trials to
calibrate our model and to validate its predictions.

2. Materials and Method

2.1. Patient Data

We used time series data of CAP patients taken from the clinical observational trial PROGRESS [25]
and three randomized controlled clinical trials of severe sepsis patients (MAXSEP [26], VISEP [27],
SISPCT [28]).

PROGRESS is an ongoing observational study with the purpose of identifying predictors for
the severity of the disease course in CAP patients. Observation time was day of enrolment and four
consecutive days. Follow-up information on survival was available for nearly all patients after 28 days.
By initial study design, a subcohort of 142 severely ill CAP patients (ssCAP cohort) was documented
only on the day of enrolment and at follow up. Data of these patients could not be used for model
development but were used for model validation regarding prediction of 28 d mortality.

Of three SepNet studies conducted to analyze different treatment strategies for severe sepsis or
septic shock, patients with sepsis due to CAP (MAXSEP, SISPCT) or community-acquired respiratory
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tract infections (VISEP) were considered for the present analysis. In all three studies, patients were
monitored daily until death, discharge, transfer to another hospital, or the end of the maximum
observation time of 22 days. Mortality was assessed after 28 days and after 90 days. None of the
SepNet studies showed significant differences between study arms regarding their respective primary
endpoints (28 days mortality or mean SOFA). Therefore, we did not distinguish between study arms
when analysing the single studies. In Table 1, we provide characteristics of these studies. For more
details and metadata we refer to the Leipzig Health Atlas (www.health-atlas.de) and the original
publications of these studies.

Table 1. Study Characteristics. Age and initial Sequential Organ Failure Assessment (SOFA) were
reported as medians and interquartile ranges. * Subcohort of PROGRESS patients without study visits.

Study Age Sex (m/f) Initial SOFA Type of Study Obserl\f;)i(:lu}linme @ 28d Mortality N (%) Clil}:::l:;fiizll:gov
PROGRESS 4327 p 108172 (1?3) Observational study 5 37 (2.0%) NCT02782013
ssCAP * (53 97 6) 104/38 ( 6?8) Observational study 1 8 (5.6%) NCT02782013
MAXSEP (5; 77 4) 152/56 (ST{J 2 Randomized trial 22 39 (18.8%) NCT00534287
VISEP (576,674) 138/65 (7;?12) Randomized trial 22 54 (26.6%) NCT00135473
SISPCT 67.5 300/122 o Randomized Trial » 97 (23.0%) NCT00832039

In our analysis, we use the SOFA score [29] as operationalization of CAP severity [24]. The SOFA
score summarizes six subscores evaluating the function of the pulmonary system (oxygenation),
the central nervous system (Glasgow Coma Scale), the cardiovascular system (mean arterial pressure
or requirement of stimulating treatment), coagulation (platelet counts), liver (bilirubin), and kidney
(creatinine). Every subscore is evaluated on a discrete scale of 0 (best) to 4 (worst). Thus, the SOFA score
takes values between 0 and 24. Missing values of subscores were imputed applying last observation
carried forward (LOCF) method. For the SepNet data, we started with day two after enrolment,
because some SOFA subscores were not available at enrolment.

For PROGRESS, we used data of all five observation days for calibrating the Markov model.
For SepNet studies, sample sizes of pneumonia patients are considerably smaller. Therefore,
we experimented with different time intervals (5, 10, 15, and 20 days) for the calibration of the
model and decided that 15 days is sufficient (see also Appendix A, Figure Al).

2.2. Defining States of CAP Severity

The Markov model to be established describes transitions between different states of the disease.
We define these states based on the SOFA score. In Figure 1, we present the distribution of initial SOFA
scores per study. According to inclusion criteria, the distributions of the SOFA scores from SepNet
studies were similar, whereas PROGRESS patients showed a considerably less severe initial disease
state. To allow estimation of transition probabilities between disease states, it was necessary to form
categories based on the SOFA score with sufficiently large allocation numbers. We chose five states
corresponding to four SOFA score intervals and death as a final state. SOFA score intervals were
chosen in such a way that SOFA distributions of PROGRESS and SepNet data were well represented in
each defined disease state (Table 2).

Table 2. Disease states defined by the SOFA score.

Disease State SOFA Score (SC) Range

S1 0<SC<2
52 2<SC<5
S3 5<5C<9
54 9<SC<24

death —
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Figure 1. Distribution of SOFA scores for all studies on the first study day.

