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Abstract
Direct Numerical Simulations of the flow around a pair of flapping wings are presented.

The wings are flying in forward flight at a Reynolds number Re = 500, flapping at a reduced
frequency k = 1. Several values of the radius of flapping motion are considered, resulting in
a database that shows a smooth transition from the wing rotating with respect to its inboard
wingtip (flapping), to a vertical oscillation of the wing (heaving). In this transition from
flapping to heaving, the spanwise-averaged effective angle of attack of the wing increases while
the effect of the Coriolis and centripetal accelerations becomes weaker. The present database
is analyzed in terms of the value and surface distribution of the aerodynamic forces, and in
terms of 2D and 3D flow visualizations. While the former allows a decomposition of the force
in pressure (i.e., the component of the force normal to the surface of the wing) and skin friction
(i.e., tangential to the surface of the wing), the latter allows the identification of specific flow
structures with the corresponding forces on the wing. It is found that the aerodynamic forces
in the vertical direction (lift) tend to increase for wings moving with larger radius of flapping
motion, becoming maximum for the heaving configuration. This is mostly due to the increase
of the spanwise-averaged effective angle of attack of the wing with the radius of the flapping
motion. Also, the local changes in the effective angle of attack have a strong effect on the
structure of the leading edge vortex, resulting in changes in the distribution of suction along
the span near the leading edge of the wing. The effect of the apparent accelerations is mostly
felt on the spanwise position where the separation of the LEV occurs. On the other hand, the
differences in the force in the streamwise direction (thrust/drag) between the configurations
with different radius of flapping motion seems to be linked to the position of the stagnation
point dividing the suction and pressure side boundary layers, which seems to be controlled by
the local effective angle of attack. Finally, the results of the DNS are used to evaluate the
performance of an unsteady panel method, and to explain its deficiencies.

1 Introduction
Small flyers such as insects or small birds flap their wings to hover, fly forward, or perform maneu-
vers like take-off or perch. The desire to mimic the high-maneuverability of these flyers has guided
the design of flapping-wing micro air vehicles (FWMAVs) [1]. The Reynolds number of operation
of FWMAVs is in the range 102−104, similar to that of insects or small birds [2]. For example, the
Reynolds number of the fruit fly is Re ∼ 102, and that of the Rufous hummingbird is Re ∼ 103.
Many studies have been conducted to increase the understanding of the aerodynamics of flapping
wings at moderate and low Reynolds numbers, as reviewed by Shyy et al. [3]. However, although
the unconventional aerodynamic mechanisms involved in the generation of forces by means of flap-
ping wings (delayed stall of the leading edge vortex (LEV), rapid pitch up, wake capture and clap
and fling) are known since the 1980s [4], it has been difficult to employ this knowledge to improve
the systematic design of FWMAVs. Part of the problem is that the variety of maneuvers, wing
kinematics and geometric parameters is so vast that there are no simple and reliable models for
the aerodynamic forces covering this huge parametric space.

Since the problem is so complex, many studies have explored the simplified configuration of a
heaving and/or pitching 2D airfoil [5, 6, 7, 8, 9, 10, 11]. Such studies have shown and quantified
the role that the vortical structures formed during the oscillating cycle play in the process of
force generation. In this simplified configuration, all sections of the corresponding infinite aspect
ratio wing have an equal vertical displacement. However, this is not the case for natural flyers or
FWMAVs that flap their wings so that the amplitude of motion increases from the wing root to
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the wing tip. Thus, it seems of outmost importance to analyze the differences in the aerodynamic
forces on a wing oscillating vertically (heaving) and a wing in a more realistic rotating motion
(flapping). This question is explored in this manuscript by analyzing the transition from heaving
to flapping for a pair of low-aspect ratio wings in forward flight, varying the radius of flapping
motion from zero (flapping) to infinity (heaving).

A similar transition from a linear to an angular motion has been thoroughly studied in revolving
wings [12, 13, 14, 15]. Compared to the kinematics of flapping wings, revolving wings only move
in one direction (i.e., there is no stroke reversal). In those cases, the effect of the centripetal and
Coriolis acceleration is to stabilize the LEV, producing an increase in lift as the radius of flapping
motion decreases. In the literature of revolving wings, this effect is usually quantified with the
Rossby number, which measures the ratio between the inertial force and the Coriolis force. A
review of the recent literature on revolving wings is provided by Lee et al. [15], who emphasize the
importance of both the Rossby number and the aspect ratio of the wing in order to characterize
the aerodynamic forces of revolving wings.

The information concerning flapping wings in the forward flight regime is more scarce, apart
from the particular case of heaving wings, reviewed by Gursul and Cleaver [16]. In recent years,
flapping wings in forward flight have been studied by several authors, simulating both idealized
configurations [17, 18, 19] as well as realistic configurations corresponding to insects [20, 21, 22,
23] birds [24], bats [25] and even micro air vehicles [26, 27]. While the emphasis in most of
these studies lies in the characterization of the aerodynamic forces for the particular geometry or
kinematics selected, few works analyze systematically the effect on the forces of varying kinematics
or geometries. One of the exceptions is the work of Nagai et al. [20] who reported experiments
and numerical simulations of an insect-like flapping wing, analyzing the effect on the aerodynamic
forces of the position of the stroke plane and of the advance ratio. Another comprehensive study
was performed by Bos et al [19]. They studied the effect of the radius of flapping motion on the
aerodynamic forces, presenting an extensive database of cases in hover and a limited database of
cases in forward flight. Their results show that both in hover and in forward flight, the aerodynamic
force coefficients decrease as the radius of flapping motion increases, as a result of the stabilizing
effect of the Coriolis and centripetal accelerations of the LEV. The most relevant for the present
study is the work of Guerrero [18] who performed numerical simulations of a flapping, rectangular
wing in forward flight. The author considered both heaving motion and a flapping motion with
respect to the wing root at a Reynolds number of 250 based on the flight speed and wing chord.
After analyzing the aerodynamic forces and flow visualizations, the author concluded that the
heaving case produces larger forces and vortices than the flapping case, in apparent contradiction
with the limited results reported by Bos et al [19] for forward flight.

In the present paper, we analyze the effect of the radius of flapping motion on the aerodynamic
performance of a pair of flapping wings of small aspect ratio in forward flight. Several simulations
are performed covering a parametric range between the cases of heaving motion and flapping
motion with respect to the wing root. These two extreme cases are similar to the cases reported
by Guerrero [18]. The paper is structured as follows. The description of the problem is provided
in section 2. The numerical approach used to perform the numerical simulations is presented in
section 3. The results are discussed in section 4. First the DNS results are discussed in terms of the
aerodynamic forces over the wings. Then, the contributions from forces tangential and normal to
the wing surface are analized, and related to the vortical structures appearing in the flow around
the wing. Section 4 is closed with a comparison of the DNS results with an unsteady panel method.
The conclusions of the study are presented in section 5.

2 Problem statement
The configuration considered in the present study consists of a pair of rectangular wings with
an aspect ratio AR = b/c = 2, where c and b are the maximum chord and span of the wing,
respectively. The wing cross-section is a NACA 0012 airfoil, which is a standard choice in the
literature [28, 29]. The wings are flat, with no geometric twist, and rounded edges at the wing
tips, as shown in Figure 1.

