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Abstract One of the prevailing theories about language during the last decades
considers human language as a behavior for communication purposes. From
this point of view, language use plays a major role in the communication and
language development process. On the other hand, if behavior and intention
are associated, as it has also been proposed from several disciplines, language
can be seen as a behavior aimed at communicating intentions. Following these
theoretical foundations, we propose a model based on an evolutionary process
combined with a planning process to develop a limited spatial language with a
syntactical structure in a team of artificial agents. Syntax is induced by means
of a grammar and the grammar itself evolves in order to reach a syntactical
agreement in the team. Evolution is implemented by adapting an evolutionary
algorithm where each agent in the team manages a population of chromosomes
that represent possible grammars. Grammars can be used by agents to gener-
ate utterances which are subsequently applied in language games to describe
spatial relations. A planning process builds the sentences, but agents select the
syntactical alternatives according to their current communicative intentions.
Results in two different linguistic task show how a shared grammar can be
developed in the group of agents and show how grammars helps to present the
language that is being evolved in a way similar to natural language.
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1 Introduction

In the last decades there has been an increasing interest in the study of com-
plex languages, including human languages, by means of computational mod-
els. These models can help researchers both to understand important issues
on human languages, or they can be used to develop artificial languages for
artificial organisms (agents or robots). The model we present in this work falls
within the second approach. Our model does not try to explain features of
human languages or their origins. Rather, what we do in this work is to select,
adapt, and use some hypotheses about human languages in order to propose
a complex process of language evolution for a team of artificial agents. Ar-
tificial agents (or eventually robots) with a complex communicative system
that develops autonomously, without having to be explicitly told how to use
a language, could increase the autonomy and flexibility of agents performing
diverse tasks. In particular, we study how a team of agents can develop a
limited spatial language with a syntactic structure. A spatial language is basi-
cally a set of sentences which are focused on communicating information about
objects and their relative positions. Spatial sentences share syntactic and se-
mantic properties with other natural language sentences, but usually spatial
sentences involve a spatial perspective [1]. Quoting Schober: “the speakers de-
scribing locations can speak from their own point of view, from their partner’s
or from another perspective which avoid the choice” [2].

The rest of the paper is structured as follows: in Section two a review
about related works is showed. Section three describes the two evolutionary
algorithms which are at the core of the proposed model will be described.
Section four describes a basic problem to be solved and the setting is speci-
fied. Sections five and six explain the model in depth. Section seven analyzes
the results for the basic problem. Section eight proves the model in a more
complicated problem and analyzed results in this case. Finally, in Section nine
we draw some conclusions and propose some interesting lines of work for the
future.

2 Related Work

Initial works in the topic of spatial language were logically devoted to create vo-
cabularies. A pioneer work about a self-organized spatial vocabulary developed
by a group of agents was proposed in [3]. In this work, agents have to iden-
tify each other using names or simple spatial descriptions in two dimensions.
The proposed model follows the hypothesis that language is an autonomous
adaptive system which emerges by means of a self-organizing process. In [4],
some strategies for the simulation of vocabulary agreement are analyzed in the
context of a simple spatial environment, where each agent tries to convince
other agents about the words it uses in a social interaction. Vocabulary in this
work is limited to concepts such as north, south, east and west. The agents
use their words and decide whether to change or to maintain their previous
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belief about the word. Steels and Lara’s works are interesting here because
they treat the problem of spatial vocabularies and they propose models to
solve it. Finally, we cite the work of Maravall et al. on emergence of vocabu-
laries because, although they do not focus on spatial languages, we use some
of their approaches in our present work. Maravall’s works follow two different
perspectives: reinforcement learning [5] and evolutionary [6]. In the former, a
mapping model between meanings and symbols by means of associative ma-
trices is proposed, that we also use here. Our approach is also evolutionary, as
his second work.

The process of emergence of spatial vocabularies is a required step for sub-
sequently developing more complex linguistic structures but in this article,
it will be assumed that the agents have developed a set of basic vocabular-
ies for objects and spatial relationships, by the means mentioned in previous
paragraphs. The next step implies considering the syntax, which is a central
issue regarding language. Syntax for artificial agents was first studied in [7]
although it was limited to certain word order constraints which emerged from
language games. Steels offers a functional point of view for grammars and he
proposes here that syntax is a product of a general cognitive skill. His model is
based on frame-like structures and complexity is included as operations in the
frames. Some of Steels’ collaborators proposed in [8] a model that connects
low-level perception with categorization, hierarchical meaning construction,
and syntax. A first step is a conceptualization that maps agent inputs into
concepts. As the number of input data and events can be potentially huge, a
filtering process is carried out by a semantic subsystem. Finally, a categori-
cal grammar is used to transform semantic descriptions into natural language
and vice versa. Recently [9] proposed a semantically oriented approach to ex-
plain the origins of syntax. Spranger and Steels employ robots with a spatial
grammar where a syntactical structure emerges as words grouped in classes
(nouns, adjectives, and verbs). Subsequently, word classes allow the model to
build more complex noun or verb phrases. In a functional grammar the word
classes suggest possible grammatical functions and they can be organized in
a network showing a specific communicative goal such as an object reference.
In order to build a network, the authors use a formal device known as Fluid
Construction Grammar [10] and a representational system called Incremental
Recruitment Languages (IRL) which is based on intensional logic and proce-
dural semantics. The meaning of a sentence is a mental program combining
a set of semantic functions in the network nodes. Experiments in this work
show how having a grammar saves effort to the agents in the evolution of the
language. All these models emphasize both the grounded relation between sig-
nal and meanings and the scheme for a joint attention task among the agents.
Starting from these items, the models suggest a cycle where the speaker ut-
ters a sentence and the hearer tries to recognize the sentence during one or
several language games. Besides, agents usually employ the signal associated
to the meaning, but they can invent or repair sentences if they do not have
a sentence or they do not understand it. Finally, the process of alignment is
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the final stage in order to share a common language. This alignment process
is the step we address in the proposed model.

To finish this review, it is worth noting the Lingodroids project ([11]),
which is another proposal to solve grounding problems between symbolic and
perceptual worlds in line with the works of Steels or Spranger. The Lingodroids
robots are endowed with a kernel with two components: 1) an architecture
based on the rodent’s hippocampus that allow the robots to build an internal
map of their environment and 2) a language learning system based on neural
networks. Each robot moves around its environment and builds a cognitive
map. Then, they try to develop a symbolic language by means of several
language games such as where-are-we, go-to or what-direction, to mention a
few ones. Experiments show how robots are able to find each other in a specific
place using the developed language.

The commented works are examples about how a group of artificial organ-
ism can be endowed with complicated communicative systems. Some models
fit in a functionalist point of view and other follow a biological one. But all
of them take ideas from other fields such as psychology, linguistic, philosophy
or neuroscience. We will also adopt some of the hypotheses and ideas used to
explain natural languages in order for a team of agents to develop an artifi-
cial language autonomously. Specifically, according to the structure of natural
languages, we will use a formalism based on context free grammars. It is well
known that this kind of grammar is powerful enough to manage two of the
main properties of language: compositionality and recursion. Formal grammars
are a valuable tool to generate and recognize sentences in a language. However,
we follow Austin and Searle in believing that agents must have a reason to
generate the sentences. They envisaged language as a kind of behavior focused
in communicative ends and they developed a Speech Act Theory [12,13]. Based
on the Speech Act Theory, other researchers proposed a Plan-Based Theory of
Speech Act [14,15]. In this theory, speech acts are considered as ordinary acts,
in which case a plan can be applied in order to produce the act. Speech Act
Theory represents a functional point of view about the natural language and
it is the approach we will adopt here. Besides, intentionality is a key factor in
this theory because, as we have mentioned, humans speak because they have
intentions to communicate with each other. Putting together the structuralist
and functionalist language dimensions, we propose here a model that uses an
evolutionary algorithm and a planning process. The former is to evolve the
grammar that the agents try to share (structure), and the latter is to build
sentences based on the evolved grammar. The agent’s communicative inten-
tions are essential in the planning process in order to choose the most suitable
sentences (function). The evolution of the grammar allows to analyze how lan-
guage evolves and why some syntactical structures are chosen instead of other
ones. The process that will be studied here is that of syntactical alignment
within the team of agents, so other phenomena such as invention of new words
or the process of understanding other agent’s sentences, will be omitted. Syn-
tactic agreement will be analyzed by means of language games, in the sense
envisaged by Wittgenstein [16]. That is, agents associate linguistic expressions
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with spatial concepts and relations by means of their mutual communicative
interactions. Therefore, language use is the key factor of its development.

