
Learning Event Patterns for Gesture Detection

Felix Beier, Nedal Alaqraa, Yuting Lai, Kai-Uwe Sattler
Technische Universität Ilmenau
{first.last}@tu-ilmenau.de

ABSTRACT
Usability often plays a key role when software is brought to
market, including clearly structured workflows, the way of
presenting information to the user, and, last but not least,
how he interacts with the application. In this context, input
devices as 3D cameras or (multi-)touch displays became om-
nipresent in order to define new intuitive ways of user inter-
action. State-of-the-art systems tightly couple application
logic with separate gesture detection components for sup-
ported devices. Hard-coded rules or static models obtained
by applying machine learning algorithms on many training
samples are used in order to robustly detect a pre-defined
set of gesture patterns. If possible at all, it becomes difficult
to extend these sets with new patterns or to modify exist-
ing ones – difficult for both, application developers and end
users. Further, adding gesture support for legacy software
or for additional devices becomes difficult with this hard-
wired approach. In previous research we demonstrated how
the database community can contribute to this challenge
by leveraging complex event processing on data streams to
express gesture patterns. While this declarative approach
decouples application logic from gesture detection compo-
nents, its major drawback was the non-intuitive definition
of gesture queries. In this paper, we present an approach
that is related to density-based clustering in order to find
declarative gesture descriptions using only a few samples.
We demonstrate the algorithms on mining definitions for
multi-dimensional gestures from the sensor data stream that
is delivered by a Microsoft Kinect 3D camera, and provide
a way for non-expert users to intuitively customize gesture-
controlled user interfaces – even during runtime.

1. INTRODUCTION
Non-traditional input devices gain reasonable attention

not only for mobile devices but also for building smart user
interfaces to visualize and explore data. Prominent exam-
ples are motion sensing devices like Microsoft’s Kinect cam-
era or (multi-)touch-screens used in smartphones and tablets.

(c) 2014, Copyright is with the authors. Published in Proceeding of the 17th
International Conference on Extending Database Technology (EDBT 2014)
on OpenProceedings.org. Distribution of this paper is permitted under the
terms of the Creative Commons license CC-by-nc-nd 4.0.

In our previous works we have demonstrated Kinect-based
user interfaces for gesture-controlled interaction with OLAP
databases [3] and graph databases [1]. In both prototypes,
gestures are identified by detecting complex event patterns,
e.g., of the form “if left hand is at position (x, y) and moved
within 2 seconds to position (x + 100, y) then gesture =
swipe”. Such patterns are described as complex event pro-
cessing (CEP) queries and are executed by a data stream en-
gine on a sensor data stream continuously produced by the
Kinect camera. Detected patterns can be easily mapped to
application-specific interfaces as navigation operators, e.g.,
drill-down or pivot on an OLAP cube, or graph traversal op-
erations in a graph database. Similarly, gestures for touch-
based interfaces as described in [4, 5] can be detected.

However, even if most of the gestures used in our demos
have shown to be intuitively, defining corresponding CEP
queries and their parameters has been an arduous trial-and-
error process. Obviously, writing (textual) queries with com-
plex CEP rules is not a user-friendly solution, impeding to
fully exploit the sweet spot of declarative gesture definitions:
the possibility to quickly define or exchange them without
modifying application code. Solving this problem would
simplify the work of application interface programmers and,
even further, enable end-users to define their own gestures
like it is common for keyboard shortcuts to customize con-
trols – increasing the acceptance of such interfaces.

Our contribution is a learning process that requires very
few captured gesture samples only in order to derive event
patterns which are

• robust enough to detect the intended gesture even if
the position or movement of the user differs from the
training samples and

• selective enough to distinguish from other patterns.

We present a solution addressing these requirements in
the following way:

• We describe a learning approach for deriving event pat-
terns from a sensor data stream and generating CEP-
based detection queries automatically.

• We demonstrate how this approach can be used inter-
actively to define new gestures which are detected after
very few repetitions by our engine.

• We integrate this approach into a gesture-controlled
interface for navigating in a database.

