

TU Ilmenau | Universitätsbibliothek | ilmedia, 2020
http://www.tu-ilmenau.de/ilmedia

Lepper, Markus; Trancón y Widemann, Baltasar:

A simple and efficient step towards type-correct XSLT transformations

Original published in: 26th International Conference on Rewriting Techniques and Applications

/ RTA 26, 2015 Warschau, Poland. - Saarbrücken/Wadern : Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2015. - (2015), p. 350-364.
ISBN 978-3-939897-85-9
(Leibniz International Proceedings in Informatics (LIPIcs) ; 36)

Original published: June 2015
ISSN: 1868-8969
DOI: 10.4230/LIPIcs.RTA.2015.350
[Visited: 2020-03-02]

This work is licensed under a Creative Commons Attribution 3.0
Unported license. To view a copy of this license, visit
http://creativecommons.org/licenses/BY/3.0/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/322695468?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.tu-ilmenau.de/ilmedia
https://doi.org/10.4230/LIPIcs.RTA.2015.350
https://creativecommons.org/licenses/BY/3.0/
https://creativecommons.org/licenses/BY/3.0/
https://creativecommons.org/licenses/BY/3.0/
https://creativecommons.org/licenses/by/3.0/

A Simple and Efficient Step Towards
Type-Correct XSLT Transformations
Markus Lepper1 and Baltasar Trancón y Widemann2

1 <semantics/> GmbH, Berlin, DE
2 Ilmenau University of Technology, Ilmenau, DE

Abstract
XSLT 1.0 is a standardized functional programming language and widely used for defining trans-
formations on XML models and documents, in many areas of industry and publishing. The
problem of XSLT type checking is to verify that a given transformation, when applied to an
input which conforms to a given structure definition, e.g. an XML DTD, will always produce an
output which adheres to a second structure definition. This problem is known to be undecidable
for the full range of XSLT and document structure definition languages. Either one or both of
them must be significantly restricted, or only approximations can be calculated. The algorithm
presented here takes a different approach towards type correct XSLT transformations. It does
not consider the type of the input document at all. Instead it parses the fragments of the result
document contained verbatim in the transformation code and verifies that these can potentially
appear in the result language, as defined by a given DTD. This is a kind of abstract interpret-
ation, which can be executed on the fly and in linear time when parsing the XSLT program.
Generated error messages are located accurately to a child subsequence of a single result element
node. Apparently the method eliminates a considerable share of XSLT programming errors, on
the same order of magnitude as a full fledged global control-flow analysis.

1998 ACM Subject Classification D.1.1 Functional Programming, D.3.2 Functional Language
I.7.2 Scripting languages

Keywords and phrases XSLT, type checking, abstract interpretation

Digital Object Identifier 10.4230/LIPIcs.RTA.2015.350

1 Introduction

1.1 XSLT Transformations and Document Types
XSLT, in its different versions, is a standard transformation language for processing XML
documents. There are different implementations of XSLT processors, employing various
technologies. The contribution in this article is about XSLT 1.0. All versions of the language
are Turing complete and fully functional programming languages. “Functional” in the most
obvious sense means that there are no variables which can change state, but instead functions
which can be applied to constant parameters and thereby yield a certain result. These
function calls can be recursive. Functions are called “templates” in the context of the
language specification.

An XSLT program is in most cases used to convert an XML document, serving as the in-
put, into a second XML document serving as its result.1 The templates which are applied to

1 The conversion into unstructured, plain text, or into text structured by other means than XML is also
possible but not covered by this article.

© Markus Lepper and Baltasar Trancón y Widemann;
licensed under Creative Commons License CC-BY

26th International Conference on Rewriting Techniques and Applications (RTA’15).
Editor: Maribel Fernández; pp. 350–364

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2015.350
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M. Lepper and B. Trancón 351

certain elements of the input document are selected by a simple mechanism of pattern match-
ing — either in a fully automated way by pre-defined standard rules, or semi-automatically
after some explicit pre-selection by the author of the program. For writing meaningful pro-
grams, it is therefore a prerequisite that all input documents to a given transformation have
certain invariant structural properties. This is not a technical necessity imposed by the
language: the semantics of XSLT are rather “robust” and as long as no errors are raised
explicitly by the programmer, arbitrary input will be transformed into some output. But in
practice, the document type of the input document will be defined in some precise formalism
anyhow, e.g. as RELAX NG grammar, W3C Schema, or W3C DTD.

In many cases it is required that the output of an XSLT transformation adheres also
to such a precise document type. Of course this can always be checked a posteriori by
validating the result of every transformation explicitly against this result document type.
All cases where the result document violates the intended result document type are caused
by programming errors in the transformation.

Obviously, it is highly desirable to find these programming errors earlier, when construct-
ing the XSLT program. This is not only relevant for performance issues, since validating
always implies total parsing, but also for increased reliability of services based on transform-
ations: XML and XSLT processing are more and more applied to critical data, like business
objects, physical real-time data, medical files, etc.

The general problem is that of type checking: an XSLT program is type correct, if and
only if every input which adheres to a given input type will produce an output which adheres
to a given output type. This problem has been proven to be intractable in the general case
[9]. Furthermore, restrictions of the involved two languages (XSLT and document type
definition) have been defined for which it is solvable, and the complexity of these problems
has been thoroughly analyzed in the last two decades. For surveys see e.g. [11] and [12].

