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4.3.1 Introduction

Observing the literature on real-world multiobjective optimization problems, one might notice
that many practical applications exhibit considerable heterogeneity regarding the involved
objective functions. This working group collected examples of such problems, characterized
the kind of heterogeneity that may be found, and identified suitable benchmarks and potential
challenges for respective optimization algorithms.
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4.3.2 An example

Let f1, f2 : Rn → R be nonlinear (objective) functions and let f3 : Rn → R be a linear
objective function. Moreover, let Ω ⊆ Rn be the constraint set. Based on these let us consider
two multi-objective optimization problems:

min (f1(x), f2(x)), s.t. x ∈ Ω and (P1)

min (f1(x), f3(x)), s.t. x ∈ Ω. (P2)

It is clear that both (P1) and (P2) are classified as nonlinear multi-objective optimization
problems. If one applied a weighted sum method the scalarized single-objective function
remains nonlinear. Therefore, there is no added difficulty (or simplicity) due to the hetero-
geneity of the objectives in (P2) compared with (P1). Homotopy-based methods [13], on the
other hand, can use the linearity of objective f3 in an efficient way, and therefore, (P2) can
be solved using such methods in an easier way (compared to the nonlinear problem (P1)).
(P2) can also be easier to solve using population-based heuristics. A well-known example is
the benchmark problem ZDT1 (or ZDT4) where NSGA-II first finds the individual minima
of the first, linear objective function, and then spreads along the efficient front.

4.3.3 Motivating Applications

Multiobjective capacitated arc routing problem. Lacomme et al. [19] and Mei et al. [23]
consider the multiobjective version of capacitated arc routing problems (CARP). These
find application in optimization of salting and removing the snow in the winter or in waste
collection by a fleet of vehicles. They consider two objectives, namely the total cost (time) of
the routes, which is related to minimization of the total operational costs, and the makespan,
i. e., the length of the longest route, which is related to the satisfaction of the clients. Clearly
the two objectives differ by mathematical form – sum or maximum of the routes’ costs. This
difference may also influence the landscapes of these objectives and thus influence their
practical difficulty. Consider for example the typical insertion or swap moves for CARP.
Such moves modify two routes at a given step. In order to improve the makespan objective
the longest route has to be improved, so it has to be one of the modified routes. This means
that there are in general less potential moves that could improve this objective and local
search may stop at a local optimum very fast. For the total cost objective, on the other hand,
many moves may result in an improvement. Please note that this situation is similar to the
optimization of either linear (weighted sum) or Chebycheff scalarizing functions. The latter
type of functions use a maximum operator. Jaszkiewicz [17] observed that linear functions
are easier to optimize than Chebycheff ones in the framework of a multiple objective genetic
local search algorithm.

Multiobjective chemical formulation problem. Based on communications with Unilever
plc., Allmendinger and Knowles motivated their recent work on heterogeneous evaluation
times of objectives [1] using an example from a chemical formulation problem: “We wish to
optimize the formulation of a washing powder, and our two objectives are washing excellence
and cost. In this case, [...] assessing washing excellence may be a laborious process involving
testing the powder, perhaps on different materials and at different temperatures. By contrast,
the cost of the particular formulation can be computed very quickly by simply looking up the
amounts and costs of constituent ingredients and performing the appropriate summation”.
Earlier work by the same authors [2] stated that heterogeneous evaluation times could be
associated with other lengthy experimental processes such as fermentation, or might occur
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because of a need for subjective evaluations from experts. In both studies (ibid.), the authors
consider a variety of algorithmic approaches to handling objectives with different “latency”,
including use of pseudofitness values, and techniques based on interleaving evaluations on
the slower and the faster objective(s).

Multiobjective traveling salesman problem with profits. Jozefowiez et al. [18] consider the
multiobjective traveling salesman problem with profits. The two objectives are minimization
of the tour length and maximization of the collected profits. The tour does not have to
include all nodes. TSP with profits is a well known combinatorial problem with multiple
applications [10]. Although it is multiobjective by nature, it is usually solved by aggregation
of the two objectives, which not only differ by mathematical form but also have different
domains. The tour length depends on both the selected cities and the chosen tour, while the
profit depends only on the selected cities. Furthermore, the two objectives correspond to two
different classes of combinatorial problems. The authors used two sets of moves. The first
set optimizes the tour while the second set modifies the set of visited nodes. An interesting
observation is that the higher the number of selected nodes, the more difficult is the related
TSP subproblem, i. e., optimization of the tour.