To some extent, main differences between this model and the reviewed
works is the formalism based on generative grammars and the inclusion of in-
tentions as bias to guide the evolution of the grammars. When we talk about
intentions we mean that linguistics intentionality is represented in some ex-
plicit way. In our case the intention is simplified as symbolic functions. Cited
works do not considerer so explicitly the intentionality. With regard to the gen-
erative grammars we use intensively this kind of formal device as a medium
to generate easily sentences. Most approaches that consider syntax in lan-
guages for artificial agents or robots do not use explicitly a grammar but they
use other formalisms. However, grammars are powerful device and they can
potentially generate infinite sentences.

3 Grammatical Evolution and Grammatical Evolution by
Grammatical Evolution

This section reviews the evolutionary algorithm that we use in the model. It is
important to remark that although this algorithm uses concepts inspired from
linguistics (like that of a universal grammar), they should not be interpreted
as strictly belonging to linguistic theories. Grammatical Evolution (GE) was
proposed by Collins, Ryan and O’Neill [17]. It is an evolutionary algorithm
that uses variable-length linear chromosomes. Each chromosome encodes how
to generate a candidate solution for a particular optimization problem. It is
a grammar-based evolutionary algorithm in the sense that the chromosome is
used to generate the candidate solution by applying production rules of a user
defined grammar. GE separates clearly genotype and phenotype. The genotype
(chromosome) is represented by a binary string while the phenotype (candi-
date solution) could be whatever structure that can be described by means
of the grammar. The mapping process which transforms the genotype into its
corresponding phenotype is split in two stages: transcription and translation,
that will be described later. In short, genotype and grammar together define
the means to build the phenotype. For instance, let us suppose we are inter-
ested in evolving a Java computer program to control a robot moving across
a corridor avoiding collisions with the wall. In that case, candidate solutions
(phenotype) would be such Java programs, the grammar would be the sub-
set of the Java language required to solve the problem, and the chromosomes
(genotype) would contain information that can be decoded by means of the
grammar to create the candidate solution. This will be explained in more detail
later.

The ideas of GE can be applied to evolve the grammar itself. This point
of view was adopted in a new algorithm called Grammatical Evolution by
Grammatical Evolution (henceforth referred to as GE?) [18]. In order to evolve
the grammar, GE2 uses a second grammar which specifies the properties that
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the original grammar can adopt. Therefore, in GE? two different grammars
are supported:

— A grammar that the authors of the algorithm call the universal grammar,
which describes the rules to build grammars. This grammar could repre-
sent the concept of grammatical universality as it has been proposed by
some linguists and it would act as a meta-grammar. In any case, it is im-
portant to differentiate the concepts about grammars that the algorithm
uses and similar linguistic concepts, so the term wuniversal grammar or
meta-grammar in GE? simply refers to its role in order to “dictate the
construction of the solution grammar” [18].

— A grammar called the solution grammar which describes the rules to build
candidate solutions. This grammar would represent the grammar which is
traditionally used in standard GE, but in GE? it is evolved by the evolu-
tionary algorithm, instead of having to be defined by a user.

GE? carries out a double evolution process where two variable-length bi-
nary genomes are involved. The first one generates a solution grammar from
a meta-grammar while the second one generates candidate solutions from the
solution grammar. GE? is the evolutionary algorithm adopted in our work be-
cause it allows to evolve the most suitable grammar in order to describe the
current spatial situation. In this case, a meta-grammar describes the rules to
build several solution grammars which in turn allow the model to utter the
sentences about the spatial scene. However, sentences are generated from those
solution grammars by means of a planning process as we will explain later,
instead of applying an evolutionary process as the original GE? really does.

The concept of meta-grammar is important to study how an artificial lan-
guage can arise, because it allows the model to evolve different solution gram-
mars in a self-organized process. This would not be possible if a single solution
grammar were previously designed by a human designer. Self-organization here
means that the group of agents as a whole and each particular agent develops
and evolves its own grammar without human supervision, that is, the meta-
grammar only contains generic syntactical rules (a kind of innate knowledge we
could say) and they can be applied during the evolutionary process in order to
find the solution grammar that best fits the current linguistic situation. This
is more flexible than endowing each agent with a hand-made initial solution
grammar.

4 Experimental Setup

In this section we describe a simple task, that will be used in the experiment
section, but here it will be useful to present the model. In this problem, agents
look for a consensus in linguistic terms, in order to describe a spatial situation
where several objects maintain a spatial relation among them, such as left,
right, front or behind. The symbolic expressions of the utterances have syntac-
tic structure. This syntax is simple and for now, words such as determiners,
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prepositions or verbs are not used. To simplify, we will call this communi-
cation system a language, because words are ordered according a grammar,
although a language also implies semantic and pragmatic aspects (that we sim-
plify here). We use three simple objects in the experiments: table, chair and
wardrobe. Figure 1 shows the typical configuration used in the experiments:

Chair

Fig. 1 Scene with the spatial environment used in the experiments

In Figure 1, we can identify a referential scene which includes several lin-
guistic situations. For example, we have spatial relationships such as:

the chair is on the right of the wardrobe,
— the wardrobe is on the left of the chair,
the chair is in front of the table,

the table is behind of the chair,

— the table is on the right of the wardrobe,
the wardrobe is on the left of the table

The figure defines a perceptual situation to be observed and analyzed by
the agents. In psychology, this is called a joint attention scene and it is a
conceptual frame where language is developed. Starting from this perception,
each agent tries to associate a symbolic representation by means of language.
This language will be useful to the agents if they are able to get a consensus
about the symbolic representation of the scene. As we are interested here in
the cognitive functions of agents, it will be assumed that agents can recog-
nize objects and relations among them by means of methods such as sensory
discriminant variables, typical of Pattern Recognition methods. An additional
assumption is that all agents have a common lexicon for the objects located in
the environment and for their spatial relationships. This way, a basic vocabu-
lary for these components is assumed to be previously created. To simplify, we
use Prolog-like functions in order to represent objects, meanings, and symbols
for the initial lexicon. Table 1 shows the functions to represent a “chair” object
and the “right” spatial relationship at the meaning and symbolic levels.

Having into account this simplification, each agent extracts the object fea-
tures when it looks at the object, then it associates the corresponding meaning
by means of an internal representation, and finally it relates the meaning to its
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Table 1 Symbolic functions to represent basic meanings and object

Function Name Description

meaning-of_chair | meaning(chair) : —

features(small, rectangular, legs, back)
symbol_of _chair chair

meaning-of_right | meaning(right(meaning(A), meaning(B)) : —
greater X Coord(meaning(A), meaning(B)))
symbol_of_right right

symbol. Similar ideas are used for the spatial relationship, but in this case two
objects are associated, so we need to compare some feature between them. To
simplify, we follow the ideas of [3] and we consider that “the object A is on the
right of the object B” if the x-coordinate of the object A is greater than the
x-coordinate of the object B with regard to the referential system of the agent
that is looking both objects. Both Steels’ work and this work adopt a relative
frame of reference, according to Levinson terminology [19], so we suppose that
all the agents in the team watch the scene from the same place and all of them
have the same coordinate system.