1.2 Fragmented Validation
In contrast to these theoretically advanced studies, this paper presents a totally differ-
ent approach, a very simple and pragmatic idea which turns out to be rather effective for
concrete programming, called fragmented validation (FV). It does not consider type of the
input document at all, but only the consecutive sequences of nodes from the result lan-
guage which occur in the contents of an element somewhere in the transformation program’s
XML representation, and which serve as constant data for the transformation process. The
transformation result will be produced by combining these fragments;2 therefore they must
match the result document type in at least some context. In other words, there must exist
at least one rule in the result document type definition which is able to produce contents
that contains the fragment.

For example, when producing XHTML output, any XSLT code like

<xsl:template ...>
<xsl:.../><xsl:.../><tr>...</tr><xsl:.../><td>...</td>

</xsl:template>

will never produce a valid result: there is no “content model” (i.e. regular expression, see
section 2.1) in the type definition of XHTML which allows the elements <tr> (table row)

2 There are other ways of producing output, e.g. by copying nodes of the input document, or explicit
element construction, but in many cases their role is marginal.

RTA 2015

352 A Simple and Efficient Step Towards Type-Correct XSLT Transformations

and <td> (table data cell) to appear on the same level of nesting. This violation can be
found independently from the contents of the other embedded XSLT commands in this
example. These can produce anything from the empty sequence to arbitrary sequences of
complete elements. So their outcome cannot change the levels of nesting, and cannot heal
the violation.3

That all appearing constant result fragments match the result document type is neither
a necessary nor a sufficient condition for the correctness of the transformation in a strict
mathematical sense: the combination of correct fragments can still violate the result type,
and incorrect fragments appearing in the source may belong to “dead code” and may never
be used. Debugging XSLT transformations is a rather tedious task, in spite of the intended
readability of the “graphical” text format, see next section. We found that not only at about
thirty percent of programming errors are detected a priori by fragmented validation, but
also that the remaining errors of illegal combinations are much easier diagnosed, because
the strategy for debugging applied by the programmers change fundamentally and becomes
much more focused, as soon it is guaranteed that the constant fragments themselves cannot
be the source of typing errors in some generated output.

The algorithm presented here performs simple and comprehensible validation of all result
fragments contained in an XSLT program. This is done by a kind of abstract interpretation,
which operates on sets of states, and pre-figures a possible later parsing process of the result
document. It does so in linear time, when the XSLT program is parsed and its data model
is constructed, “on the fly”, by tracking the corresponding SAX events.

1.3 XSLT Program as a Two-Coloured Tree
The front-end representation chosen by the designers of XSLT integrates the XSLT language
constructs and the constants of the result language seamlessly: both are represented as well-
formed XML structures, which can be interspered in a rather free fashion. The intention is
to make the formatted program easily readable from two different viewpoints, in the style
of a visual ambiguity: the XSLT language constructs can contain fragments of the result
language, as they are to appear in the output, as their operands, and these fragments in turn
can contain XSLT elements which will be replaced by their evaluation result when executing
the transformation.

Therefore an XSLT program comes as a two-coloured XML tree, in which elements from
XSLT and elements from the result language are mixed. The rules for either embedding are
defined atop a categorization of the XSLT elements:

The top element is always a stylesheet element from XSLT.4

This element contains elements from the T or “top” category of XSLT elements.
Some of those and of their children belong to the R or “result element-containing”
category, which can contain result-language elements directly in their contents.
Vice versa, there is the I or “instruction” category5, which can be inserted anywhere

3 This principle is the core of the type safety of XSLT compared to string manipulation languages
like PHP, which produce “tag soup”, and can indeed be a severe obstacle for programmers used to
these, as the long lasting discussion in https://bugzilla.mozilla.org/show_bug.cgi?id=98168 about
“disable-output-escaping” shows.

4 This element can also be called transform, and all definitions must be doubled accordingly. The
following text ignores this synonym for better readability. The nomenclature in the XSLT standard
[14] is a little bit peculiar anyhow, e.g. functions are called “templates”, etc.

5 This strange wording is again taken from the standard; the one character abbreviations of the categories
are ours.

https://bugzilla.mozilla.org/show_bug.cgi?id=98168

M. Lepper and B. Trancón 353

stylesheet/transform

include import output
stripspace preservespace namespace-alias
key decimal-format attribute-set

template

variable param

R

I

T

any result element /
tree of result elements

element fallback if for-each
copy message

choose

when otherwise
apply-templates call-template

with-param

value-of copy-of apply-imports number
text processing-instruction comment
attribute sort

Figure 1 XSLT and result language nesting, with categories.

in such contents, or arbitrarily deeply nested in a result language structure. Later,
when the whole program will be executed, these XSLT elements will evaluate to some
result language elements (“produce” them), which will be inserted into the surrounding
constant result structure.

Figure 1 shows the resulting “sandwich” structure and the possible transitions between
both element sets: each arrow indicates a possible parent-child relationship in an XSLT tree.
Figure 2 shows a typical XSLT source, a bi-coloured tree with pure and mixed sub-trees.
The positions where result language elements may occur in an XSLT structure are limited,
namely the complete contents of the elements of category R; there arbitrary sequences of
result language elements may appear, mixed again with XSLT elements from category I.

By defining an artificial XSLT element eR, which wraps these sequences as its contents,
and which appears (like a normal XSLT element) in the content models of the R elements
as a placeholder for this of embedding, we can integrate those mixed sequences smoothly
into the parsing process of XSLT.

