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Fractional Order PID Control of a MIMO Distillation Column
Process Using Improved Bat Algorithm

Vahab Haji Haji · Concepción A. Monje

Abstract In this paper, a new Bat Algorithm (BA)
based on dynamic control parameters selection is pre-
sented. The Dynamic BA (DBA) uses a new mechanism
to dynamically select the best performing combination
of the pulse rate coefficient, the pulse frequency coeffi-
cient, and the population size. A fractional order PID
(FOPID) controller based on the DBA is implemented
to improve the performance of a distillation column pro-
cess. The proposed FOPID controller is used to control
the distillate and bottom mole fractions. The influence
of the feed rate disturbance is considered for this model.
The efficacy of the DBA-based FOPID is compared
with the performance of the controllers based on the
conventional BA, directional BA (dBA), enhanced BA
(BA-IS), Genetic Algorithm (GA), and Particle Swarm
Optimization (PSO) algorithm. The analyses and sim-
ulation results show the superiority of the proposed

method.

Keywords Distillation column · Fractional order

PID · Dynamic Bat algorithm

1 Introduction

Distillation columns are one of the most important sep-
aration process parts in chemical and petrochemical in-
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dustries. In a typical process, a distillation column sys-
tem is used for the separation and the purification of
mixtures containing two or more components. The con-
trol of the distillation column process has some difficul-
ties due to its highly nonlinear characteristics, its Mul-
tiple Inputs Multiple Outputs (MIMO) structure, and
the presence of disturbances during operation (Bhat-
tacharjee and Medhi 2012). The need for parameters
estimation, accurate modeling, and control of the dis-

tillation column has led to several publications in the
literature. Bhattacharjee and Medhi (2012) compare
fuzzy logic and neuro-fuzzy controllers with the con-

ventional PID and PI controllers for distillation col-
umn systems. A new method for the independent de-
sign of multi-loop PI and PID controllers is presented in

Luan and Lee (2010). This paper uses an Internal Model
Control (IMC)-based PID tuning approach to design a
controller for Vinante and Luyben, Wood and Berry,
and Ogunnaike and Ray column systems. Atashpaz-

Gargari et al. (2008) apply Colonial Competitive Algo-
rithm (CCA) to design a multivariable PID controller
for a typical distillation column process. A real dis-
tillation column process is identified and modeled us-
ing artificial neural network by Sahraie et al. (2013).
The Model Predictive Control (MPC) for controlling

a distillation column is proposed by Manimaran et al.
(2013). This paper shows that the MPC controller gives
a very fast response and a quick setting time compared
to the PID controller. In Rajabioun (2011) the Cuckoo
Optimization Algorithm (COA) is used to tune the pa-
rameters of a multivariable PID controller for a dis-
tillation column process. This paper investigates the

performance of the COA compared to Genetic Algo-
rithm (GA) and Particle Swarm Optimization (PSO)
algorithms. A decentralized PI control system based
on the Nyquist stability analysis for Wood and Berry,
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Vinante and Luyben, and Alatiqi distillation column is
presented by Chen and Seborg (2003).

The use of fractional calculus in the area of control
theory combined with evolutionary and swarm intel-
ligence algorithms further extends the system control
performance of the conventional controllers. The tun-
ing and auto-tuning of fractional order controllers for
industry application is presented in Monje et al. (2008).
Bettayeb and Mansouri (2014) propose a new fractional
controller structure based on a fractional PID controller
cascaded with a fractional order filter. This paper uses
the IMC paradigm as design method. Moradi (2014)
proposes a multivariable fractional order PID controller
to control a multivariable process with time delay. A
Genetic Algorithm (GA) is used to tune the gains of the
fractional orders. A new method based on the Differen-
tial Evolution (DE) algorithm to tune the parameters
of a fractional order PIλDµ is proposed in Mart́ın et al.
(2015). The performance of the proposed method is con-
sidered based on a DC motor in real environment. Gao

et al. (2014) discuss the robust stabilizing region with
stability degrees of fractional order controllers for time
delay fractional order systems. A set of tuning methods
for optimal PID and fractional order PID controllers

is considered in Padula and Visioli (2011). A detailed
review of the fractional calculus concepts and its appli-
cations can be found in Podlubny (1999) and Monje et

al. (2010).

The Bat Algorithm (BA) is a newly proposed stochas-
tic global search algorithm, which has been used in

different optimization fields and problems, such as op-
timization (Perez et al. 2017), earthquake prediction
(Saba et al. 2016), travelling salesman problem (Os-
aba et al. 2016), brain tumor MR image classification
(Kaur et al. 2017), photovoltaic system (Oshaba et al.
2017), visual tracking (Gao et al. 2016), and distributed
generations (Yammani et al. 2016). A fuzzy PD-based
speed controller for a brushless direct current motor is
presented by Premkumar and Manikandan (2015). The
controller gains are tuned using the bat algorithm. The

performance of the BA-based controller is analyzed and
compared with PSO and Cuckoo search algorithms. In
Jaddi et al. (2015), a modified BA for both optimizing
the weights and structure of an artificial neural network
is proposed. A self adaptive BA-based intelligent strat-
egy for multi-area load frequency control is presented
in Khooban and Niknam (2015). Abd-Elazim and Ali
(2016) propose a BA algorithm for the optimal tuning
of a PI controller for a nonlinear interconnected power
system. This paper shows the superiority of BA com-
pared to the simulated annealing algorithm. The offline

and online parameter estimation of a permanent mag-

net synchronous motor using self-adaptive learning BA
is presented in Rahimi et al. (2016).

The BA shows a considrable success in solving sev-
eral optimization problems, but the performance of the
algorithm is highly dependent on the right combination
of control parameters. In the present paper, a new dy-
namic parameters selection mechanism is proposed to
improve the BA’s convergence rate and minimization
of cost function. The Dynamic BA (DBA) uses a dy-
namic mechanism to select the best performing com-
binations of the pulse rate coefficient, frequency co-
efficient, and population size. A fractional order PID
(FOPID) controller based on the DBA algorithm is pro-
posed to further enhance the performance of a distilla-
tion column process. The proposed controller is imple-
mented to control the distillate and bottom mole frac-
tions. The analyses and simulation results based on the
Integral Squared Error (ISE), Integral Absolute Error
(IAE), Integral Time Absolute Error (ITAE), and In-
tegral Time Squared Error (ITSE) cost functions show
the performance of the proposed controller with opti-

mum gains.
This paper is organized as follows. In Section 2, the

mathematical modeling and FOPID control scheme of
the distillation column process is presented. A brief

overview of the BA algorithm and the description of
the proposed DBA are presented in Section 3. In Sec-
tion 4, the simulation results and analyses of the de-

signed controller for changes in the set point and the
feed rate disturbance are provided. Finally, the paper
is concluded in Section 5.