As we mentioned above, communicative intentions play a main role in this
model because they are involved in the process of choosing the best produc-
tion rules in the grammar as we will explain later. To simplify, we model the
intentions as a set of linguistic tasks which are described by means of symbolic
functions similar to those that Table 1 shows.

5 Description of the Model

As we commented in the Introduction, the proposed model is based on two
computational strategies: evolution and planning. Evolution drives the gram-
matical agreement and planning drives the process for generating sentences
following the Plan-Based Theory of Speech Act principles [15]. Essentially, the
model is executed on each agent in the team of agents, as follows:

1. An initial population of candidate solutions representing grammars is ran-
domly generated. Candidate solutions are encoded into variable-length bi-
nary genotypes (or chromosomes).

2. An evolutionary algorithm is applied:

(a) Transcription and translation processes are applied to each chromo-
some. During the translation process, the meta-grammar or universal
grammar is used to build a solution grammar from the chromosome.
The solution grammar includes a set of production rules that are po-
tentially relevant to the informative intention.

(b) The solution grammar is evaluated in two steps: (i) a sentence is gen-
erated from the solution grammar by means of a planning algorithm;
(ii) the sentence is uttered in a language game. Both steps are exe-
cuted with all the possible intentional sentences that can be generated
starting from the solution grammar under evaluation. With intentional
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sentence, we refer to a sentence suitable from the agent’s intentional
point of view, that is, according to the set of linguistic tasks to be
described. As a result of evaluation, a fitness value is assigned to the
chromosome.

3. The termination criterion is checked:

(a) If the syntactic agreement is attained or the maximum number of gen-
erations is reached, the process ends.

(b) Otherwise: (i) genetic operators (crossover, mutation, selection, and
duplication) are applied to chromosomes in the population and a new
population of chromosomes is obtained (a new generation); (ii) return
to step 2 and repeat the process.

Figure 2 shows the process graphically.

AGENT'S PROCESS

»  Population of Individuals
[

. Compute
Binary Genotype | 01011011 . —» Fitness
TRANSCRIPTION
h 4
Integer Genotype | U2 e | + | Meta-Grammar | Rules
TRANSLATION

L
Derivation Tree

Solution Grammar ~ + Operators

Sentences

t_| Apply Genetic
Operators

Y

LANGUAGE GAMES

Fig. 2 Agent’s Process

In the previous description we have used the terms team and population
and we would like to clarify that in this work, they do not refer to the same
concept. The term team stands for the group of artificial agents that looks
for syntactic agreement. On the other hand, the term population is a concept
from the evolutionary computation field, and stands for a collection of can-
didate solutions (encoded as binary chromosomes), which is a component of
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the evolutionary algorithm (GE? in this case). The process of Figure 2 is exe-
cuted within each agent in the team. Therefore, a population of chromosomes
is stored within each agent.

In order to understand better how the model performs, the main steps will
be described next in more detail. First, the process by which a solution gram-
mar is obtained from a meta-grammar by means of an evolutionary process
(green rectangle and orange boxes and diamonds in Figure 2), and by which a
sentence is generated from a solution grammar by means of a planning process
(blue box in the Figure 2). Second, language games and chromosome fitness
computation will be explained.

5.1 Generating a Solution Grammar from a Meta-grammar

In order to generate a solution grammar from a chromosome by means of a
meta-grammar (see production rules in appendix A), the transcription and
translation processes are applied as it is usual for both GE and GE?:

1. Transcription. In this stage, the original binary string which stands for each
chromosome in the population is transformed into an integer string. We will
show this process through an example. Consider a binary string which is
composed of a string of bits or codons as they are usually named: 00-01-
10-01-00-01-11-01-10-00-00-01-10-00-01. A hyphen is used only to separate
each group of codons. After applying the transcription process this binary
string is transformed into the equivalent integer string: 0-1-2-1-0-1-3-1-2-
0-0-1-2-0-1. In this new string, each integer is simply the decimal represen-
tation of the corresponding codon.

2. Translation. Starting from the integer string and the meta-grammar rules, a
solution grammar can be obtained. In the previous example, the derivation
tree associated to this process is shown in Figure 3. Grey nodes represent
terminal symbols. Numbers near the nodes represent the production rule
number to apply to the non-terminal symbol (white nodes). These numbers
are taken from the integer string that we computed in the transcription
process and they appear from left to right as the integer string is traversed.
In order to determine which production rule has to be applied, the following
equation is used: Rule = CDV % NR; where % is the modulo operator,
CDYV is the acronym of codon integer value and NR is the acronym for the
mazximum number of rules corresponding to the non-terminal that must
be expanded at the current time. The meta-grammar production rules are
defined in appendix A. For example, starting from the first node which
corresponds to the meta-grammar start symbol (labelled as grammar in
Figure 3), the production rule is computed as Rule = 0 % 1 because 0
is the first integer in the integer string and 1 is the maximum number of
production rules associated to the meta-grammar start symbol. Result is
0 in this case, so the first (and only) production rule is chosen. The next
operation to apply is the expansion of the leftmost non-terminal symbol
in Figure 3. That is, the non-terminal <rel-expression-def>. In this case
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the production rule to apply is computed by Rule =1 % 2 where 1 is the
next integer in the integer string and 2 is the number of production rules
for the non-terminal <rel-expression-def>. The result is 1, so the second
production rule is chosen < relexpression >' |' < relexpressiondef >
(indexing starts at 0). Translation continues until a solution grammar is
built, if possible.

aSpatialRelation

“<spalialrel>"

‘<spatialrel>"

Fig. 3 Derivation tree to generate a solution grammar

The translation process is correct if it is possible to build a well-formed
solution grammar. If a solution grammar cannot be generated, the chromo-
some is considered incorrect and it is discarded. In the example, the solution
grammar contains the following rules (in Backus Naur Form or BNF notation):

<sentence> ::= <spatialrel>
| <spatialrel> <object> <object>
<object> ::= anObject

<spatialrel> ::= aSpatialRelation
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Given that GE? evolves grammars, terminal and non-terminal are present
in the evolved solution grammars. It is worth noting the role of the terminal
symbols anObject and aSpatialRelation. These symbols play the role of lexical
categories such as nouns, adjectives or verbs but they are constrained to a
spatial context. Lexical categories are very common in the literature about
phrase structure grammars and natural languages. They are an important
concept here because they allow the model to generalize the type of phrase
structures that a solution grammar can generate. Therefore, a phrase struc-
ture includes one or several lexical categories which are replaced by the specific
symbols when the final sentence is elaborated, as will be shown in the next
section. On the other hand, the non-terminal symbols <sentence>, <object>
and <spatialrel> stand for syntactic categories and they allow the model to
express the grammatical rules that are inherent to most languages. Thanks
to a solution grammar, the question of syntax can be easily implemented in
an artificial language. The evolved solution grammar in the example defines a
language which will allow the agent executing the model to generate two types
of sentences:

— A sentence with a single relational word if the first rule is chosen.
— A sentence with three words or symbols when the second rule is chosen: a
spatial relational symbol followed by two simple object symbols.

Generating the most suitable sentence for the referential scene implies
choosing the right phrase structure and elaborating the final sentence. This
is precisely the task corresponding to the second part of the model that we
explain in the next section.