668 10.5441/002/edbt.2014.70

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/322695311?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 SELECT "swipe_right"
 MATCHING (
 kinect(
 abs(rHand_x - torso_x - 0) < 50 and
 abs(rHand_y - torso_y - 150) < 50 and
 abs(rHand_z - torso_z + 120) < 50
) ->
 kinect(
 abs(rHand_x - torso_x - 400) < 50 and
 abs(rHand_y - torso_y - 150) < 50 and
 abs(rHand_z - torso_z + 420) < 50
)
 within 1 seconds select first consume all
) ->
 kinect(
 abs(rHand_x - torso_x - 800) < 50 and
 abs(rHand_y - torso_y - 150) < 50 and
 abs(rHand_z - torso_z + 120) < 50
)
 within 1 seconds select first consume all;

 torsoX torsoY torsoZ rHandX rHandY rHandZ
 45.21;166.36;1961.27;-38.80;238.82;1822.28
 45.52;165.01;1961.72;-34.19;242.18;1809.85
 46.41;166.66;1962.06;-43.40;247.94;1784.66
 46.43;165.01;1962.28;-41.77;255.67;1749.81
 47.70;163.58;1963.10;-26.71;261.12;1708.15
 47.28;162.47;1963.95; 7.46;268.41;1666.37
 46.87;160.21;1963.41; 55.50;279.27;1623.10
 47.88;159.74;1964.06;115.67;285.51;1586.52
 49.59;158.18;1964.48;189.70;288.57;1600.58
 50.60;155.84;1964.30;266.81;297.11;1611.36
 51.41;154.77;1963.49;352.69;303.68;1607.77
 51.20;154.26;1962.55;441.28;309.47;1612.19
 50.48;154.63;1961.98;524.74;316.60;1637.53
 48.32;159.31;1960.89;595.35;318.67;1686.02
 48.01;161.80;1960.45;651.49;318.95;1741.35
 47.76;163.37;1959.53;698.53;319.05;1805.54
 46.53;161.74;1957.08;732.56;314.73;1872.58
 45.67;162.10;1956.12;756.19;315.46;1937.36
 44.33;161.65;1954.86;775.07;310.60;1997.73Right Left

"swipe_right"

(800, 150, -120)
100

100

100

100
100

100

(400, 150, -420)

100
100

100

(0, 150, -120)

Y

X (0,0,0)

460

-400850

Z

Figure 1: Gesture Detection by Complex Event Processing

2. GESTURE DETECTION BY COMPLEX
EVENT PROCESSING

Motion sensing devices like the Kinect camera provide an
easy way of detecting body gestures. The development of
application interfaces is supported by middleware solutions
like OpenNI or the Microsoft Kinect SDK which implement
already most of the tasks of detecting and tracking body
skeletons. Based on this, an application can receive a con-
tinuous stream of sensor readings describing the current po-
sition of certain skeleton joints in a 3D coordinate space,
e.g., as shown on the right in Fig. 1.

However, implementing gestures beyond predefined stan-
dard patterns is still a tedious task. In [3] we have already
demonstrated how to simplify this by using our data stream
management system AnduIN with CEP functionalities.

For the purpose of gesture detection from a sequence of
sensor readings we apply the match operator of our AnduIN
system which implements pattern matching using an NFA.
An example of such a pattern detection query is given in the
center of Fig. 1. Events are certain positions of a body part
(in this example the right hand relative to the position of the
torso). These poses are described by spatial regions around
the user’s body (Fig. 1 left). Based on this, gestures are
defined by a sequence of events denoted by the -> operator
together with optional time constraints (in this case within
1 second). As soon as the current input data matches this
pattern, a result tuple is produced (comprising the string
value “swipe_right” in our example) which can be used to
trigger arbitrary actions in any listening application.

Thus, the main goal of the work described here, is to derive
such queries from example data.

3. LEARNING EVENT PATTERNS
An overview of the whole learning workflow is illustrated

in Fig. 2. The user interacts with the tool via a graphi-
cal user interface that guides him through the learning pro-
cess, providing visual feedback during the steps. Kinect
measures are streamed through our AnduIN CEP engine
for (i) a touchless GUI control and (ii) applying necessary
data transformations on-the-fly when new training samples
are recorded. After transforming the sensor data in a user-
independent format, the sample data is stored in a database
for further processing and manual debugging. A density-
based data mining algorithm is applied on each gesture sam-
ple to extract characteristic points describing the gesture

