
Plan Merging via Plan Reuse

By

NEREA LUIS MINGUEZA

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in

Computer Science and Technology

UNIVERSIDAD CARLOS III DE MADRID

Advisor(s):
DANIEL BORRAJO MILLÁN

SUSANA FERNÁNDEZ ARREGUI

MAY 20, 2019

This work is licensed under a Creative Commons “Attribution-
NonCommercial-NoDerivatives 4.0 International” license.

i

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

This page has been intentionally left blank.

Humans are allergic to change.
They love to say:
"We’ve always done it this way."
I try to fight that. That’s why I
have a clock on my wall that
runs counter-clockwise.

Grace Murray Hopper
(1906 - 1992)

iii

This page has been intentionally left blank.

ACKNOWLEDGEMENTS

«HAS LLEGADO A LA META, NEREA».
«Haciendo una analogía con el área de tu tesis, se podría decir que el plan es válido

¿no?» — dijo el algoritmo de planificación clásica.
«Bueno, perdona pero un plan de cuatro años y medio no es tan sencillo de ejecutar a

la primera... hay que replanificar unas cuantas veces» — replicó RRPT-PLAN, el algoritmo
de reutilización de planes.

«¡Y no sólo eso! es una tarea de planificación excesivamente grande, habrá que
dividirla y coordinarse con distintos “agentes”... ¡Ostras! dicho así hasta se parece a lo
que has escrito en estas páginas, Nerea. » — respondió orgulloso PMR, el algoritmo de
planificación multi-agente.

« Bueno, veréis... la verdad es que una tesis no sólo se hace siguiendo un plan o una
fórmula... es algo más complicado, mucho más “humano”. » — comentó Nerea. « Por el
camino se cruzan ideas, personas, momentos, reuniones, eventos, conocimiento...».

«¿De verdad? ¿Pero no decís los humanos que los algoritmos y las máquinas somos
buenos y eficientes? » — se preguntaron con intriga.

« ¡Ja, ja, ja! Claro que sí, pero a veces no es suficiente con eso, al menos no en 2019...
veréis...» — comenzó a contar Nerea.

Si echo la vista atrás me doy cuenta de que han pasado tantas cosas... cuatro años y
medio es mucho tiempo. Afortunadamente, hay muchas personas a las que agradecer y
mencionar, pues sin ellas seguramente el camino hubiese sido aún más duro.

A finales de 2014 decidí que quería hacer un doctorado en inteligencia artificial. La
primera persona que apoyó esa decisión fue Daniel, mi director de tesis. Poco después
se unió Susana, mi directora. Gracias a los dos por guiarme y acompañarme en este
camino; por la disciplina, la rigurosidad que me habéis inculcado. Gracias también al
grupo PLG, que me acogió como una más desde que llegué en 2012 pidiendo trabajar con
robots. En especial gracias a Ángel, por las innumerables horas compartidas de docencia,
y a Raquel, porque hablar de cómo nos sentimos nos hace más fuertes y tú has sido clave.

Según llegué al laboratorio tuve la suerte de encontrarme con un grupo de gente
excepcional. Tres de ellos me han acompañado a lo largo de estos años: Jesús, gracias
por tu incansable sonrisa; Sergio, gracias por tu cariño, los consejos, abrazos y todos los
momentos compartidos, sin excepción. Moisés, gracias por ser un gran compañero de
despacho pero, ante todo, un gran amigo; sabes que nos queda mucho por recorrer.

Durante el doctorado he podido desarrollar paralelamente T3chFest, junto a un
equipo increíble que se ha convertido mi segunda familia. Gracias Baldo, Mario, Áxel,

v

David; por muchos años más votando charlas en navidad y dando regalos de Reyes que
hagan más diverso y accesible el sector tecnológico. Ali, Diego, Marina, Sara, María,
Álvaro, Lisardo...sois tantos que no tengo espacio para nombraros uno a uno, pero ole ese
equipazo de voluntarios y lo que os echen.

Con T3chFest llegaron los eventos y las comunidades, y así mucha gente con un gran
potencial y corazón. Carlos, Alberto, Abraham, Teba, Aurora, María, Lacarra, Laura M.,
Laura V., Paola, Carlos A., Ulises, Susana, Almo,... sois solo algunos de los representantes.
Inés, tú llegaste de imprevisto y ahora no me imagino un proyecto sin ti; gracias por la
fuerza, las locuras y los ánimos. Por muchos más R-Ladies, Pyladies, OSW, GDGs,...

Si por algo hemos luchado ha sido por escuchar más voces femeninas y servir de
altavoz: Alma, Ana, Marta, Patry, Sabela,... gracias por ser un gran ejemplo para mí. Y a
mis queridas Ferminas, ¡ésto sólo acaba de empezar!

Let me switch to English to express my gratitude to Prof. Dr. Manuela Veloso. You
will always be an incredible role-model to me. Thank you for giving me the chance of
living Carnegie Mellon University at its fullest and encourage me to believe in my ideas.
It was a chance to start from scratch. Fortunately, Lenka crossed in the middle. I learned
so much from you, I miss those days together 24/7. You taught me the brightest side of
research and helped me in so many ways, thank you and hope to meet you anywhere in
the world. Tiago, thanks for all the hours spent at lab and post-CMU, we made it! and
Kim,... I will never forget my last day in NY dancing together in Brooklyn, thank you.
Also, thank you Bram, I would’ ve never expected to connect with someone as fast as
we both did. I am forever grateful for every minute we spent together, no matter we say
good-bye ‘before sunrise’ or loose some train on the way.

Si algo me llevo de Pittsburgh es mi encuentro con Luz Rello y su emoción por hacer
de Change Dyslexia una realidad. Los fried pickles nos unieron para siempre, gracias
por tanto.

Volver después de la estancia a la UC3M también tuvo sus cosas buenas. Gracias
Elena por vivir este último año y medio juntas. Gracias Álex por re-aparecer y sacarme
las fuerzas necesarias para seguir adelante. Sabes lo mucho que te quiero a mi lado.
Madrid, Braunschweig o Berlín está lleno de recuerdos de los dos... ¡y los que quedan!.

A la UC3M siempre le tendré especial cariño: Araceli, Calderón, Carbó, Belén,... todo
el departamento en sí, gracias, así como a Celeste, Daniel y Paco. A Juan Margalef,
¡bendito momento en el que te escribí!. En 12 meses pasamos de tomar un café a hablar
en el Congreso o con los Reyes,.. gracias por hacerme disfrutar cada momento.

A nivel profesional surgieron oportunidades que a día de hoy no puedo dejar de
agradecer a Jorge de la Fundación COTEC, al equipo de Ciencia en el Parlamento/FECYT
y a Maysoun de La Nave. Gracias por creer en mí.

Gracias al I.E.S El Espinillo por abrirme las puertas a volver y contar lo que soy
gracias su profesorado y a la educación pública.

Gracias también a los que estuvieron en los inicios aunque ahora estén más lejos:
Stefy, Lucía, Silvia, Andie, Dani. Y Rodry, porque este logro también lleva un gran
pedacito de ti. Gracias por cuidar de mí.

Finalmente, gracias a mi familia por el incansable apoyo, independientemente de que
los días sean buenos o malos. Gracias por todo el cariño y dedicación, os quiero mucho.

vi

PUBLISHED AND SUBMITTED CONTENT

E ACH of the contributions of this Thesis has been published in journals, confer-
ences or workshops. Here we specify (1) the papers that were published and
are related to some contribution and (2) in which Chapters the explanations

included in those papers are reused or rephrased.

• Publication #1:
(2019) N. Luis, D. Borrajo, S. Fernández. Plan Merging by Reuse for Multi-agent
Planning. Journal of Applied Intelligence.
Role: First author.
DOI: 10.1007/s10489-019-01429-0
URL: not available yet as in May 2019. Accepted for publication as in February
2019.
Journal Impact factor: 1.983 / Q2.
Contributions: PMR and RRPT-PLAN.
Statement: The content from this paper is partially included in the following
referred Chapters and Sections:

– Main Chapters: 5, 6, 7.

– Sections: 2.3, 3.1, 3.2.4, 3.3.3, 3.7, 3.8.

The material from this source included in this thesis is not singled out with typo-
graphic means and references.

• Publication #2:
(2019) N. Luis, T. Pereira, S. Fernández, A. Moreira, D. Borrajo, M Veloso. Using
Pre-Computed Knowledge for Goal Allocation in Multi-Agent Planning. Journal of
Intelligent & Robotic Systems.
Role: First author and coordinator of the international collaboration.
DOI: 10.1007/s10846-019-01022-0.
URL: https://link.springer.com/article/10.1007%2Fs10846-019-01022-0
Journal Impact factor: 1.583 / Q3.
Contribution: Application in Robotics.

vii

https://link.springer.com/article/10.1007%2Fs10846-019-01022-0

Statement: The content from this paper is partially included in Chapter 8. The
material from this source included in this thesis is not singled out with typographic
means and references.

The following research papers have been published in conferences or workshops. They
contain early-stage research of our contributions PMR and Application in Robotics.

• Publication #3:
(2018) T. Pereira, N. Luis, A. Moreira, D. Borrajo, M Veloso, S. Fernández. Heteroge-
neous Multi-agent Planning Using Actuation Maps. IEEE International Conference
on Autonomous Robot Systems and Competitions (ICARSC).
Role: Second author.
DOI: 10.1109/ICARSC.2018.8374186
URL: https://ieeexplore.ieee.org/document/8374186

• Publication #4:
(2014) N. Luis, D. Borrajo. Plan Merging by Reuse for Multi-agent Planning. 2nd
Workshop on Distributed and Multi-Agent Planning (ICAPS DMAP-2014). Pages
38-44.
Role: First author.
URL: http://icaps14.icaps-conference.org/proceedings/dmap/DMAP_proceedings.
pdf

viii

https://ieeexplore.ieee.org/document/8374186
http://icaps14.icaps-conference.org/proceedings/dmap/DMAP_proceedings.pdf
http://icaps14.icaps-conference.org/proceedings/dmap/DMAP_proceedings.pdf

OTHER RESEARCH MERITS

D URING PHD a research stay has been done, different awards and scholarships
have been obtained and research content unrelated to this Thesis has been
published. Here it is the list of merits:

Awards and scholarships
These are awards and scholarships obtained during PhD. They are divided into research
stay, awards, scholarships, travel grants and appreciation awards.