5.2 Generating a Sentence from a Solution Grammar

Once a solution grammar has been translated from a chromosome, it has to
be evaluated. Evaluation implies three steps:

1. To choose a suitable phrase structure by means of planning and the solution
grammar.

2. To replace the lexical categories for the specific symbols in order to build
the final sentence.

3. To evaluate the generated sentence in a language game with sentences
generated and uttered by other agents.

In order to choose a suitable phrase structure by means of classic planning
such as STRIPS [20] which is usually adopted in a Plan-Based Theory of Speech
Act, we need to define concepts such as final, intermediate, and initial states,
and also operators.

— Initial State. The starting symbol of the solution grammar is the initial
state in the planning process. This symbol is always the non-terminal
< sentence> (see first rule for the meta-grammar in the appendix section).
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— PFinal States. Any expression made of terminal symbols only refers to a
final state. A final state is a phrase structure and it contains only lexical
categories. Phrase structures are built through a derivation process, as it is
usual in formal language theory. During this derivation process the classical
tree-like structure is built.

— Intermediate States. Intermediate states are intermediate steps in the pro-
cess of building a derivation tree, i.e, they are associated with partial sub-
trees where the leftmost non-terminal symbol is the next term to be ex-
panded.

— Operator. An operator represents an action to be applied to each state.
Operators are the possible production rules to expand the non-terminal
symbol.

In short, to apply an operator is similar to implementing a derivation step
when the derivation tree is being generated. Essentially, the main problem is
how to choose the production rule to apply as operator in an intermediate
state. Remember that the term “production rules” in this case stands for
the production rules of the solution grammar and not those of the meta-
grammar. Solution grammar production rules are applied in the production
of sentences while meta-grammar production rules are applied in the previous
stage in order to generate each solution grammar. Returning to the initial
question, we argue that intentions are the key here. Rules are chosen based on
the agent’s current informative intentions. Thus, only the solution grammar
production rules supporting these intentions are selected to choose the right
phrase structure. In terms of classical planning, this process corresponds to
a search in the state space with a forward mechanism (see [21]). However,
forward search is helped by means of the informative intention, which acts as
a heuristic to guide the search. As we mentioned in the introduction section,
Plan-Based Theory of Speech Act is followed here, so planning is used as the
mechanism to choose and generate the final sentences. Other techniques might
be used but we believe that the current approach can be easily enhanced with
more features from this well known theory, once the initial framework is in
place.

This planning process will be clarified by continuing with the previous ex-
ample. In the solution grammar there are two production rules associated with
the start symbol <sentence>: (1) <spatialrel> and (2) <spatialrel> <object>
<object>. To define its current intention the agent needs to look at the refer-
ential scene (see Figure 1). After analyzing the scene, the agent perceives each
object and spatial relation in the referential scene and maps meanings into
symbols associated to simple objects and spatial relations (let us remember
that vocabularies for simple objects and relationships are assumed). Never-
theless, the agent needs to combine this set of lexical categories in order to
build the right phrase structure. As we know, the solution grammar provides
the combination rules. From the agent’s intentional point of view, it needs two
objects and a spatial relation to describe the linguistic situation of Figure 1.
The solution grammar first production rule can be discarded because it cannot
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derive a sentence with all these items. According to the concepts usually em-
ployed in classical planning (see [21]), applicable rules are those production
rules which are relevant to the agent’s current informative intention. In order
to determine why a production rule is applicable the system needs to analyze
some details about the solution grammar. Specifically, the solution grammar
has to be measured to determine which strings are reachable. A comprehensive
and very interesting study about grammar measurement is found in [22] and
we adopt some concepts here. In Hemberg’s work, grammars are measured
by means of a matrix representation of the grammar as it was previously
proposed in [23]. Matrix representations help to determine which strings are
reachable starting from the grammar start symbol. Two matrices are built
in our case from the solution grammar: a Non-Terminal Expectation Matriz
and a Terminal Ezxpectation Matriz. First matrix allows to compute how many
non-terminals are expected if a non-terminal is rewritten once. Second matrix
is similar but it refers to terminal symbols instead of non-terminals. Details
about both matrices and the way they can be computed can be found in [22]
or [23]. To our interest, values in both matrices are numbers and they can be
combined in order to get a matrix that allows the model to know if a specific
terminal symbol can be reached from a non-terminal one. Following with the
example, the evolved solution grammar has a matrix with information as Table
2 shows:

Table 2 Matrix for the evolved solution grammar in the example

aSpatialRelation | anObject
<object> 0.0 1.0
<spatialrel> 1.0 0.0
<sentence> 1.0 1.0

Left column stands for non-terminal symbols and first row contains the ter-
minal symbols in the grammar. Cells have a number greater than zero whether
it is possible to reach a terminal symbol from the corresponding non-terminal
symbol. In the example, we can reach the terminal symbols aSpatialRelation
and anObjet from the non-terminal symbol <sentence>, which is the axiom
of this solution grammar.

This way, applicable rules can be determined starting from this matrix
and taking into account the agent’s informative intention. In the example,
after selecting the second production rule, the first derivation sub-tree is built.
Figure 4 shows this situation. We omit < and > symbols in the non terminal
nodes because we use the white color to distinguish them.

Next, the planning process applies a new operator to the new sub-tree
and the leftmost non-terminal symbol is chosen. In this case, there is a single
production rule associated to the <spatialrel> non-terminal symbol. This pro-
duction rule derives the aSpatialRelation lexical category. The new sub-tree is
shown in Figure 5.



Evolution of Shared Grammars with Grammatical Evolution 15

Fig. 4 First derivation step

Fig. 5 Second derivation step

This process continues by replacing both <object> non-terminal symbols in
the second derivation sub-tree. There is also a single production rule associated
to this non-terminal according to the solution grammar and this production
rule produces the anObject lexical category. As Figure 6 shows, this sub-tree
has only terminal symbols as leaves.

Fig. 6 Last derivation step

The phrase structure aSpatialRelation anObject anObject is finally gener-
ated from the solution grammar in this example. Then, it must be used in
a language game with phrase structures generated by another agent. As the
problem described in section three is simple, we can see that this example of
phrase structure is valid for describing all the linguistic situations that Figure
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1 shows. Language games and fitness assignment will be described in the next
section but we need to deal with some issues first. The planning process in
this example is simple: as the solution grammar contains only a few production
rules, the derivation steps are straightforward. In fact, the concept of applica-
ble rules has been exploited only in the first step, when the start symbol was
expanded. The remaining sub-trees did not need to apply it because there was
only a production rule in each case. However, the more difficult the solution
grammar is, the more important is the concept of applicable rules, because
the agent’s informative intention helps to discard production rules that are
not relevant to that intention. Finally, the planning process is applied in order
to search for all the phrase structures starting from the same solution gram-
mar as long as they can describe the current referential scene. If there are no
applicable rules in any step the chromosome is discarded because it cannot
generate a sentence that describes the linguistic situation.

5.3 Language Games

Language games emphasize language use and the interactions among individ-
uals in communicative acts. The language games hypothesis is based on the
supposition that most common expressions will be finally agreed. We need to
define previously the concept of equality of sentences:

Two sentences are syntactically equal if they have the same words
and the words are equally located.

Language games are carried out by means of the algorithm of Figure 7. It
is important to set this algorithm in the context of Figure 2. Specifically, it
is executed in the box named “Language Games”. If an agent has evolved a
solution grammar, it will be able to generate one or several phrase structures.
Language games are the social event where the agents utter their sentences
but previously they have to transform the phrase structures into a specific sen-
tences. This is where the agent specialized modules replace lexical categories,
such as aSpatialRelation or anObject, by the actual spatial relation or object.
If an agent has not evolved a solution grammar or it cannot build a phrase
structure, then it will participate with an empty set of sentences in the current
language game.