path. Further samples can be added to incrementally im-
prove the results until the user is satisfied with the mined
CEP patterns. Therefore, the mining algorithm is applied to
each sample separately and partial results are merged to the
final gesture description. Usually, 3-5 samples are sufficient
to achieve acceptable results. All gesture patterns are stored
in a database for an optional post-processing step where pat-
terns can be (i) simplified to improve detection times and
(ii) cross-checked to avoid “overlaps”. To deploy gestures,
CEP queries are generated and used in AnduIN to let the
user test and verify detection accuracy. During this process
he is guided with visualizations which support identifying
reasons in case of detection problems. Since gestures are
described through parameters directly in a user-oriented co-
ordinate space, manual fine tuning is easily possible without
a separate re-learning by simply adapting the queries.

3.1 User Interaction
To ease the definition of new gestures, we carefully de-

signed the way users provides input to the program and how
generated information is visualized. While it is acceptable
to start the learning process through console or GUI in or-
der to provide necessary parameter settings, this approach is
impractical when gesture samples shall be recorded. There-
fore, we make use of pre-defined, but configurable gestures
to control the learning tool itself. When the user wants to
record a new sample for a gesture, he triggers the process
with a wave gesture. In order to avoid false measurements
right after the control gesture has been detected, the user has
to move to the starting pose of the gesture he would like to
perform. The actual recording is triggered after the user did
not move for some time and lasts until the user stops at the
end pose. Everything in between is regarded as part of the
gesture and forwarded to the learning component. This way,
the user can record multiple samples consecutively without
having to leave his position in front of the camera.

A swipe gesture with both hands is used to finalize the
learning process and start the testing phase. Therefore, the
gesture CEP queries are generated, deployed in AnduIN, and
the user can verify if his movements are correctly detected.
To visually guide him in this process and support him to
identify possible reasons why a movement was not detected,
the Kinect video stream is displayed, a 3D model is ani-
mated performing the movement, and overlay gesture infor-
mation is visualized, e.g., the 3D windows generated during
the learning phase and paths of tracked skeleton joints.

669

Gesture Miner

Controller

CEP

Gesture
Queries

User

Application

Application Logic User Interface

Gesture Samples

Gesture Learner

Gesture Learner

Query Generation

 SELECT "swipe_right"
 MATCHING (
 kinect(
 abs(rHand_x - torso_x - 0) < 50 and
 abs(rHand_y - torso_y - 150) < 50 and
 abs(rHand_z - torso_z + 120) < 50
) ->
 kinect(
 abs(rHand_x - torso_x - 400) < 50 and
 abs(rHand_y - torso_y - 150) < 50 and
 abs(rHand_z - torso_z + 420) < 50
)
 within 1 seconds select first consume all
) ->
 kinect(
 abs(rHand_x - torso_x - 800) < 50 and
 abs(rHand_y - torso_y - 150) < 50 and
 abs(rHand_z - torso_z + 120) < 50
)
 within 1 seconds select first consume all;

Distance-based
Sampling

Transformation
Right Left

scale

1

1

1 = 1/scale

Z'

Y'

X'

kinect
tx rhzrhx...player rhy ts...

scale = right_lower_arm_length
 = dist(rex, rey, rez, rhx, rhy, rhz)

Kinect Coordinates: (X, Y, Z)
Transformed Coordinates: (X', Y', Z')

Y

X

Z

1 0
1

1 kinect_t
tx' rhz'rhx'...player rhy' ts...

Right Hand : (rhx, rhy, rhz)

rhx - tx
scale

-rhz - tz
scale

- rhy - ty
scale,,)(

(rhx', rhy', rhz') =

Torso : (tx, ty, tz)
(tx', ty', tz') = (0, 0, 0)

yaw

pitchroll

Validation/
Optimization

Gesture Database

Right Left

"swipe right" Y'

X' (0,0,0)

460

-850850

100
10

0

100

(800, 150, -120)

100
10

0

100

(0, 150, -120)100
10

0

100

(400, 150, -420)

Right Left

"Circle"
Y'

X' (0,0,0)

460

-850850

100

25
0

100

(0, 700, -100)

100

25
0

100

(300, 650, -100)

100

25
0

100

(600, 200, -100)

100

25
0

100

(400, -100, -100)

100

25
0

100
(0, -250, -100)