Multi-objective optimization in the Lorentz force velocimetry framework. Lorentz force
velocimetry (LFV) is an electromagnetic non-contact flow measurement technique for elec-
trically conducting fluids. It is especially suited for corrosive or extremely hot fluids (glass
melts, acidic mixtures, etc) that can damage other measurement setups [30]. The magnetic
flux density B is produced by permanent magnets and an electrically conducting (σ) fluid
moves with a velocity v through a channel. The magnetic field interacts with the fluid
and eddy currents develop. The resulting secondary magnetic field acts on the magnet
system. The Lorentz force FL breaks the fluid and an equal but opposite force deflects the
magnet system, which can be measured. It holds that FL ∼ σ · v̄ · B̄2. Fluids with a small
electrical conductivity produce only very small Lorentz forces. Thus, a sensitive balance
system is necessary for measurement. This limits the weight of the magnet system (we use
the magnetization M as surrogate) and causes external disturbances to have a high influence
on the force signal. In order to increase the force to noise aspect ratio, the objective function
has to take into account two conflicting goals: maximize the Lorentz force and minimize the
magnetization.

min
(
f1(x)
f2(x)

)
=
(
−FL(Φ,Θ,M)∑8

k=1 Mk

)
such that

Φi ∈ [−π, π], i = 1, . . . , 8,
Θj ∈ [0, π], j = 1, . . . , 8,
Mk ∈ [0, 106], k = 1, . . . , 8

The Lorentz force is thereby calculated by a time consuming (20–120 s) simulation run
while the magnetization can be calculated analytically. In the above optimization problem
Φ ∈ R8 and Θ ∈ R8 describe the direction of the magnetization vector. Both functions are
assumed to be smooth. The derivatives of the second objective can be easily determined
while already the first derivative of the first objective can only be approximated by numerical
differentiation. As this requires in general many functional evaluations, it should be avoided.
The second objective is even linear and also the feasible set is a linearly constrained set (there
are only box constraints). The first objective is nonlinear and has locally optimal solutions
which are not globally optimal.
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Portfolio optimization. The portfolio optimization problem is formulated as a bi-criterion
optimization problem, where the reward (mean of return) of a portfolio is maximized, while
the risk (variance of return) is to be minimized. Practical portfolio optimization problems
use extensions to the Markowitz model, and these often use several risk measures, e. g.,
quantile-based risk measures [3]. These measures replace variance in the standard mean-
variance model, thus leading to an entire family of mean-risk portfolio selection models. This
makes the problem heterogeneous as the first objective is linear and the second objective
has stochastic terms. Many other practical portfolio optimization formulations even use
a tri-objective problem so as to find trade-offs between risk, return, and the number of
securities in the portfolio [4], which is even more heterogeneous (continuous, stochastic,
and integer-valued functions are involved). An overview on extended Markowitz models for
further reading can be found in [29]. Conditional values at risk and satisficing constraints
can also be incorporated.

Multi-objective inventory routing. The inventory routing problem (IRP) describes a gen-
eralization of the classical vehicle routing problem (VRP), in such that delivery volumes, i. e.,
the quantities of the products delivered to customers in a logistics network, are considered to
be additional variables. While early research on this problem can be traced back to the 1980s
[9], it has only recently been investigated in its true formulation as a multi-objective problem
[12]. The bi-objective formulation of [12] introduces two objectives: the inventory levels held
by the customers in the network are to be minimized (a typical consideration in just-in-time
logistics), and the costs for transporting the goods to the customers are minimized. Obviously,
the two criteria are in conflict with each other. A decision support system for this biobjective
IRP is visualized in [16]. There, it could be observed that the minimization of the inventory
levels is of lower practical difficulty than the minimization of the routing costs. The reasoning
behind this is based on the observation that delivery volumes simply are the setting of a
single variable value for each customer, and the subsequently held inventories are directly
affected by the amount of delivered products. However, the solution of the resulting VRP
is difficult even for small data-sets, and in practical cases with reasonable running time
restrictions, only (meta-)heuristics appear to be promising solution approaches [15].

Interventional radiology in medical engineering. An essential component of interventional
radiology is the procedure of minimally invasive therapeutic interventions, for example in
the vasculature. Since the line of sight is interrupted, the interventional material used in
these procedures, e. g., catheters, guide wires, stents, and coils, are tracked by imaging
techniques. In this application we consider the deformable 3D-2D registration for CT. With
the considered method the patient motion during the intervention can be corrected. Only
such a procedure can reconstruct artifact-free volumes showing the true position of the
interventional material. A bicriterial approach is taken in [11], which is based on raw data
and adapts the position of the prior volume immediately to the position included in the
raw data without a reconstruction. One objective is the sum of squared differences in raw
data domain and the other is a regularization term which originates from physical models
for fluids and diffusion processes. An application of a gradient method to this bicriterial
problem would require the solution of an implicit differential equation for the computation
of a gradient direction. In order to reduce the inhomogeneity of the objectives the bicriteria
optimization is done in an alternating manner. The raw data fidelity is minimized by a
conjugate gradient descent and the resulting vector fields are then convolved with Gaussian
kernels to realize regularization. This alternation between the two objectives is only possible
using a special linking term combining both objectives. With this technique one gets the
required images with high quality in a faster way.
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4.3.4 Aspects of Heterogeneity