For each agent in the team:
Generate the set of sentences to describe the scene from the evolved solution grammar that is being evaluated
Compare the agent’s set of sentences with other agents' set of sentences and count successes
Agent Communicative Efficiency <- number of successes (shared sentences / number of linguistic situations)
End for

Fig. 7 Language Games Algorithm

Each agent participates in the game with a set of sentences that was gener-
ated from the solution grammar that is being evaluated. A solution grammar
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defines phase structures as we saw in previous section, and a phrase structure
allows to build a sentence. This way, each sentence in the set of sentences tries
to describe a particular linguistic situation in the scene. In the simple problem
that we have defined in section three, all the linguistic situations can be de-
scribed by the same phrase structure as we saw in the previous example, so in
this case each agent participates only with sentences generated starting from
this phrase structure. However, later we will describe a more complicated task
where different linguistic situations exist in the scene and a set of different
phrase structures are needed. A language game gathers the set of sentences
from all agents and counts how many sentences are syntactically equal. Then,
it divides the number of shared sentences between the number of linguistic
situations in the scene. Finally, the language game output is precisely this
numeric value, that we call Communicative Efficiency. Remember that each
agent is endowed with an evolutionary algorithm with a population of chro-
mosomes (which encode grammars), but each chromosome is evaluated in a
different language game. In other words, if an agent has N solution grammars
in its population, it can generate M sentences. A group of these M sentences,
describing all the linguistic situations in the scene, will participate in the lan-
guage game. The value N refers to the number of valid solution grammars that
can be correctly evolved starting from the individuals in the population. The
value M can be different than N because a solution grammar can generate
zero, one or more sentences depending on the number of its production rules.

5.4 Fitness Assignment

Evolutionary algorithms require that chromosomes in the population are eval-
uated by assigning to them a fitness value. In this case, chromosomes encode
grammars. But evaluation takes place during language games by counting the
number of sentences uttered by all the agents, that are syntactically shared.
Thus, solution grammars are indirectly evaluated during language games, by
comparing the sentences generated from those grammars. This fitness value
is basically the communicative efficiency that we defined in the previous sec-
tion. Thus, the fitness of the chromosome (and its corresponding grammar) is
defined as:

Fitness = NSS/NLS (1)

Where NSS stands for the number of shared sentences among the agents in
the language game and NLS represents the number of linguistic situations in
the referential scene. Remember, that the scene can contain several linguistic
situations that are described by means of one or several phrase structures
which in turn are defined by the solution grammar that is being evaluated,
so we have to divide the number of shared sentences between the number of
linguistic situations. The fitness is maximum when this value is equal to the
number of agents in the team and this case represents the moment when the
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team has reached syntactic agreement, because all the agents use the same
sentences to describe the scene.

The fitness that Equation 1 defines can be considered as an external mea-
sure because even though the population of chromosomes is an internal compo-
nent within the agent’s architecture, the sentences are evaluated in a language
game which is external (all team members are involved). Thus, the fitness
value depends on the successes in the language games.

5.5 Summary of the Model

Once the individual processes have been explained in detail, it can be useful
to have a look at the whole model in order to provide a complete vision of the
work. This section is an informal review about the model, formally introduced
in Section 5. First, a computational version of the model is included within
each agent in the team. The algorithm includes a GE? evolutionary algorithm
so that a population of binary-strings (chromosomes) is evolved in order to
generate solution grammars (phenotype) for each agent. The aim is to evolve
the solution grammar that best describes the current spatial situation. Every
solution grammar can generate several sentences because it depends on the
production rules included in the grammar. In order to select the best sentence
to utter, a planning process is used to discard irrelevant sentences, according
to the current informative intention. Intentional sentences are uttered in the
context of a language game where all the agents in the team participate, and
each agent counts how many other agents’ sentences are equal to its own.
The process goes on until agreement is reached for each spatial situation or a
maximum of evolutionary steps and language games is exceeded.

6 Discussion of Results

The experiments have two goals. First, they try to show whether the proposed
model is able to find a syntactic agreement or not. Second, they try to analyze
how language emerges and how grammars evolve.

As we showed in Figure 1, there are at least six linguistic situations in
the referential scene. The first goal is to evolve a suitable solution grammar
for describing each linguistic situation and reaching agreement. We ran 30
executions with teams of 5, 10, 15, 20, 25, 30 and 50 agents. Table 3 shows the
main evolutionary parameters we use in the experiments. A standard roulette-
wheel algorithm is used as selection method.

It is important to differentiate concepts about evolutionary algorithms and
concepts about the language development process in artificial agents. In this
case, population size stands for a typical evolutionary parameter, which rep-
resents the number of chromosomes in the population (it is therefore not the
number of agents in the team). Maximum generations, crossover probability
and mutation probability are also parameters of the evolutionary algorithm
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Table 3 Evolutionary Parameters

Population size 150
Maximum generations | 100
Crossover probability 0.8

Mutation probability 0.05

running within each agent. We use standard single point crossover and stan-
dard bitwise mutation.

6.1 Results about Syntactic Agreement

First, we will analyze whether syntactic agreement is reached or not and the
influence of the team size on this agreement. Figure 8 shows success prob-
ability results taking into account the whole set of experiments. Given that
evolutionary algorithms are stochastic, and that for each team size there are
30 different executions, the success probability measures the proportion of
executions where syntactic agreement was reached.
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Fig. 8 Success Probability

As we can see in Figure 8, a complete agreement in terms of linguistic
expressions is always attained eventually. Results about success probability
are very common in evolutionary algorithms in order to show how a model or
system performs. Figure 8 shows cumulative probability values which measure
the proportion of executions that reached agreement at generation x of the
evolutionary algorithm (this is an estimation of the probability of agreement
at generation x). Figure 8 shows that the model is able to achieve syntactic
agreement in less than 99 generations (of the evolutionary algorithm). In fact,
in most tests it needs fewer than 30 generations. 100% success probability was
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obtained in all experiments so it can be argued that the model performed well
under these circumstances, although time increases as team size increases.

Success probability is an interesting value in order to know whether the
model solves the problem and shows how many generations it needs. But it
cannot tell us about the solutions themselves. Table 4 shows the syntactical
structures that the team finally agreed on in experiments with 5 and 50 agents

(we only show results for the first 10 experiments in each case)

Table 4 Evolved syntactical structures with different team sizes
Test | Syntactical structures (5-agents) Syntactical structures (50-agents)
1 anObject aSpatialRelation anObject anObject anObject aSpatialRelation
2 anObject aSpatialRelation anObject aSpatialRelation anObject anObject
3 anObject aSpatialRelation anObject aSpatialRelation anObject anObject
4 aSpatialRelation anObject anObject anObject anObject aSpatialRelation
5 aSpatialRelation anObject anObject anObject anObject aSpatialRelation
6 anObject aSpatialRelation anObject aSpatialRelation anObject anObject
7 aSpatialRelation anObject anObject aSpatialRelation anObject anObject
8 anObject anObject aSpatialRelation aSpatialRelation anObject anObject
9 aSpatialRelation anObject anObject aSpatialRelation anObject anObject
10 anObject aSpatialRelation anObject aSpatialRelation anObject anObject

A syntactical structure or phrase structure contains lexical categories which
are replaced by the specific objects and spatial relations according to the
current linguistic situation. For example, in the fourth experiment with 5
agents the team agreed on the syntactical structure “aSpatialRelation anOb-
ject anObject” (see test 4 in Table 4, second column). Table 5 summarizes the
solution grammars evolved by agents in this experiment.