This pair of wings are placed side by side, as shown in Figure 1a, separated a distance c/2
(measured between the inboard wing tips). The wings perform a flapping motion (depicted in
Figure 1b) as they fly forward at a constant speed u∞. The flapping motion consists in a rotation
of each wing around an axis parallel to the forward flight direction (red line in Figure 1b), which
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a) b)

c)

d)

e)

Figure 1: a) Sketch of the two wings configuration and b) sketch of the kinematics of the left wing.
The wing chord, span of the wing and the radius of flapping motion, which is the distance between
the inboard wing tip and the axis of rotation are denoted by c, b and R, respectively. c) Top view
of the wing. d) Side view of the wing. e) Front view of the wing.
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is located at a distance R from the inboard wing tip. The flapping angle, measured from the
horizontal plane, follows a sinusoidal law,

φ(t) = φ0 cos(ωt), (1)

where ω is the angular frequency and φ0 is the amplitude of the flapping motion. For all the
simulations the vertical displacement of the outboard wing tip, h0, has been kept fixed, h0 = c,
with the exception of one of the heaving wing simulations, as further discussed below. As a result,
for the flapping wing simulations the amplitude of the flapping motion varies with the radius of
flapping motion, R, as

φ0 = arcsin

(
1

R/c+AR

)
. (2)

Note also, that since the vertical displacement of the outboard wing tip and the reduced frequency
are the same for all cases, the vertical velocity of the outboard wing tip is approximately the same
for any value of R. In particular, for the heaving case the vertical velocity of the outboard wing
tip is

wtip(t) = −h0ω sin(ωt), (3)

while for the flapping cases it becomes

wtip(t) = (R+ cAR) cos(φ)dφ/dt = −ω(R+ cAR)φ0 cos(φ) sin(ωt). (4)

Figure 1 also shows the two reference frames that will be used in the analysis of the results.
First, an inertial reference frame x, y, z that moves with the wings at constant speed u∞. In this
reference frame, the forward motion results in an incoming free stream along the x (streamwise)
direction. The vertical direction is z, and y is the direction along the span of the wing when
φ(t) = 0. Figure 1b shows a non-inertial reference frame, xw, yw, zw, which moves with the wing
so that xw is the chordwise direction, yw is the spanwise direction along the wing, and zw is a
direction perpendicular to the mean surface of the wing. The leading edge of the wing is at xw = 0,
and it moves due to the flapping motion in the x = 0 plane. The inboard wing tip of the wing is
at yw = 0, while the outboard wing tip is at yw/c = AR.

As shown in Table 1, several values of R are considered in the present study, varying from R = 0
(flapping with respect to the inboard wing tip, with φ0 = 30◦) to R→∞ (heaving motion). For all
cases, the reduced frequency is k = ωc/u∞ = 1 and the Reynolds number is Re = u∞c/ν = 500,
where ν is the kinematic viscosity. Note that, for completeness, the problem of a single wing in
heaving motion has also been considered. This last case is labeled 1W-Rinf in Table 1, while
the cases with two wings are labeled 2W-R### (with the last three digits corresponding to the
numerical value of R/c). Additionally, a case of heaving motion with different amplitude of the
vertical displacement of the outboard wing tip, h0 equal to 0.52c has also been performed (2W-
Rinf?).

As discussed in the introduction, the Rossby number is the ratio between the advective terms
in the Navier-Stokes equations and the Coriolis accelerations. For flapping wings in forward flight
with h0 = c this yields

Ro =
u2∞/c

(ωφ0)
2

(R+ b)
=

1

(kφ0)
2

c

R+ b
≈ 1

k2

(
AR+

R

c

)
, (5)

where the last expression is an approximation for R/c � 1, where φ0 ≈ c/(R + b) (see equation
2). Since in the present study the reduced frequency is kept constant, k = 1, Ro varies only as a
consequence of variations in the geometric parameters, as in [15]. Moreover, as the aspect ratio
is AR = 2 for the cases presented, any increment in R/c is translated (almost) linearly into an
increment in the Rossby number. Note also that, in the present configuration the choice of k = 1
results in u∞ being of the same order of magnitude as the vertical velocity of the outboard wingtip,
φ0ω(R+ b), see eq. (4). Hence, the centripetal and the Coriolis accelerations are of the same order
of magnitude for all cases in Table 1.

Finally, in order to keep the configuration as simple as possible, pitching motion of the wing
has not been considered (i.e., rotation of the wing with respect to an axis parallel to yw).
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3 Numerical method
The problem described in the previous section is solved using Direct Numerical Simulations (DNS)
with the in-house code TUCAN, which solves the Navier-Stokes equations for an incompressible
flow. The presence of bodies of arbitrary shape (wings in this case) is modelled with the direct
forcing Immersed Boundary Method (IBM) proposed by Uhlmann [30]. The fluid domain is dis-
cretized with a uniform, staggered Cartesian grid and centered, second-order finite differences are
used to approximate the spatial derivatives. The time is discretized with a fractional-step method,
in which the time advancement is performed with a low-storage Runge-Kutta scheme of three
stages. The interested reader can find more details about TUCAN in [31, 32, 33].

In the present study, all the simulations with two wings (2W cases) are performed in a compu-
tational domain with dimensions x = [−3c, 9c], y = [0, 5.25c] and z = [−4c, 4c] in the streamwise,
spanwise and vertical directions, respectively. As shown in Figure 1a, y = 0 is the symmetry plane
between both wings (indicated with a shaded plane), hence only the wing in the y > 0 domain is
contained in the computational domain. The effect of the wing in the y < 0 domain is simulated
by imposing a symmetry condition at the plane y = 0. Hence, the boundary conditions in the com-
putational domain are uniform free stream at the plane x = −3c, outflow (advective) boundary
condition at x = 9c, and free slip at the vertical (z = −4c, z = 4c) and spanwise (y = 0, y = 5.25c)
boundaries.

Note that, even for completely symmetrical configurations, lateral instabilities might develop in
the flow if the Reynolds number is sufficiently large, leading to non-symmetric aerodynamic forces
on the wing [34]. As a consequence, the assumption of a symmetry condition at the center plane of
the configuration is commonly used in the literature only for low to moderate Reynolds numbers
[35, 36, 37]. For instance, Visbal et al.[37] simulated the flow around a heaving wing at Re = 10000
using an implicit LES and a symmetry condition at the mid-span of the wing. In the present case,
the lower Reynolds number of the flow makes the assumption of symmetry with respect to y = 0
even more reasonable.

For the case with only one wing (1W-Rinf), the computational domain is x = [−3c, 9c], y =
[−2c, 2c] and z = [−4c, 4c] and y = 0 corresponds to the mid-span section of the wing. The
boundary conditions are the same as in the 2W cases. Note that, even if this case is solved without
the symmetry assumption, the resulting flow is completely symmetric with respect to the mid-span
of the wing (not shown). This result supports the validity of the assumption of symmetry with
respect to the plane y = 0 for the 2W cases.