2 Modeling and Control Scheme

A distillation column is used to separate a mixture

which contains two or more component. The distillation
column is a nonlinear, non-stationary, and MIMO sys-
tem with strong interactions between inputs and out-
puts. Some distillation system mathematical models from
the literature are: Tyreus stabilizer (1979), Wood and
Berry (1973), Vinante and Luyben (1972), Wardle and
Wood (1969), Orgunnaike and Ray (1979), Tyreue (1982),

Doukas and Luyben (1978), and Alatiqi (1985) (Luyben
1986). The model considered in this work is based on
the Wood and Berry model (Wood and Berry 1973).

A very simple schematic diagram of a distillation
column system is shown in Fig. 1. A distillation col-
umn process is mainly the combination of a vertical
column where trays are installed, a reboiler to provide
heat, a condenser to condense the overhead vapor (en-
riched vapor), and a reflux drum to hold the condensed
vapor (Minh and Rani 2009). In Fig. 1, Feed is a liquid
mixture of the two components to be separated. The
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simplified dynamic Wood and Berry’s model is defined
as:

XD(s)

XB(s)

 =

G11 = 12.8e−s

16.7s+1 G12 = −18.9e−3s

21.0s+1

G21 = 6.6e−7s

10.9s+1 G22 = −19.4e−3s

14.4s+1


.

R(s)

S(s)

 +

GDF = 3.8e−8s

14.9s+1

GBF = 4.9e−3s

13.2s+1

F (s), (1)

whereXD(s) (lb/min) andXB(s) (lb/min) are percent-
ages of methanol in the distillate and bottom composi-
tions, respectively. R(s) and S(s) are the reflux and re-
boiler vapor flow rates, respectively, and F (s) (lb/min)
is the feed flow rate disturbance. The closed-loop dis-
tillation column system with and without decoupling is
represented in Fig. 2 and Fig. 3, respectively (Corriou
2004), where D21 and D12 are equal to

D12 =
−G12

G11
, (2)

D21 =
−G21

G22
. (3)

In these figures, XDref and XBref are the distillate

and bottom product compositions references, respec-
tively. As shown in Fig. 2 and Fig. 3, we are going to
use a FOPID for tracking the control inputs XDref and
XBref by the outputs XD(s) and XB(s), respectively.

The continuous transfer function of the FOPID or
PIλDµ controller is given as follows:

C(s)i = KPi +KIis
−λi +KDis

µi , i = 1, 2 (4)

where λi, µi > 0 are the fractional orders of the inte-
gral and derivative actions, respectively. The PIλDµ

controller output u(t) in time domain is:

u(t)i = KPie(t)i+KIiD
−λie(t)i+KDiD

µie(t)i, i = 1, 2

(5)

where e(t)i, KPi, KIi and KDi are the error signal and
the proportional, integral, and derivative gains, respec-
tively. The controller gains [KP1 KI1 KD1 λ1 µ1 KP2

KI2 KD2 λ2 µ2] will be tuned using DBA, BA, PSO,
and GA to minimize ISE, IAE, ITSE, and ITAE cost
functions.

3 Bat Algorithm

The BA algorithm is a population-based meta-heuristic
optimization method that was introduced by Yang (2010).
This algorithm simulates the fascinating behavior of the
bat to detect prey, avoid obstacles, and locate roosting
crevices in the dark. A pseudo code of the BA is shown
in Fig. 4. This algorithm is established upon three ide-
alized rules: (1) Each bat uses echolocation character-
istics to sense distance, and they know the difference
between food (prey) and obstacle in some magical way;
(2) Each bat flies randomly with a velocity vi at posi-
tion xi with a fixed frequency fmin, varying wavelength
λ and loudness A0 to seek for prey. Every bat can au-
tomatically adjust the wavelength (or frequency) of the
emitted pulses and adjust the rate of the pulse emission
r ∈ [0, 1] depending on the closeness of the targeted
prey; (3) The loudness of each bat emission can vary
in many ways; it is assumed that this loudness changes

from a large (positive) A0 to a minimum constant value
Amin.

At each time step, the velocity vi and position xi
of the ith bat in a D dimensional search space can be
updated based on the following equations:

fi = fmin + (fmax − fmin)β, (6)

vti = vt−1i + (xt−1i − xtgbest)fi, (7)

xti = xt−1i + vti , (8)

where β ∈ [0, 1] is a uniform random number, fi is the
frequency of the ith bat that controls the range and
speed of movement of the bats, and xtgbest is the current

global best solution at time step t. The values fmin
and fmax depend on the domain size of the problem of
interest.

Once a solution is selected among the current best
solutions, a new solution for each bat is generated lo-

cally using random walk as follows:

xnew = xold + εAt, (9)

where ε ∈ [−1, 1] is a random number, and At denotes
the mean loudness of all bats so far. The loudness Ai
and the rate ri of pulse emission can be updated based
on the following equations:

At+1
i = αAti, (10)

rt+1
i = r0i [1− exp(−γt)], (11)

where r0i is the initial pulse rate, α and γ are constants,
and for any 0 < α < 1 and γ > 0, we have:

Ati → 0, rti → r0i , as t→∞. (12)
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Fig. 1 Equivalent circuit diagram of a distillation column process
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Fig. 2 Column control system representation with decoupling

3.1 Dynamic Bat Algorithm

In solving any optimization problem, the right choice of
the control parameters plays an important role in the

performance of the algorithm. For the case of the BA
algorithm, a better combination of the frequency coeffi-
cient (f), the pulse rate coefficient (r), and the popula-
tion size (PS) enhances the algorithm’s flexibility and
robustness. A dynamic parameters selection mechanism

is implemented to dynamically select the best perform-
ing combination of the parameters (amplification fac-
tor, crossover rate, and the population size) for the DE
algorithm by Sarker et al. (2014). This paper shows the
superiority of the dynamic DE over other state-of-the-
art algorithms. In previous works by the authors (see
Haji Haji and Monje (2017a,b)), they propose a dy-
namic parameters selection mechanism to improve the
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Fig. 3 Column control system representation without decoupling

Bat Algorithm

Objective function f(x), x = (x1, ..., xd)T

Generate the bat population xi(i = 1, 2, .., n) and vi
Define frequency f
Initialize ri and Ai

while (t < MaxGeneration)
Generate new solution by adjusting frequency and
updating velocity and location through Eqns. (6) to (8)

if (rand > ri)
Select a solution among the best solutions
Generate a local solution around the best solution

end if
Generate a new solution by flying randomly
if (rand < Ai and f(xi) < f(xgbest))
Accept the new solutions
Increase ri and reduce Ai by Eqns. 10 and 11

end if
Rank the bats and find the current best xgbest
end while

Fig. 4 Pseudo code of the Bat Algorithm.

performance of the PSO and FA algorithms, with very
good results.