Table 5 shows the final solution grammars. It can be seen how this set of
grammars can generate a phrase structure such as “aSpatialRelation anOb-
ject anObject” because each grammar includes a rule which allows the agent
to elaborate that kind of expression. We have to remember that syntactic
categories such as <sentence>, <object> and <spatialrel> finally derive into
lexical categories. The planning process that we described before is respon-
sible for generating the sentences that each agent utters in the language
game. As we can see, each agent is able to utter the same linguistic expres-
sion. Therefore, syntactic agreement can be reached, and this is what finally
happened in this example. Evolved grammars are usually similar in all ex-
periments so this example is a good choice in order to study how the lan-
guage emerges in the team. At least, all grammars include the production rule
< sentence >:=< spatialrel >< object >< object > which can generate
the syntactical structure that the agents need to describe the referential scene
shown in Figure 1. Agents 0, 1 and 4 include other production rules, that are
not relevant to this scene but they could be relevant in other contexts. On
the other hand, agents 2 and 3 only include the commented production rule.
It is evident that syntactic agreement is possible only when the agents in the
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Table 5 Evolved solution grammars in a five-agent experiment

Agent ID
Agent_0

Evolved Grammar

<sentence>::= <object> <object>

| <spatialrel> <object> <object>
<object>::= anObject
<spatialrel>::= aSpatialRelation

Agent_1

<sentence>::= <spatialrel> <object> <object>
| <spatialrel> <object>

<object>::= anObject

<spatialrel>::= aSpatialRelation

Agent_2
<sentence>::= <spatialrel> <object> <object>
<object>::= anObject

<spatialrel>::= aSpatialRelation

Agent_3
<sentence>::= <spatialrel> <object> <object>
<object>::= anlObject

<spatialrel>::= aSpatialRelation

Agent_4

<sentence>::= <object> <object>

| <spatialrel> <object> <object>
<object>::= anObject
<spatialrel>::= aSpatialRelation

team have evolved similar grammars and these grammars contain at least a
production rule which reflects the current informative intention.

The advantage of evolving grammars with a phrase structure is clear be-
cause they allow the agents to adapt expressions to specific objects. This way,
a expression such as “aSpatialRelation anObject anObject” in the studied ex-
ample can be exploited in order to describe similar linguistic situations such as
those that Figure 1 contains. In fact, the final result of the example in terms
of syntactic agreement is shown in Table 6.

Table 6 Results of the syntactic agreement in a typical example

Informative intention (meaning level)

Linguistic expression (symbolic level)

meaning(right(meaning(chair),meaning(wardrobe)))

right chair wardrobe

meaning(left(meaning(wardrobe),meaning(chair)))

left wardrobe chair

meaning(front(meaning(chair),meaning(table)))

front chair table

meaning(behind (meaning(table),meaning(chair)))

behind table chair

meaning(right(meaning(table),meaning(wardrobe)))

right table wardrobe

meaning(left(meaning(wardrobe),meaning(table)))

left wardrobe table
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Left column in Table 6 stands for the current informative intention and
it corresponds to the linguistic situations that we defined in section 4, where
six different situations were contained in the same referential scene in Figure
1. The right column represents the linguistic expressions that all the agents
agree in order to express each informative intention. It is worth to analyze
how two different levels of knowledge are connected here. On the one hand,
informative intentions are represented by means of “meaning” functions in a
semiotic network scheme as we proposed in Table 1. These kinds of functions
are a very simplified representations of the agent’s internal knowledge but
they are essential in order to link the physical world with the perception of
the world that the agent builds. We work here with a simplification because we
are interested in the symbolic level, which is represented by means of lexical
symbols, such as those that right column in Table 6 shows. Expressions in this
second column are simply generated by replacing the lexical categories with
the specific objects and spatial relationship but they have to be agreed in the
corresponding language game. However, we do not need to evolve new solution
grammars in each linguistic situation because all of them are essentially a
combination of the same items, a spatial relationship as the first word, followed
by two objects as the second and third words. Grammaticality is induced by
means of the solution grammars that we showed in Table 5.

Returning to the global results, Table 4 displays how different combinations
were agreed in the experiments. For example, the linguist expression in a 5-
agents team (second column) for the tests 1, 2, 3, 6 and 10 is built in infix
notation while the expression for the tests 4, 5, 7y 9 is build in prefix notation
and the expression for the test 8 is build in postfix notation. Infix, prefix, and
postfix terms refer to the position where the spatial relationship appears in the
expression. This diversity is equally evident in the case of a 50-agents team.

6.2 Grammar-Language Evolution

An interesting measure that we can analyze during the model evolutionary
stage is the evolution of the fitness value associated to the best chromosome in
the population and the evolution of the population average fitness. Figures 9
and 10 show the average results of the different team sizes taking into account
the complete set of 30 executions in each case.

In this context, the concepts of “best chromosome” and “population” stand
for the arithmetic mean values, that is, the values computed starting from each
individual agent’s values and associated to the team as a whole. We prefer to
show average values instead of each agent’s results in order to save space. Be-
sides, the average values are representative enough. On the other hand, both
terms are evolutionary concepts and they are associated with the population
of chromosomes that each agent manages. It is important to clarify these dif-
ferent items of the model because we can lose the perspective between the
evolutionary stage, which is a private event associated to the agents and the
language games, which are a social event in the team. As we have defined the
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Fig. 9 Fitness Evolution through the Language Games Developing Process: 5, 10, 15 and
20 agents

fitness value in Equation 1, it is an external measure because it is computed
on the number of syntactically equal sentences uttered by agents in a language
game. Basically, from the point of view of an agent, an agreement is attained
when the number of syntactically equal sentences is equal to the number of
agents in the team, minus one (the agent is left out because it obviously agrees
with itself). This means that the team agrees to use the same expressions in
order to describe the current referential scene. Obviously, we take into account
the number of linguistic situations in he scene but in this simple problem we
only need a syntactic structure or phrase structure to describe all the linguis-
tic situations in the scene. Therefore, we can see in Figures 9 and 10 how
the fitness associated to the best chromosome arises as the number of gener-
ations increases, until finally the maximum fitness and syntactic agreement is
reached. As all the experiments were successful, the final fitness is always the
maximum possible fitness. For example, in a team with 5 agents the maxi-
mum fitness is 4, in a team with 10 agents the maximum fitness is 9 and so on.
Evolution of the average fitness is very different and results in this case show
how most chromosomes in the population are less suitable to generate valid
sentences according to the current informative intention. This result merits
a reflection. The main reason why the population of solution grammars that
each agent manages is so poor can be found in the applicable rules concept.
As we commented, a rule is applicable if it reinforces the agent’s current in-
formative intention. They help the evolutionary process to discard production
rules that are not consistent with this intention, but they are a strong bias
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Fig. 10 Fitness Evolution through the Language Games Developing Process: 25, 30 and 50
agents

in the process as well, as many grammars are discarded and not evaluated in
language games. Consequently, the evolutionary process is guided only by the
best chromosome in the population. We tested some experiments where this
concept was totally or partially relaxed but the results showed that agents
would agree non intentional sentences because agents in this model have no
other knowledge but the meta-grammar rules and their own intentions. In any
case, practically all the proposed models in the literature that we reviewed
in the introduction section include some constraint, either in the grammati-
cal rules (nativist approaches) or in the procedure that they use in order to
acquire the language (cultural models). Maybe it can be argued that the evo-
lutionary process could be replaced by another bottom-up mechanism, but
results show that it performs in all the experiments and it opens the door to
future improvements.