Using this definition, we determined the transition events observed in the first five days in
PROGRESS (Table 3) and the first 15 days in the SepNet studies (Table 4). The majority of patients in
PROGRESS stay in disease states S1 and S2 or switch between them, whereas in the SepNet studies,
the majority of patients are in states 52-54 with few reaching S1.

Table 3. Transitions of disease states observed during the first five days in PROGRESS.

Disease State to From S1 S2 S3 S4 Death
S1 2545 369 0 0 0
S2 879 3180 49 7 2
S3 1 83 99 18 1
S4 0 5 36 158 5

Table 4. Transitions of disease states observed during the first 15 days in the SepNet trials

(MAXSEP/VISEP/SISPCT).
Disease State to From S1 S2 S3 S4 Death
S1 172/109/425 28/28/35 3/3/6 0/0/1 1/0/1
S2 52/47/100 739/664/1308 62/88/155 2/4/5 1/2/3
S3 5/3/6 152/159/323 669/665/1286 60/85/142 2/3/17
S4 0/1/0 8/6/7 120/126/242 548/650/1245 24/24/49

2.3. Establishing the Markov Model

We modelled CAP disease course as a Markov state model considering the five disease states
defined above. We assume that improvements or deteriorations of disease states occur stepwise;
i.e., a deterioration by two disease states requires two deterioration events of one stage each. This
is motivated by the fact that changes in SOFA score require the change of certain physiological
parameters. By this assumption, the number of free model parameters is significantly reduced,
improving identifiability of the remaining parameters. However, since the sojourn times of our disease
states are modelled as continuous random variables, deteriorations are allowed to occur rapidly, e.g.,
overnight, so that changes of more than one disease state within one day are possible. Death serves as
an absorbing state of the entire process. Figure 2 illustrates possible transitions.

The model was parameterized by a matrix of transition intensities Q, which describes the rate of
transition events between two states. Via the Chapman Kolmogorov equation, this translates into a
matrix of time-dependent transition probabilities between two states. At first, we used data of the first
five days of a study to parametrize the model. Since the observation period was considerably longer
in SepNet studies, we also performed fittings using data of the first 15 days with improved results.
Due to differences between the four studies (see Table 1), we fitted them separately.
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Figure 2. Markov model of community-acquired pneumonia (CAP) disease course with four disease
states of increasing severity and death as absorbing state. Disease ameliorations and deteriorations
occur stepwise, while death is possible at any state.

To build the model, we used the R package msm [30]. Parameters were estimated by maximum
likelihood methods, separately for each study. Mathematical details are explained in Appendix A.

2.4. Comparisons with Other Risk Scores

By our modelling, a daily re-evaluation of a patient’s risk is supported. We performed analysis
of receiver operating characteristics of 28 d mortality to assess the benefit of this approach. For this
purpose, we compared the predictive performance of our disease states, CURB-65, and PSI at baseline
with those of the model-predicted overall mortality risk during the observed disease courses of patients
in PROGRESS. The latter was calculated by multiplying survival probabilities of each observation day,
and finally, the survival probability of the transition of day 5 to day 28. Receiver operating characteristic
(ROC)analysis and comparison of areas under the curves (AUC) were performed using the R-package
pROC [31]. We tested whether AUC of our model-based risk assessment is superior to the baseline
alternatives (one-sided test). p-values smaller than 5% were considered significant. We also calculated
95% confidence intervals (CI) of AUCs.

3. Results

3.1. Comparison of Model and Data

After estimating the parameters of our model based on the first five study days, we compared the
distribution of disease states over time predicted by the model with those observed in the clinical data.
Figure 3 shows the results for the PROGRESS study. Good agreement was observed; i.e., patient time
courses were well described by our model.

PROGRESS
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Figure 3. Results of Markov modelling (red curves) in comparison to data of the PROGRESS study
(blue curves). Each subfigure shows the proportion of patients in the respective disease states over the
first five days. The data fit well with the respective predictions of the Markov model.
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Since longer time series were available for the SepNet studies, we considered data from the first
15 observation days for parameter fitting. Results are shown in Figure 4. We again observed a good
and uniform agreement of model and data over time, demonstrating that the model can describe the
disease course over a longer period. The model even extrapolated well for all disease states and death
for days 16 to 20 (see Figure 4, filled circles).
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Figure 4. Results of Markov modelling (dashed curves) in comparison to data of the SepNet studies
(solid curves) characterized by longer time series. Each panel shows the proportion of patients in the
respective disease state over the first 15 days. The filled circles represent model predictions for days
not included in model calibration. The data of the three studies fit well with the respective predictions
of the Markov model.