In this paper, a dynamic parameter selection mech-
anism is implemented to choose the best combination of
the frequency coefficient, pulse rate coefficient, and the
population size in a BA-based optimization problem.

The pseudo code of the dynamic algorithm is shown
in Fig. 5. The DBA starts with a random combination
of f , r and PS for each bat in the population, where
f ∈ fset = {f1, f2, ..., fnf}, r ∈ rset = {r1, r2, ..., rnr},
and PS ∈ PSset = {PS1, PS2, ..., PSnps}. Here, nf ,

nr, and nps refer to the cardinality of the frequency
factor, the pulse rate factor, and the population size
PS, respectively. The velocity and position of the ith
bat in population can be updated by Eqn. 7 and Eqn.
8, where fi ∈ fset and if the new position xi is bet-
ter than its previous position, the success rate SR of a
combination y is increased by one, where y is a com-
bination of the parameters, y ∈ yset, and yset is the
combination of all f and r. The success rates of com-
binations are recorded for a certain number of gener-
ations CS. After CS generations, based on Eqn. (13)
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the ranking of the combinations are calculated and the
numbers of combinations are reduced to the half. Be-
sides, the population size reduces to PSnps−1 and the
remaining PSnps − PSnps−1 bats are archived (assum-
ing PSnps > PSnps−1).

Ranky =
SRy
Ny

, (13)

where Ny is the number of times a combination y is
used, and the combinations with the highest Ranky are
selected for the next generations. At the end of CS×nps
generations, based on Eqn. (14) the best population
size PS is chosen and used for the (η−nps)×CS next
generations, where η > nps and is calculated based on
Eqn. (15).

RankPSi =

∑CS
1

∑TC
k=1 SRy

PSk
, (14)

η ≈ log(TC)

log(2)
, (15)

where TC is the total combination of f and r. For the

sake of illustration, if TC = 32, this means that the
maximum possible value for η is 5 (32 → 16 → 8 →
4 → 2 → 1) or TC can be divided by 2 for 5 times.
Besides, in this paper, nps is 2; therefore (η−nps) is a

fixed coefficient that refers to remaining possible next
generations and must be a positive number. Finally,
after η ×CS generations, the dynamic process restarts

with all combinations of the pulse rate coefficient, the
frequency coefficient, and the population size.

In the standard BA, bats can move toward a selected

best solution using Eqn. 9. This structure can lead to
a premature convergance issue (Yilmaz and Küçüksille
(2014)). In order to remove this problem and improve

the capability of the BA, inspired by the Differential
Evolution (DE) algorithm (Sarker et al. (2014)), the
cross over operator based on Eqn. 16 and Eqn. 17 is

proposed.

z = xtgbest + γ ∗ (xt1 − xt2), (16)

xnew =

{
z if rand ≤ CR or j = jrand,

xti otherwise,
(17)

where x1, x2 are two randomly selected bat in the pop-
ulation, x1 6= x2 6= xi, γ ∈ {0.2, 0.8}, rand ∈ [0, 1],
jrand is a randomly chosen number in the range [1, D]
(D refers to the problem dimension), and CR = 0.3.

In order to evaluate the performance of the pro-
posed DBA compared to GA, PSO, BA, directional BA
(dBA) (Chakri et al. (2017)) and enhanced BA (BA-
IS) (Yilmaz and Küçüksille (2014)), the first 15 of the

CEC 2005 benchmark functions (Lynn (2015)) are used.
These functions are listed in Table 1, and the parame-
ter settings are dimension (D) 10, function evaluations
(FES) 100, 000, population size 20, and run time 20.
As Table 2 shows, DBA provides the best results for
9 functions. In this table, BA and BA-IS cannot show
any success in minimization of cost functions compared
to the other algorithms.

4 Simulation Results

In this section, the considered FOPID is designed and
implemented in control loops of the coupling and de-
coupling distillation column models. The gains of the
controller are tuned using DBA, BA, dBA, BA-IS, GA,
and PSO algorithms. In order to assess the performance
of each algorithm, all the algorithms have been run five
times, and the best, worst, and average results have

been discussed in detail. The control values for the
DBA-based optimization are: maximum number of it-
erations = 100, CS = 50, η = 3, A = 0.9, PS ∈ {4, 6}
r ∈ {0.1, 0.2, 0.3, 0.5}, and f ∈ {1.5, 1.6, 1.7, 1.8, 1.9, 2}.
The parameters settings of the BA, dBA, BA-IS, GA,
and PSO algorithms are given in Table 3. The fitness
functions ITSE, ITAE, ISE, and IAE are used to tune

the gains of the controllers using GA, PSO, BA, dBA,
BA-IS, and DBA algorithms.

J1 = ITSE =

∫ ∞
0

t(e21(t) + e22(t))dt, (18)

J2 = ITAE =

∫ ∞
0

t(|e1(t)|+ |e2(t)|)dt, (19)

J3 = ISE =

∫ ∞
0

(e21(t) + e22(t))dt, (20)

J4 = IAE =

∫ ∞
0

(|e1(t)|+ |e2(t)|)dt, (21)

where e1(t) and e2(t) are the error signals for outputs
XD and XB , respectively.