The other way round, starting with an element of the result language, this easy proced-
ure is not applicable, because the I category elements from XSLT can appear ubiquitously
in the result language structure. Therefore the theoretically possible approach of factoring
out all possible interleavings and treat them by constructing the joint deterministic auto-
maton is not feasible in practice, due to combinatorial explosion. Instead, we construct two
independent conventional deterministic automata for both language definitions in the form
of a transition relation and some auxiliary mappings. Simple algebraic operations on this

RTA 2015

354 A Simple and Efficient Step Towards Type-Correct XSLT Transformations

Figure 2 XSLT (white), result (black) and unparsed, two-coloured subtrees of an XSLT program.

Table 1 Content models and calculation of transition relation.

C ::= (E,S) | (C, . . . ,C) | (C| . . . |C) | C? | C* | C+

startState : (E \ {eC, eR})→ S

refTo : S 9 E

collect : C × PS × (S ↔ S) → PS × (S ↔ S)
collect(c1, T, U) = (V,W) collect(c2, T, U) = (X,Y)

collect
(
(c1|c2), T, U

)
= (V ∪X,W ∪ Y)

collect(c1, T, U) = (V,W) collect(c2, V,W) = (X,Y)
collect

(
(c1,c2), T, U

)
= (X,W ∪ Y)

collect(c, T, U) = (V,W)
collect(c?, T, U) = (T ∪ V,W)
collect(c+, T, U) = collect

(
(c,c?), T, U

)
collect(c*, T, U) = collect

(
(c+)?, T, U

)
collect

(
(e, s), T, U

)
=
(
{s}, U ∪ (T × {s})

)
Sacc =

⋃
e∈E

π1
(
collect(ce, {startState(e)}, {})

)
goesTo =

⋃
e∈E

π2
(
collect(ce, {startState(e)}, {})

)

relation allow us to switch between deterministic and non-deterministic modes of operation,
whenever the special parsing situations arise.

By these means the algorithm constitutes a transition relation, which can be evaluated
on the fly when parsing an XSLT source. As soon as for the given input no further transition
is possible, either a validation of genuine XSLT syntax is found, or a fragment of the result
language which is not part of any valid result document.

2 Parsing XSLT Programs With Fragmented Validation

2.1 Validation of the XSLT Program
The algorithm presented here is based on DTDs as the means for defining the structure of
the involved documents. This formalism is specified in the core XML standard [3]. A DTD

M. Lepper and B. Trancón 355

defines (1) a set of string values as element tags, and for every such element (2) a list of
attributes with names, types and default values6, and for every element (3) a content model,
which is an extended regular expression over the set of element names. As ususal, a regular
expression defines an accepted language. In this case this is a set of sequences of element
names, which defines the legal contents of the element under definition.

While the XSLT language is not specified in terms of a DTD, this can easily be con-
structed, and is called DX in the following.7 The corresponding sets of element tags is
EX. Beside the element tags defined in the standard, EX contains an element eD which
represents the top-most level of the document tree (in XML this called “document” and is
an additional level one above the top-most element), and an additional element eR which
wraps all embedded sequences of result elements, as described above.

The structure of the result language must be given by a second DTD, called DR and a
set of element names ER. References to character data in the content models (#PCDATA) are
realized as a reference to some additional, reserved element eC. This is the only element
contained in both sets EX and ER. Their union is E.

Each DTD contains a mapping from its subset of E to content models C, see the defini-
tions in Table 1. Let ce ∈ C be the content model for a given e ∈ E. A content model is an
extended regular expression: the atoms are references to elements; the unary constructors
are option, star and plus; the n-ary constructors are sequence and alternative, which can be
realized by associative binary operators.

In our approach the references to elements in a content model are realized by a pair of
the element’s name e and a state number s ∈ S. These states are unique over all content
models of both DTDs and identify the symbolic state of the accepting automaton after a
complete element with the name e has been consumed in that position. The content model
of the document level is additionally defined to ceD = (stylesheet, sD).

That a state appears in a pair (e, s) in a content model is reflected by (s, e) appearing in
the mapping refTo : S 9 E. Additionally, there is an initial state for every content model,
given by startState : E 9 S, having consumed nothing and thus not in the domain of refTo.

All automata of all content models of both DTDs are realized by the one global relation
goesTo : S ↔ S, together with the set of accepting states Sacc ⊂ S. These are constructed
by the function collect(c, T, U), which performs an abstract parsing process of the content
model c, with T being the set of final states of all preceding parsing steps, i.e. the “incoming
states”, and U being the accumulated transition relation so far.

For each element, this function is started with its whole content model, its start state, and
an emtpy “goesTo” relation, see the last two lines in Table 1. The rules for the different kinds
of content models are written as logical inference rules and can be executed deterministically
by function evaluation. The rule for alternatives c1|c2 simply unifies both sets; the rule for
sequences c1|c2 starts parsing of c2 with the results of c1 and unifies the transition relation;
the rule for c? simply adds the incoming states to the set of final states, thus reflecting the
epsilon case of its parsing. The other combinators are defined by equivalence; finally the
parsing of a reference adds transitions from all incoming state to its own state, which also
becomes the single final state.

So far, goesTo, Sacc and refTo are nothing more than a decomposed representation of
a standard labeled transition graph. Since all epsilon transitions are eliminated on the

6 Attributes are not treated in this article.
7 The DTD in the appendix of [14] is non-normative. We took it as a starting point, but defined slightly

different abstractions.