The resolution employed in all computations is 56 grid points per chord length in all spatial
directions (∆x = ∆y = ∆z = c/56). This resolution, which is comparable to that used in previous
studies at similar Re [38], was chosen after a grid convergence study performed for a 2D airfoil
in heaving motion at Re = 500 and k = 1 (see appendix). The total number of grid points of
the computational domain for the 2W cases is Nx = 672, Ny = 294 and Nz = 448. For the case
1W-Rinf the resolution is the same, resulting in a lower number of grid points in the spanwise
direction (Ny = 224). In addition to the grid for the fluid domain, a Lagrangian grid for the wing
needs to be defined. In the IBM of Uhlmann [30], the area associated to each Lagrangian point
has to be roughly the same as the square of the grid spacing for the fluid domain. This leads to a
total number of 17,050 Lagrangian points evenly distributed on the surface of the wing.

All cases in Table 1 are simulated with the same initial condition, u = u∞ and v = w = 0 (i.e.,
unperturbed free-stream velocity). The simulations are run until the velocity field and the forces
on the wing reach a periodic state, with period T = 2π/ω = 2πc/ku∞, imposed by the motion
of the wing. This periodic state is reached after a transient of approximately 10T . The first four
cycles are run with a lower resolution. Then, the velocity field is interpolated onto the fine grid,
and run for another 6 cycles. Note that the aerodynamic forces converge after 2-3 cycles while
the flow downstream of the airfoil needs a longer time integration interval to converge. After that
transient, the variation in the aerodynamic forces or flow velocities between consecutive cycles are
negligible (relative differences smaller than 10−5).

It is important to take into account that one of the advantages of the algorithm implemented
in TUCAN is that it provides directly the distribution of aerodynamic forces per unit area on the
surface of the wing, f . This feature was exploited by Chan-Braun et al. [39] to analyze the hydro-
dynamic force distribution on the surface of spherical particles in a low-Reynolds number turbulent
flow and by Arranz et al. [40] to analyze the force distribution on the wing of a winged-seed in
autorotation. In the present study, the force per unit area is decomposed during postprocessing as
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Cases R/c Ro φ0 h0/c 〈αe〉max Cx Cz CMy

2W-R000 0.0 1.82 30.00◦ 1.00 27.64◦ 0.143 0.859 -0.258
2W-R005 0.5 2.36 23.58◦ 1.00 31.69◦ 0.132 1.052 -0.319
2W-R020 2.0 3.92 14.48◦ 1.00 37.16◦ 0.115 1.356 -0.420
2W-R080 8.0 9.97 5.74◦ 1.00 42.03◦ 0.094 1.670 -0.531
2W-Rinf ∞ ∞ - 1.00 45.00◦ 0.080 1.888 -0.615
1W-Rinf ∞ ∞ - 1.00 45.00◦ 0.081 1.808 -0.579
2W-Rinf? ∞ ∞ - 0.52 27.64◦ 0.142 0.877 -0.251

Table 1: Parameters and main results of DNS cases simulated. R is the radius of flapping motion,
Ro is the Rossby number (see equation 5), φ0 is the amplitude of the flapping angle (in degrees), h0
is the amplitude of the vertical displacement of the outboard wing tip and 〈αe〉max is the maximum
absolute value of the effective angle of attack averaged along the wing span (in degrees), which
occurs at mid-stroke. The coefficients Cx, Cz and CMy are the streamwise force coefficient, the
vertical force coefficient and the pitching moment coefficient with respect to the leading edge of
the wing, respectively. All three coefficients are time-averaged during the downstroke of the wing.

the sum of two vectors, namely, a vector normal to the surface and a vector tangent to the surface,

fn∗ = (f · n)n and fτ = f − fn∗. (6)

Note that n is the local unit vector normal to the surface, pointing towards the fluid, as shown in
Figure 1d. Note that from a physical point of view, fn∗ corresponds to the forces due to the pressure
and the normal viscous stresses, while fτ corresponds to the skin friction (i.e. the tangential shear
stresses acting on the surface of the wing). Finally, for convenience we also define

fn = fn∗ −
(

1

S

∫
S

(f · n)dS
)
n, (7)

where S stands for the wetted surface of the wing. Note that (7) is roughly equivalent to removing
the ambient pressure from fn∗. In any case, the differences between fn and fn∗ are small, less than
10%. Note also that the total force resulting from integrating fn and fn∗ over the (closed) surface
of the wing is exactly the same.

Finally, the IBM used to simulate the presence of the moving wing has limitations to describe
the force distribution near the trailing edge (TE) of the wing. Such limitations have been recently
addressed by Maertens and Weymouth [41], though not implemented in this study. The problem
arises due to the discrete representation of the Dirac’s delta employed to transfer the forces from
the wing’s grid to the mesh where the fluid is solved (regularized delta functions, see [42]). In
the present calculations, we use a 4-point regularized delta function, which introduces a spurious
interaction between the upper and lower surfaces of the wing when the distance between them is
smaller than 2∆x. For the present geometry and resolution, this corresponds to xw & 0.85c. In
this region (indicated with a dashed line in the force distributions shown in Figures 5 and 9) the
distributions of f , fτ and fn are not reliable. However, the spurious interactions between the upper
and lower surface cancel each other, so that the total force (integrated over the whole wing) is not
affected by this phenomenon [31, 32, 33].

4 Results

4.1 Aerodynamic forces
Figure 2 shows the time evolution of the net force coefficients,

Cx =
1

1
2ρu

2
∞bc

∫
S

f · exdS, Cz =
1

1
2ρu

2
∞bc

∫
S

f · ezdS, (8)

where ρ is the density of the fluid, ex and ez are the unit vectors in the streamwise (x) and
vertical (z) directions, respectively. The corresponding time-averaged force coefficients during the
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downstroke (i.e., half cycle) are reported in Table 1 (Cx and Cz). The pitching moment coefficient
is defined as

CMy =
1

1
2ρu

2
∞bc

2

∫
S

(xP × f) · eywdS, (9)

where xP is the position vector of any point of the wing surface with respect to the leading edge
and eyw is the unit vector along the wing span. For completeness, we also include in Table 1 the
values of CMy, the pitching moment coefficient averaged over half cycle.

Due to the vertical symmetry of the motion, the vertical force (Figure 2a) generated during
the downstroke is equal in magnitude to the vertical force generated during the upstroke, but with
opposite sign. With increasing radius of flapping motion, the peak of Cz increases, so that the
maximum force is obtained for the heaving wing case, 2W-Rinf. Interestingly, case 1W-Rinf has
peak values of Cz slightly lower than case 2W-Rinf. Note also, that the peak is reached slightly
before the mid-downstroke for all cases shown in Figure 2a, at a time that does not seem to depend
on R.