4.1 Distillation Column with Decoupling

The tuned controllers gains and the corresponding fit-
ness function parameters of the proposed FOPID con-
trollers obtained using different evolutionary and swarm
intelligence algorithms for the distillation column with
decoupling are presented in Tables 4-7, where Mp, Tr,
Ts, Of , and TE refer to the maximum peak, rise time
(minute), settling time (minute), objective function, and
total error (e1(t) + e2(t)), respectively. Figure 6 shows
the convergence rate characteristics of the DBA, BA,

dBA, BA-IS, PSO, and GA algorithms for the cost
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Dynamic Bat Algorithm
Define parameters, ipop = nps, fset, rset, and PSset

Objective function f(x), x = (x1, ..., xd)T

Generate initial random population of bats xi(i = 1, 2, .., n) and vi
while (t < MaxGeneration)
Assign a random combination (y) of parameters

for i = 1 : n all n bats
Generate new solution through Eqns. (7) and (8)
if (rand > rset), then Generate a solution using Eqns. 16 and 17 ; end if
if new vector is better than its previous vector, then SRy ← SRy + 1; end if
if (rand < A and f(xinew) < f(xiold))

Accept the new solution
end if

end for i
Rank the bats and find the current best xgbest
period← period+ 1
PSprd ← PSprd + 1
if mod(period, CS) == 0 and period < (η ∗ CS)

Select the best half combination based on the rankings using Eqn. 13 and update yset
else if mod(period, η ∗ CS) == 0

Set SRy ← 0 and period← 0
end if
if mod(PSprd, CS) == 0 and ipop > 0

Calculate RankPSipop
using (14)

set ipop ← ipop − 1
if ipop ∼= 0

Archive the worst (PSipop+1 − PSipop) individuals
Set PS ← PSipop

end if
end if
if ipop == 0 and PSprd == nps ∗ CS

Set PS to the population size with the best ranking
Use required individuals from the archive

end if
if PSprd == η ∗ CS

Set PSprd ← 0, ipop ← nps, and PS ← PSipop

Use required individuals from the archive
Clear the archive

end if
end while

Fig. 5 Pseudo code of the Dynamic Bat Algorithm.

Table 1 CEC 2005 benchmark functions.

Functions Range Optimum
F01 Shifted sphere function [−100, 100]D −450
F02 Shifted Schwefel’s problem 1.2 [−100, 100]D −450
F03 Shifted rotated high conditioned elliptic function [−100, 100]D −450
F04 Shifted Schwefel’s problem 1.2 with noise in fitness [−100, 100]D −450
F05 Schwefel’s problem 2.6 with global optimum on bounds [−100, 100]D −310
F06 Shifted Rosenbrock’s function [−100, 100]D 390
F07 Shifted rotated Griewank’s function without bounds [−600, 600]D −180
F08 Shifted rotated Ackley’s function with global optimum on bounds [−32, 32]D −140
F09 Shifted Rastrigin’s function [−5, 5]D −330
F10 Shifted rotated Rastrigin’s function [−5, 5]D −330
F11 Shifted rotated Weierstrass function [−0.5, 0.5]D 90
F12 Schwefel’s problem 2.13 [−100, 100]D −460
F13 Expanded extended Griewank’s plus Rosenbrock’s function(F8F2) [−3, 1]D −130
F14 Shifted rotated expanded Scaffer’s F6 [−100, 100]D −300
F15 Hybrid composition function [−5, 5]D 120
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Table 2 Comparison of the avarage results for 10 dimensional CEC 2005 benchmark functions.

Functions DBA dBA BA–IS BA GA PSO

F01 0.000E+00 0.015E+00 0.163E+00 0.072E+00 0.015E+00 0.000E+00
F02 0.000E+00 0.039E+00 0.099E+00 0.025E+00 3.154E+02 0.000E+00
F03 1.989E+05 1.496E+04 1.837E+05 5.199E+04 2.809E+06 5.359E+04
F04 0.000E+00 0.054E+00 5.779E+02 0.128E+00 3.934E+03 0.000E+00
F05 0.000E+00 1.397E+02 3.755E+02 2.361E+02 9.354E+03 0.000E+00
F06 1.835E+00 3.905E+01 2.619E+03 1.976E+01 7.149E+02 8.702E+00
F07 1.483E+00 0.975E+00 3.335E+01 6.911E+01 2.370E+00 0.280E+00
F08 2.041E+01 2.023E+01 2.034E+01 2.036E+01 2.037E+01 2.028E+01
F09 5.621E+00 5.971E+01 3.693E+01 3.202E+01 0.003E+00 2.487E+01
F10 9.927E+00 1.154E+02 4.049E+01 3.339E+01 3.111E+01 2.915E+01
F11 5.503E+00 1.159E+01 9.043E+00 8.871E+00 8.436E+00 6.146E+00
F12 9.707E+03 5.528E+02 1.039E+04 6.521E+03 3.353E+03 3.705E+03
F13 0.456E+00 2.009E+01 6.334E+00 5.576E+00 0.477E+00 0.981E+00
F14 2.957E+00 4.589E+00 3.874E+00 3.890E+00 3.747E+00 3.571E+00
F15 2.898E+02 8.659E+02 4.626E+02 4.942E+02 1.196E+02 3.796E+02

Best 9 3 0 0 2 5
Rank 1 3 5 5 4 2

functions ITSE, ITAE, ISE, and IAE. The simulation
results achieved by the different algorithms in five runs

are presented in Table 8 and Table 9. As tables show,
DBA offers, in general, a better average for all objec-
tive functions. In the case of the ITSE function, from

Fig. 6 and Table 6, it is clear that the GA algorithm
provides a very fast convergence rate, but it fails in the
minimization of the objective function compared to the
DBA. As for the ITAE function, as shown in Fig. 6 and

Table 6, the PSO algorithm presents a very low objec-
tive function, but not lower than DBA. In the case of
the IAE and ISE functions, from Fig. 6 and Table 7,

the DBA provides a very fast convergence rate and a
very low final error.

The dynamic responses for XD and XB outputs
with the optimally tuned FOPID controllers based on
these algorithms are shown in Fig. 7 and Fig. 8, re-
spectively. In the case of the ITSE function and XD

output, from Fig. 7 and Table 6, it is evident that the

DBA provides a very fast rise time and a very low cost
function, while the overshoot and the settling time are
bigger than those based on the BA and BA-IS algo-
rithms. As for the XB output, from Fig. 8 and Table 6,
it is clear that the PSO- and BA-IS-based FOPID pro-
vides the best and the worst settling time, respectively.

In the case of the ITAE function and XD output, from
Fig. 7 and Table 6, the GA algorithm shows a very low
overshoot and the best settling time. As for the XB

output, From Fig. 8 and Table 6, the BA provides the
worst objective function.

From Fig. 7 and Table 7, regarding the ISE function
and XD output, although the GA algorithm provides
the best overshoot, it fails in the minimization of the
objective function compared to the PSO, BA-IS, dBA,

and DBA algorithms. As for the XB output, based on
Fig. 8 and Table 7, the BA-IS algorithm represents the

best rise time. In the case of the IAE function and XD

output, from Fig. 7 and Table 7, the BA presents the
worst maximum overshoot. As for the XB output, from
Fig. 8 and Table 7, the DBA-based controller shows

the best cost function, but it fails in minimization of
the rise time and settling time aspects.