RTA 2015

356 A Simple and Efficient Step Towards Type-Correct XSLT Transformations

fly, and since XML is basically LL(1), the resulting relation corresponds to a deterministic
finite automaton.8 This decomposition makes parsing look more complicated in the simple,
deterministic case. But it allows to switch into non-deterministic mode by two simple
set-based operations, which are the heart of our algorithm, see the boxed expressions in
Table 2.9

This table shows the operational semantics of the complete parsing process, omitting
tactics for error recovery, which can easily be integrated according to [6]. An XML source
can be seen as a stream of elements from J , which are open tags, close tags and character
data. The nesting of the tags constitute the borders of the encoded element contents. Parsing
means to translate such a stream into a tree-like structure N , which is an algebraic data
type, built from an element tag and the sequence of the element’s children. This is realized
by the function translate from Table 2, which starts the process with eD, and succeeds if
both the accepting state sD of this content model and the end of the input are reached.

A stack frame is a pair of the node currently under construction, and the set of act-
ive states of the accepting (deterministic or non-deterministic) automaton. The parsing
function 7−→ operates on a pair of such a stack and an input stream and is written as
κ / f / b . β 7−→ κ′ / f ′ / b′ . β′. There κ / f stands for a stack or list with last (top) ele-
ment f with the predecessors κ, whereas b . β stands for a stream with the first (head)
element b and tail β.

Corresponding to the tree nature of XML, the overall parsing is realized by a recursive
call of parsers for content models, and the first three rules of table 2 are very similar to
those known from standard tree parsers.

The parsing process can take the following steps:

(open) — Whenever an open tag is found, and at least one of the current states goes to
a state which consumes this element, then a new stack frame is opened and the parsing of
this element is started. This new frame contains the start state of this element as its only
member, so the parsing process begins in a traditional deterministic way. This rule is the
same for XSLT and result elements and can only be taken if the current and the new element
are from the same set; otherwise there is no transition in goesTo.10

(chars) — Character data in the input stream is simply appended to the contents of the
currently parsed element. If it is not totally made of white space characters (indicated by
WS in the formula) then the set of states is modified and reflects the consumption of the
pseudo element eC. This rule is the same for XSLT and result elements.

(charsWs) — Character data which is totally made of white space characters does not
change the set of states. All states which represent “mixed” contents do accept this input
without effect on the further transitions, and states from the other content models will treat

8 XML allows non-deterministic parsing only of empty input sequences, e.g. content models like
“(a*|b*)”, as long as “(a+|b+)” would be LL(1).

9 By employing a library for the manipulation of relations, this algorithm directly describes a practical
implementation.

10 Technical detail: the set of states after this step is needed already here to check the legality of the
input open tag (the set must be non-empty). For optimization, the calculated result is stored in the
stack frame, which from now on reflects the future situation after the successful acceptance of the whole
new element.

M. Lepper and B. Trancón 357

Table 2 Unified parsing process, deterministic and non-deterministic.

J ::= open(E \ {eC, eR, eD}) | close(E \ {eC, eR, eD}) | Chars
N ::= node(E \ {eC} × SEQ

(
N ∪ Chars)

)
frame = N × PS
/ 7−→ / : (SEQ frame)× (SEQ J)→ (SEQ frame)× (SEQ J)

startFrame(b) =
(
{startState(b)}, node(b, 〈〉)

)
refTo−1(b) ∩ goesTo(|s|) = s′ 6= {}

κ / (s, n) / open(b) . β 7−→ κ / (s′, n) / startFrame(b) / β
(open)

refTo−1(eC) ∩ goesTo(|s|) = s′ 6= {} chars ∈ Chars \WS
κ /
(
s, node(a, α)

)
/ chars . β 7−→ κ /

(
s′, node(a, α / chars)

)
/ β

(chars)

chars ∈WS
κ /
(
s, node(a, α)

)
/ chars . β 7−→ κ /

(
s, node(a, α / chars)

)
/ β

(charsWs)

Sacc ∩ s 6= {}
κ /
(
s′, node(a, α)

)
/
(
s, node(b, β)

)
/ close(b) . γ 7−→

κ /
(
s′, node(a, α / node(b, β))

)
/ γ

(close)

refTo−1(eR) ∩ goesTo(|s|) = s′ 6= {} b ∈ ER
κ / (s, n) / open(b) . β 7−→

κ / (s′, n) /
(

refTo−1(b) , node(eR, 〈〉)
)
/ startFrame(b) / β

(x2r)

κ /
(
s, node(x, α)

)
/
(
s′, node(eR, α

′)
)
/ close(x) . β 7−→

κ /
(
s, node(x, α _ α′)

)
/ close(x) . β

(x2r’)

a ∈ (ER ∪ {eR}) b ∈ EXI
κ /
(
s, node(a, α)

)
/ open(b) . β 7−→

κ /
(

goesTo∗(|s|) / node(a, α)
)
/ startFrame(b), β

(r2x)

translate : SEQ J 9 N

translate(j) = n ⇐⇒ startFrame(eD), j 7−→∗ 〈({sD}, n)〉, 〈〉

the input as “ignorable whitespace” and are not affected either.11

(close) — Whenever the expected close tag is found, and at least one of the active states
is accepting, then the top-most stack frame is dropped, the currently parsed element is

11 Note that the rule “A validating XML processor MUST also inform the application which of these char-
acters constitute white space appearing in element content” from the XML specification [3, sect. 2.10],
is somehow ill-defined in the context of XSLT sources. Let “ ” symbolize some white space in the input
text, like in
<xsl:with-param> <c/></xsl:with-param>
Then, together with the result language DTD definitions
<!ELEMENT x (a,b,c)>
<!ELEMENT y (#PCDATA|a|b|c)*>
this whitespace will be ignorable or not, depending on the dynamic context of the later expansion.