Functions of multi-objective problems may differ in several, usually interconnected aspects,
of which the following could be identified:

Scaling. An objective function’s range of values may be quite different from the range for
other objective functions of the problem.

Landscape. Objective functions may differ quite considerably in basic features, as their
degree of multi-modality, presence of plateaus, separability, or smoothness. An even richer
description can be achieved by calculating empirical summary characteristics such as fitness-
distance correlation, auto-correlation, or the numerous features developed under the term
exploratory landscape analysis (ELA) [24]. These require evaluating a space-filling sample
drawn from the domain of the multi-objective problem. Such features may be less intuitive
than theoretical properties, but nonetheless they are designed to correspond to the practical
performance of heuristic optimization methods, and thus provide valuable information about
the function. However, current ELA features are designed for individual objectives and
the design of specific features capturing the multiobjective problem characteristics, like e.g.
front shape, local fronts etc., is still an open research topic. The relationship between the
individual ELA features and multiobjective problem characteristics would be very helpful in
assessing the influence of objective heterogeneity.

Evaluation time. Each objective or constraint function of a multi-objective problem may
take a different amount of time to evaluate. These differences may result from different
theoretical complexity of the functions, different size of the domain of the functions (see
Domains below), or other differences. In practical problems, the heterogeneity of evaluation
times could be large, for example if one objective function was a simple sum while the other
one was evaluated by conducting a physical experiment [1, 2]. A further point related to
evaluation time is that some functions may be computed more quickly if another solution,
whose function value is known and differing in the values of a small number of decision
variables, is available. In some cases the ability to evaluate efficiently the objective functions
by computing the difference (or delta) from an existing solution is very important (e. g. in
symmetric TSP) for local search methods.

Theoretical and practical difficulty. Some functions may be more or less difficult to optimize
in terms of the number of solutions that must be explored in order to find an optimum (e. g.,
using a local search or other iterative search method). Differences in practical difficulty
between the objectives could be a result of different theoretical complexity of the functions,
or different domain sizes, or different properties of the fitness landscape.

Domains. Let us consider the binary relation “intersects with” between all pairs of domains
of the objective functions and constraints as a graph. This graph may have only one connected
component, or there would be no conflict between some of the functions. However, the
domains do not necessarily have to be completely identical, either. This holds especially
for constraints, which usually concern only a subset of the variables. Consequently, not all
functions have to be defined on variables of the same data type.

Parallelization. Each objective function could have different restrictions regarding the
amount of parallelization. E. g., some objective functions might require physical equipment
or software licenses, which restrict the number of function evaluations that can be executed
in parallel.
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Problem class. It may be known that some objective belongs to a different problem class
than another. Examples are the aforementioned TSP and shortest path.

Analytic form vs. black box. Some objective function may be available in analytic form,
while another may be available only as a black box. This usually implies that the evaluation
time differs considerably between the objective functions (see above). Moreover, while for
the analytic functions the derivatives can be calculated, they can only be approximated for
black-box functions using numerical differentiation.

Determinism. Some objective functions of a problem may be stochastic, while others might
be deterministic.

4.3.5 Benchmarks

For investigating this topic in controlled experiments, “artificial” benchmark problems are a
useful tool. Here we argue which existing benchmarks exhibit heterogeneity and how even
more heterogeneous ones could be constructed.

Continuous benchmarks. In the area of evolutionary multi-objective optimization a large
number of continuous test instances are collected in [14]. These have different landscapes as
for instance one objective is linear and the second one is highly nonlinear. This is used to
create convex, non-convex, mixed convex-concave, and multi-modal problems. The objectives
in ZDT, SZDT, RZDT, and WFG test problem instances are heterogeneous. One of the test
functions is linear (or piecewise linear) while the other objective(s) are highly nonlinear and
multi-modal. DTLZ test problem instances, on the other hand, use similar objective functions
(using sine and cosine terms) and hence are not heterogeneous at first sight. They might
differ in terms of ELA features, however. Simple benchmark functions like e.g. the Schaffer
or Binh problems are homogeneous, though. Instances with differing evaluation times can
be easily constructed by inserting a time delay in the respective functions. Moreover, noise
can be added to a subset of the objectives in order to address heterogeneity in terms of
determinism as discussed above.