The dynamic responses of the XD and XB outputs

for an instantaneous 0.2 input feed rate variation are
depicted in Fig. 9 and Fig. 10, respectively. These fig-
ures show that all FOPID controllers have the ability

to bring back the XD and XB outputs in a desired in-
terval within a minimum time. The variation of best
control parameters f and r during the entire evolution

process are depicted in Fig. 11. The figures show that
there is not a fixed best combination for f and r control
parameters during the whole evolution process.

According to the simulation results shown and dis-

cussed in this section, it is clear that the dynamic mech-
anism proposed here improves the BA’s minimization
of the cost function, specially for the ITSE, ISE, and
IAE cases. It is also noticeable that other algorithms
like GA, PSO, BA-IS and BA are not that effective in
this minimization.

4.2 Distillation Column without Decoupling

The distillation column transfer function is known with
uncertainty and time delays. Therefore, in practice, cou-
pling effects could be observed. The tuned controller
gains and the corresponding fitness function parame-
ters of the proposed FOPID controller obtained using
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Table 3 Parameters settings in simulation

Algorithm Parameters value
GA Population size = 6, Mutation probability = 0.05, Crossover probability = 0.95
PSO Population size = 6, Velocity coefficients = 1.4962, Inertia weight = 0.7298
BA Population size = 6, A = 0.9, r = 0.1, Frequency = 0-2
dBA Population size = 6, A = 0.9, r = 0.1, Frequency = 0-2
BA-IS Population size = 6, A = 0.95, r = 0.85, Frequency = 0-1

Table 4 Optimum values of FOPID gains obtained via minimizing J1 and J2 for distillation column with decoupling.

Algorithms KP1 KI1 KD1 λ1 µ1 KP2 KI2 KD2 λ2 µ2

J1 = ITSE
GA 0.1858 0.0591 -0.0189 0.8926 0.5115 -0.0993 -0.0262 0.0079 0.8791 0.2498
PSO 0.2772 0.0799 0.0075 0.9264 0.2981 -0.062 -0.0367 -0.0761 0.8032 0.4507
BA 0.2997 0.0799 0.0797 0.8517 0.998 -0.0948 -0.0306 -0.0799 0.998 0.5092
BA-IS 0.2996 0.0797 -0.0294 0.7782 0.4556 -0.0873 -0.0230 -0.0799 0.998 0.4461
dBA 0.2995 0.07964 0.0056 0.9229 0.1297 -0.104 -0.0307 -0.0799 0.8898 0.7644
DBA 0.2973 0.0795 0.0735 0.8941 0.6728 -0.1033 -0.0315 -0.0799 0.8827 0.998

J2 = ITAE
GA 0.2396 0.0513 -0.0220 0.8966 0.2225 -0.1027 -0.0286 0.0433 0.8333 0.0284
PSO 0.2761 0.0679 -0.0230 0.8805 0.0422 -0.0777 -0.0252 -0.0326 0.8947 0.6361
BA 0.2995 0.0388 -0.0799 0.995 0.3673 -0.1458 -0.0174 0.0799 0.996 0.1519
BA-IS 0.2571 0.0799 0.0798 0.998 0.6681 -0.1222 -0.0361 -0.0799 0.997 0.998
dBA 0.1259 0.0747 0.0344 0.8487 0.2795 -0.0887 -0.0207 0.0187 0.9202 0.5890
DBA 0.2997 0.0689 0.0377 0.9026 0.998 -0.0714 -0.0296 -0.0740 0.8763 0.6567

Table 5 Optimum values of FOPID gains obtained via minimizing J3 and J4 for distillation column with decoupling.

Algorithms KP1 KI1 KD1 λ1 µ1 KP2 KI2 KD2 λ2 µ2

J3 = ISE
GA 0.2804 0.0559 0.0111 0.8296 0.2911 -0.0483 -0.0557 -0.0628 0.6729 0.6423
PSO 0.2679 0.0667 0.0275 0.9465 0.5072 -0.0775 -0.0346 -0.0717 0.8648 0.5949
BA 0.2995 0.0796 -0.0799 0.997 0.5664 -0.1345 -0.0318 -0.0799 0.998 0.997
BA-IS 0.2997 0.0798 0.0799 0.998 0.8460 -0.1221 -0.0241 -0.07998 0.998 0.3694
dBA 0.2998 0.0781 -0.0405 0.9020 0.6774 -0.1457 -0.0238 -0.0798 0.9971 0.9564
DBA 0.2995 0.0633 0.0796 0.998 0.1421 -0.1438 -0.0255 -0.0799 0.998 0.997

J4 = IAE
GA 0.2159 0.0576 0.0090 0.8939 0.0902 -0.0948 -0.0313 -0.0055 0.8202 0.1951
PSO 0.2341 0.0797 0.0442 0.8644 0.4074 -0.0239 -0.0568 -0.0799 0.6736 0.5122
BA 0.2996 0.0795 0.0797 0.998 0.4651 -0.0751 -0.0403 -0.0798 0.997 0.6963
BA-IS 0.2996 0.0604 -0.0380 0.999 0.998 -0.1084 -0.0336 -0.0799 0.998 0.996
dBA 0.2612 0.0797 -0.0061 0.8757 0.2281 -0.0864 -0.0295 -0.0749 0.8819 0.8734
DBA 0.2995 0.07998 0.0798 0.8744 0.4203 -0.0894 -0.0308 -0.0798 0.8732 0.997

Table 6 Optimum time indices parameters and objective function for J1 and J2 for distillation column with decoupling.