Research stay:

• (2016) 4 months at Carnegie Mellon University (Pittsburgh, PA, USA) under the
supervision of Prof. Dr. Manuela Veloso. Partially funded by Universidad Carlos II
de Madrid through “Ayudas para estancias doctorales”.

National awards:

• (2019) Premio de Excelencia, category: Alumni, Universidad Carlos III de Madrid.

• (2018) Innovadoras TIC award by Fundacion Cibervoluntarios.

International Scholarships:

• (2017) Google scholarship for Google I/O.

• (2017) Google scholarship for Grace Hopper Conference.

• (2016) Women Techmakers’ scholarship, category: Europe, Middle East and Africa,
Google.

• (2016) Anita Borg Institute scholarship for Grace Hopper Conference.

Travel grants to attend research conferences:

• (2018) 13th Workshop of Women in Machine Learning, NeurIPS edition, Montréal.
Poster presentation.

ix

• (2018) ACM WomENcourage, Belgrade. Poster presentation.

• (2016) International Joint Conference on Artificial Intelligence, New York. Work-
shop presentation.

Appreciation awards:

• (2018) Nomination as Emerging Talent, Top100 Mujeres Líderes in Spain.

• (2018) Selected as expert on technology, talent and gender (ODS #5) by Fundacion
COTEC.

• (2018) Selected as scientific advice technician by Ciencia en el Parlamento to
present scientific-based evidences in Congress.

Publications unrelated to this Thesis
• (2018) M. Martínez, N. Luis. Goal-Reasoning in StarCraft: Brood War through Mul-

tilevel Planning. XVIII Conferencia de la Asociación Española para la Inteligencia
Artificial (CAEPIA).
URL: https://sci2s.ugr.es/caepia18/proceedings/docs/CAEPIA2018_paper_
171.pdf

• (2018) N. Luis, M. Martínez. Reinforcement Learning over Starcraft: Brood War.
13th Women in Machine Learning Workshop (WiML 2018). Poster presentation.

• (2018) N. Luis, M. Martínez. STAICRAFT: a Starcraft-based educational platform
for Artificial Intelligence. ACM WomENcourage. Poster presentation.

• (2016) N. Luis, S. Villaroya, M. Martínez. Robot Collaboration in a Warehouse
Environment through Planning and Execution. Workshop on Autonomous Mobile
Service Robots, IJCAI.

• (2015) A. Baldominos, N. Luis, M.C. García del Pozo.OpinAIS: An Artificial Immune
System-based Framework for Opinion Mining. International Journal of Interactive
Multimedia and Artificial Intelligence.
URL: https://www.ijimai.org/journal/node/764

x

https://sci2s.ugr.es/caepia18/proceedings/docs/CAEPIA2018_paper_171.pdf
https://sci2s.ugr.es/caepia18/proceedings/docs/CAEPIA2018_paper_171.pdf
https://www.ijimai.org/journal/node/764

ABSTRACT

M ULTI-AGENT PLANNING deals with the task of generating a plan for/by
a set of agents that jointly solve a planning problem. One of the biggest
challenges is how to handle interactions arising from agents’ actions. There

exist some other relevant challenges such as planner’s scalability when agents, goals
or resources increase; or improving the makespan of the resulting plan. In this Thesis,
we present Plan Merging by Reuse, PMR, a multi-agent planner that automatically
adjusts its behaviour to the level of interaction. Given a multi-agent planning task,
PMR decides which agents will try to achieve each goal. The chosen agents solve their
individual planning tasks. The resulting plans are merged and PMR checks the plan’s
validity. Given the potential interactions, merged plans are not always valid. When that
happens, PMR performs planning by reuse to generate a valid plan. In order to deal with
the problem of agents’ coordination, another contribution presented on this Thesis is
RRPT, a stochastic plan-reuse planner. RRPT is able to adjust itself to two different cases:
when the input invalid plan is very similar to the final valid solution (classic plan reuse
scenario) and also when the input plan is completely different from the final solution.
RRPT combines plan reuse and standard search. It will decide stochastically on each
iteration which technique to run. Thus, RRPT adapts itself to a wide variety of scenarios.
We have performed extensive sets of experiments in order to analyze when to use the
different PMR variants, as well as which tasks are more appropriate to be solved by PMR.
Our contributions obtain solutions to multi-agent planning tasks where PMR and RRPT
can successfully adapt their behavior to the particularities of the problems.

xi

This page has been intentionally left blank.

TABLE OF CONTENTS

Page

List of Tables xvii

List of Figures xix

Glossary xxi

I Introduction 1

1 Introduction 3
1.1 Motivation . 3
1.2 Objectives . 6
1.3 Thesis Outline . 7

II State of the art 9

2 Automated Planning 11
2.1 Introduction . 11
2.2 Planning models and modelling languages 13
2.3 The propositional formalization . 14
2.4 The PDDL representation . 15

2.4.1 The PDDL domain . 15
2.4.2 The PDDL problem . 17
2.4.3 PDDL official versions . 17

2.5 The multi-valued formalization . 18
2.6 Metrics and evaluation . 19
2.7 Automated Planning algorithms . 22
2.8 Rapidly-exploring Random Trees . 24

xiii

TABLE OF CONTENTS

2.9 Randomly-exploring Planning Tree . 25

3 Multi-Agent Planning 29
3.1 Introduction . 29
3.2 MAP task formalizations . 31

3.2.1 MA-STRIPS . 31
3.2.2 MA-PDDL . 32
3.2.3 The FMAP formalization . 34
3.2.4 The MAPR formalization . 35

3.3 Factorization and Agentification . 36
3.3.1 SIW . 37
3.3.2 ADP . 38
3.3.3 MAPR . 39

3.4 Modelling Privacy in Multi-Agent Planning 42
3.4.1 MA-PDDL . 43
3.4.2 FMAP . 44
3.4.3 MAPR . 44

3.5 Coordination techniques . 45
3.6 CoDMAP: The first competition on Distributed and Multi-Agent Planners 47
3.7 Paralellization algorithms . 48
3.8 Multi-Agent Planning Algorithms . 51

4 Plan reuse 55
4.1 Introduction . 55
4.2 Plan Reuse in Automated Planning . 56

4.2.1 LPG-ADAPT . 57
4.2.2 ERRT-PLAN . 57

III Contributions 59

5 PMR: Plan Merging by Reuse 61
5.1 Introduction . 61
5.2 Algorithm . 62
5.3 Planning . 63
5.4 Plan Reuse . 65
5.5 Centralized planning . 66

xiv

TABLE OF CONTENTS

5.6 Parallelization . 66
5.7 Properties . 67
5.8 Dealing with Privacy inside PMR . 68

6 RRPT-plan: Reuse Random Planning Tree 71
6.1 Introduction . 71
6.2 Configuration . 73
6.3 Preprocessing . 74
6.4 Search-Reuse-Sampling . 75

6.4.1 Search . 75
6.4.2 Reuse . 76
6.4.3 Sampling . 79

6.5 Tracing back the solution . 81
6.6 Properties . 82
6.7 Differences of RRPT-PLAN regarding previous works 83

7 Empirical evaluation 85
7.1 Introduction . 85
7.2 Experimental setup . 86
7.3 Results of PMR-RRPT-PLAN and PMR-LPG-ADAPT when solving different

plan-reuse scenarios . 87
7.4 Analyzing the impact on performance of RRPT-PLAN’s parameters 93
7.5 Results in CoDMAP problems . 101
7.6 Results changing agentification . 105
7.7 Results scaling the number of agents . 107
7.8 Hard Multi-Agent Planning problems . 110
7.9 Discussion on the experiments’ results . 113

IVApplication in robotics 117

8 Use case: PMR on Robotics environments 119
8.1 Introduction . 119
8.2 The coverage problem . 121
8.3 Architecture . 124
8.4 Actuation Maps . 125
8.5 Discretization . 127

xv

TABLE OF CONTENTS

8.6 Preprocessing . 129
8.7 Dealing with Interactions . 133
8.8 Extending the Approach to Any-Shape Robots 135
8.9 Experiments and results . 140

8.9.1 Simulation Setup . 140
8.9.2 Experiments on the Coverage problem 143
8.9.3 Experiments Detecting Potential Collisions 148

8.10 Further improvements: Contract-Net and simplifying the model 152

V Conclusions 155

9 Conclusions and Future Work 157
9.1 Conclusions . 157
9.2 Future Work . 159

A Planning domains 161

B Appendix B: Plans obtained in the Hammers domain 165

C Extra results on MAP 175
C.1 CodMAP problems extra results . 175
C.2 Extra results of PMR changing CoDMAP agentification 177
C.3 Hard MAP problems extra results . 178

References 179

xvi

LIST OF TABLES

TABLE Page

3.1 Estimated-cost matrix . 41
3.2 Estimated-cost computation for Contract-net . 41

7.1 Description of the problems designed for the Hammer domain 89
7.2 Plan length and makespan obtained for every scenario of the Hammer domain 91
7.3 Time in seconds obtained for every scenario of the Hammer domain 92
7.4 Coverage score on RRPT-PLAN, RPT, LAMA-FIRST and LPG-ADAPT. 100
7.5 Quality score on RRPT-PLAN, RPT, LAMA-FIRST and LPG-ADAPT. 100
7.6 Time score on RRPT-PLAN, RPT, LAMA-FIRST and LPG-ADAPT. 101
7.7 Average time (in seconds) spent on preprocessing each problem per planner

and domain. 101
7.8 Coverage score obtained by PMR in CoDMAP problems 102
7.9 Coverage score per configuration in CoDMAP domains. 103
7.10 Makespan score in domains that are solved during the plan-reuse phase . . . 106
7.11 Maximum number of agents, goals and main problem features in hard problems.110
7.12 Coverage results in hard and specific problems. 111
7.13 Makespan score in hard and specific problems 112

8.1 Main features of hard problems . 142
8.2 Time results in our approach with and without Actuation Maps information . 145
8.3 Time results comparison with other MAP and centralized approaches 146
8.4 Plan length results comparison with other MAP and centralized approaches . 147
8.5 Makespan results comparison with other MAP and centralized approaches . 148
8.6 Time results in MAP&R with and without Actuation Maps information and

other MAP and centralized approaches . 149
8.7 Makespan results in MAP&R with and without Actuation Maps information

and other MAP and centralized approaches . 151

xvii

LIST OF TABLES

8.8 Makespan results comparison including Contract-net 153
8.9 Makespan results comparison including collisions and Contract-net 154