KP benchmarks. We carried out some preliminary experiments to construct heterogeneous
discrete problems. The bi-objective unidimensional 01 knapsack problem (KP) was used as a
basis for these investigations. Its objective is to optimize ~f = (max

∑n
j=1 c

1
jxj ,

max
∑n
j=1 c

2
jxj)T under the side constraints

∑n
i=1 wjxj ≤ ω and xj ∈ {0, 1}. Four families

(A/B/C/D) of instances are already provided by the MOCOlib [25]. Among them are family A,
where c1

j , c
2
j are randomly generated for i = 1, . . . , n (1 ≤ c1

j , c
2
j ≤ 100), and family C, which

contains patterns (plateaus where li is the length and vi is the value) created by choosing
vi randomly in {1, . . . , 100}, c1

1 = c1
2 = . . . = c1

l1
= v1, and c1

l1+1 = c1
l1+2 = . . . = c1

l1+l2 = v2.
In [8] it was observed that the patterns tend to make the MOCO problem harder to be
solved. So, our preliminary impression is that the patterns provide a way to introduce a
form of heterogeneity in functions.

We also constructed some new families by combining different existing ones, e. g., by
taking objective 1 and resource constraint from family A and objective 2 from family C. This
way, we obtained five new families, called AC, AL, AZ1, AZ12, and AZ3. In preliminary
experiments with a solver taken from [5, 6], the comparison of results obtained on A, AZ12,
and AZ3 indicated that the presence of “null” plateaus seems to affect the performance of
the solver negatively. More research on this topic shall follow.
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Constraint satisfaction benchmarks. Max-SAT-ONE [28, 22] is an example of a bi-criterion
constraint satisfaction problem with objectives heterogeneous in their (assumed) computa-
tional complexity class. The first objective is NP-hard, while the other objective is a simple
sum over variables and is hence linear.

Max-SAT-ONE is a relative of the logical Satisfiability (SAT) problem, an archetypal
decision problem with a central role in theoretical computer science as the first to be proved
NP-Complete [7]. In an instance of the SAT problem a number c of logical clauses involving
a number n of Boolean variables are presented. The problem is to determine whether there
is an assignment to the variables that satisfies all the clauses. The optimization form of the
problem, known as MAX-SAT, is also well-known. The problem, the subject of intensive
research for a number of years, follows the same form as SAT but for the objective, which is
now to maximise the number of satisfied clauses. The problem is NP-hard, and examples of
techniques developed for the problem can be found in [20, 27].

Max-SAT-ONE has been studied in the context of constraint programming [22] and
decomposition methods in multiobjective optimization [28]. The first objective is that of
MAX-SAT, while the second one is to maximize the number of variables with an assignment
of TRUE. This leads to a discrete Pareto front with at most n distinct Pareto optimal points.

TSP benchmarks. One of the possibilities is to use a MOCO problem with objectives defined
mathematically in the same way, but with different distribution of parameters. Paquete
[26] and Lust and Teghem [21] proposed a set of travelling saleperson (TSP) instances with
various classes of objective functions:

Euclidean instances: the costs between the edges correspond to the Euclidean distance
between two points in a plane, randomly located from a uniform distribution.
Random instances: the costs between the edges are randomly generated from a uniform
distribution.
Clustered instances: the points are randomly clustered in a plane, and the costs between
the edges correspond to the Euclidean distance.

They also proposed mixed instances: the first cost comes from the Euclidean instance while
the second cost comes from the random instance. They observed some differences in behavior
of the multiobjective algorithms for these instances. The Lin-Kerninghan heuristic used in
the first phase required significantly more time for random than for Euclidean instances.
The Pareto local search used in the second phase was on the other hand faster on Euclidean
instances due to much lower number of efficient solutions. The time performance of mixed
instances was in between in both cases.

The above mentioned multiobjective traveling salesman problem with profits [18] is an
interesting candidate for discrete benchmark problem with heterogeneous objectives. It is
relatively simple in definition, based on well studied TSP problem, and contains several
aspects of heterogeneity – different mathematical definitions, different difficulty, different
domains.

4.3.6 Conclusions and Outlook

Our study suggests that heterogeneity between the objectives of a multiobjective optimization
problem is both common and yet little understood (or even considered) in the literature. We
have made a modest start on providing motivating examples and beginning a characterization
of this complex feature. There seems to be a rich vein to investigate further, and much work
to do in proposing and testing suitable methods.
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