Algorithms Mp1(%) Ts1 Tr1 Of1 Mp2(%) Ts2 Tr2 Of2 TE
J1 = ITSE
GA 2.9317 29.1219 4.7950 5.8645 12.8827 29.3280 4.4548 15.3450 21.2095
PSO 15.6823 28.3406 3.4834 3.9806 11.7207 25.7932 4.1919 12.7048 16.6855
BA 9.0865 16.0461 3.8498 3.4980 23.8717 36.9234 3.7040 13.2013 16.6993
BA-IS 10.4990 22.6891 3.4882 5.3396 8.4383 39.1734 4.2591 12.8901 18.2297
dBA 16.0519 27.9340 3.3511 3.8937 14.9776 25.8994 4.0608 11.1359 15.0297
DBA 11.1792 25.9410 3.5952 3.3543 12.0370 26.9116 4.4667 11.0188 14.3731∗

J2 = ITAE
GA 1.3659 15.8689 4.4804 22.3518 10.1774 17.3451 5.1532 49.4813 71.8331
PSO 6.4702 18.5156 4.0162 18.2747 3.5639 30.2647 5.0425 33.4526 51.7274
BA 2.1883 29.7596 4.6767 34.8514 5.8565 36.4753 5.2525 52.0839 86.9354
BA-IS 16.0014 29.4743 3.7136 25.1853 33.8622 29.2929 3.7240 45.3965 70.5818
dBA 3.2842 25.4469 4.7511 19.6439 4.0528 30.6888 5.0578 37.7328 57.3767
DBA 8.2921 17.5298 3.8473 17.6097 4.1105 30.0357 4.8530 31.3768 48.9865∗

∗ = Best result
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Table 7 Optimum time indices parameters and objective function for J3 and J4 for distillation column with decoupling.

Algorithms Mp1(%) Ts1 Tr1 Of1 Mp2(%) Ts2 Tr2 Of2 TE
J3 = ISE
GA 0.5863 22.8862 4.2707 2.6624 21.6898 22.5972 4.1054 4.9081 7.5706
PSO 8.6791 29.5263 3.9025 2.4443 13.4493 27.6699 4.2055 4.6103 7.0546
BA 26.8039 30.3503 3.1336 2.7406 30.2288 27.9002 3.6706 4.4509 7.1916
BA-IS 16.7998 29.1684 3.5683 2.2081 26.9275 47.5924 3.2042 4.6585 6.8666
dBA 16.7517 28.0952 3.3132 2.5151 20.1420 36.5980 3.7410 4.3140 6.8292
DBA 11.2215 32.9463 3.3552 2.2267 22.0456 36.8700 3.7622 4.3123 6.5391∗

J4 = IAE
GA 1.7814 15.056 4.6381 4.5056 17.8278 33.2409 4.1064 7.8543 12.3599
PSO 9.3277 18.8350 3.8681 3.9421 18.4811 23.2475 4.3089 7.9220 11.8642
BA 17.2361 28.9912 3.3072 4.0493 40.8556 26.0068 3.9500 8.5420 12.5913
BA-IS 13.1591 30.8970 3.5637 4.5676 27.0569 30.3074 4.1097 7.3450 11.9127
dBA 12.3460 19.6152 3.6787 4.0746 4.2421 28.5379 4.8379 6.0963 10.1710
DBA 10.6416 16.7730 3.4027 3.7766 5.7780 27.5183 4.9175 6.0514 9.8281∗

∗ = Best result
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Fig. 6 Convergence characteristics of the DBA, BA, dBA, BA-IS, GA, and PSO algorithms for distillation column with
decoupling.

Table 8 Optimum objective function for J1 and J2 using different evolutionary algorithms.

Objective Function(J1) Objective Function(J2)
Algorithms Best Average Worst Best Average Worst
GA 21.2095 25.2414 28.6057 71.8331 96.7770 152.6311
PSO 16.6855 21.6112 23.7978 51.7274 54.1042 55.4096
BA 16.6993 21.0960 28.9771 86.9354 121.5415 152.5123
BA-IS 18.2297 26.6526 34.0246 70.5818 95.5040 141.6357
dBA 15.0297 15.4826 16.2511 57.3767 59.4419 62.5856
DBA 14.3731∗ 15.0784 15.9156 48.9865∗ 52.4100 55.2621

∗ = Best result
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Fig. 7 XD step responses using DBA, BA, dBA, BA-IS, GA, and PSO algorithms for distillation column with decoupling.
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Fig. 8 XB step responses using DBA, BA, dBA, BA-IS, GA, and PSO algorithms for distillation column with decoupling.
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Fig. 9 XD dynamic responses for 0.2 input feed rate disturbance using DBA, BA, dBA, BA-IS, GA and PSO algorithms for
the distillation column with decoupling.
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Fig. 10 XB dynamic responses for 0.2 input feed rate disturbance using DBA, BA, dBA, BA-IS, GA and PSO algorithms
for the distillation column with decoupling.
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Fig. 11 Best parameters values during the evolution process for distillation column with decoupling.

Table 9 Optimum objective function for J3 and J4 using different evolutionary algorithms.

Objective Function (J3) Objective Function (J4)
Algorithms Best Average Worst Best Average Worst
GA 7.5706 7.9123 8.0759 12.3599 13.1729 13.9721
PSO 7.0546 7.4005 7.8784 11.8642 13.4288 14.6854
BA 7.1916 7.6716 8.2626 12.5913 13.9981 14.9946
BA-IS 6.8666 7.5406 8.4934 11.9127 13.2952 15.0834
dBA 6.8292 6.9349 7.1037 10.1710 10.3875 10.5307
DBA 6.5391∗ 6.6767 6.8276 9.8281∗ 10.2939 10.4912

∗ = Best result

the previously cited algorithms for the distillation col-
umn without decoupling are presented in Tables 10-13.
The convergence rate characteristics of the DBA, BA,
dBA, BA-IS, PSO, and GA algorithms for the fitness
functions ITSE, ITAE, ISE, and IAE are depicted in

Fig. 12. Tables 14-15 show the simulation results ob-
tained using different algorithms in five runs. In the case
of the ITSE function, from Fig. 12 and Table 12, the
GA algorithm fails in the minimization of the total cost
function compared to the other algorithms. As for the
ITAE function, the PSO algorithm provides the best
average for objective function compared to the other
algorithms. In the case of the ISE, from Fig. 12 and
Table 13, the DBA-based FOPID controller, in terms
of the objective function minimization, outperforms the

GA, BA, dBA and PSO algorithms. As for IAE func-

tion, from Table 13, PSO can offer the best average for

objective function.

The dynamic responses of the XD and XB out-
puts for DBA, BA, dBA, BA-IS, GA, and PSO-based
FOPID controllers are presented in Fig. 13 and Fig. 14,

respectively. From Fig. 13 and Table 12, according to
the ITSE function and XD output, the BA algorithm
provides the best rise time but fails in the minimization
of the cost function and maximum overshoot. As for
the XB output, from Fig. 14 and Table 12, the DBA
and GA algorithms provide the worst overshoot and
rise time, respectively. In the case of the ITAE function
and for the XD output, from Fig. 13 and Table 12, the
dynamic PSO presents a very low rise time and over-
shoot compared to those from the BA, BA-IS, dBA, and

DBA algorithms. For the XB output, from Fig. 14 and
Table 12, the GA provides the worst rise time and min-
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Table 10 Optimum values of FOPID gains obtained via minimizing J1 and J2 for distillation column without decoupling.