C.1 IPC scores in Time per configuration in CoDMAP domains. 175
C.2 IPC scores in Makespan per configuration in CoDMAP domains. 176
C.3 IPC scores in Cost per configuration in CoDMAP domains. 176
C.4 Cost score in domains that launch the plan-reuse phase 177
C.5 Time score score in hard and specific problems. 178

xviii

LIST OF FIGURES

FIGURE Page

2.1 Model-based agent’s architecture . 12
2.2 Hierarchy of types of the Logistics domain . 16
2.3 Predicates of the Logistics domain . 16
2.4 Action Load-truck of the Logistics domain . 17
2.5 Example of a Logistics problem encoded in PDDL 17
2.6 Progressive evolution of a RRT [LaValle and Kuffner, 2001]. 24
2.7 Extend phase of the RRT algorithm . 25

3.1 Diagram of a simple Logistics problem . 40
3.2 Total-order plan and parallel plan . 50

6.1 Example of a simple Rovers problem . 72
6.2 First step of RRPT-PLAN search . 76
6.3 Second step of RRPT-PLAN search . 77
6.4 The first step of plan reuse in RRPT-PLAN. 77
6.5 The second step of plan reuse in RRPT-PLAN. 79
6.6 The first step of sampling in RRPT-PLAN . 80
6.7 The second step of sampling in RRPT-PLAN . 80
6.8 The third step of sampling in RRPT-PLAN . 81
6.9 Obtaining the final solution in RRPT-PLAN . 81

7.1 Different plan-reuse scenarios in the Hammer domain. 88
7.2 Individual quality per problem and configuration in loosely-coupled domains. 96
7.3 Individual quality per problem and configuration in tightly-coupled domains. 97
7.4 Individual time per problem and configuration in loosely-coupled domains. . . 98
7.5 Individual time per problem and configuration in tightly-coupled domains. . . 99
7.6 Evolution of Cost and Makespan in a Zenotravel problem 107

xix

LIST OF FIGURES

7.7 Evolution of Cost and Makespan in a Driverlog problem 108
7.8 Evolution of Cost and Makespan in a Logistics problem 109

8.1 Complete architecture that combines Actuation Maps and Multi-Agent Planning124
8.2 Simulated map for two heterogeneous robots . 126
8.3 Actuation spaces for two heterogeneous robots 126
8.4 Navigation and actuation space for the bigger robot 127
8.5 Preprocessing stage before the planning process starts 130
8.6 Robot pathways in the Corridor scenario . 133
8.7 Environment and robot models used to test the extended approach to any-

shape robots . 135
8.8 Example of an image representing the robot footprint 136
8.9 Orientation layers to model robot’s motion capabilities 136
8.10 Connected and Actuable graphs for Robots 1 and 2 137
8.11 Navigable and Actuation Space for Robots 1 and 2 138
8.12 Discretized graphs to model Actuation in planning 139
8.13 Representation of waypoints in an Actuation Map 140
8.14 Maps of the five scenarios designed for experiments 141

xx

GLOSSARY

Actuation Map (AM). Image representation of the reachability limit of a robot’s motion
and actuation over a map. 120

Actuation Space (AS). Set that contains all the waypoints that can be actuated by a
robot. Its representation as an image is called Actuation Map. 126

Actuation Task Performing an operation that results in some task being executed in
the environment. 120

Automated Planning (AP). Field of Artificial Intelligence that studies the deliberative
processes of reasoning. 5

Competition of Distributed and Multi-Agent Planning (CoDMAP). Preliminary ver-
sion of a Multi-Agent Planning systems competition, which took place in 2015.
32

Coverage Planning metric that represents the number of problems solved. 20

Domain Describes the environment in which the problem has to be solved and the set
of actions that can be performed. Thus the domain contains the facts and actions
and may also contain types, fluents, constants, etc. 12

International Planning Competition (IPC). Empirical evaluation of state-of-the-art
planning systems on a number of benchmark problems. Besides the results, the
aim is to identify challenges and future directions in the Automated Planning
research area. The competition is organized and celebrated in the International
Conference on Planning and Scheduling (ICAPS). 18, 23

Makespan Planning metric that represents the number of steps of a plan that can be
executed in parallel. 22

xxi

GLOSSARY

Multi-Agent Planning (MAP). Subarea of Automated Planning that deals with multi-
ple agents and might solve interactions, coordination and privacy issues. 5

Plan Cost Planning metric that represents the sum of associated costs to each of the
actions of a given plan. 21

Plan Length Planning metric that represents the number of actions of a plan. 21

Planning by Reuse Tries to fix a given (usually invalid) plan instead of planning from
scratch a new solution. Belongs to the subarea of Automated Planning called plan
repair. 55

Planning Domain Description Language (PDDL). It is the standard language in
Automated Planning to model domains and problems. 14

Problem Contains the information of the environment, the initial state and the set of
goals to achieve. 12

Quality Score that represents the cost of executing a valid plan. It is obtained by the
sum of the costs associated to each action of a plan. 21

xxii

Part I

Introduction

1

C
H

A
P

T
E

R

1
INTRODUCTION

W HEN diving into this Thesis you will find a work that joins two worlds:
Artificial Intelligence and Multi-Agent Systems. From theory to practice,
we have been exploring different approaches to come up with a solution

based on Automated Planning that efficiently solves problems where multiple agents are
involved i.e. agents’ goals are reached while coordination and interactions are handled.
In a world where people are more connected and move faster each day, we are constantly
surrounded by multi-agent scenarios in our daily life: robots that solve tasks on-demand
inside a building, luggage routing inside an airport, food/package delivery, warehouse
organization, cars on a parking lot, drone swarms, etc. Through this Thesis we present a
solid multi-agent approach that can be applied to a broad set of environments. Therefore,
this chapter is included for the readers to fully understand the aim of this Thesis, its
scope and the challenges we have faced to accomplish each of the objectives. Every idea
or hypothesis has always some motivation behind. Thus, that will be our starting point.

1.1 Motivation

Since Artificial Intelligence was born in the early 50s, one of the challenges the re-
searchers have been facing is how to replicate the act of human reasoning. Understand-
ing how our brain works is still not easy nor obvious. We humans make decisions daily
in order to perform “actions” that will affect -usually in a positive way- to ourselves

3

CHAPTER 1. INTRODUCTION

and/or the environment that surrounds us. Some decisions will require more effort and
coordination to be successfully performed than others, especially if they involve several
people. For instance, when ordering a pizza using a smartphone you will usually do the
following:

1. Click on the app of the pizza restaurant of your choice and log in

2. Customize your pizza

3. Choose your payment method

4. Confirm and wait for your pizza at home

Although the sequence of steps might be tricky if you are not familiar with ordering
online, the reasoning process is trivial. We call deliberative reasoning to the process of
inference that selects which set of ordered actions will be performed in order to reach
some objective. Deliberative reasoning has multiple levels of abstractions i.e customize
your pizza involves to look for available ingredients, to choose your favourite ones, to
choose the kind of dough etc. The deeper the abstraction, the less deliberative is the
behaviour to undertake. Low-level actions, such as picking up an ingredient, belong to
the reactive reasoning, which means that they barely need of any inference or thinking
component to be performed.

Automated planning is the field of Artificial Intelligence that studies the processes
of deliberative reasoning. The planning algorithms are able to automatically generate,
synthesize and organize a set of actions (plan) that, if applied in order, make the system
transit from an initial state to a state where goals (objectives) are achieved. Regarding
the previous example, as the plan is performed by one human (agent) only, it belongs to
the subfield of single-agent planning.

Meanwhile, in the pizza restaurant, the situation is more complicated to handle.
From the point of view of deliberative reasoning, a team of humans has to coordinate
several times to:

1. Complete each received order

2. Delivery them to the correct destination address

3. Replenish ingredients/doughs/resources when needed

One of the first ways to tackle this problem would be to have a team in charge of doughs,
another team for customizing each pizza and one last team for delivery. Each of the

4

1.1. MOTIVATION

teams would have its own plan to carry out its mission. There is still one last issue:
communication. Teams could decide to either communicate everything they do or only
communicate when something unexpected happens (usually conflicts). In Automated
Planning, when multiple agents are involved we talk about Multi-Agent Planning (MAP).
This subfield studies not only the reasoning process but also the coordination/cooperation
among agents, the communication (especially if some information is private) and the
conflicts’ resolution. In a world where the digital components and the autonomous/intel-
ligent systems are scaling quickly, multi-agent scenarios are given more often. Here we
present some real-life examples where MAP could be applied:

• Logistics problems such as warehouse management where robots help workers to
complete the customers’ orders e.g. Amazon’s Kiva Robots [Wurman et al., 2007] or
Alibaba’s Quicktrons.

• Transportation problems such as delivery or school bus routes [Kozlak et al., 2004].

• Surveillance tasks in buildings with multiple robots [Zlot and Stentz, 2006] or in
open environments using Unmanned Air Vehicles [Nigam, 2014]

• Service robots to assist people in public/private buildings e.g. Cobots [Veloso et al.,
2015] or STRANDS [Santos et al., 2017].

• Bots behavior in games [Brafman et al., 2009] simulations [Kohan Marzagão et al.,
2017] or real-life games [Kok et al., 2005].

One of the problems that MAP faces is scalability. Having a considerable amount of
agents and goals produces bottlenecks on task assignment, planning and communication.
Depending on the level of interaction among agents, communication could be avoided as
long as there exists some algorithm to deal with interactions/coordination.

In big-size scenarios, exploring the search space implies to spend a considerable
amount of planning time. Therefore, skipping communication might alleviate the cost of
solving the planning task. Also, dividing the goals among the agents in an efficient way
e.g. minimizing potential interactions, will make the planning tasks easier to solve. Thus,
if after goal-assignment agents can plan individually, the set of plans will be more likely
to be parallelized. There is an Automated Planning metric that measures the number of
execution steps of a plan, which is called makespan. Minimizing the makespan in this
kind of environments will result into having efficient parallel plans that, when executed
jointly, will solve the planning task.

5

CHAPTER 1. INTRODUCTION

The main idea of this Thesis consists on extending some previous works on multi-
agent and single-agent planning. Specifically, we want to focus on solving the MAP
scalability problem mentioned above. We will focus on big-size multi-agent tasks in terms
of number of agents, goals and search space, where agents have little or no interaction
among them and the goal is to improve the makespan.

1.2 Objectives

Multi-agent planning (MAP) aims at solving planning tasks for/by a set of agents. Deal-
ing with a set of agents instead of planning for a single agent involves some issues that
directly affect to the design of the algorithm. Following the classification proposed by
Torreño et al. [2017] they can be grouped into six features: agent distribution (which are
the agents or executors?), computational process (centralized or distributed), agents’ coor-
dination (before, during or after planning), communication (internal, no communication),
heuristic search (per agent or global) and privacy preservation (private information,
cipher communication, obfuscation).