3.2. Transition Probability Matrices

Since we estimated the transition intensity matrices Q separately for each study, we here compared
the results between the studies and dependence on the number of time points used to calibrate the
model. To comply with the clinical observations, we considered time periods of one day and compared
corresponding transition probabilities between the different disease states. Note that within this
period, it is possible that patients experienced multiple transitions in the model, explaining observed
transitions S1 to S3 or S1 to S4 etc. Results are shown in Figure 5.
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Figure 5. Comparison of transition probabilities between disease states across studies and possible
state transitions. To estimate the probabilities, we used 5 observation days for PROGRESS and 15
observation days for all SepNet studies. Each panel shows the daily transition probabilities from one
disease state (see panel title) to the other possible disease states shown on the x-axis. Good agreements
of transition probabilities between studies were observed.
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Remarkably, the estimated transition probabilities showed similar patterns across studies.
PROGRESS showed stronger deviations from the SepNet trials, while the SepNet trials showed
good agreement of estimated transition probabilities. Moreover, the number of time points used for
parameter fitting had no strong impact on the parameter estimates of the SepNet trials (see Appendix A,
Figure Al). An exception is the VISEP trial, for which stronger heterogeneity of parameter estimates
was observed for the transitions S1 to S1 and S1 to S2 in dependence on the number of time points
used for model calibration.

3.3. Predicting 28 d Mortality

Since we demonstrated that the model can describe disease courses over a longer time period,
we analysed its predictive potential regarding 28 d mortality. Results are shown in Figure 6 for
PROGRESS (left panel) and for the three SepNet studies (right panel). Model-predicted mortality was
in excellent agreement with observations over a period of 28 days. However, prediction was slightly
inferior for VISEP data.
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Figure 6. Comparison of mortality predicted by Markov modelling (dashed curves) in comparison
to data of PROGRESS and the SepNet studies (solid curves). Agreement between model predictions
and data not used for model calibration was excellent (filled circles). VISEP showed slightly

inferior prediction.

3.4. Distribution of Sojourn Times

Based on the estimated transition intensity matrix Q, it is possible to determine the distribution
of sojourn times, i.e., the random time a patient stays in a specific disease state. Results are shown
in Figure 7. Median sojourn times range between 1 day (PROGRESS, S3) and 7 days (SISPCT, S1).
The distribution of sojourn times differed between studies and states. It is shortest for the higher
disease states, particularly S3.
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Figure 7. Distribution of sojourn times for disease states. For SepNet studies, we used the transition
matrix obtained from fitting the first 15 days. Shown are the median and the 25% and 75% quartile of
calculated sojourn times.

3.5. Prediction of Death for Patients with Initial Severe CAP

For validation of the model, we asked how well it could predict 28 d mortality for our ssCAP
subcohort of PROGRESS. Data of this cohort were not used for model calibration. Using the transition
intensities estimated for PROGRESS, we predicted the time course of mortality for these patients.
Predictions were in good agreement with available mortality data (see Figure 8). Moreover, the model
correctly predicted that mortality in the validation subset was higher than in the remainder of
PROGRESS patients; see Figure 6 for comparison.
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Figure 8. Model validation regarding 28 d mortality was performed using the severely ill CAP patients
(ssCAP sub-cohort) of PROGRESS. Predictions and data were in good agreement. Moreover, the model
correctly predicted the increased mortality of ssCAP patients compared to PROGRESS patients with
mostly lower initial CAP severity used for model calibration (compare with Figure 6).

3.6. Clinical Utility of the Model

The major advantage of our modelling is that the individual patient’s risk can be updated, e.g., on
a daily scale. To assess this benefit, we compared the corresponding risk evaluation with standard risk
evaluation at baseline using CURB-65, PSI, or our defined initial disease states. Results of corresponding
ROC analyses regarding 28 d mortality are shown in Figure 9. It revealed that our model-based risk
assessment was superior to the baseline risk assessments (baseline disease states: p = 5.9 x 1074, PSL: p
= 6.2 X 1073, CURB-65: p = 0.024).
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Figure 9. ROC curves for 28 d mortality in the PROGRESS data using established scoring systems
PSI (area under curve (AUC) = 0.78, 95% CI: 0.71-0.86) and CURB-65 (AUC = 0.84, 95% CI: 0.76-0.89)
in comparison to our initial disease states (AUC = 0.76, 95% CI: 0.70-0.83) and our model-based risk
assessment (AUC = 0.89, 95% CI 0.84-0.94).