Algorithms KP1 KI1 KD1 λ1 µ1 KP2 KI2 KD2 λ2 µ2

J1 = ITSE
GA 0.2818 0.0794 0.0379 0.7607 0.3027 -0.1042 -0.0138 -0.0175 0.9749 0.8124
PSO 0.2902 0.0687 0.0799 0.7692 0.2739 -0.1170 -0.0175 -0.0798 0.9233 0.8812
BA 0.2997 0.0585 -0.0799 0.9990 0.9990 -0.1350 -0.0129 -0.0799 0.9990 0.9990
BA-IS 0.2997 0.0799 -0.0150 0.9216 0.1829 -0.0740 -0.0157 -0.0797 0.9990 0.3956
dBA 0.2995 0.0693 0.0524 0.8953 0.1752 -0.1110 -0.0170 -0.0786 0.9919 0.9248
DBA 0.2996 0.0781 0.0791 0.8387 0.4856 -0.1113 -0.0178 -0.0799 0.9990 0.9205

J2 = ITAE
GA 0.2124 0.0744 0.0564 0.7504 0.3389 -0.0619 -0.0133 0.0024 0.9777 0.8883
PSO 0.2970 0.0666 0.0799 0.9767 0.0309 -0.0779 -0.0191 -0.0799 0.9373 0.8616
BA 0.2787 0.0400 0.0797 0.9990 0.7108 -0.0676 -0.0170 -0.0799 0.9980 0.3693
BA-IS 0.2997 0.0505 0.0799 0.9980 0.7882 -0.1119 -0.0095 -0.0799 0.9990 0.7881
dBA 0.2813 0.0440 0.0667 0.9970 0.0845 -0.0789 -0.0165 -0.0322 0.9533 0.8538
DBA 0.2942 0.0782 0.0799 0.9300 0.2610 -0.0729 -0.0186 -0.0799 0.9704 0.7399

Table 11 Optimum values of FOPID gains obtained via minimizing J3 and J4 for distillation column without decoupling.

Algorithms KP1 KI1 KD1 λ1 µ1 KP2 KI2 KD2 λ2 µ2

J1 = ISE
GA 0.2470 0.0354 0.0339 0.7908 0.2222 -0.1342 -0.0173 0.0022 0.8472 0.2413
PSO 0.2995 0.0398 0.0528 0.8972 0.2997 -0.1426 -0.0146 -0.0112 0.9935 0.3695
BA 0.2913 0.0799 0.0799 0.5441 0.9990 -0.0524 -0.0735 -0.0799 0.3488 0.9990
BA-IS 0.2996 0.0596 0.0799 0.8439 0.9413 -0.1081 -0.0191 -0.0740 0.9990 0.9990
dBA 0.2997 0.0373 0.0681 0.9990 0.0659 -0.1146 -0.0153 -0.0360 0.9901 0.4265
DBA 0.2603 0.0400 0.0679 0.9561 0.4571 -0.1365 -0.0130 -0.0799 0.9990 0.8574

J2 = IAE
GA 0.2080 0.0301 0.0316 0.8367 0.0812 -0.1518 -0.0219 -0.0082 0.7509 0.2037
PSO 0.2940 0.0312 0.0699 0.9988 0.2006 -0.1303 -0.0165 -0.0796 0.9935 0.9054
BA 0.2996 0.0649 0.0240 0.9980 0.9990 -0.0965 -0.0105 -0.0799 0.9980 0.2409
BA-IS 0.2997 0.0425 0.0799 0.9970 0.9990 -0.0939 -0.0247 -0.0498 0.9990 0.4767
dBA 0.2995 0.0426 0.0402 0.9960 0.1736 -0.0826 -0.0151 -0.0280 0.9631 0.4346
DBA 0.2996 0.0467 0.0799 0.9560 0.3414 -0.1098 -0.0125 -0.0206 0.9970 0.9990

Table 12 Optimum time indices parameters and objective function for J1 and J2 for distillation column without decoupling.

Algorithms Mp1(%) Ts1 Tr1 Of1 Mp2(%) Ts2 Tr2 Of2 TE
J1 = ITSE
GA 28.3264 126.9956 3.8637 69.8317 5.5439 120.6849 81.6832 480.1475 549.9793
PSO 29.4332 124.0461 4.0207 72.7996 6.6614 118.0742 80.6678 414.9279 487.7275
BA 37.7322 122.5546 3.4012 77.5303 4.1083 125.0055 80.3727 450.5866 528.1168
BA-IS 32.9469 123.0852 3.4429 66.5760 8.1066 130.2979 81.2362 461.1417 527.7177
dBA 31.1523 109.8925 3.5075 59.8147 7.9618 126.1112 80.9647 418.5985 478.4131
DBA 30.4028 110.4377 3.6563 61.2598 9.9876 126.4710 80.8890 411.8380 473.0978∗

J2 = ITAE
GA 24.6788 121.8154 4.6912 659.3943 3.5990 121.8452 84.0529 927.5416 1586.9359
PSO 25.8651 109.0704 3.1779 274.7633 3.1744 112.9469 82.0944 757.0654 1031.8287∗

BA 34.4942 112.7389 5.1487 411.1283 7.4182 129.0136 81.3691 788.4316 1199.5599
BA-IS 30.7610 109.3070 4.4467 308.6163 0.0000 129.4594 83.0736 1105.9475 1414.5639
dBA 28.8026 113.8352 4.1132 365.9694 5.5065 108.7228 82.4422 807.8939 1173.8633
DBA 26.1022 109.6826 3.2796 286.2907 5.0620 116.9933 82.0729 788.0578 1074.3486

∗ = Best result
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Fig. 12 Convergence characteristics of the DBA, BA, dBA, BA-IS, GA, and PSO algorithms for distillation column without
decoupling.
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Fig. 13 XD step responses using DBA, BA, dBA, BA-IS, GA, and PSO algorithms for distillation column without decoupling.
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Table 13 Optimum time indices parameters and objective function for J3 and J4 for distillation column without decoupling.