Window Merging

Sample
Data

Sample
Data

Control
Events

Measures

Gesture
Queries

Gesture
Queries

Q
ue

rie
s Events

Measures

Motion Detection

High Level
API

M
easures

Figure 2: Gesture Learning Process Overview

3.2 Data Transformation

Right Left

scale

1

1

1 = 1/scale

Z'

Y'

X'

kinect
tx rhzrhx...player rhy ts...

scale = right_lower_arm_length
 = dist(rex, rey, rez, rhx, rhy, rhz)

Kinect Coordinates: (X,Y,Z)
Transformed Coordinates: (X',Y',Z')

Y

X

Z

1 0
1

1 kinect_t
tx' rhz'rhx'...player rhy' ts...

Right Hand : (rhx, rhy, rhz)
rhx - txscale-rhz - tzscale- rhy - tyscale,,)((rhx', rhy', rhz') =

Torso : (tx, ty, tz)
(tx', ty', tz') = (0, 0, 0)

yaw

pitchroll

Figure 3: Data Transformation

A challenge for expressing gestures robustly is finding a
suitable coordinate system to define CEP patterns that would
detect the same movements even if different people perform
them. Skeleton joint coordinates that are extracted from
the camera video stream are in a camera-related coordinate
system illustrated in black in Fig. 3.

To get position-invariance, all joints coordinates are
shifted by the torso with subtracting its current (tx, ty, tz)-
position from each joint, turning the torso into the new ori-
gin. This enables gesture detection even if the user moves
relatively to the camera. Further, the coordinate axis are
rotated as illustrated in red in Fig. 3. The user’s viewing di-
rection becomes the new X-axis, leading to a East-North-Up
(ENU) ground reference frame as it is used for land vehicles.

The calculation of Roll-Pitch-Yaw (RPY) angles defined in
this system were implemented as user defined operators in
AnduIN. They can be used to easily express movements us-
ing any kind of rotations, e.g., a wave gesture.

scale-invariance is required to detect the same move-
ment performed by users of different height. Therefore, all
coordinates are scaled by the right forearm length, assum-
ing that tall people have longer arms than smaller people,
which turned out to be a good approach in our experiments
when testing the same gestures with children and adults.
The scale factor is calculated as the Euclidean distance be-
tween the right hand and right elbow and remains constant
no matter how the user is oriented in front of the camera.

Note that for applying all transformations, only a single
step needs to be performed on the incoming data stream.
Hence, we defined a kinect_t view letting AnduIN calculate
all coordinates on-the-fly. Other transformations are possi-
ble with this declarative approach, e.g., expressing joints
with Euler angles, but are out of the scope of this paper.

3.3 Gesture Learning
The key idea behind our approach for learning gestures

is the interpretation of a gesture as a sequence of poses.
As discussed in Sec. 2, each pose can be described by spa-
tial regions where involved skeleton joints are located. Cur-
rently, we express these regions as multi-dimensional rect-
angles (“windows”), having a center point determined by all
(x, y, z) joint coordinates and a width in each dimension
representing possible deviations. Other representations are
possible but we’ve chosen these fixed rectangular boundaries
since they can be easily expressed by range predicates. This
facilitates query generation and the visualization of these
“detection conditions” to allow simple debugging as well as
manual parameter adaptions later on. Poses are combined
by sequence CEP operators to express the gesture path.

3.3.1 Distance-based Sampling
Since the Kinect sensor stream delivers tuples at a rate of

≈30 Hz, taking each measure as separate pose is impracti-
cal for two reasons: First, using many CEP patterns for de-
scribing one gesture increases detection complexity. Second,
gesture samples are overfitted, leading to low detection rates
for slightly different movements expressing the same gesture.

670

max_dist

Start0
w00

End0
w0n

w01 ...
w0i

Start1
w10

w11

...
w1i

End1
w1n

Endm
wmn

Startm
wm0

scale

Figure 4: Gesture Learning

Therefore, we implemented a distance-based sampling tech-
nique that is comparable to density-based clustering [2]. At
the top of Fig. 4, two gesture paths are illustrated. Each
tuple is visualized as small rectangle. The goal is to obtain
window definitions as shown at the bottom of Fig. 4.