Figures 9 and 10 reveal how the language and grammar evolution process
is very similar in all cases, whatever the team size is, and they show that
the model works equally on each agent in the team and the global process
is quite steady. Initially the best chromosome’s fitness is low as it is usual in
evolutionary algorithms. Then, it improves substantially for a few generations.
Again, it must be remembered that the best chromosome’s fitness in the figures
is an average value, which is computed from the best chromosome’s fitness for
each agent. An average value allows us to measure the concept in global terms,
that is, from the team’s viewpoint instead of each agent’s viewpoint. According

14

16 1

T
8 20

Best Fitness and Average Fitness (30 Tests - Team=30 Agents)

s BEST-FIT
— AV G-FIT



Evolution of Shared Grammars with Grammatical Evolution 25

to the results, the best chromosome’s fitness is close to the optimum value, so
we can argue that the team comes near syntactic agreement in a short time.
In most experiments only one or two agents in the team found difficulties at
evolving their best solution grammars and thus final consensus is not achieved.

We finish this section with a brief reflection about the fitness. Previously,
we argued that the fitness value is an external value because it is measured
during a language game which is considered an external action (to the agent).
On the other hand, in a language game only the sentences uttered by each
agent are evaluated. This means that the grammar is indirectly evaluated. We
think that this explanation can justify the reason why we study the fitness as
a measure about the grammar and language evolution process. As we studied
in the previous section, when syntactic agreement is achieved, all grammars
are equivalent in the sense that all of them contain at least an equivalent
production rule. Grammar and language are obviously connected in this model
and best chromosome’s fitness evolution shows indirectly how the best solution
grammar also improves. To summarize, fitness results account for a steady
progress associated to the grammar and language evolution. Each agent in the
team evolves a population of chromosomes, which are transformed into solution
grammars, which finally are the device where each sentence participating in a
language game is generated from.

7 A New Level of Linguistic Description

Previous sections have described and analyzed the model in a basic problem,
where only simple sentences with the same syntactic structure can be evolved
and the main difficulty was the word order. In this section we will study
whether the model can be scaled to more complicated problems. We define a
new task where we suppose that objects can appear in singular or plural, that
is, in the scene the agents can watch several objects of the same type. For
example, based on Figure 1, we will try now to evolve a language to describe
spatial relationships such as:

1. the chairs are on the right of the wardrobe,
the wardrobe is on the left of the chairs,
the chairs are in front of the table,

the table is behind of the chairs,

the table is on the right of the wardrobe,
the wardrobe is on the left of the table,

the stools are on the left of the chairs,

the chairs are on the right of the stools

© NG W

To simplify, we have considered plurality in the group of object, so we
suppose that “all the chairs are on the right of the wardrobe” instead of having
some chairs on the right and other chairs on the left. As we can see, we have
a new object stools in the vocabulary about objects while the vocabulary for
the spatial relations remains the same.
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In this problem, different syntactic structures are involved in the same ref-
erential scene, that is, we have linguistic situations that need different phrase
structures to describe them. Besides, a new category is needed in order to rep-
resent the numerical property. Therefore, the model must include this knowl-
edge in some way but we only need some minor changes in order to deal
with this problem. Thanks to the concept of meta-grammar, we only need
to modify the rules in the meta-grammar to allow the model to develop new
structures. Appendix B shows the new meta-grammar’s rules. Essentially, the
meta-grammar keeps the production rules to evolve the previous syntactic
structures but it adds new production rules to allow the model to generate
new structures. Now, it is possible to evolve two syntactic levels instead of one
as the previous meta-grammar did. We clarify this with an example. In the ba-
sic problem the meta-grammar could only evolve solution grammars which, in
turn could generated a single valid structure (i.e. a structure with three words:
two objects and a spatial relation). Of course, a solution grammar could con-
tain other production rules to generate other kind of syntactic structures, but
they will not reflect the linguistic situation that the basic problem required.
For example, a meta-grammar could generate sentences with only two objects
or four objects and a spatial relation but those structures would be wrong. In
fact, the intentional consideration in the model constrained these possibilities
and the evolutionary process usually discarded them.

If we look at the new meta-grammar, we can see how the description of an
object is now more sophisticated. An object can appear in singular or in plural.
If the object is in singular we do not use any mark, but if the object appears
in plural we add the category aDeterminer to the object. Comparing old and
new meta-grammars, the production rule for the non-terminal <object-def> is
different. In the basic meta-grammar this symbol was defined as:

<object-def> ::= <object>
While in the new meta-grammar is defined as:

<object-def> ::= <object>
| ’<determiner>’ <object>

This way, the evolutionary algorithm can evolve different types of syntactic
structures which allow to describe situations with objects in singular or plural.
For example, in the new linguistic situation, expressions one and two include
chairs in plural and a wardrobe in singular. A similar situation is considered in
expressions three and four. Expressions five and six include both a table and a
wardrobe in singular. Finally, expressions seven and eight refer to a chairs and
a stools both in plural. On the other hand, the evolutionary process is affected
because the number of alternatives associated to the production rule for the
non terminal <object-def> is duplicated. This implies more combinations to
analyse during the translation process in the evolutionary stage.
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7.1 Experimental Work and Results

In this new task there are eight different linguistic situations in the referential
scene and different phrase structures are needed in order to describe all the
possibilities. We work with teams of 5, 10, 20 and 30 agents and we ran 30
executions in each case. Evolutionary parameters are essentially equal those
of Table 3 but we limit the number of individuals in the population to 100 in
order to reduce execution time. Intentions must reflect the new communicative
goals. We do not reproduce here figures about the evolution of fitness because
they are essentially similar to the basic problem. We show in Figure 11 the
success probability measures grouped by team size. We use average values as
we did in the basic problem.
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Fig. 11 Success Probability in a Task with Different Syntactic Structures

As we can see in Figure 11 all the experiments with 5 agents were successful
and the syntactic agreement was reached. Bigger teams show the difficulty of
the task. With 10 and 20 agents the model achieves 93.3% of success probabil-
ity and it failed in two experiments on each configuration. Finally, in a team
of 30 agents the success probability is 83.3%. Five experiments failed in this
case. All these experiments failed because a single agent in the team evolved a
different grammar to the rest of the team, so the syntactic agreement was not
possible. In two experiments with 10 agents, two experiments with 20 agents
and five experiments with 30 agents, there was an agent who disagreed and
the syntactic agreement failed. We will analyze what really happened in one of
these failed experiments. For example, in the fifth experiment with 10 agents,
nine of them evolved a solution grammar like the following:

<sentence>::= <spatialrel> <object> <object> | .......
<object>::= <determiner> anObject | anObject | .......
<spatialrel>::= aSpatialRelation

<determiner>::= aDeterminer
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But the sixth agent evolved this solution grammar:

<sentence>::= <object> <object> <spatialrel> | <object>
<object>::= anObject | <determiner> anObject
<spatialrel>::= aSpatialRelation

<determiner>::= aDeterminer

Let us take a look to the first production rule for the solution grammar’s
axiom. Nine agents had a rule that allowed them to generate a sentence with
the spatial relation as first word and the objects following the spatial relation.
However, the sixth agent had a rule that allowed the agent to build sentences
with the spatial relation at the end. Both kinds of solution grammars are
suitable to the linguistic descriptions in the referential scene but obviously
the whole syntactical agreement is not possible in this case. Agents evolved a
grammar but nine of them were not able to understand the sixth agent.

We can mention two possible solutions to this problem: 1) the evolutionary
parameters can be tuned (more generations or a bigger population size among
others) and 2) the concept of syntactic agreement can be slightly relaxed, by
considering a majority of agents, instead of all of them. In any case, we think
that model performs reasonable well in this more complicated task.