This Thesis aims to solve the MAP scalability problem in domains that have little
or no interaction where the search space is big and the number of agents and goals
are considerable. We aim to skip agents’ communication by solving interactions that
might arise using plan-merging and plan-reuse after the planning phase. Also, in order
to obtain efficient parallel plans, our proposal will focus on minimizing the makespan
metric.

Specifically, we contribute with (1) a MAP approach that is able to automatically
adapt itself to different multi-agent scenarios using plan-merging and plan-reuse; (2)
a new single-agent planning approach that combines heuristic search and plan-reuse,
which can be integrated into the former and (3) an adaptation of our approach for robotics
environments based on path-planning tasks.

In order to achieve that, the particular steps which we aim to accomplish are:

• Design a new MAP approach that automatically adjusts to the interaction level
among agents and goals. We will focus on combining distributed and centralized
MAP techniques to solve agents’ interactions.

• Explore plan-reuse algorithms to fix agents’ interactions. We will focus on post-
planning coordination of agents to avoid agents’ communication during planning.
Thus, a new plan-reuse approach will be proposed.

6

1.3. THESIS OUTLINE

• Make an analysis on efficiency, scalability, modelling tasks and environment, and
agents’ features to identify the strengths and weaknesses of our proposal. We will
specially focus on the size of the planning task, measured as the number of agents
and goals.

• Study a real-world use case to apply our approach. In order to explore and con-
tribute to other areas of knowledge, we will study the robotics surveillance problem.

1.3 Thesis Outline

Previous sections have briefly summarized the motivation behind this Thesis, the main
objectives and some observations about the research background. In order to close this
introductory Chapter, we present the outline of this Thesis. It is organized as follows:

• Chapter 2 contains a state-of-the-art of Automated Planning, where the key con-
cepts, formalizations, languages and state-of-the-art planners are presented.

• Chapter 3 contains a state-of-the-art of Multi-Agent Planning, the field of Auto-
mated Planning that deals with multiple agents. Key concepts, formalizations,
languages and state-of-the-art planners are presented.

• Chapter 4 contains a state-of-the-art of Plan Reuse, where key concepts, different
algorithms and plan-reuse planners are presented.

• Chapter 5 contains the first contribution of this Thesis, the multi-agent planner
Plan Merging by Reuse (PMR).

• Chapter 6 contains the second contribution of this Thesis, the plan reuse planner
Reuse Randomly-exploring Planning Tree (RRPT-PLAN).

• Chapter 7 contains the empirical evaluation of each of the contributions first
separately and then joined. They were tested against some other state-of-the-art
planners.

• Chapter 8 contains a joint work with Manuela Veloso’s CORAL lab, where our first
contribution was combined with Automated Maps to speed up the planning process
and work efficiently on big multi-agent environments.

• Chapter 9 contains some final conclusions and future directions of this Thesis.

7

This page has been intentionally left blank.

Part II

State of the art

9

C
H

A
P

T
E

R

2
AUTOMATED PLANNING

A RTIFICIAL INTELLIGENCE (AI) was officially born in 1956 with two
ambitious objectives. First, to understand intelligent entities. Researchers
were interested on studying animals and humans’ brains, their behaviour

and reasoning. Second, to build intelligent entities by recreating intelligence in machines
using computational-based models. One of the subfields of AI that helps to reach both
objectives is Automated Planning. In this Chapter, an overview of Automated Planning
is given focusing on key concepts, planning models, languages and metrics.

2.1 Introduction

As it was previously said, Artificial Intelligence aims at creating intelligent entities. In
order to define “entity” we follow the definition given by Russell and Norvig [2003]:

Anything that can be viewed as perceiving its environment through sensors
and acting upon that environment through effectors.

An intelligent entity needs to be rational, which means to acquire knowledge about the
world and to reason about possible solutions when acting and performing tasks over the
environment. Agents and entities are synonyms in this context. Thus, for the sake of
simplicity, we will refer to agents instead of entities.

11

CHAPTER 2. AUTOMATED PLANNING

Any computational-based agent can manifest different degrees of autonomy. Thus,
there exist different classifications. Here, we are mentioning the one established by
Geffner [2010] where three big groups can be identified:

• Program-based agents, which are mainly developed using if-then-else sentences.
Their knowledge and their ability to react to the environment is limited to the
situations anticipated by the developer.

• Model-based agents, which solve a given problem using specific knowledge (actions,
goals, initial state) that has been previously modelled and received as input. They
are more flexible than program-based agents as the solver is domain-independent.

• Learning-based agents, which do not need prior knowledge to react to the envi-
ronment. Since the beginning they are able to learn and understand what it is
happening. The ability to learn depends on the quality of the processed information
and the algorithm employed.

We mentioned on Chapter 1 that Automated planning is the field of Artificial Intelli-
gence that studies the processes of deliberative reasoning. Agents that are built by using
Automated Planning belong to the second group. They are considered model-based and
goal-oriented agents. Model-based agents are usually integrated into real systems by fol-
lowing the architecture depicted on Figure 2.1. The Domain contains the representation
of the environment and the set of actions that can be performed. The Problem contains
the information of the environment, the initial state and the set of goals to achieve.
Using that information, the solver computes a plan. It usually contains a sequence of
ordered actions. That plan is later executed by a controller over the environment.

On this Thesis, we are focused on the first part of the architecture. The Execution side
is out of its scope. As we are presenting a work that lies on Multi-Agent Planning, our
approach will be able to coordinate multiple agents to solve what is called a Multi-Agent

Solver
(Planning algorithm)

Controller Observation Environment
Domain

Problem
Plan

Action

Automated Planning Execution

Figure 2.1: Model-based agent’s architecture

12

2.2. PLANNING MODELS AND MODELLING LANGUAGES

Planning task. However, in order to fully understand the Multi-Agent Planning approach
we first need to present the key concepts of Automated Planning.

The following sections explain the different planning models, the most popular
modelling languages employed by the planning community and the formalization of the
Single-Agent Planning task. Afterwards, we define the popular metrics and evaluation
and present the State-of-the-art of Single-Agent Planning.

2.2 Planning models and modelling languages

Most Automated Planning algorithms are considered domain-independent, which means
that the same planning algorithm can solve planning problems from different domains.
While the algorithm remains intact, the input sent to the algorithm is the definition of the
planning problem and the domain, which are the elements that vary. As it is impossible
that any planner works efficiently in every existing domain, the domain-independent
feature is bounded to the planning model that the algorithm supports. Thus, there exist
different planning models that vary depending on the configuration of the following set
of features.

• Partial or full observability. When the algorithm has access to all the information
about the current state of the environment we refer to full observability. Otherwise,
it will have partial observability.

• Presence of uncertainty. Uncertainty can be present in the planning actions and
in the environment. When the environment is deterministic, any action applied
to the environment will only lead to a concrete state. On the contrary, when the
same action might lead to different states, the environment presents uncertainty.
Another situation that can be given regarding uncertainty is the partially-mistaken
perception of the world e.g. noisy sensors. The environment presents uncertainty,
as observations cannot be fully trusted.

• Actions’ duration. Actions can have an assigned duration when executed in the
environment. Thus, we can reason about actions’ time windows when they are
being executed or actions’ concurrency.

• Goal reachability. A problem can have hard-goals, which are mandatory to reach
to solve the problem successfully or soft-goals, which are optional to reach and do
not affect to the success of the plan.

13

CHAPTER 2. AUTOMATED PLANNING

• Offline or online planning. Online planning takes into account the dynamics of the
environment (observations might change) and returns an action on each iteration.
Offline planning returns the full plan.

Besides choosing a planning model, we also need a language to model the problem.
The basic language for modelling planning problems is STRIPS [Fikes and Nilsson,
1971], the STanford Research Institute Problem Solver. STRIPS employs first-order logic
to represent a problem and declares operators (actions) using preconditions and effects.
On the other hand, the Planning Domain Description Language (PDDL) [Fox and Long,
2003] is based on the STRIPS language and provides more flexibility and expressiveness
for modelling planning problems. It was an attempt to establish a standard language to
represent propositional planning tasks. Through the years, PDDL has been extended
and has gained even more expressiveness to represent more complex structures such
as numerical fluents, conditional effects, different types of constraints and goals etc.
It became the standard language to represent a problem in Classical Planning. There
exist some other approaches such as the state-variable model SAS+ [Bäckström and
Nebel, 1995], which is later explained in Section 2.5 or the Action-Description Language,
ADL [Pednault, 1994], which was included into the first version of PDDL.

On this Thesis we are interested on the Classical Planning model, in which there is a
deterministic environment, full observability, no uncertainty, duration-less actions and
hard goals. Planning tasks will be represented in PDDL. The following Section explains
the conceptual model of Classical Planning.

2.3 The propositional formalization

The propositional formalization of a Classical Planning is as follows:

Definition 2.3.1. Single-agent planning task. A single-agent planning task is a tuple
¶= hF,A, I,Gi, where:

• F stands for the set of propositions,

• A stands for the set of instantiated actions,

• I µ F stands for the initial state,

• and G µ F stands for the set of goals

Each action a 2 A is described by

14

2.4. THE PDDL REPRESENTATION

• a set of preconditions (pre(a)) that represent literals that must be true in a state to
execute the action;

• and a set of effects (eff(a)), which are literals that are expected to be added (add(a)
effects) or removed (del(a) effects) from the state after the execution of the action.

The definition of each action might also include a (positive) cost c(a), where the
default cost is one.

A state sµ F describes the current situation of the environment. Instantiated literals
from F describe s. The state space S contains every possible situation that can be given
on the environment. In Classical Planning, S is finite and discrete. Also, I 2 S and all
goal states sG 2 S.

The solution of a planning task is a plan, which is a sequence of actions º= (a1, . . . ,an)
that, if executed in order from the initial state, reaches another state sG where all the
goals in G are satisfied, G µ sG .

In order to transit to a different state s’, an action a must be applicable to s. Therefore,
the planning task could also be represented as a State-Transition Graph [Jonsson and
Bäckström, 1998]. The application of an action a in a state s is defined by the function:

∞(s,a)=
Ω (s\del(a))[add(a) if pre(a)µ s

s Otherwise a cannot be applied in s
(2.1)

Thus, the execution of a plan º from a state s can be defined as:

°(s,º)=
Ω

°(∞(s,a1), (a2, ...an)) if º 6=;
s if º=;

(2.2)

Next, the lifted representation of the Classical Planning task model is presented.