Similar points are clustered together in one window based
on a distance metric, i.e., a function that is calculated be-
tween two points. The first tuple is used as initial cluster
centroid and as reference for calculating future distances. A
new window is added and used as next reference as soon as
a new measure point differs significantly from the last refer-
ence cluster, i.e., its distance exceeds a max_dist threshold.

The distance function is configurable to express several
gesture semantics, e.g., the Euclidean distance can be used
to express spatial differences between successive poses, or
metrics like “every x tuples” can be used for time-based con-
straints. Distance thresholds are automatically calculated
relative to the whole gesture path, e.g., “at least x% of the
total deviation observed’ ’.

3.3.2 Window Merging
When the same gesture is repeated multiple times, recorded

samples usually differ slightly. Therefore, relevant clusters
that have been separately extracted for all paths have to be
merged in order to obtain a final gesture description which
is general enough to detect all of them. To extract rectangu-
lar spatial regions, we calculate minimal bounding rectangles
(MBR)s around all cluster centroids with the same sequence
number (bottom of Fig. 4). This step can be executed in-
crementally and is useful for detecting situations where a
new sample differs too much from previously recorded ones,
allowing us to issue a warning in this situation. To gen-
eralize gesture patterns further, another scaling step can be
performed by increasing the rectangles’ width in each dimen-
sion. But scaling them too much introduces the overlapping
problem, i.e., patterns of different gestures detect the same
movement. This problem usually reveals fast when mined
CEP patterns are visualized during the testing phase. It can
be easily solved by manually adding additional constraints
to generated queries that separate conflicting gestures.

3.3.3 Outlook: Validation & Optimization
An optional post processing step can be applied to check

final gesture patterns. Intersection tests can be performed
on windows to determine if the overlap problem occurs. Fur-
ther, patterns can be optimized, e.g., by merging windows
to decrease the detection effort or by eliminating certain co-
ordinates that are not relevant for the recorded gesture.

Figure 5: 3D Model

3.3.4 Query Generation
Finally, a query has to be generated for the CEP engine.

Therefore, the following range predicates are generated for
each pose’s MBR: j denotes the joint involved in the gesture,
i its possible coordinates, center the MBR’s center point,
and width the MBR’s width in that coordinate direction:∧

j∈joints,
i∈{x,y,z}

abs(centerj,i − coordj,i) < widthj,i

Predicates of different poses are joined with nested sequence

(->) operators where the first one is directly applied on the
transformed stream kinect_t. The output tuple sent to the
application on gesture detection is configurable. Usually it
contains the gesture name and – if required – some mea-
sures that are calculated directly on the stream during the
detection process, e.g., joint positions or movement speeds.

4. DEMONSTRATION
During the demo session we will bring a computer equipped

with a Kinect camera and running graphical applications
that can be controlled by users via gesture commands for
navigating through a graph and an OLAP database [1, 3].
Demo visitors will get the opportunity to define new ges-
tures using a tool that implements our presented approach
for learning gesture definitions. The tool provides insight in
each processing step and uses an animated 3D human body
model (Fig. 5) for visualizing mined gesture patterns. Ges-
ture parameters can be manually adjusted after the learning
process which is reflected in the model to render the effects
graspable. Newly defined gestures can be instantly tested by
each visitor by exchanging the applications’ pre-defined nav-
igation operations during runtime, demonstrating the full
flexibility of the declarative gesture detection approach.

5. REFERENCES
[1] F. Beier, S. Baumann, S. Hagedorn, H. Betz, and

T. Wagner. Gesture-Based Navigation in Graph
Databases – The Kevin Bacon Game –. BTW ’13, 2013.

[2] M. Ester, H. peter Kriegel, J. S, and X. Xu. A
Density-Based Algorithm for Discovering Clusters in
Large Spatial Databases with Noise. In KDD, 1996.

[3] S. Hirte, E. Schubert, A. Seifert, S. Baumann, D. Klan,
and K.-U. Sattler. Data3 - A Kinect Interface for
OLAP using Complex Event Processing. In ICDE,
April 2012. Video: http://youtu.be/DROXI0 wDRM.

[4] S. Idreos and E. Liarou. dbTouch: Analytics at your
Fingertips. In CIDR, 2013.

[5] A. Nandi, L. Jiang, and M. Mandel. Gestural query
specification. Proc.of the VLDB Endowment, 7(4), 2013.

671