Now, we will analyze successful experiments by studying the type of evolved
solution grammar and the syntactic descriptions that the agents finally agreed
on. To do this we review an experiment in a group of 5 agents. Table 7 shows
results in the third experiment of this group.

All the agents evolved a production rule to generate sentences with the
spatial relation as first word and the objects following the relation. Of course,
other production rules can be evolved and some of them are duplicated or they
are wrong for this communicative intention. Again, the remarkable issue here
is how the model allows the agents to evolve a grammar that they eventually
can share. In this new task, we can see more complicated production rules than
we saw in the basic problem. These grammars can evolve different syntactic
structures. Specifically, objects can appear in singular or plural in this case.

We finish this section showing the final result of the example in terms of
syntactic agreement in Table 8.

Table 8 is equivalent to Table 6 for the basic problem. Nevertheless, there
is an important difference. While expressions for the basic problem always
contained three words, the expressions in this new task depend on the number
of the objects in the referential scene, so the agents use the word these when
the objects appear in plural and they do not use any mark when the object is
single. Communicative intention helps to decide between both concepts. The
word these belongs to the aDeterminer category and this category is associated
to the meaning number as we can see in the left column in Table 8. As we
defined in Table 1, we use simplified functions to deal with the concept of
meaning.

Results in other experiments are equivalent to this case, so we can argue
that model is able to develop different kind of syntactic structures inside the
same referential scene and what is more important in our opinion, syntactic
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structure shows the agent’s communicative intention that is internally repre-
sented as a meaning which is derived from the watched scene. As we have
commented, we have simplified this internal representation and we have fo-
cused in the higher layer, that is in the symbolic processing.

8 Conclusions

In this work, we propose a model so that a team of artificial agents can au-
tonomously evolve a shared language with syntactic properties, in order to
describe scenes with spatial relations between objects. The proposed model
combines an evolutionary algorithm that is able to evolve grammars (con-
strained by a meta-grammar) and a planning process that can generate sen-
tences from a grammar, where the agent’s informative intention is used to
avoid generating irrelevant sentences. Agents are encouraged to progressively
agree on a shared language by playing language games, where sentences are
uttered, and agreements are used as reward. We think that the combination of
intentionality by planning with the use of the grammatical formalism, are the
major contributions of our model. It is important to remark that the grammar
rules themselves are not fixed in advance, but they emerge from the interac-
tions between the agents.

The proposed model has been first applied to describe several simple spa-
tial situations in a basic referential scene. Experiments have been carried out
with different team sizes (from 5 to 50 agents). Results show that syntactic
agreement between the agents is reached in all experiments in a reasonable
time (although it takes loner for larger teams). Second, a more complicated
problem where objects can appear in singular or plural has been tested with
teams of 5, 10, 20, and 30 agents. Different syntactic structures appear in the
referential scene but the model is able to achieve syntactic agreement in most
cases, although it becomes more difficult as team size increases. But even in
those cases, agreement is almost reached, except for one of the agents.

In future work, we will study the important problem of grounding and
how to link effectively the semantic with the syntactical framework that the
model proposes. We will also consider other stages in the language acquisition
and evolution process, such as the invention or creation of new syntactical
structures and the recognition of other agents sentences.

A Meta-grammar Definition

We use the usual BNF notation to specify the grammatical production rules and we adopt
here the formalism proposed in [18]. In short, according to this convention, terminal symbols
between quotation marks stand for non-terminal symbols in the solution grammar level
which will be created starting from the following meta-grammar rules.

<grammar> ::= ’<sentence>::=’ <rel-expression-def> /
’<object>::=’ <object-def> /
’<spatialrel>::=’ <spatialrel-def>
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<rel-expression-def> ::= <rel-expression>
| <rel-expression> ’|’ <rel-expression-def>
<object-def> ::= <object>
<spatialrel-def> ::= <spatialrel>
<rel-expression> ::= <rel-word>
| <rel-word> <rel-expression>

<rel-word> ::= ’<object>’

| ’<spatialrel>’
<object> ::= anObject
<spatialrel> ::= aSpatialRelation

where terminals ' <sentence>::=',’ <object>::='," <spatialrel>::="," <object>'

and ' <spatialrel>' will represent non-terminals in a solution grammar as we
showed in 5.1 and the symbol ’|" stands for the alternative symbol as it is usual
in BNF notation. Finally, terminals anObject and aSpatialRelation represents
lexical categories such as nouns, adjectives or verbs but they are constrained
to a spatial context.

B Extended Meta-grammar Definition

This meta-grammar is an extension of the previous one. It allows to develop
more complicated languages.

<grammar> ::= ’<sentence>::=’ <rel-expression-def> /
’<object>::=’ <obj-expression-def> /
’<spatialrel>::=’ <spatialrel-def> /
’<determiner>::=’ <determiner-def>
<rel-expression-def> ::= <rel-expression>
| <rel-expression> ’|’ <rel-expression-def>
<obj-expression-def> ::= <object-def>
| <object-def> ’|’ <obj-expression-def>
<object-def> ::= <object>
| ’<determiner>’ <object>
<spatialrel-def> ::= <spatialrel>
<determiner-def> ::= <determiner>
<rel-expression> ::= <rel-word>
| <rel-word> <rel-expression>
<rel-word> ::= ’<object>’
| ’<spatialrel>’
<object> ::= anObject
<spatialrel> ::= aSpatialRelation
<determiner> ::= aDeterminer
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Table 7 Evolved solution grammars in a Task with Different Syntactic Structures (5-agents)

Agent ID

Evolved Grammar

Agent0

<sentence>::= <object> <object>

| <spatialrel> <object> <object>
<object>::= anObject

| <determiner> anObject

| <determiner> anObject
<spatialrel>::= aSpatialRelation
<determiner>::= aDeterminer

Agent_1

<sentence>::= <spatialrel> <object> <object>
| <spatialrel> <object>
<object>::= anObject
| anObject
| <determiner> anObject
| anObject
<spatialrel>::= aSpatialRelation
<determiner>::= aDeterminer

Agent_2

<sentence>::= <spatialrel> <object> <object>
<object>::= anObject

| <determiner> anObject

| anObject
<spatialrel>::= aSpatialRelation
<determiner>::= aDeterminer

Agent_3

<sentence>::= <spatialrel> <object> <object>
<object>::= anObject

| <determiner> anObject

| anObject
<spatialrel>::= aSpatialRelation
<determiner>::= aDeterminer

Agent_4

<sentence>::= <object>
| <spatialrel>
| <object> <object> <spatialrel> <object> <object> <spatialrel>
| <spatialrel> <object> <object>
<object>::= anObject
| <determiner> anObject
| <determiner> anObject
| anObject
<spatialrel>::= aSpatialRelation
<determiner>::= aDeterminer
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Table 8 Results of the syntactic agreement in a Task with Different Syntactic Structures
(5-agents)

Informative intention Linguistic expression
meaning(right(meaning(number(meaning(chair)));meaning(wardrobe)))) right wardrobe these chair
meaning(left(meaning(wardrobe);meaning(number(meaning(chair)))) left wardrobe these chair
meaning(front(meaning(number(meaning(chair)));meaning(table)))) front table these chair
meaning(behind(meaning(table);meaning(number(meaning(chair)))) behind table these chair
meaning(right(meaning(table);meaning(wardrobe))) right table wardrobe
meaning(left(meaning(wardrobe);meaning(table))) left wardrobe table
meaning(left(meaning(number (meaning(stool)));meaning(number (meaning(chair)))) left these stool these chair
meaning(right(meaning(number(meaning(chair)));meaning(number (meaning(stool)))) | right these chair these stool