While for the present configuration the peak of Cz increases with R, a different trend has been
reported for revolving wings [12, 13, 14, 15]. These studies found that the maximum of Cz is
greater for wings rotating with smaller R, and this result was attributed to a stabilization of the
LEV produced by the Coriolis force. The reason behind this discrepancy might be found in a
fundamental difference concerning the effective angle of attack of the wing, αe, in revolving wings
with respect to the present configuration. In revolving wings, the effective angle of attack is just
the geometrical angle of attack of the wing, constant for all spanwise positions and independent
of R. For flapping wings in forward flight, the effective angle of attack is given by the ratio of the
vertical velocity at each spanwise section, ww(yw, t), and the forward flight velocity, resulting in

αe(yw, t) = arctan

(
ww(yw, t)

u∞

)
= arctan

(
(R+ yw)dφ/dt

u∞

)
. (10)

It is also useful to define the effective angle of attack averaged over the wing span

〈αe〉(t) =
1

b

∫ b

0

αe(yw, t)dyw. (11)

Hence, for a constant value of h0 the flapping wing moves faster as R increases, resulting in larger
〈αe〉 (see Table 1), and larger Cz during the downstroke. Recall that, by design the vertical velocity
of the outboard wing tip is approximately the same for the cases with h0 = c, (see equations 3-4)
and therefore αe is roughly independent of R at the outboard wing tip. When R → ∞, both
ww(yw, t) and αe(yw, t) become uniform over the wing, maximizing the aerodynamic force. Hence,
we hypothesize that the larger αe along the wing span is responsible for the increase of Cz with R.

In order to confirm this hypothesis, we have performed an additional simulation in heaving
motion, case 2W-Rinf*. The heaving amplitude, h0/c = 0.52, has been selected so that the
effective angle of attack of the wing is the same as the spanwise-averaged effective angle of attack
of the case with R = 0 (case 2W-R000), see Table 1. The profiles of Cz as a function of time
for both cases (2W-R000 and 2W-Rinf?) are shown in Figure 2a. They are found to be very
similar, with a small variation of the peak values and the time when they are reached. Thus, it
is confirmed that for the present configuration the variation of the aerodynamic forces with R is
mainly governed by the resulting variation of the effective angle of attack, with little influence of
Ro (i.e., inertial terms seem to be dominant over the apparent acceleration terms). Note that the
value of Cz reported in Table 1 for 2W-R000 is marginally smaller (about 2%) than for 2W-Rinf?.
Although this difference might be too small to be significant in the present case, it is qualitatively
consistent with the results of Guerrero [18], who reported larger aerodynamic forces for heaving
wings than for flapping wings, at a somewhat lower Re and higher k than the present cases.

In terms of the forces in the streamwise direction (Figure 2b), the evolution of Cx is the same
during the upstroke and during the downstroke, owing to the symmetry of the motion. For all cases,
the values of Cx during the downstroke/upstroke are essentially positive, indicating that net drag
is being produced. This result indicates that the wing kinematics employed in this study should
not have practical utility to sustain forward flight. However, as mentioned above, the kinematics
do illustrate the effect of R in a configuration as simple as possible.

Figure 2b also shows that the maximum value of Cx is reached during the transitions between
upstroke and downstroke, around t/T = 0 and 0.5. The dependence of the peak values of Cx with
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a) b)

Figure 2: Forces coefficients a) Cz and b) Cx during one cycle of DNS cases 2W-R000 ( ),
2W-R005 ( ), 2W-R020 ( ), 2W-R080 ( ), 2W-Rinf ( ), 1W-Rinf ( )
2W-Rinf? ( ). Maximum and minimum values of the forces coefficients are depicted with ( ).
Dark and light greys regions represent downstroke and upstroke motions respectively.

R is weak for the cases with the same h0, and the magnitude (Cx,max ≈ 0.2) is similar to the
drag coefficient of a rectangular flat plate of AR = 2 at zero angle of attack and a comparable
Reynolds number, Re = 300 [38]. However, the time to Cx,max varies significantly with R for these
cases, although it remains close to t/T = 0 and 0.5 for all cases. On the other hand, the minimum
value of Cx (i.e., when the wing is closer to produce thrust) is obtained at the mid-downstroke and
mid-upstroke, t/T = 0.25 and 0.75, when the effective angle of attack is maximum over the wing.
The effect of R in the magnitude of Cx,min is apparent for the cases with the same h0. Indeed,
cases 2W-R080 and 2W-Rinf show negative values of Cx at mid-upstroke and mid-downstroke,
indicating thrust production.

Finally, note that, for the cases with the same 〈αe〉, 2W-R000 and 2W-Rinf?, the differences
between the peaks of Cx are similar to those found in Cz, even if the time-averaged streamwise
force during the downstroke motion (Cx) of both cases is roughly the same (see Table 1). At
the mid-downstroke (t/T = 0.25), the minimum of Cx is larger for 2W-Rinf? than for 2W-R000,
indicating less drag production. Interestingly, for these two cases that isolate the effect of R from
the effect of the effective angle of attack, the trend of Cx,min with R is the same as that found for
the cases with h0 = c. This suggests that the effect of both R and αe is to produce more negative
streamwise forces, i.e. less drag or more thrust.

In order to evaluate the origin of the changes in Cz and Cx at mid-stroke (more lift and more
thrust as R and 〈αe〉 increase), the contributions from the normal and tangential forces to Cx and
Cz are analyzed next. These contributions are defined as

Cni =

∫
S
fn · eidS

1
2ρu

2
∞bc

, Cτi =

∫
S
fτ · eidS

1
2ρu

2
∞bc

, (12)

where the subindex i stands for x or z. Recall that, from a physical point of view, Cni is related
to the pressure forces mainly, while Cτi is the contribution from the viscous skin friction.

Although not shown, Cz is dominated by the contribution from the normal force (i.e., pressure
forces), while the contribution from tangential forces is smaller than 13% in all cases. In other
words, pressure is dominant in the generation of lift. On the other hand, the contribution of
normal and tangential forces to Cx is more balanced. This can be observed in Figure 3 where the
time history of Cnx and Cτx are shown for all the 2W cases. The contribution of Cnx (Figure 3a)
corresponds to thrust during most of the cycle, while the contribution of Cτx (Figure 3b) always
corresponds to drag. This suggests that the pressure forces are responsible for the lift and the
thrust contributions generated by the wing during the downstroke. The thrust provided by the
normal forces increases with 〈αe〉, the same as Cz in Figure 2a. Note that the two cases with
different R but same 〈αe〉 have roughly the same Cnx , suggesting that the effect of R on the surface
integral of the pressure forces is limited in the present cases.
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a) b)

Figure 3: Streamwise force coefficient a) normal (Cnx ) and b) tangential (Cτx ) components during
one cycle of 2W cases 2W-R000 ( ), 2W-R005 ( ), 2W-R020 ( ), 2W-R080 (
), 2W-Rinf ( ) and 2W-Rinf? ( ). Dark and light greys regions represent downstroke
and upstroke motions respectively. Note that the vertical scale has been chosen so that Figures
can be compared with Figure 2b

Interestingly, the contribution from the skin friction to the drag is larger for case 2W-R000,
which shows in Figure 3b a fairly constant value of Cτx over the whole cycle. The time-averaged
Cτx of cases 2W-R000 and 2W-Rinf? are almost the same, although the instantaneous values of
Cτx of the latter present stronger oscillations than the former. In the cases with h0 = c, as 〈αe〉
increases, Cτx decreases during both the downstroke and the upstroke. Indeed, the effect of 〈αe〉
on the contribution from the tangential forces seems to be larger than in the contribution from the
normal forces, with absolute variation between 2W-Rinf and 2W-R000 of 0.11 and 0.06 for Cτx and
Cnx , respectively. Finally, it is interesting to note that the dependence of the time to Cx,max with
〈αe〉 is associated to the tangential force contribution (compare Figures 2a and 3b around t/T = 0
and 0.5).