RTA 2015

358 A Simple and Efficient Step Towards Type-Correct XSLT Transformations

considered complete and it is appended to the contents of the element parsed one level
above. This rule is the same for any combination of XSLT and result elements on both
positions.

So far the rules are only a complicated implementation of well-known standard parsing.
But the following rules are specific for fragmented validation and represent the topic and
main contribution of this article. They manage the transition between the two sets of DX
and DR, and introduce non-determinism:

(x2r) — Whenever an open tag of the result language element appears while an XSLT
element is parsed, two stack frames are added: the upper one has the artificial element eR
as its growing node, and represents the embedding of a sequence of result elements in the
XSLT elements’ contents. This integration is in a smooth way: no further ad-hoc action or
adjustment are necessary, as the comparison between (open) and the upper and first part
of (x2r) shows.

The second frame represents the result element b and its further contents, in the same
way as in rule (open). The framed part of the formula makes the difference: since we
do not know statically in which context the result elements will be inserted later, when
executing the XSLT program, all states which refer to the result element (i.e. which are
reached by consuming it) are put into the state set of the eR-frame. Here a first source of
non-determinism comes into play.

Then parsing continues normally, according to (close) and (open) (and possibly (r2x),
see below): the contents of b will be completed, and after its close tag all those sequences
of result elements may follow, which may follow in any content model from CR after any
occurence of b. This is achieved because all corresponding states have been entered into the
frame by refTo−1.

(x2r’) — This process continues until the close tag of x is parsed. Now the accumulated
contents of eR are appended to the contents of x, and the stack frame for eR is discarded.12
After this, the rule (close) will apply normally.

(r2x) — Let EXI ⊂ EX be the XSLT elements from the I category, which can appear
ubiquitously in result elements. Whenever a corresponding open tag appears in a result
element’s contents, this is always legal and starts the XSLT parsing process. This is very
similar to the simple rule (open), as the comparison of the formulas shows.

Additionally, the state set of the result element is upgraded by applying the reflexive-
transitive closure of the transition function; see again the framed expression. This reflects
the fact that we do not know how many of the still required/allowed children from the
result content model will later be delivered by the expansion of the XSLT term. This may
be anything from the empty list, up to all the missing rest.

Both kinds of non-determinism combine nicely. The underlying relational operations
can be implemented efficiently as table lookups; the relations depend only on the two DTDs
and their setup time and space complexity grow polynomially with |S| only, hence they can
feasibly be precomputed and cached ahead of time. Time consumption of FV is linear with

12 In this version of XSLT, the upper stack frame created by rule (x2r) could be spared, since the
information s′ is not required after completion of eR: it stands always at a terminal and accepting
position of an XSLT content model. But this does not hold for the general case in which there could
be more than one appearance of eR in a content model.

M. Lepper and B. Trancón 359

the size of the XSLT source, and it can be executed in parallel with parsing. As mentioned
above, as soon as no transition is possible, an error has been detected. Nevertheless, parsing
and FV can be resumed with the next top-level XSLT template element. FV is incremental,
it can be applied to incomplete programs in each phase of programming, and to general
purpose libraries, since it is independent of the input format.

2.2 Generating Diagnostic Information
Whenever the set of active states becomes empty due to the value of the head of the input
stream, either a violation of the XSLT syntax or an invalid fragment of the result language
is detected. In the latter case error information like

Error in xslt file (file id / line number):
The sequence of elements

[tr][xsl:if][td]
cannot produce valid content w.r.t. "xhtml-1-0-strict.dtd"

can easily be derived. A concrete tool can give further hints to the programmer, e.g. print
out all content models which ever contributed to the state set in this stack frame.

2.3 Example
Table 3 illustrates the operation of the algorithm. The top shows content models which are
indeed a small fragment of a typical situation in practice. The informal notation shows the
initial states from startState(e) and the states from (e, s), as defined in Table 1, as exponents.
Below the transition system generated by the algorithm from that table.

The operation of the transition function 7−→ shows on the left side only the element
names and state sets of the stack frames, ie. omits the nodes’ contents, and on the right
only the heads of the input stream. All possibly intervening states and inputs for parsing of
the contents of the nodes are also omitted.

The trace ends with the detection of an error: There is no content model which allows
more than one title element on the same level of nesting.

2.4 Tests
Table 4 shows the results of applying our local analysis FV in comparison to the global
control-flow based analysis from Møller et al. [10] to their test data. Their approach is
referred to as “XSLV” in the following, for a description see the following section on related
work. We used version 0.9 of their tool. The rather tedious mining and preparation of
this real-world test data is described in detail in [10]. We applied the XSLV tool and our
implementation of FV against the XSLT sources of ten of their test cases and the XHTML
1.0 DTD.13

The figures in Table 4 are in no way meant competitive. They only can give an impression
of the possible impact of both tools on programming and debugging practice.