2.4 The PDDL representation

Usually, the Classical Planning task is encoded in the propositional fragment of the stan-
dard Planning Domain Definition Language (PDDL) [Fox and Long, 2003]. A planning
task ¶ is generated by the description of a PDDL domain and problem.

2.4.1 The PDDL domain

The domain represents the general knowledge of the environment. It contains a set of
PDDL requirements; a domain name; a hierarchy of types to characterize the problem

15

CHAPTER 2. AUTOMATED PLANNING

objects; a set of definitions of predicates and a set of definitions of functions, whose
instantiations generate the facts in F; and a set of generalized actions. The instantiations
of those actions with the problem objects generate the set A.

There exist multiple domains in the planning community. For instance, domains that
simulate the behavior of the space Rovers, the behavior of a Satellite, the management
of an Elevator, the Logistics of package-delivery, etc. In order to fully understand the
modelling process, through this Section we will show a modelling example of a typed
version of the Logistics environment, where trucks and airplanes cooperate to deliver
packages from the city of origin to the destination. Next, we present the hierarchy of
types.

(: types truck
airplane ° vehic le
package
vehic le ° physobj
a irport
locat ion ° place
c i t y
place
physobj ° ob jec t)

Figure 2.2: Hierarchy of types of the Logistics domain. Types on the left are children of
the types situated on the right.

Once the hierarchy of types is defined, the next step is declaring the set of predicates.
A predicate is composed of a name plus a list of arguments of some type. Sometimes it is
enough to declare a predicate just by its name e.g. (handEmpty), (full). Figure 2.3 shows
the predicates that usually define a Logistics domain.

(: predicates (in°c i t y ? l o c ° place ? c i t y ° c i t y)
(at ? obj ° physobj ? l o c ° place)
(in ?pkg ° package ?veh ° vehic le))

Figure 2.3: Predicates of the Logistics domain

Finally, actions are composed of parameters, preconditions and effects. The para-
meters are object types, the preconditions and effects come from the previous declared
predicates.

16

2.4. THE PDDL REPRESENTATION

(: action LOAD°TRUCK
:parameters (? pkg ° package ? truck ° truck ? lo c ° place)
:precondition (and (at ? truck ? lo c) (at ?pkg ? lo c))
: effect (and (not (at ?pkg ? lo c)) (in ?pkg ? truck)))

Figure 2.4: Action Load-truck of the Logistics domain

2.4.2 The PDDL problem

A planning problem in PDDL contains a set of objects, which are instances of the types
in the domain; the initial state I; the set of goals G; and an optional metric to define the
optimization criteria. The initial state and the set of goals are composed of instantiated
predicates. Figure 2.5 presents a simple Logistics problem.

(define (problem l o g i s t i c s °4°0)
(:domain l o g i s t i c s)
(: objects

apn1 ° airplane
apt1 apt2 ° airport
pos2 pos1 ° l o cat ion
c i t2 c i t1 ° c i t y
tru2 tru1 ° truck
obj23 obj22 obj21 obj13 obj12 obj11 ° package)

(: init (at apn1 apt2) (at tru1 pos1) (at obj11 pos1) (at obj12 pos1)
(at obj13 pos1) (at tru2 pos2) (at obj21 pos2) (at obj22 pos2)
(at obj23 pos2) (in°c i t y pos1 c i t1) (in°c i t y apt1 c i t1)
(in°c i t y pos2 c i t2) (in°c i t y apt2 c i t2))

(: goal (and (at obj11 apt1) (at obj23 pos1) (at obj13 apt1)
(at obj21 pos1) (at obj12 apt1) (at obj22 apt2)))

)

Figure 2.5: Example of a Logistics problem encoded in PDDL

2.4.3 PDDL official versions

Since PDDL was born in 1998, new versions of the language have been defined in order
to expand its expressiveness and flexibility. Here we present a brief summary of each
PDDL version:

17

CHAPTER 2. AUTOMATED PLANNING

• PDDL 1.2: it is the first version and was released in 1998. This version already
divides and models a planning task into the domain and the problem. The language
also includes some of the ADL formalization features and conditional effects. It was
the official language of the 1st and 2nd International Planning Competition (IPC).

• PDDL 2.1: it is the second version and was released in 2002. It introduced durative
actions, numeric-fluents (e.g. to represent numeric quantities) and plan metrics to
optimize the plan regarding different objectives and not only goal-driven. It was
the official language of the 3rd IPC.

• PDDL 2.2: it is the third version and was released in 2004. It included the concept
of dependency between predicates through a new element called derived predicate
or axioms. It also included a way to model exogenous events, which are external
events that happen at some point in the problem, through a new element called
timed initial literals. They have assigned a concrete moment of time to be enabled.
It was the official language of the 4rd IPC.

• PDDL 3.0: it is the fourth version of the language and was released in 2006. Now
the language is able to model preferences in the form of hard and soft goals. The
former are mandatory to solve the problem, the second are optional. It also included
state-trajectory constraints to model hard constraints.

• PDDL 3.1: it is the latest version of the language and was released in 2008. It
introduced object-fluents and supports functional STRIPS.

There also exist variations of PDDL to work with the different planning models e.g.
such as PPDDL to model probabilistic environments and uncertainty.

Finally, most of the current planners do not support PDDL 3.1, instead they usually
support PDDL 2.2, which includes enough expressiveness and flexibility to model most
of the real-world environments.

2.5 The multi-valued formalization

There are multiple ways to formalize a planning task depending on the features of the
planning model. In Classical Planning, there exist two well-known formalizations: the
propositional and the multi-valued ones. The previous Sections described the proposi-
tional formalization of the planning task, which is usually encoded in PDDL. In this

18

2.6. METRICS AND EVALUATION

Section we present SAS+ [Bäckström and Nebel, 1995], as an alternative to define a
planning task by following the multi-valued formalization. Both representations will be
employed along this Thesis.

Definition 2.5.1. SAS+ planning task. A SAS+ planning task is a tuple ¶= hV,O, s0, s§i,
where:

• V stands for a set of state variables V= {v1, ...,vm}. Each variable v 2V is associated
to an extended domain in the form D+

v =Dv[{u}, where Dv represents the domain
of variable v and u represents the undefined/unknown value. The total state-space
is defined as SV =D1 £ . . .£Dm and s[v] denotes the value of the variable v in the
state s (fluent). The partial state-space is defined as S+

V
=D+

1 £ . . .£D+
m , in which at

least one fluent s[vi]=u.

• O stands for the set of operators (actions). Each o 2O is represented by a tuple
o = hpre, posti 2 S+

V
where each element represents pre- and post- conditions

respectively.

• s0 µV stands for the initial state, such that s0[vi] 6=u 8vi 2V.

• s§ µV stands for a goal state, such that s§ = [vi] 2D+
vm 8vi 2V.

Given a state s 2 S+
V
, the preconditions pre(o) 2O are fluents that must be true before

they are applied to s and become not true right after. The postconditions post(o) 2O
are fluents that are not true before being applied to s and become true right after their
application in s.

Thus, an action o 2 O is applicable in a state s iff: 8vi 2 V : (pre(o)[vi] = u _
pre(o)[vi]= s[vi]).

As a result, a solution plan º is a sequence of actions º = (o1, . . . ,ok) such that if
applied in order starting in s0 will result in a state sk where s§ µ sk.

2.6 Metrics and evaluation

In the middle 90s, the Automated Planning community became aware of the lack of
benchmarking platforms or systems in the research area. Researchers found hard testing
their algorithms against other state-of-the-art approaches.

19

CHAPTER 2. AUTOMATED PLANNING

Thus, this situation led to the creation of the International Planning Competition
(IPC)1 in 1998. The aim of the competition was to provide an empirical comparison
of the state of the art planning algorithms. Also there were other objectives such as
analyzing the community trends, proposing new directions for research, highlighting
new challenges and providing new domains and problems sets as benchmarks. The last
edition of the IPC took place in 2018.

Due to the success of the IPC, it became the reference for benchmarking any new
planner approach. Thus, their evaluation metrics are commonly used by almost every
researcher of this area. For a given domain and problem, the metrics to evaluate the
solution plan are its coverage, quality and the time spent on obtaining the solution.
In order to compute those metrics, first the soundness of the plan (or plan validity) is
evaluated using VAL, the validator from the IPC [Howey et al., 2004]. The time spent is
evaluated in seconds. The quality of a plan can be evaluated by measuring the plan cost,
which is the sum of costs of all the actions contained in the plan. Sometimes, actions do
not have any associated costs. Therefore, the quality of a plan would be equivalent to the
number of actions of the plan.

However, when comparing different planners, the individual values obtained for
quality and time are compared globally as follows.

First, let’s say we have a set of planners PA = {P1,P2...Pn} and a set of domains D =
{D1,D2...Dk}. Each domain Di is composed of a set of problems Di = {Pr1,Pr2, ...Prm}.
Usually, when running experiments, each domain contains the same number of problems.
The time bound to solve each problem on Classical Planning is usually 1800s. Thus, each
planner runs each domain and problem obtaining a maximum of k£m plans if every
problem is solved in the allotted time. It was mentioned before that three metrics are
computed for each plan: coverage (ci j), quality (qi j) and time (ti j); so we can say that
for a given planner PX and a domain Di, PXi j = {ci j,qi j, ti j}, where i is the fixed index of
the domain in D and j is the index of the problem in Di. In order to compare the set of
planners PA, scores from each of those metrics are computed per planner and domain.

The Coverage metric represents the number of problems solved per domain. Thus,
ci j will take the value 0 (not solved) or 1 (solved). The Coverage score (C) per planner
and domain is defined in Equation 2.3.

CPXi
=

mX

j=1
ci j (2.3)

1ipc.icaps-conference.org

20

ipc.icaps-conference.org

2.6. METRICS AND EVALUATION

The global Coverage score (C) for each planner is computed as in Equation 2.4.

CPX =
kX

i=1
CPXi

(2.4)

The Quality metric (q) measures either the Plan Length or the Plan Cost of a given
plan. Each planner PX obtains a qi j value as long as the problem is solved. Otherwise
qi j = 0. For every problem, the lowest (best) value obtained from the set of planners
is identified as Qbest. Equation 2.5 shows the Quality computed for each planner and
problem.