Using the transition probabilities estimated with our model, it is possible to calculate patient’s risk
of 28 d mortality in dependence on the current disease state. Results are shown in Table 5, separately
for the four studies and in dependence on the current disease state. If, for example, a SISPCT patient is
at disease state S1 at baseline, the 28 d mortality risk is 11%. If the patient deteriorates to S3 the next
day, the 28 d mortality risk increases to 20%.

Table 5. 28 d mortality risk in dependence on study and disease state.

Study S1 S2 S3 S4

PROGRESS 001 001 005 0.14
MAXSEP 010 010 013 025
VISEP 011 013 017 027
SISPCT 011 015 020 0.30

4. Discussion

In this work, we propose a stochastic mathematical model of the disease course of CAP patients.
The model was intended to provide updates of risk assessment for patients at different disease states
during their hospital stay regarding disease deterioration and 28 d mortality. Hereby, the model
can support monitoring of patients and clinical decision making. The model was developed on the
basis of patient time series data taken from four large studies with different initial CAP severity.
Model predictions of the evolution of disease states showed good agreement with observed data for the
calibration data sets and a validation data set. Parameters estimated on the basis of the different clinical
data sets were in good agreement and allowed calculation of clinically interesting characteristics of the
disease course, e.g., sojourn times of disease states.

Initial risk assessment for CAP patients is well established to support decisions on need for
hospitalization, e.g.,, CURB-65 or PSI [5-7] or for intensive care treatment, e.g., IDSA/ATS minor
criteria [10]. However, although recommended [13], evaluation of changes in risk for deterioration
throughout hospitalization is less well established, especially for patients with initially lower risk.
We propose to analyze and improve this issue, applying, for the first time, a (stochastic) Markov model
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of discrete disease states with continuous transition times. Such a model, if successfully applied, would
allow risk assessment updates at any time.

We defined disease states by categories of the SOFA score. Originally, the SOFA score was
introduced to describe the sequence of complications in distinct organs [29] and was later shown to be
useful for the prediction of outcome in critically ill patients [32]. We showed recently that the SOFA
score is also appropriate to characterize disease severity in CAP [24]. To allow reliable estimation of
transition rates, it was necessary to summarize SOFA scores into a limited number of disease states
with sufficiently high allocation numbers. We here considered five states (four defined by SOFA ranges
and death as a possible final state). The first state with SOFA scores less than three was motivated by
the observation that almost no deaths are observed in this group of patients. Nevertheless, boundaries
and numbers of disease states are arbitrary to some extent. Therefore, we also experimented with four
or six states and with different SOFA boundaries of these states. Results of all scenarios were highly
similar (not shown).

In comparison to the model proposed by Rangel-Frausto [23], we refrained from introducing
discharge as an independent absorbing state since we observed a number of deaths occurring after
hospital discharge and a considerable disease heterogeneity prior to discharge, challenging the
assumption that discharged patients are cured completely. Moreover, we do not see an obvious
advantage of introducing this state compared to a low-risk disease state. We also refrained from
modelling single organ failures separately. Since all patients suffered from CAP, SOFA scores are
dominated by the pulmonary subscore. We observed that an isolated model of pulmonary sub-SOFA
dynamics can also be established (results not shown). However, this model cannot describe systemic
complications during CAP and, therefore, lacks clinical utility to our opinion.

The observed good fit of our data demonstrates that the Markov model assumption is valid
for describing disease progression of CAP. This implies that the present disease state determines
deterioration risk within the next 24 h, emphasizing the necessity for daily monitoring and re-evaluation
of patient’s risk. Our model provides insights into the progression dynamics within patient populations.
In particular, estimated transition rates between disease states allow more precise and tailored
study designs, for example, regarding selection of patients leading to the required number of
deterioration events.

Time-continuous Markov models emerged to be preferable to time-discrete Markov models
because they reduce the number of free parameters (transition intensities of non-neighbouring disease
states are zero except for death) while still allowing deteriorations of disease states by more than one
category per day as observed in our clinical data. Our Markov model is homogeneous in the sense that
transition intensities between disease states were assumed constant over time. This assumption is
justified in our situation by the observed good agreement of model and data.