4.2 Tangential force distribution
The analysis of Cni and Cτi in the previous section seems to suggest that R and 〈αe〉 affect differently
normal (pressure) and tangential forces (skin friction). In this subsection, we focus in the latter,
specifically in the contributions to Cτx from the different parts of the wing. To that end, we define

cτx(xw) =
1

bc

∫ b

0

∫ xw

0

cτ (ξ, η) τ · exdξdη, (13)

where τ is a local unit vector tangent to the wing surface pointing towards the streamwise direction,
as shown in Figure 1d, xw is the chordwise coordinate on the reference frame of the wing and
cτ (xw, yw) is the local tangential force coefficient on the wing surface, defined as

cτ =
fτ · τ
1
2ρu

2
∞
. (14)

Note that the surface integral in (13) extends over the whole span of the wing, and from the leading
edge to the chordwise coordinate xw both over the upper and lower surfaces of the wing. From
a physical point of view, cτx(xw) is the contribution to Cτx from the surface of the wing located
between the leading edge and the chordwise coordinate xw, so that cτx(c) = Cτx .

Figure 4a shows cτx(x) at the mid-downstroke (t/T = 0.25), the time instant when the differences
in Cτx in Figure 3 are maxima. Near the leading edge of the wing, cτx presents a minimum for all
the cases. This peak value decreases with R for all the cases with the same h0 and is similar for
the cases with the same αe (2W-R000 and 2W-Rinf?). After that minimum, cτx grows with xw at
a similar rate for all the cases. This suggests that the differences in Cτx observed in Figure 3b are
mainly due to the behaviour of the flow close to the leading edge of the wing.
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Figure 4: a) Streamwise contribution of the local tangential force coefficient (cτ ) to Cτx as a function
of xw at the mid-downstroke (t/T = 0.25). 2W-R000 ( ), 2W-R005 ( ), 2W-R020 (
), 2W-R080 ( ), 2W-Rinf ( ) and 2W-Rinf? ( ). b) and c) relative velocity field
at the wing span section yw/b = 0.5 for cases 2W-R000 and 2W-Rinf, respectively. Two spanwise
vorticity contour lines (ωyc/u∞ = 5 and ωyc/u∞ = −5) are shown in blue and red respectively.
The wing section is displayed in green.

In order to evaluate the origin of these negative contributions to Cτx (i.e., thrust due to skin
friction) near the leading edge of the wing, Figures 4b and 4c show the relative velocity at the mid-
span of the wing at mid-downstroke for cases 2W-R000 and 2W-Rinf, respectively. In both Figures
the stagnation point can be identified in the pressure side of the wing, in the region between the
two spanwise vorticity contour lines shown in blue (clockwise) and red (anticlockwise). These plots
show that the negative peak of cτx(xw) for xw . 0.1c is due to the skin friction of the boundary
layer developing from the stagnation point to the leading edge of the wing. Since the stagnation
point is located further away from the leading edge for the case 2W-Rinf than for case 2W-R000,
the minimum of cτx(xw) of the former has a larger absolute value than the latter. Although not
shown here, the stagnation point for the heaving case (2W-Rinf?) with equal 〈αe〉 than 2W-R000
is located at the same xw than the latter, resulting in a similar magnitude of the negative peak in
cτx(xw) in Figure 4a. Therefore, independently of R, the results shown in Figure 4 suggest that in
sections with larger αe, the flow moves faster around the leading edge (from the pressure side to
the suction side), generating more thrust. This faster flow also results in a normal suction force at
the leading edge, which will be discussed below.

4.3 Normal force distribution
We now turn our attention to the vertical force. Unlike the streamwise force, the vertical force
is dominated by the contribution of the normal force, which represents almost 90% of the total
Cz in the cases studied here. Thus, in order to better characterize the combined effect of R and
αe on Cz, the distribution of the normal force on the surface of the wing is analyzed first. This
distribution is studied in the lower and upper surfaces separately, to allow the detailed analysis of
the effect of the LEV on Cz. First, the local normal force coefficient given by

cn =
fn · n
1
2ρu

2
∞
, (15)

is characterized at the mid-downstroke (t/T = 0.25, see Figure 5), approximately when aerody-
namic forces are maxima. Note that cn is analogous to the (minus) pressure coefficient: positive
cn corresponds to suction, which results in positive contributions to the lift in the upper surface
and negative contributions to the lift in the lower surface.
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Upper planform surface Lower planform surface

2W-R000

2W-R005

2W-R020

2W-R080

2W-Rinf

a) b)

c) d)

e) f)

g) h)

i) j)

Figure 5: Distribution of the local normal force coefficient (cn) at the mid-downstroke. (a), (c),
(e), (g), (i) upper surface. (b), (d), (f), (h), (j) lower surface. (a)-(b) Case 2W-R000. (c)-(d) Case
2W-R005. (e)-(f) Case 2W-R020. (g)-(h) Case 2W-R080. (i)-(j) Case 2W-Rinf. The red dashed
rectangle indicate approximately the regions where ∂xcn ≈ 0. The black dashed line at x/c = 0.85
limits the region where the IBM is not providing an accurate description of cn, as discussed in
section 3.

11



The cn distributions displayed in Figure 5 show that suction is dominant in the upper surface,
while positive pressure (i.e., negative cn) is dominant in the lower surface. Very close to the leading
edge, cn tends to be positive both in the upper and lower surface, which explains the negative sign
of Cnx (thrust) in Figure 3a at mid-downstroke. This is the so-called suction force in potential
theory. Near the trailing edge, the sign of cn tends to change. Note however that this occurs in
the region where the distance between the upper and lower surface is too small for the IBM to
provide accurate surface distributions of the force (as discussed in section 3).

For R → ∞ (2W-Rinf, see Figure 5i and j), the cn distribution is roughly symmetric with
respect to the mid-span of the wing. In the cases with h0 = c, the magnitude of cn in the inboard
wing tip (yw = 0) decreases with R, resulting in a force distribution along the spanwise direction
that peaks near the outboard wing tip (yw = b). Indeed, the local normal force distribution near
the outboard wing tip is qualitatively the same in these five cases, although the intensity of the
suction peak in the upper surface slightly increases with R. This is consistent with the variation
of the local αe, decreasing with R towards the inboard wing tip while remaining constant at the
outboard wing tip. The cn distribution in the lower surface is more uniform than over the upper
surface, although the effect of αe on the spanwise distribution of cn is clearly discernible too. Note
that, besides the apparent differences in the cn distribution in the upper and lower surfaces, both
surfaces of the wing contribute in a similar percentage to Cz.