The first numeric column gives the lines of code of the xslt source. The second column
gives the number of errors signalled by XSLV, and the third, labeled “(cf)”, the subset of
those which really can only found by control flow analysis. These are the errors which can

13 Four of the fifteen cases have been excluded because they do not use HTML as their result language;
one test case was not re-producable.

RTA 2015

360 A Simple and Efficient Step Towards Type-Correct XSLT Transformations

Table 3 Example run of the algorithm.

html = 1 head2 , body3

head = 4 (script5 | style6)*,
(title7 , (script8 | style9)*, (base10 , (script11 | style12)*)?)
| base13 (script14 | style15)*, title16 , (script17 | style18)*
)

. . .

h1 = 71 (#chars72 | a73 | b74 | script75)*,
goesTo = { 1 7→ 2, 2 7→ 3,

4 7→ 5, 4 7→ 6, 4 7→ 7, 4 7→ 13
5 7→ 5, 5 7→ 6, 5 7→ 7, 5 7→ 13,
6 7→ 5, 6 7→ 6, 6 7→ 7, 6 7→ 13,
7 7→ 8, 7 7→ 9, 7 7→ 10,
8 7→ 8, 8 7→ 9, 8 7→ 10,
9 7→ 8, 9 7→ 9, 9 7→ 10,
10 7→ 11, 10 7→ 12, 11 7→ 11, 11 7→ 12, 12 7→ 11, 12 7→ 12,
13 7→ 14, 13 7→ 15, 13 7→ 16,
14 7→ 14, 14 7→ 15, 14 7→ 16, 15 7→ 14, 15 7→ 15, 15 7→ 16,
16 7→ 17, 16 7→ 18, 17 7→ 17, 17 7→ 18, 18 7→ 17, 18 7→ 18,
. . .

71 7→ 72, 71 7→ 73, 71 7→ 74, 71 7→ 75,
72 7→ 72, 72 7→ 73, 72 7→ 74, 72 7→ 75,
73 7→ 72, 73 7→ 73, 73 7→ 74, 73 7→ 75,
74 7→ 72, 74 7→ 73, 74 7→ 74, 74 7→ 75,
75 7→ 72, 75 7→ 73, 75 7→ 74, 75 7→ 75

}
Sacc = {3, 7, 8, 9, 10, 11, 12, 16, 17, 18, 71, 72, 73, 74, 75}

κ1 = 〈. . . , (xsl : template〈〉{. . .})〉 / open(script)
7−→ κ1 / (eR〈〉{5, 8, 11, 14, 17, 75}) / (script〈〉{. . .}) / close(script)
7−→ κ1 / (eR〈〉{5, 8, 11, 14, 17, 75}) / open(style)
7−→ κ1 / (eR〈〉{6, 9, 12, 15, 18}) / (style〈〉{. . .}) / close(style)
7−→ κ1 / (eR〈〉{6, 9, 12, 15, 18}) / open(title)
7−→ κ1 / (eR〈〉{7, 16}) / (title〈〉{. . .}) / close(title)
7−→ κ1 / (eR〈〉{7, 16}) / open(xsl : if)
7−→ κ1 / (eR〈〉{7, 8, 9, 10, 11, 12, 16, 17, 18}) / (xsl : if〈〉{. . .}) / close(xsl : if)
7−→ κ1 / (eR〈〉{7, 8, 9, 10, 11, 12, 16, 17, 18}) / open(title)
7−→ κ1 / (eR〈〉{})

never be found by the purely local method of FV. But if the test data is fairly representative,
as claimed in the discussion in [10], then these low figures support our approach.

The last column shows the number of errors detected by our tool, most of them by FV,
enhanced by checks for missing and wrongly used attribute values, based on a similar, but
simpler local strategy. Not considering the (cf) errors, both tools always found the same
errors, and one tool some additionals. The cases when FV “won” are due to implementation
flaws: Theoretically XSLV finds all errors FV can find.

2.5 Execution of the XSLT program
In our implementation fragmented validation is performed when constructing an internal
data model of an XSLT program. In the context of our metatools framework [16], XML
models are driven by DTDs, and rely on the fundamental property that DTD content models

M. Lepper and B. Trancón 361

Table 4 Test results: control flow-based XSLV vs. local-only FV.

Nr Testcase Nickname loc XSLV tool (cf) FV tool
1 poem 36 3 3
2 AffordableSupplies 42 8 8
3 agenda 43 2 1
6 adressebog 76 2 1 1
8 slideshow 119 2 0
9 psicode-links 128 8 2 12

11 proc-def 258 7 1 10
12 email list 243 2 3
13 tip 265 7 2 3
14 window 701 4 1

are specific for element names and do not depend on the context. In this framework, the
tdom tool is a program which translates a DTD into a collection of JAVA sources which
can realize exclusively all well-typed text corpora w.r.t. this DTD: classes are generated for
every element declaration, and for every sub-expression of a nested content model. On all
levels, all constructor methods ensure and all setter methods preserve validity.

In the context of XSLT, this technology is applied throughout, except for the “two-
coloured” lists which combine elements from both sets. They are realized by lists of the
supertype of both tdom models. Since no tdom element instance can be constructed with
such a sequence as contents, the two-coloured nature propagates up the document tree, until
it is absorbed by the synthetic element eR, which combines a two-coloured downside with a
well-typed upside (see Fig. 2).