To our knowledge, this is the first application of a stochastic model to describe time courses of
CAP. A similar model for sepsis severity was proposed by Rangel-Frausto [23]. Nonrandom dynamical
models of sepsis are proposed by Chow et al. [33] and by Zuev et al. [34] but are not applied to clinical
time-course data. We previously developed a model of CAP disease course in mice after infection [35],
but translation to the human situation proved difficult since the exact time point of infection and data
from this early phase are not available.

To calibrate our model, we used time-series data of CAP patients retrieved from four different
clinical cohorts. The PROGRESS study is an ongoing observational study enrolling patients hospitalized
for CAP. Since the goal of the study was to investigate variability in innate immune response during
CAP in immunocompetent patients, study-specific inclusion and exclusion criteria led to a younger
and healthier study population with a lower frequency of initially severe CAP and fewer adverse
outcomes [25]. To complement PROGRESS data with data from patients with more critical disease
courses, we included CAP patients with severe sepsis or septic shock retrieved from three randomized
clinical trials of the SepNet study group: MAXSEP, VISEP, and SISPCT [26-28]. Although all studies
showed a good agreement between model and data, the prediction performance of the model was
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slightly inferior for the VISEP data. A possible explanation is that here, community-acquired respiratory
tract infections were considered; i.e., no working diagnosis of pneumonia was available. Moreover,
the study was stopped for safety reasons.

A limitation of our analysis is that consideration of hospital discharge as independent disease
state, probably requiring introduction of hospital readmission, and of patient-specific covariables (e.g.,
age, sex, comorbidities, or individual biomarkers) was not in scope. Including such covariables into
the model by assuming dependence of transition intensities on potentially predictive parameters is
generally possible and warrants future investigation. By this concept, risk predictions made by our
model could be improved and individualized in the future.

5. Conclusions

We showed that the disease course of CAP patients of different severity follows a time-continuous
Markov model; i.e., the deterioration risk of a patient mainly depends on its current state emphasizing
the necessity and feasibility of daily updates of risk assessment for CAP patients. The model correctly
predicts the rate of mortality over 28 days and therefore paves the way to support clinical decision
making and planning of clinical trials. In future work, we plan to refine the model by considering
possible dependencies of transition intensities on predictive covariates or biomarkers for improved
individualized outcome predictions.
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Appendix A

A.1. Details of Markov Modelling

We here describe some details of our Markov Modelling. The equation that describes the
probability transition matrix (PTM) of such a model is the Chapman Kolmogorov equation (Equation
(Al)). In this equation, P is the transition probability matrix, Q the transition intensity matrix, and ¢
is the time. Each entry g;; of the matrix Q corresponds to the transition rate from disease state i to
disease state j. Since we have five disease states, Q is a 5x5 matrix. The last row of Q is zero because
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death is an absorbing state. Since we consider stepwise deteriorations and improvements of disease
state (see Figure 2 in main document), the transition intensity matrix can be further simplified to the
structure displayed in Equation (A2). The equation was solved numerically by a method that makes
an expansion of the matrix exponential for the transition rates.

We used the R-package msm [30] to build the Markov Model. The fitting procedure is based on
likelihood maximization for the unknown parameters.

P(t) = exp(tQ) (A1)
911 912 913 911 Y15 911 912 O 0 g5
921 922 923 Y24 Y25 91 92 93 0 4y
Q=143 932 933 93 935 |=| 0 3 433 3 435 (A2)
9 922 943 Y9aa Ys5 0 0 qy3 qu 4ss
951 952 953 4951 Y55 0 0 0 0 0

A.2. Transition Probabilities of SepNet Studies in Dependence on Number of Observation Days Used for
Model-Calibration
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Figure A1. Comparison of transition probabilities between disease states estimated for the SepNet trials
in dependence on the number of data points used for calibration (5, 10, 15, and 20 days). Each subfigure
shows the daily transition probabilities from one disease state (title of figure) to the other possible
disease states shown on the x-axis. Transition probabilities corresponding to calibration on 15 days are
also shown in Figure 5 of the main document. We added the transition probabilities of PROGRESS for
comparison. Good agreements of transition probabilities between studies and calibration scenarios
were observed. An exception is VISEP showing stronger dependence of estimates on the number of
time points used for calibration.
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