Algorithms Mp1(%) Ts1 Tr1 Of1 Mp2(%) Ts2 Tr2 Of2 TE
J3 = ISE
GA 35.1307 128.4233 7.3655 4.6917 18.9546 137.9572 80.0809 6.9557 11.6474
PSO 39.5278 138.4507 4.9483 3.7742 19.0263 133.5458 80.0182 7.0714 10.8456
BA 23.5895 123.1134 5.8119 3.6584 20.0721 137.6834 79.8843 7.1553 10.8137
BA-IS 31.7900 114.0321 4.6429 3.2944 14.4329 115.1481 81.0011 6.5758 9.8702
dBA 36.7459 123.7199 4.2172 3.3074 12.3598 124.7498 80.5469 6.9910 10.2984
DBA 37.9496 122.4806 5.2603 3.5102 4.2603 119.2213 80.3180 6.2142 9.7244∗

J4 = IAE
GA 45.7899 141.1647 7.8932 17.2727 30.1656 150.1783 79.0210 18.9397 36.2123
PSO 37.1174 123.4478 4.9784 10.1506 10.3820 117.1212 80.2513 11.8052 21.9558∗

BA 38.7608 123.1583 3.7407 10.6486 2.5235 133.8273 80.4055 17.0444 27.6930
BA-IS 41.9148 122.0103 4.9587 10.6663 33.9796 134.1972 80.3204 16.7774 27.4436
dBA 30.9574 113.3922 4.2736 8.5850 4.5419 108.0169 82.1012 14.1204 22.7054
DBA 30.6258 113.0370 4.2981 8.6174 2.8910 120.6250 81.8410 14.0294 22.6467

∗ = Best result
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Fig. 14 XB step responses using DBA, BA, dBA, BA-IS, GA, and PSO algorithms for distillation column without decoupling.

imization of objective function compared to the other
algortihms.

In the case of the ISE function and for the XD out-
put, according to Fig. 13 and Table 13, although the

BA algorithm provides the best overshoot, it fails in the
minimization of the objective function and rise time. As
for the XB output, from Fig. 14 and Table 13, the DBA
algorithm presents the best overshoot and minimization
of the cost function. For IAE function and the XD out-

put, from Fig. 13 and Table 13, the BA-based FOPID
controller provides a very fast rise time. As for the XB

output, from Fig. 14 and Table 13, the BA-IS and BA
provide the worst and the best overshoot, respectively.

The dynamic resposnses of the XD and XB outputs
for an instantaneous 0.2 input feed rate variation are
presented in Fig. 15 and Fig. 16, respectively. From
these figures, it is evident that all FOPID controllers
are able to track the reference signal within a very short
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time. The variation of best control parameters f and r
during the entire evolution process are depicted in Fig.
17. It is clear that best combination for f and r control
parameters changes during the whole evolution process.

According to the simulation results shown and dis-
cussed in this section, it is clear that the dynamic mech-
anism proposed here effectively improves the BA’s con-
vergence rate and the minimization of the cost func-
tion, specially for the ITSE and IAE cases. Interest-
ingly, in the case of the ITAE cost function, the PSO-
based FOPID outperforms those controllers based on
the DBA, BA, BA-IS, dBA and GA algorithms.

Even if the PSO-based controller outperforms the
controller tuned with our DBA algorithm, the differ-
ences are really slight, and our proposal keeps its com-
petitiveness in comparison with the rest of performances.

In any case, the optimization problem is very depen-
dent on the particular fitness or objective function to
choose and the selection of the control parameters. The
fact that an optimization algorithm provides good re-
sults for a specific objective function does not guarantee

the same success when applied to a different objective
function. In our case, we can conclude that: 1) even if
for some specific objective functions the performance
of the DBA approach is better than for others, the dif-

ferences are very slight; and 2) for every particular ob-
jective function considered, the DBA algorithm outper-
forms in general terms the rest of algorithms used for

comparison, both for the coupled and decoupled cases.

5 Conclusions

This paper proposes a new Bat Algortihm based on a
dynamic parameters selection mechanism. This DBA
dynamically selects the best performing combinations
of the frequency coefficient, the pulse rate coefficient,

and the population size. The analyses carried out based
on the ITSE, ITAE, ISE, and IAE fitness functions show
that the proposed dynamic mechanism improves the
convergence rate of the algorithm and the minimization
of the cost function compared to the conventional BA,
dBA, BA-IS, GA, and PSO algorithms.

A fractional order PID controller has been used to

control the distillate and bottom mole fractions of a
distillation column system. The gains of this controller
are calculated successfully using DBA, BA, dBA, BA-
IS, GA, and PSO algorithms. The simulation results
clearly show that the proposed FOPID controller based
on the DBA algorithm improves the performance of the
distillation column system during a change in the set
point or any feed rate disturbance.
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Fig. 15 XD dynamic responses for 0.2 input feed rate disturbance using DBA, BA, dBA, BA-IS, GA and PSO algorithms
for the distillation column without decoupling.
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Fig. 16 XB dynamic responses for 0.2 input feed rate disturbance using DBA, BA, dBA, BA-IS, GA and PSO algorithms
for the distillation column without decoupling.
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Fig. 17 Best parameters values during the evolution process for distillation column without decoupling.

Table 14 Optimum objective function for J1 and J2 without decoupling and using different evolutionary.

Objective Function(J1) Objective Function(J2)
Algorithms Best Average Worst Best Average Worst

GA 549.9793 557.1102 570.5866 1586.9359 1686.7534 1809.6992
PSO 487.7275 519.6377 559.7173 1031.8287∗ 1043.5210 1051.2656
BA 528.1168 564.9880 603.6296 1199.5599 1687.6713 1809.6992
BA-IS 527.7177 568.9104 603.6296 1414.5639 1730.6721 1809.6992
dBA 478.4131 481.6674 486.1626 1173.8633 1221.1082 1268.0359
DBA 473.0978∗ 483.8802 499.6774 1074.3486 1212.8895 1274.1767

∗ = Best result

Table 15 Optimum objective function for J3 and J4 without decoupling and using different evolutionary.

Objective Function(J3) Objective Function(J4)
Algorithms Best Average Worst Best Average Worst

GA 11.6474 12.2694 12.8762 36.2123 37.5629 38.2257
PSO 10.8456 11.8101 12.4939 21.9558∗ 25.5113 29.4325
BA 10.8137 11.5112 12.8762 27.6930 30.8951 34.6447
BA-IS 9.8702 11.8932 12.8762 27.4436 31.3027 35.3713
dBA 10.2984 10.4664 10.7586 22.7054 22.9177 23.1012
DBA 9.7244∗ 10.2053 10.8530 22.6467 23.0968 23.5495

∗ = Best result
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