With this data model the evaluation of an XSLT program becomes a very simple trans-
formation: all subtrees from XSLT must be replaced by their evaluation results; the two-
coloured lists turn into homogeneous ones of result type, and only these must finally be
parsed incrementally into a tdom subtree. All other contents have already been checked
statically when creating the program’s model, by fragmented validation.

3 Outlook

We have presented an enhancement of a standard tree parser algorithm applied to XSLT
sources. Simple algebraic operations on the transition relation reflect the non-determinism
which is induced by XSLT elements serving as parents or siblings of result elements. This
abstract interpretation allows to detect a substantial share of typing errors in sources of
XSLT transformations by an easy to implement “on-the-fly” algorithm.

3.1 Future Work
This kind of abstract interpretation, which operates on sequences of sets of states, seems
promising for further research and possible natural extensions.

First, the treatment of XSLT instructions embedded into output can be differentiated
further, according to their known meaning: for instance, a <comment> element can not affect
the parsing state, and an <element name=...> instruction can be treated as a verbatim
result element, if the name attribute’s value can be determined statically.

RTA 2015

362 A Simple and Efficient Step Towards Type-Correct XSLT Transformations

Also, in a general sense, extensions are possible: assume a sequence mixed from result
and XSLT elements r1, x, r2 is parsed, and the set of states after parsing r1 is s1. Then when
parsing x the rule (r2x) widens the set of states to the set s2 by applying the reflexive-
transitive closure of the transition function, which represents the uncertainty of the future
execution, and for r2 the rule (open) narrows the set of states again to the set s3. From
these sets immediately follows a certain type of the XSLT function x, which in any case
must produce a sequence of elements which lie on a path from some state in s1 to some state
in s3.

In many cases this type information can be exploited. E.g. an XSLT <if> expression with
constant contents can only expand to that contents or to the empty sequence. Similarly,
a <choose> represents the disjunction of its contents. When x is the call of a “named
template”, then all types demanded by all places of such calls can be intersected for inference.

It seems worth exploring how far such a notion of “type” will lead. Possibly not very
far w.r.t. absolutely preventing typing errors, simply due to the proven un decidability of
this problem in general. E.g. as soon as dynamically selected processing is initiated by an
<apply-templates> statement, our approach reaches its limits. But in any case a regular
expression can be synthesized and delivered to the programmer as a hint which sequence
of elements the code of such a “framed” sub-expression, like x in the example above, must
deliver.

In the field of XSLT processing some benchmarks and standard conformance test suites
had been developed, but most of them already have disappeared again. A recent benchmark
framework and test case collection has been released by Saxonica company as open source
project [5]. How far this can be adopted to our “DTD aware” approach is currently under
research. The same holds for the only still available conformance test suite by OASIS [1].
The results of applying them both would be very valuable, but since for our tool the result
document DTD must always be provided, e.g. re-constructed, we expect this to become
rather expensive soon, esp. in the second case with its nearly four thousand test cases.

3.2 Related Work
The problem of type checking XML transformations in a general sense has been studied
thoroughly during the last decade in dozens of papers in the context of data base queries
and of dedicated functional XML transformation languages, but seldom w.r.t. XSLT. For a
survey see [12] and [11].

Very early proposals and influential suggestions can be found in [2]. This paper is purely
theoretical. It translates a very simple subset of XSLT into a collection of formal constraints,
but excludes the implications of XPath navigation and the <apply-templates> matching
mechanism completely.

Tozawa [13] also restricts the analyzed transformation language to a non-Turing-complete
subset of XSLT, excluding XPath horizontal and upwards navigation, and again the implic-
ations in control flow induced by pattern matching. The chosen technique is backward type
inference, which infers the type of all input documents w.r.t. a given result type. It seems
that this interesting approach could not be extended to full-scale XSLT.

A variant called “exact type checking” by its authors restricts types and transformations
until type checking becomes decidable. (It is of course highly desirable that analyses of this
kind would be carried out before the corresponding industrial standardization decisions are
met.) For most advanced results and a survey on this line, see Maneth, Perst and Seidel [8].

The opposite approach is to look at the full functional range of XSLT and execute analysis
as far as possible. This approach is more related to programming practice and thus to our

M. Lepper and B. Trancón 363

FV. The current standard in this field is the work of Møller, Olesen and Schwartzbach [10].
Their approach covers two very different problems: first from the collection of all statements
of the form <apply-templates select="α"> and <template match="β"> in the program,
an upper limit of the control flow graph is derived. (I.e. flow of execution from template to
template, enriched with the change of the “current input focus” from one element tag to a
set of possible element tags.)

All templates are translated into data graphs, which each can produce a certain language
of result trees, and then these graphs are plugged together according to the flow graph from
step one. In a second step it is checked that the resulting overall data graph produces only
output which is in the language of the required result type. For most violations detected,
detailed diagnostic information can be derived. Their solution has been implemented, is
freely available, and has been tested with considerable amounts of real-world test data.

This valuable work plays of course in a different league than our approach. Tellingly,
their paper takes nearly thirty pages to describe the algorithm, excluding the second step
which is cited from an earlier work. Nevertheless, what they can calculate is (naturally) still
an approximation, albeit a very good one. A comparison between of practical test results
with both tools is given in section 2.4 above.