Finally, Figure 5 shows that ∂cn/∂xw . 0 over the upper surface, which is consistent with an
adverse pressure gradient (as typically observed in the suction side of wings). As R decreases,
this adverse pressure gradient is relieved in the region close to the inboard wing tip, where the
effective angle of attack becomes smaller. Besides that, all cases shown in Figure 5 exhibit a
region with ∂cn/∂xw ≈ 0 on the upper surface of the wing (i.e., the region where the xw distance
between consecutive iso-lines of cn is larger, highlighted with a red dashed rectangle in Figure
5). This region is located around the mid-span of the wing for case 2W-Rinf, but moves towards
the outboard wing tip as R decreases. The fact that ∂cn/∂xw ≈ 0 could be an indicator of the
presence of a stagnation region where the boundary layer is separated or the flow is recirculating.
In the lower surface of the wing, the chordwise gradients of cn are smaller but positive, resulting
in a slightly favorable pressure gradient in most of the wing (except near the wing tips), showing
no indication of separation of the boundary layer.

These interpretations of the distributions of cn over the upper surface of the wing are supported
by flow visualizations, like those presented in the supplementary videos, and in Figure 6 for the mid-
downstroke of all cases with h0 = c. The left row of panels in Figure 6 shows vortical structures,
identified using two iso-surfaces of the second invariant of the velocity gradient tensor Q, namely
the Q-criterion of Hunt et al [43]. The two iso-surfaces of Q shown in the Figure correspond to
Q = σ/8 (light blue) and Q = σ/4 (dark blue), where σ is the standard deviation of Q calculated
in a box of size 2.5c× 4.5c× 3c, centered at xw/c = 0.5 and yw/c = zw/c = 0. Note that the value
of Q can be interpreted as a measure of the intensity of the vortex, hence light blue structures
correspond to weak vortices, while dark blue structures (surrounded by a light blue iso-surface)
correspond to intense vortices. The central and right rows of the Figure show the spanwise vorticity
(ωyw) at two xw-zw planes, yw/b = 0.5 (mid-span) and yw/b = 0.75 (closer to the outboard wing
tip), respectively. For reference, these xw-zw cuts also include the iso-contours of Q = σ/4, plotted
in dark blue in the left row. Note that positive ωyw (blue) corresponds to clockwise rotating
vortices.

The overall evolution of the vortices in the upper and lower surfaces of the wings can be observed
in the videos provided in the supplementary material. As the downstroke begins, a strong LEV
forms in the upper surface of the wing, flanked by wing tip vortices. The structure of these vortices
at mid-downstroke (t/T = 0.25) can be observed in the left row of Figure 6. The wing-tip vortices
are very clear in the outboard wing tip of the five cases, but their intensity (i.e., volume of the
Q iso-surfaces) in the inboard wing tip quickly decreases with R, due to the reduced pressure
difference between the pressure and suction sides in that region (i.e., see cn distributions near the
inboard wing tip in Figure 5). At or close to the stroke reversal (t/T = 0.5), the LEV and the
tip-vortices are shed into the wake, generating the ring-like structures that can be observed in the
wakes shown in the left row of Figure 6. These ring-like vortices are very similar to those reported
in previous works [18, 44, 45]. For relatively large radius of flapping motion, R/c & 2, these ring-
like vortices are quite symmetric (see Figures 6g, j and m), becoming less clear for 2W-R005 and
2W-R000.

Besides the wing-tip vortices of the inboard wing tip and the ring-like structures in the wake,
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f)
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detached LEV

detached LEV

detached LEV

detached LEV

detached LEV

attached LEV

attached LEV

Figure 6: Flow visualization at t/T = 0.25 of cases 2W-R000 (a, b, c), 2W-R005 (d, e, f), 2W-R020
(g, h, i), 2W-R080 (j, k, l) and 2W-Rinf (m,n, o). In the left panels two different iso-surfaces of
Q = σ/8 (light blue) and Q = σ/4 (dark blue) are shown. In the central panels, xw-zw cuts of
the spanwise vorticity at yw/b = 0.5 are shown in a red-blue colormap, while the right panels
correspond to cuts at yw/b = 0.75. The yellow line represents the xw-zw cut of the dark blue
iso-surface of Q shown in the left panels. Wings are displayed in green in this Figure.
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the radius of flapping motion R and the spanwise-averaged effective angle of attack 〈αe〉 have a
strong influence on the structure of the LEV. At the mid-downstroke, the left row of Figure 6 shows
that the LEV becomes less intense (i.e., smaller volume in the Q iso-surface) in the inboard side of
the wing as R and the local αe decrease. However, its structure near the outboard wing tip, where
the local αe is similar for the cases with h0 = c, remains practically unchanged. This variation is
qualitatively similar to that reported in previous works for revolving wings [46, 14, 47, 48, 49].

The weakening of the LEV in the inboard wing tip for cases with small R is consistent with the
distribution of αe(yw, t). It also correlates with the evolution of the cn distributions in the upper
surface of the wing (Figure 5). This is indeed expected, since previous studies have associated
the suction peaks near the leading edge to the LEV [50, 51, 52]. For the present cases, the xw-zw
cuts shown in Figure 6 together with the supplementary videos show that the LEV is indeed being
shed into the wake shortly after the mid-downstroke, and that the region where this occurs moves
towards the outboard wing tip as R decreases (i.e. where the local αe is higher). For instance,
it is possible to observe in Figure 6k and n that cases 2W-R080 and 2W-Rinf have a separated
LEV at mid-span, in the sense of having an LEV relatively far from the wing surface. However,
at the same spanwise section, Figure 6b shows a developing LEV for case 2W-R000, which could
be considered to be attached (i.e., closer to the wing surface). Closer to the outboard wing tip,
at yw/b = 0.75 (see Figure 6c), the LEV is located further away from the wing surface, with a
distribution of vorticity beneath the vortex similar to that shown in Figure 6k and 6n, suggesting
that the LEV is separated. Although not shown, closer to the outboard wing tip, the contours of
Q become closer to the surface of the wing, suggesting that the LEV remains anchored to the wing
in that region. Indeed, the left row of Figure 6 and the movies on the supplementary material
seem to suggest that the tip vortices, when present, act as an anchoring structure for the LEV,
as suggested by Birch & Dickinson [53]. Summarizing, the LEV separates at the mid-span for
R→∞, while separation occurs closer to the outboard wing tip as R decreases.

After analyzing qualitatively the influence of R and 〈αe〉 on the LEV separation and how it
correlates with the normal force distribution on the upper surface of the wing, we proceed with a
more quantitative analysis. Recall that the lift increases while the LEV is attached to the wing
[54, 55], Cz increases with αe (as shown in Figure 2a) and depends mainly on the contribution from
the pressure forces (i.e. normal forces). Then, it might be considered that the local separation
of the LEV at a given spanwise wing section occurs when the contribution of cn to the vertical
force at that section peaks (and drops) before the maximum αe is reached (at the mid-downstroke,
t/T = 0.25).