QPXi j
=

8
>><

>>:

Qbest

qi j
if problem is solved

0 if not solved
(2.5)

The Quality score per planner and domain is computed as in Equation 2.6. The global
Quality score (Q) for each planner is computed as in Equation 2.7.

QPXi
=

mX

j=1
QPXi j

(2.6)

QPX =
kX

i=1
QPXi

(2.7)

The Time metric (t) measures the seconds spent by a planner on solving a given
problem. Each planner from the set PA obtains a ti j value as long as the problem is
solved. Otherwise ti j = 0. For every problem, the lowest value obtained from the set of
planners is identified as Tbest. Equation 2.8 shows the Time computed for each planner
and problem solved.

TPXi j
=

8
>>>>>>><

>>>>>>>:

1
≥
1+ log10(

ti j
Tbest

)
¥ if problem is solved

1 if ti j ∑ 1s.

0 if not solved

(2.8)

The Time score per planner and domain is computed as in Equation 2.9. The global
Time score (T) for each planner is computed as in Equation 2.10.

TPXi
=

mX

j=1
TPXi j

(2.9)

21

CHAPTER 2. AUTOMATED PLANNING

TPX =
kX

i=1
TPXi

(2.10)

Finally, in Multi-Agent Planning, researchers also use as quality metric the makespan
of the plan. Makespan refers to the number of execution steps, where several actions
can be executed at each execution step. It is computed using the same formulas of the
Quality metric: Equations 2.5, 2.6 and 2.7, unless the planner cannot return a parallel
plan.

2.7 Automated Planning algorithms

So far we have explained that solving a Classical Planning task involves modelling the
environment (domain, problem) and choosing a description language. There is still a
third essential element, which consists on choosing the planner to find a solution. A
planning algorithm usually runs a heuristic search-based algorithm to explore the search
space in a way that a solution can be provided. This can be done in three different ways
according to the direction of search:

• Forward search, which starts from the initial state and searches towards a goal
state. When a state s is expanded, its successors are generated. In forward search,
as it starts exploring from the initial state, every precondition or effect is known.
Thus, states are completely defined.

• Backward search, which starts from the goal state and advances towards the initial
state. Backward search advances from a goal state towards the initial state. In
backward search, goal states are defined as partial states. Thus, only part of those
states (facts in G) is known. As a result, there are multiple states that can serve as
goal states and search algorithms will only obtain new partial states after each
expansion.

• Bidirectional search, which interleaves forward search and backward search. When
both meet, which is usually called the frontier, a solution for the problem has been
found.

The first heuristic search approaches explored both forward and backward search,
such as HSP and HSPr [Bonet and Geffner, 2001]. However, dealing with backward
search was harder than expected. There were two main problems: branching factor is

22

2.7. AUTOMATED PLANNING ALGORITHMS

usually higher due to partial states and duplicates and also it is most likely to explore
states that are not reachable from the initial state. Thus, at the beginning, researchers
mainly worked on forward search.

The work by Bonet and Geffner [2001] was also one of the first planning approaches
that explored domain-independent heuristics. They proposed to relax the planning
problem, which consists on ignoring concrete parts of it during planning search e.g.
delete effects. A relaxed plan is solved when every goal proposition has been added by
some action. Later, Hoffman presented Fast-Forward (FF) [Hoffmann and Nebel, 2001],
which is an improvement over HSP. FF computes a relaxed plan for each search state
ignoring deletes. The main difference regarding HSP is that, besides estimating goal
distance, it also identifies the successors that seem to be most useful and detects goal
ordering information.

Currently, one of the State-of-the-art planning systems is still Fast Downward
[Helmert, 2006]. The algorithm is a heuristic search planner, which contains a great
amount of parameters to configure a wide variety of versions in order to run different
search algorithms and heuristics. Fast Downward was the base planner of seven planners
of the 2011 International Planning Competition. LAMA-2011 [Richter and Westphal,
2010] was the Fast Downward configuration that won the competition. It is a Classical
Planning system based on heuristic forward search. The search algorithm is guided
by heuristics based on landmarks, propositional formulas that must be true in every
solution of a planning task.

Another Fast-Downward-based planner is RPT [Alcázar et al., 2011]. As we have been
inspired by RPT in our second contribution and also we have run it in the experiments, it
is explained in detail in Section 2.9.

Besides, YASHP [Vidal, 2004] is a forward search planner that employs a lookahead
policy to choose the next node to be expanded. The lookahead policy consists on per-
forming an analysis of different relaxed plans. An improved version of the algorithm
called YAHSP3 was the Agile track winner of the IPC 2011. The Agile Track consists on
solving problems in 500s instead of 1800s. Thus, the main features of the planner are its
greediness and speed to return a solution plan.

Finally, there is a small subset of planners that encodes the planning task as a
satisfability problem, commonly known as SAT solvers in the literature. SAT [Cook,
1971] was used in classical propositional logic to test the satisfability of the formulas as
NP-complete problems. Madagascar [Rintanen, 2014] is a SAT-based planning algorithm
that aims to solve planning problems encoded in SAT. It is one of the few state-of-the-art

23

CHAPTER 2. AUTOMATED PLANNING

Figure 2.6: Progressive evolution of a RRT [LaValle and Kuffner, 2001].

planners that minimizes the makespan of the resulting plans.
We are using this set of diverse planners to compare against our contributions in

Section 8.9.

2.8 Rapidly-exploring Random Trees

Rapidly-exploring Random Trees (RRTs) [LaValle and Kuffner, 2001] are a data structure
combined with a search algorithm whose aim is to solve fast and efficiently continuous
path planning problems.

Given two points, A (start) and B (end), the aim of any path planning problem is to
find the solution path that connects both. RRTs drive the search towards unexplored
regions by randomly changing the direction of the next node expansion. Thus, any
implementation of RRT will grow in a similar manner to Figure 2.6.

As a result, RRTs were designed to allow fast searches in high-dimensional spaces. At
the beginning, the algorithm creates the root node of the solution tree. On each iteration,
the algorithm modifies the solution tree by adding a new node.

The algorithm is composed of two main steps:

• The local search phase. During this phase, the algorithm selects an unexplored
random node of the search space. Then, the algorithm performs local search towards
that direction from the closest node of the solution tree. There is a parameter ≤

which limits the number of expanded nodes per iteration.

• The extend phase. If the random node has not been reached after ≤ expanded nodes,
the last expanded node is stored into the solution tree (Extend phase). Local search
algorithms do not usually keep track of visited nodes. Thus, the solution tree is

24

2.9. RANDOMLY-EXPLORING PLANNING TREE

Figure 2.7: Extend phase of the RRT algorithm

useful to keep track of the explored path in an efficient way. Instead of storing the
every visited node, only the state of the last expanded node on each iteration is
stored into the tree.

2.9 Randomly-exploring Planning Tree

RPT [Alcázar et al., 2011] is a stochastic planner which combines forward search and
sampling to solve a planning task represented in SAS+. RPT builds the solution inspired
on the structure of RRTs. The algorithm decides on each iteration of the planning loop
which kind of search runs. That decision depends on the values associated to a random
number and the parameter p:

• p represents the probability of executing local search towards the nearest goal.

• 1-p represents the probability of executing local search towards a sampled state.

Each iteration is controlled by a second parameter ≤, which limits the number of
expanded nodes of the local search. Once the number of expanded nodes reaches ≤, a new
random number is generated and the process will start again. Our second contribution,
RRPT-PLAN is inspired on the structure of this planner.

As a result, RPT is able to combine two different types of search: one towards the
nearest goal and another one towards a sampled state. There are two processes that are
not trivial in RPT: sampling a state and find the closest node to it.

In order to sample a state, RPT considers that both, the initial state and the goal, must
be reachable from the sampled state. Identifying unreachable states is strictly related to
the mutual exclusivity computation between propositions [Haslum and Geffner, 2000].

In Automated Planning, a set of propositions M = (f1, f2, ... fk) 2 F is mutually ex-
clusive (mutex) if there is no reachable state s 2 S such that every proposition in M is
true. These are known as static mutex. Once the unreachable sets of propositions are

25

CHAPTER 2. AUTOMATED PLANNING

identified, unreachable states from the search space can be pruned to make the search
process more efficient. Static mutexes are the most common type of mutex and are able
to prune most of the unreachable states in many domains. However, computing all the
static mutex from a given problem is PSPACE-complete. RPT performs an extensive
computation of mutexes to identify as many as possible. Thus, the algorithm employs
two state-of-the-art techniques: invariant synthesis [Helmert, 2009] and hm [Haslum
and Geffner, 2000]. The former is able to find set of propositions in which only one of
them can be true at the same time. On the other hand, hm gives an estimated distance
(lower bound) from the initial state to a state in which any set of m propositions are true.
If it is infinite, those propositions are mutex. Invariants are faster to compute than hm,
whose complexity grows exponentially when increasing m. RPT employs m= 2 for mutex
computation.

In summary, RPT’s sampling method works as follows:

1. a SAS+ invariant is chosen at random

2. every proposition mutex with that invariant is discarded

3. a proposition from that invariant is randomly chosen and added to the state

4. repeat until all SAS+ invariants have been chosen

The partial state is unreachable if no propositions are left when excluding propositions
from some invariant that were mutex with the already chosen propositions. In that case,
the process is restarted from scratch.

Then, RPT performs a reachability analysis from the initial state towards the sampled
state and from the sampled state towards the goal state. If some proposition is still
unreachable, the state is discarded.

Once a state is sampled, the next step is to find the closest node to it. In order to do
that, planners usually compute a distance/cost estimation using heuristic functions. The
values obtained are used to guide search algorithms towards the objective (usually the
goal). However, the process is costly in terms of time and efficiency. We also mentioned
that RPT needs to perform a reachability analysis to perform sampling. Thus, RPT saves
time by caching on each node of the tree the best supporters, which are the actions that
first achieve a given proposition in the reachability analysis.

As a result, a node of RPT’s solution tree is defined as follows:

Definition 2.9.1. RPT node. A node q of the solution tree T can be defined as a tuple
N= hsi,Ω i,øi, cbsi, where:

26

2.9. RANDOMLY-EXPLORING PLANNING TREE

• si represents the current state

• Ω i contains a pointer to the previous node

• øi stores the sequence of actions that reaches si from the parent

• cbs stores the cached best supporters for every proposition q 2 F.

Therefore, this information helps RPT to faster compute different heuristic functions
such as hadd, which returns the combined cost of achieving every sampled proposition,
and hFF ’s relaxed plans, by tracing back the relaxed plans from each node using the best
supporters.

27

This page has been intentionally left blank.