Currently, the most widely used XSLT processors (Xalan, Saxon, XT, libxslt) do not
include any type checking, not even automated validation. The 2.0 version of the XSLT
standard [15] defines a feature called “schema awareness” for XSLT processors. This includes
the ability to read and define schema information in the sense of the W3C Schema language
[4]. The standard foresees this information for explicit validation of subtrees of the generated
output, controlled selectively by the programmer. Currently only the latest versions of some
XSLT engines support this still-evolving standard. While it is arguable from the compiler
construction point of view whether this is the right direction of development (these explicit
excursions to the meta level are called “pragmas” in general-purpose programming languages,
and generally deprecated for portability), the same information could be used in future for
feeding type checking algorithms.

Acknowledgments. A two page extended abstract of this work has been published in the
ICMT 2013 [7]. Many thanks to Anders Møller for giving us access to the XSLV tool and
test cases. And to the anonymous reviewers for valuable hints.

References
1 OASIS XSLT Conformance TC Public Documents. OASIS, 2005. http://www.

oasis-open.org/commitees/tc_home.php/?wg_abbrev=xslt.
2 Philippe Audebaud and Kristoffer Rose. Stylesheet validation. Technical report, Labor-

atoire de l’Informatique du Parallélisme, 2000.
3 Tim Bray, Jean Paoli, C.M. Sperberg-McQueen, Eve Maler, Fran cois Yergeau, and John

Cowan. Extensible Markup Language (XML) 1.1 (Second Edition). W3C, http://www.
w3.org/TR/2006/REC-xml11-20060816/, 2006.

4 David C. Fallside and Priscilla Walmsley. XML Schema Part 0: Primer Second Edition.
W3C, http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/, 2004.

5 Michael Kay and Debbie Lockett. Benchmarking xslt performance. In XML London 2014
– Conference Proceedings, volume 10, pages 23–38. XML London, 2014.

6 Markus Lepper and Baltasar Trancón y Widemann. d2d — a robust front-end for prototyp-
ing, authoring and maintaining XML encoded documents by domain experts. In Joaquim
Filipe and J.G.Dietz, editors, Proceedings of the International Conference on Knowledge

RTA 2015

http://www.oasis-open.org/commitees/tc_home.php/?wg_abbrev=xslt
http://www.oasis-open.org/commitees/tc_home.php/?wg_abbrev=xslt
http://www.w3.org/TR/2006/REC-xml11-20060816/
http://www.w3.org/TR/2006/REC-xml11-20060816/
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/

364 A Simple and Efficient Step Towards Type-Correct XSLT Transformations

Engineering and Ontology Delelopgment, KEOD 2011, pages 449–456, Lisboa, 2011. SciTe-
Press.

7 Markus Lepper and Baltasar Trancón y Widemann. Fragmented validation — a simple and
efficient contribution to xslt checking (extended abstract). In Proc. ICMT 2013, Int. Con-
ference on Theory and Practice of Model Transformations, volume 7909 of LNCS. Springer,
2013.

8 Sebastian Maneth, Thomas Perst, and Helmut Seidl. Exact xml type checking in polynomial
time. In In ICDT, pages 254–268, 2007.

9 Wim Martens and Frank Neven. On the complexity of typechecking top-down XML trans-
formations. Theoretical Computer Science, 336:153–180, 2005.

10 Anders Møller, Mads Østerby Olesen, and Michael I. Schwartzbach. Static validation of
XSL Transformations. ACM Transactions on Programming Languages and Systems, 29(4),
July 2007.

11 Anders Møller and Michael I. Schwartzbach. The design space of type checkers for XML
transformation languages, 2004.

12 Dan Suciu. The XML typechecking problem. SIGMOD Rec., 31(1):89–96, March 2002.
13 Akihiko Tozawa. Towards static type checking for XSLT. In Proceedings of the 2001 ACM

Symposium on Document engineering, DocEng ’01, pages 18–27, New York, NY, USA,
2001. ACM.

14 W3C, http://www.w3.org/TR/1999/REC-xslt-19991116. XSL Transformations (XSLT)
Version 1.0, 1999.

15 W3C, http://www.w3.org/TR/2007/REC-xslt20-20070123/. XSL Transformations
(XSLT) Version 2.0, 2007.

16 Baltasar Trancon y Widemann, Markus Lepper, and Jacob Wieland. Automatic construc-
tion of XML-based tools seen as meta-programming. Automated Software Engineering,
10(1):23–38, 2003.

A Mathematical Notation

The employed mathematical notation borrows from the Z formalism. For convenience, the
following table shows the details which are beyond basic set theory.

A→ B The type of total functions from A to B
A9 B The type of partial functions from A to B
A↔ B The type of relations from A to B
f (| s |) The image of set s under function or relation f
f−1(y) The preimage of value y under function f
r∗ The reflexive-transitive closure of relation r
A×B The product type of two sets A and B, i.e. all pairs

{c = (a, b)|a ∈ A ∧ b ∈ B}.
πn The nth component of a tuple.
P(A) Power set, the type of all subsets of the set A.
SEQ A The type of finite sequences from elements of A
〈〉 The empty sequence
α _ α′ Concatenation of sequences α and α′

a . α A stream(/list/sequence) with element a followed by rest α
α / a A list(/stack) with element a preceded by rest α

http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/2007/REC-xslt20-20070123/

	Introduction
	XSLT Transformations and Document Types
	Fragmented Validation
	XSLT Program as a Two-Coloured Tree

	Parsing XSLT Programs With Fragmented Validation
	Validation of the XSLT Program
	Generating Diagnostic Information
	Example
	Tests
	Execution of the XSLT program

	Outlook
	Future Work
	Related Work

	Mathematical Notation