In Figure 7a, the contribution of the local normal force coefficient to the vertical force

cnz (yw, t) =
1

c

∫ c

0

cn(ξ, t)n · ezdξ, (16)

is shown during the downstroke at two sections along the span (yw/b = 0.5 and yw/b = 0.75). Three
cases are shown in the Figure, namely heaving (2W-Rinf), flapping (2W-R000) and an intermediate
configuration (2W-R020). The corresponding flow in these two sections at mid-downstroke is shown
in the middle and right panels of Figure 6, in the top, middle and bottom rows. For the heaving
case, cnz (yw = 0.5b, t) peaks at t/T ≈ 0.2, well before mid-downstroke. On the other hand, closer
to the outer wing tip the peak of cnz (yw = 0.75b, t) occurs later, closer to the mid-downstroke.
These observations suggest that the LEV separates first in the mid-span of the wing, and later
closer to the wing tips. Interestingly, the behavior of the flapping case with R = 0 (2W-R000) is
the opposite, suggesting that for this case the separation of the LEV starts closer to the wing tips.
For the intermediate case, the peak of czn is achieved roughly at the same time at both locations,
yw = 0.5b and yw = 0.75b. Overall, the results in Figure 7a seem to suggest that, as observed
qualitatively in Figure 6, the location where the separation of the LEV occurs can be found closer
to the outboard wing tip as R decreases.

To better characterize this behavior, the time to maximum cnz at each spanwise section, tcnz,max
,

is shown in Figure 7b (i.e., the time when the separation of the LEV starts at each spanwise section).
In agreement with the discussion of Figure 7a, the heaving case (2W-Rinf) shows a roughly uniform
region around mid-span (i.e., 0.6 . yw/c . 1.4) where the LEV separation occurs at about 0.2T .
Note that the spanwise extension of this region roughly corresponds to that of the region with
∂cn/∂xw ≈ 0 in Figure 5 (highlighted with the red rectangle), and with the sizes of separated LEV
that can be observed in the supplementary videos. As R decreases, the region where the maximum
of cnz is attained first can be found closer to the outboard wing tip, consistently with the previous
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Figure 7: a) Contribution of the local normal force coefficient to the vertical force, cnz (yw, t). Two
spanwise sections are considered, yw/b = 0.5 ( ) and yw/b = 0.75 ( ). b) Time to
maximum cnz (tcnz,max

), plotted as a function of the spanwise coordinate of the wing (yw). The
cases represented in both Figures are 2W-R000 ( ), 2W-R020 ( ) and 2W-Rinf (
).

discussion. Moreover, for the case 2W-R000, the maximum of cnz in the region yw . 0.5b occurs at
mid-downstroke, which could be interpreted as sections where the separation of the LEV is very
weak (or inexistent).

4.4 Comparison with unsteady panel methods
While direct numerical simulations provide accurate predictions of the aerodynamic forces on
flapping wings, their computational cost is extremely high for practical applications. It is therefore
interesting to explore the ability of less expensive methods, as unsteady panel methods (UPMs)
[56] to predict the aerodynamic forces on flapping wings. These methods are based in a potential
description of the velocity field that assumes that the Reynolds number of the flow is sufficiently
high, the flow is incompressible and the incoming free-stream is irrotational. Despite these strict
assumptions, UPMs have been used by several authors to study flapping flight of birds and insects
[57, 58, 59, 60], and some of the limitations of UPMs for the modeling of Micro Air Vehicles have
been already discussed in the literature [61]. In this section, we report the aerodynamic forces
obtained for the present configuration using the UPM of Arranz & Flores [62]. The results of
the UPM are compared to the DNS results presented in the previous section, to evaluate the
appropriateness of a UPM to model the aerodynamic forces in the present case.

The UPM of Arranz & Flores [62] uses an indirect formulation, discretizing the 3D surface of
the wing with trapezoidal panels with uniform distributions of sources and doublets. The wake
is allowed to move with the flow, adjusting the doublets in the panels shed into the wake at each
timestep imposing the Kutta condition at the wing TE. After being shed, the intensity of the
doublets in the wake panels remains constant. The interested reader can find further details in
[62]. It should be noted that the present implementation of the UPM only considers a vortex sheet
shed at the trailing edge, while other methods also consider a vortex sheet shed at the leading edge
[60]. The latter strategy allows a certain level of modelling of the LEV, which is not available in
the present implementation of the UPM. As discussed below, this will have a strong effect on the
prediction of the suction force at the leading edge.

For the present calculations, the resolution is the same as in [62], discretizing the wings with
Mx ×My = 24× 32 panels in each wing, and truncating the wake 12c downstream of the trailing
edge. All configurations in Table 1 have been simulated, but for brevity only the cases 2W-R000,
2W-R020 and 2W-Rinf are discussed below.

For the comparison between the DNS and the UPM, and since viscous effects are absent in
UPMs, only the contribution from the normal forces (Cnz and Cnx ) are considered. These two
quantities are displayed in Figure 8 as a function of time during one cycle, together with the
lift and drag coefficients obtained with the UPM. Concerning the lift coefficient, Figure 8a, the
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Figure 8: Normal force coefficients (a) Cnz and (b) Cnx of cases 2W-R000 ( ), 2W-R020 (
) and 2W-Rinf ( ) during one cycle. ( ) lines represent DNS cases and ( )

lines stand for 3D unsteady panel method simulations. Maximum and minimum values of the force
coefficients are depicted with ( ) for DNS simulations and with ( ) for 3D unsteady panel method
simulations. Dark and light greys regions represent downstroke and upstroke motions respectively.

agreement between DNS and UPM is remarkable. Both the shape of the profile and the intensity
of the peaks are well predicted by the UPM. On the contrary, the UPM fails to provide a good
estimation of the drag coefficient, as shown in Figure 8b. While the peak thrust coefficient (due
to normal forces) predicted by the DNS is small, Cnx ≈ −0.15 (see Figure 3a), a much larger value
is predicted by the UPM, Cnx between −0.5 and −1.5 depending on the case considered. Only
during the stroke reversals, when the velocity of the wing due to the flapping motion is close to
zero, both DNS and UPMs provide similar values for the drag coefficient. At that time instant,
the UPM sheds a strong vortex into the wake [62], resulting in a vortical structure qualitatively
similar to that observed in Figure 6, which seems to be correlated with the similarities observed
in Cnz between the UPM and the DNS.

The fact that Cnz is well predicted by the UPM, but Cnx is not, hints that the distribution of
cn in the DNS and UPMs are different. This is confirmed in Figure 9, which displays contours of
cn in the upper surface of the wing for 2W-Rinf and 2W-R000 at mid-downstroke. Figure 9 shows
that, although the UPM captures qualitatively the spanwise changes in the force distribution,
the chordwise distribution of cn are very different for both 2W-Rinf and 2W-R000. Indeed, the
UPM predicts a suction area (positive cn) confined to a small region near the leading edge of the
wing (note the saturation of the color scale in Figure 9b and d). However, the DNS data show
larger suction regions, covering more than 2/3 of the wing surface (Figure 9a and c). Hence, while
the maximum cn for the DNS calculations of 2W-Rinf is cn ∼ 4, located at xw/c ∼ 0.04 and
yw/c ∼ 0.08, the maximum in the UPM simulations is ten times larger (cn ∼ 40) and is reached at
xw/c ∼ 0.01 and yw/c ∼ 1.20. A similar observation can be done for case 2W-R000. Note that this
implies that the UPM shows a stronger suction peak closer to the leading edge, where the local n
is reasonably aligned with ex, explaining the difference of more than one order of magnitude in the
Cnx computed from DNS and UPM (see Figure 8b). Although not shown, the differences between
DNS and UPM in the cn distribution on the lower surface are less relevant.