C
H

A
P

T
E

R

3
MULTI-AGENT PLANNING

M ULTI-AGENT PLANNING lies in the middle of the research areas of
Automated Planning and Multi-Agent Systems. Classical Planning ap-
proaches did not consider the concept of having multiple planning agents

to solve a given planning task. Multi-agent planners offer more flexibility to solve any
task that can be divided among a set of agents but also arise coordination and communi-
cation issues. In this Chapter, an overview of Multi-Agent Planning (MAP) is given by
focusing on key concepts, representation languages, factorization, coordination, privacy
issues and most popular approaches.

3.1 Introduction

Consider a warehouse where everyday hundreds of orders are received and have to be
delivered into the shortest period of time. First, the warehouse workers need to get the
corresponding products to complete each order. In order to speed up the process, some
robots are available to fetch the products for them. Workers will only focus on receiving
the products and checking that the order has been completed. After that, orders need to
be delivered to the clients’ addresses using trucks. When reasoning about this scenario,
some coordination systems are needed: (1) a system should divide up the work into
the workers; (2) also robots should move autonomously and individually through the
warehouse avoiding collisions; and (3) each driver needs to be assigned a set of deliveries

29

CHAPTER 3. MULTI-AGENT PLANNING

based on the deliveries’ location or some other minimization cost feature to improve
efficiency.

MAP is the subarea of Automated Planning that reasons on how to synthesize
sequences of actions for solving tasks where multiple agents are involved (e.g. robots,
workers, drivers) and/or some coordination is needed.

MAP aims at solving planning tasks for/by a set of agents. In collaborative envi-
ronments, these agents collaborate to reach common goals. Two main approaches have
been commonly used: centralized and distributed. The former builds a common plan
for all agents by merely considering the agents as another planning resource. This
was the usual way of dealing with MAP tasks in the Automated Planning community
until recently. MAP complexity was studied by Brafman and Domshlak [2013]. The
authors showed that MAP’s complexity depends on the number of agents, the difficulty
of their individual planning tasks and the number of interactions between agents (points
where some coordination is needed). Centralized planning is usually more efficient when
computing a plan with a reduced number of agents and goals. On the other hand, in
distributed planning, agents generate their plans either synchronously with the rest of
agents as in FMAP [Torreño et al., 2014] or MA-FS [Nissim and Brafman, 2014], or inde-
pendently [Mudrova et al., 2016]. When planning synchronously, agents need to share
information during planning. Thus, these approaches incur in a high communication
cost.

Regarding MAP in real world scenarios, in most domains the solution should be
executed in the shortest possible time. Hence, concurrent execution of agents’ actions is
needed. One way to deal with the task of finding the plan that minimizes the number of
concurrent execution steps (makespan) consists of planning explicitly taking into account
that minimization criteria. Another alternative consists of generating a sequential
plan (totally-ordered plan) and transform it into a parallel one. The parallel plan is
a restricted version of a partially-ordered plan, which means that the parallelization
algorithm assures that actions assigned to the same plan step can be executed at the
same time. By doing so, we can use any standard total-order planner in the state-of-the-
art to generate the set of sequential MAP plans, and then apply some parallelization
algorithm to improve the makespan.

This Chapter is structured as follows: Section 3.2 describes the MA-STRIPS for-
malization, the MA-PDDL language and a different approach to obtain the MAP task
through factorization and goal-assignment; Section 3.4 describes how to implement
privacy in different MAP approaches, Section 3.5 explains the different ways of handling

30

3.2. MAP TASK FORMALIZATIONS

agents’ coordination in MAP; Section 3.6 contains the general remarks of the CoDMAP
competition, Section 3.7 describes how to transform a partial-order plan into a parallel
plan and finally 3.8 explains the State-of-the-art of multi-agent planners.

3.2 MAP task formalizations

The standard language to represent planning tasks is PDDL. However, Multi-Agent
Planning does not have any official language yet to represent MAP tasks. In recent
years, there has been several attempts to establish an official a multi-agent extension.
Some examples are the Multi-Agent Planning Language (MAPL) in [Brenner, 2003] and
the Multi-Agent PDDL (MA-PDDL) in [Kovacs, 2012]. However, neither of those was
openly accepted by the MAP community. On the contrary, there was a formalization that
has been widely accepted since it was published, which is MA-STRIPS [Brafman and
Domshlak, 2008]. In the following sections, the MA-STRIPS formalization and the MA-
PDDL language are explained in detail. Also, we describe the FMAP formalization, which
defines fully-distributed environments and the MAPR formalization, which decomposes
the MAP task into individual tasks regarding agents and goals.

3.2.1 MA-STRIPS

MA-STRIPS [Brafman and Domshlak, 2008] is an extension of the STRIPS formalism to
work on cooperative multi-agent systems in which agents act under complete information
and use deterministic actions. The definition of the MA-STRIPS task is as follows:

Definition 3.2.1. The MA-STRIPS task for a set of k agents, ©= {¡1, . . . ,¡k}, is given by
the 4-tuple ¶= hF, {Ai}ki=1, I,Gi where:

• F is a finite set of facts, I 2 F encodes the initial state and G 2 F encodes the goal
state.

• For 1∑ 1∑ k, Ai is the set of actions that the agent ¡i is capable of performing.

• Each action a 2 A =S
Ai has the standard STRIPS syntax and semantics. Thus,

a= hpre(a),add(a),del(a)i.

As a result, MA-STRIPS is equivalent to the Single-agent planning task Definition
2.5.1 when k=1.

31

CHAPTER 3. MULTI-AGENT PLANNING

Agents in MA-STRIPS have disjoint sets of actions. This also implies that agents
cannot share actions. Collaborative actions, which require at least two agents to be
carried out, are widely known as joint actions. One of the advantages of MA-STRIPS
is the generation of the agent interaction (di)graph. It depicts the level of interaction
between agents so that the algorithm can easily deduce the facts from F that belong to
either agents’ internal information. Facts that do not belong to any agent are considered
public information. Two agents are connected if one agent’s action affects the functionality
of the other agent. Formally, Fi =

S
a2Ai pre(a)[eff(a) represents the set of facts affecting

or affected by ¡i ’s actions. The set is divided into internal information (Fint
i) or public

information (Fpub
i). Thus, Fint

i [Fpub
i = Fi and Fint

i \Fpub
i =;. Authors declare Fint

i =
Fi\

S
¡ j2©\{¡i}Fj, which means that a private fact f 2 Fint

i can only be achieved, erased
or required by ¡i. As a result, Fpub

i = Fi\Fint
i , which can be generalized to Fpub because

the set of agents © have to share the same set of public facts by following previous
definitions.

The easy process to infer the public and private information from a given MAP task
has made MA-STRIPS a strong reference to follow when dealing with privacy schemas.
More information related with privacy will be given in Section 3.4. Also, MA-STRIPS
facilitates the different perspectives of a given MAP problem, which authors called
projections. The current formalization is able to compute a projection of the original
MAP task that only shows a concrete part of the problem e.g. the centralized view of the
problem, the individual agent’s view or the public part view. This aspect is interesting
for real-world domains where different sets of agents have access to different levels of
restricted information.

3.2.2 MA-PDDL

MA-PDDL is an extension of PDDL for multi-agent planning and includes the MA-
STRIPS formalism. The first version of MA-PDDL was published in 2012 [Kovacs, 2012]
as a pure extension of PDDL 3.1. When those authors decided to organize Competi-
tion of Distributed and Multi-Agent Planning (CoDMAP) at the end of 2013, the MAP
community was focused on developing MA-STRIPS-based planners. Thus, they realized
that MA-PDDL did not have yet a definition to describe the privacy of facts and actions.
Therefore, Kovacs et al. prepared a new version of MA-PDDL1, which extended the
concept of privacy defined by MA-STRIPS and also would serve as the official language

1BNF definition of MA-PDDL http://agents.fel.cvut.cz/codmap/MA-PDDL-BNF-20150221.pdf

32

http://agents.fel.cvut.cz/codmap/MA-PDDL-BNF-20150221.pdf

3.2. MAP TASK FORMALIZATIONS

of the competition.
One of the advantages of MA-PDDL is the flexibility to model the MAP task as

factored and unfactored. Factored MA-PDDL allows the definition of separate domain
and problem descriptions for each planning agent. Each one represents the local view of
each agent. Unfactored MA-PDDL allows the definition in a single domain and problem
description, which includes task partitioning and privacy. Therefore, factored planning
refers to “many for many” multi-agent planning (architecture is distributed, as well as
the planning) and unfactored planning refers to “one to many” multi-agent planning
(architecture is centralized; planning can be distributed or centralized). Kovacs et. al.
utilized this criteria to organize CoDMAP planners into two independent tracks.

Most MAP planners are unfactored, which means that after receiving the whole MAP
task they usually apply their own factorization techniques to divide the task among
the agents. On the other hand, factored tasks are already divided among the agents
and receive as input a set of domain and problem files, one for each agent. Factored
planners need to establish some communication protocol for the agents to exchange
essential information. Even though MA-PDDL supports MA-STRIPS, the former does
not define private information nor the agents. Both elements are explicitly included
into the domain and problem description files. Kovacs et. al. suggested new tags to
complement the existing ones from PDDL:

• :multi-agent, it is included in the requirements of the domain to indicate that the
description is a MAP task.

• :unfactored-privacy :factored-privacy they are included in the requirements of the
domain to indicate if the file contains global or partial information of the MAP
task.

• :agent, it is included on each action of the domain to indicate the type-object that
performs the action.

• :private, it is included on the predicates of the domain and problem to explicitly
indicate which are the private predicates.

Finally, in order to elaborate a privacy definition, MA-PDDL authors enunciate the
following rules:

• Facts and actions can be private to particular agents or public among all agents

• A public predicate instantiated using public objects is a public fact.

33

CHAPTER 3. MULTI-AGENT PLANNING

• A public predicate instantiated with at least one private object to agent ¡i is
considered private information of ¡i.

• A private predicate always grounds to a private fact, regardless of privacy of the
objects used for instantiating.

3.2.3 The FMAP formalization

When a multi-agent planner follows a fully distributed configuration, agents have to
communicate and plan by only using its own information. Therefore, each agent has
a local view of the MAP problem. In FMAP [Torreño et al., 2014], authors proposed a
MAP formalization where agents consider that the information that is not represented
in each agent’s model is unknown to the agent. Therefore, it allows to model fully
distributed MAP tasks. The following paragraphs contain the description of this multi-
valued formalization.