It seems reasonable to assume that the differences in the cn distributions between both methods
are related to the presence of the LEV in the DNS (and its absence in our implementation of the
UPM). Indeed, the presence of the LEV in the DNS explains the broad suction peak near the
leading edge, while in the UPM the need for an attached boundary layer at the leading edge
results in a very strong suction peak close to xw ≈ 0. A bit more puzzling is the good agreement in
terms of Cnz between UPM and DNS, where the former is able to produce a spanwise distribution
of bound circulation compatible with the overall pressure difference between suction and pressure
surfaces in the DNS. It should be noted that the agreement in Cnz between the DNS and the UPM
in Figure 8 is worse during the first half of the stroke than during the second half. Interestingly,
during the first half of the stroke the LEV is being developed, while it is shed into the wake shortly
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Figure 9: Normal force coefficient (cn) at the mid-downstroke (t/T = 0.25), on the upper surface
of the wing. (a) and (b), case 2W-R000. (c) and (d), case 2W-Rinf. Panels (a) and (c) show DNS
results. Panels (b) and (d) show UPM results.

after the mid-stroke (see the videos in the supplementary material).
Finally, it is interesting to note that Moriche et al. [33] reported that in 2D flapping airfoils in a

viscous flow the force due to circulatory effects is roughly perpendicular to the chord of the airfoil.
A model for this phenomenon was proposed rather early by Polhamus [63] in the framework of the
separated leading edge vortices appearing on delta wings. This suggests that it should be possible
to modify simple UPMs like the one used here to keep the component of the force perpendicular
to the wing, discarding the component of the force along the chord (i.e. Cnx in the present case).

5 Conclusions
We have presented a series of direct numerical simulations of flapping wings in forward flight at
Reynolds number Re = 500 and reduced frequency k = 1. The calculations were performed by
solving the Navier-Stokes equations using an immersed boundary method, prescribing the motion
of the wings. We have varied the radius of flapping motion, R, so that when R → ∞ the wing
is in heaving motion, and when R = 0 the wing is flapping with respect to the inboard wing tip.
Due to the symmetry of the prescribed motion, the downstroke and upstroke are equivalent and
therefore we have only analyzed the downstroke in detail.

Keeping fixed the vertical displacement of the outboard wing tip, the peak aerodynamic force
decreases with R, so that the force is maximum for the heaving wing. Note that for the heaving
case, all wing sections are subject to the same effective angle of attack. However, when decreasing
R, the effective angle of attack near the outboard wing tip is roughly the same as in the heaving
wing case, but its value decreases towards the inboard wing tip, resulting in a lower peak force. In
order to confirm that the governing parameter is the effective angle of attack, we have performed an
additional heaving wing simulation with a smaller vertical displacement. The aerodynamic forces
obtained in this case were very similar to those obtained in the flapping wing simulation with the
same averaged effective angle of attack.

We have decomposed the force in the tangential and normal components and we have analyzed
their corresponding contributions to the vertical force (lift) and the streamwise force (drag-thrust).
While the vertical force is dominated by normal forces, the streamwise force is the result of a
competition between normal contributions that produce thrust and tangential contributions that
produce drag. For the tangential contributions, it has been found that the differences between the
configurations with different radius of flapping motion are linked to the position of the stagnation
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Figure 10: a) Total force coefficient ctot during one cycle for 2D cases performed with resolutions
c/∆x = 32 ( ), c/∆x = 56 ( ), c/∆x = 96 ( ) and c/∆x = 192 ( ). b)
Errors of ctot (εtot) obtained in mean ( ) and rms ( ). The black dash-dotted lines have
logarithmic slopes −1 and −2.

point near the leading edge, which is controlled by the local effective angle of attack. The normal
contributions to the vertical force have been analyzed using the distribution of the force per unit
area, which presents lower suction in the upper surface near the inboard tip when decreasing R.

It has been shown that the flow over the wings is rather complex, with the presence of a leading
edge vortex and tip vortices, which interact and are shed into the wake forming ring-like structures.
The rings are clearly visible for the cases with large R. For smaller R, the displacement of the
inboard wing tip decreases and the inboard wing tip vortices become less intense, disappearing when
R = 0. For this case, the vortical structures shed into the wake are half-rings. We have analyzed
qualitatively and quantitatively the LEV separation, and how it correlates with the normal force
distribution on the wing. We have found that the spanwise location where the separation of the
LEV occurs depends on the radius of flapping motion. For the heaving case, the LEV separates
earlier near the mid span, while for the flapping case, the LEV separates earlier near the outer
wing tip.

Finally, we have explored the ability of unsteady potential flow methods for predicting the
aerodynamic forces on flapping wings. When comparing to the DNS data, we have found a very
good agreement for the lift coefficient and a poor prediction of the drag coefficient. Even if the
lift coefficient is well predicted, it has been shown that the force distribution on the surface of the
wing obtained from the unsteady potential flow method is very different to that obtained in the
DNS. Thus, these methods should not be used for the prediction of other quantities of aerodynamic
interest like the pitching moment coefficient.
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and DPI2016-76151-C2-2-R (AEI/FEDER, UE).

Appendix: Grid refinement study
In this section we present the grid refinement study carried out to select the resolution used in
the simulations. This study is performed in 2D for its lower computational cost. Note that
the resolution requirements of the 2D simulations are expected to be similar to those of the 3D
configurations, since the geometry of the wing is somewhat smoother in the spanwise direction
than in the streamwise and vertical directions (see Figures 1c, d and e).

We perform 2D simulations of a heaving NACA0012 airfoil, with heaving amplitude h0 = c,
Reynolds number Re = 500 and reduced frequency k = 1, varying the resolution from c/∆x = 32
to c/∆x = 192. The time step ∆t is varied accordingly, keeping the same CFL number for all
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cases (lower than 0.3). The convergence is evaluated in terms of the aerodynamic force, using as
reference the results of the case with the highest resolution (c/∆x = 192). The time evolution of
the total force coefficient,

ctot =
|F |

1
2ρu

2
∞c

, (17)

of four of the simulations is reported in Figure 10a. In the previous expression F , is the total
aerodynamic force on the airfoil. While some deviations are observed for the resolution c/∆x = 32
with respect to the reference case, the results of the simulation with c/∆x = 56 are very close to
those of the reference case. In order to quantify these differences, Figure 10b shows the errors in
the mean and rms of the force

εmean
tot (r) =

|ctotr − ctot192|
c′tot192

, (18)

εrms
tot (r) =

|c′totr − c′tot192|
c′tot192

, (19)

where an overline denotes the time-average, the prime denotes the root-mean-square of the fluc-
tuation and r is the resolution of each case. As expected, the errors decrease with increasing
resolution. Taking into account a compromise between the computational cost and the accuracy
of the results, a resolution of c/∆x = 56 is selected for the simulations presented in this article.
With this resolution, the errors for both mean and rms of the forces are smaller than 1%.
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