The FMAP task is defined by a 5-tuple ¶= h©,V, I,G,Ai. where:

• © is a finite non-empty set of agents.

• V is the set of state variables known to an agent ¡i.

• I =S
¡i2© I¡i is the initial state.

• G is the set of goals.

• A =S
¡i2© A¡i is the set of planning actions of the agents.

The set of state variables is associated to objects in the world represented in the
domain Dv. Thus, each variable v 2V has assigned a value d 2Dv, which is represented
in a tuple called fluent hv,di. Fluents can be positive (v takes the value d) or negative (v
does not take the value d). Therefore, a state S is represented by a set of instantiated
positive or negative fluents.

This formalization employs the term specialized agents to define agents in © that
have different knowledge and capabilities. Those agents might only now a subset of the
initial state I. Regardless of specialization, all agents in © are cooperative, so they all are
aware of the whole set of goals G to achieve. However, depending on the specialization,
some agents might not understand some of the goals.

The view of an agent is defined by a 4-tuple ¶i = hV¡ ,A¡i , I¡i ,Gi. where:

34

3.2. MAP TASK FORMALIZATIONS

• V¡i is the set of state variables known to agent ¡i;

• A¡i 2 A is the set of agent’s planning actions;

• I¡i is the subset of fluents of the initial state I that are visible to agent ¡i;

• and G is the set of global goals of the MAP task.

Having specialized agents also leads to a definition of privacy. This is later explained
in Section 3.4.

3.2.4 The MAPR formalization

In order to work on MAP environments using unfactored planners, Borrajo and Fernán-
dez [2018] proposed the MAPR formalization, which is more general than MA-STRIPS
and works with PDDL and MA-PDDL languages. This formalization is the one we are
employing in our first contribution PMR. Thus, in order to prevent confusions, we will
refer to the MAPR task as the MAP task.

Definition 3.2.2. The MAP Task. The MAPR task is a multi-agent setting where a set
of m agents, ©= {¡1, . . . ,¡m}, has to solve the task ¶. The MAPR task M is defined as a
set of planning subtasks, ¶i, one for each agent. Thus, M = {¶1, . . . ,¶m} being i = {1...m}.
For representation convenience, an alternative equivalent lifted representation of each
single-agent planning task in PDDL would be a pair (domain, problem): ¶i = hDi,Pii.

As the planning task is an unfactored task, MAPR employs twomethods -agentification
and factorization- to generate each agent’s individual task. Both methods are later ex-
plained in Section 3.3.

Once the MAP task has been defined, agents’ and public information described and
the final set of planning agents chosen (©0), the definition of the MAPR individual
planning task is as follows:

Definition 3.2.3. Individual agent task (¶i). For each agent ¡i 2©0 a specific task ¶i is
generated, which is described as a tuple ¶i = hFi,Ai, Ii,Gii where:

• Fi = (F¡i [Fpub)µ F | F¡i and Fpub are disjoint sets, F¡i \Fpub =;.

• Ai = (A¡i [Apub)µ A | A¡i and Apub are disjoint sets, A¡i \Apub =;.

• Ii = (I¡i [Ipub)µ I is the initial state of agent ¡i, where I¡i µ F¡i and Ipub µ Fpub.
I¡i and Ipub are disjoint sets.

35

CHAPTER 3. MULTI-AGENT PLANNING

• Gi µG is the set of ¡i ’s assigned goals.

In Definition 3.2.3, the set of agent’s propositions is identified as F¡i and the set of
agent’s actions as A¡i .

F¡i includes ¡i ’s propositions that have been instantiated through the generic agent’s
predicates, i.e. the predicates parameterized as private and the predicates that include
as argument either the agent or one of the object types parameterized as private that
belongs to the agent. For example, agent’s location, agent’s features, agent’s instrument,
or agent’s instrument’s features.

A¡i represents ¡i ’s instantiated actions. They were generated from the generic
actions that included the agent itself and/or the agent’s objects as argument. For instance,
in the Rovers domain, they could include actions as “take a picture” that requires the
rover, or “camera calibration” that only mentions the camera of a given rover.

The set of public propositions is identified as Fpub and the set of public actions
as Apub. We assume that both the complete initial state, I = [m

i=1Ii, and the set of
goals, G =[m

i=1Gi are consistent; that is, they are conflict-free (there are no mutexes).
Information related with preservation of privacy will be given in Section 3.4. Finally,
we enunciate two different representations of the MAP task, as the set of single-agent
tuples and as a lifted representation, which contains a pair domain-problem for each
agent.

Definition 3.2.4. Factorized MAP task (M0). Being ¶ the tuple described in Definition 4
and n= |©0|, the M0 task is defined as:

M0 = h¶1, ..,¶ni=
n
hF1,A1, I1,G1i, ...,hFn,An, In,Gni

o

Definition 3.2.5. Lifted representation of the M0 task. Considering the lifted represen-
tation of ¶PDDL

i = hDi,Pii and being n= |©0|, the M0 task is defined as:

M0 = h¶PDDL
1 , ...,¶PDDL

n i=
n
hD1,P1i,hD2,P2i, ...,hDn,Pni

o

3.3 Factorization and Agentification

Agentification consists on identifying which are the agents of the given problem. This
identification can be done in many different ways. Inside MA-STRIPS there is no infor-
mation that explicitly indicates which type of agent can execute which action. Thus, if

36

3.3. FACTORIZATION AND AGENTIFICATION

the planning task is defined using the MA-STRIPS formalization, agents are given as
input to the planner along with the lifted representation of the MAP task (domain and
problem). Alternatively, if the planning task is defined using MA-PDDL, the agents are
explicitly included in the domain and problem files. Each action has a keyword :agent in
order to know which type of agent can execute the action. It is important to choose as
agents the elements of the domain that suit best the division of tasks. An advantage of
dealing with MAP domains is that, in most of them, agentification comes naturally and
the agents-to-be are immediately identified.

Factorization is the ability to divide a planning problem into subproblems using some
criteria. For instance, it is common to apply factorization dividing the problem regarding
goals [Borrajo, 2013; Crosby et al., 2013]. The aim is to transform the unfactored planning
task into easier tasks so that each agent can solve its factorized problem individually. In
the following sections, the agentification and factorization processes applied by SIW, ADP

and MAPR are explained in detail.

3.3.1 SIW

Serialized Iterative Width (SIW) [Lipovetzky and Geffner, 2014] is a centralized algorithm
that transforms a planning problem into subproblems. Thus, this approach fits with
the purpose of unfactored MAP tasks. Authors of SIW employ the word serialization
when referring to factorization. The reason behind this term is that they are not directly
dividing the task among the agents. Actually, the algorithm is choosing only one atomic
goal to solve at a time, which is the purpose of serialization.

SIW calls the algorithm Iterative Width (IW) [Lipovetzky and Geffner, 2014] to solve
the subproblems. The aim is to achieve one atomic goal at a time, greedily, until all
atomic goals are achieved jointly. Another remark is that SIW performs a blind-search,
there is not a heuristic guidance during search. However, SIW does not loose performance
in comparison to other greedy best-first algorithms guided by delete-relaxation heuristics,
as the serialized tasks are very easy to solve.

Thus, the steps of the SIW algorithm can be summarized as follows: Given a problem
P = hF, I,O,Gii, the algorithm performs a sequence of calls to IW over the serialized
problems Pk = hF,A, Ik,Gki,k= 1, ..., |G|, where:

1. I1 = I, G0 =?.

2. Gk is the first consistent set of atoms achieved from Ik such that Gk°1 2Gk µG
and |Gk| = k. This means that Gk°1 must hold in Gk.

37

CHAPTER 3. MULTI-AGENT PLANNING

3. Ik+1 represents the state where Gk is achieved, 1< k< |G|.

SIW is written in C++ and employs Metric-FF to transform propositional facts into
state variables.

Finally, we give a glimpse of the main remarks of the algorithm IW:

• First, the algorithm is composed of a sequence of calls IW(i) for i = 0,1, ..., |F|,
where F is the set of atoms of a given planning problem.

• Each iteration runs a breadth-first search that prunes newly generated states
when novelty > i.

• The novelty is computed as the size of the smallest tuple of atoms t that is true
in a state s and false in all previously generated states s’. The higher the novelty
measure, the less novel the state.

3.3.2 ADP

The Agent Decomposition-based Planner (ADP) [Crosby, 2015] is a fully centralized
planning algorithm that consists of an automated decomposition process and a heuristic
search method designed specifically for decomposed domains. Factorization in ADP is
first performed from the point of view of the domain and then from the problem. ADP

is built on top of Fast Downward and instead of using the formalization of a classical
planning task, it employs a simplification of the multi-valued planning task proposed by
Edelkamp and Helmert [1991]. This representation allows to transform the information
of a planning task into a set of fluents that represent different elements of the domain
e.g. location, availability, data received etc.

On the first step, ADP performs a static analysis of the causal graph generated by Fast
Downward. The causal graph is composed by nodes, which contain each of the values of
the set of fluents, and edges, that show the dependencies between them. After obtaining
the graph, a decomposition of the domain can be easily carried out by following three
indicators: (1) dependencies are reduced, (2) goals can be achieved independently and (3)
coordination between agents is minimized.

The aim is to find the most suitable agentification. If an agentification cannot be
found because of the features of the domain, the search algorithm of ADP resorts to a
standard single-agent algorithm. If some agentification was found, ADP employs the
decomposition of the problem to find the solution plan. First, it checks that potential

38

3.3. FACTORIZATION AND AGENTIFICATION

agents can work individually. In case this condition is not satisfied, tasks from these
agents will be merged and both agents will count as one.

On the second phase, ADP starts a loop that runs on each iteration a goal assignment
process plus a forward search guided by hFF . The search is only focused on solving the
goals of one agent per iteration. The loop ends when the solution plan is found or a
dead-end is reached.

3.3.3 MAPR

MAPR [Borrajo and Fernández, 2018] supports both language definitions, either by
explicitly receiving the list of potential agents or by getting the information through the
:agent keyword of MA-PDDL to create the agents’ list afterwards. In MAPR, the problem is
first factorized from the agents’ point of view. Definition 3.2.2 describes the factorization
of the Planning Task in terms of agents, which gives as a result the Multi-Agent Planning
Task. Regarding goals, current MAP techniques in the Automated Planning community
employ the MAP task M where goals are considered achievable by the collaboration
of all agents [Nissim and Brafman, 2014; Torreño et al., 2014]. So goals are pursued
by all agents and no further factorization is applied. In other areas, as in Multi-Agent
Systems or robotics, some approaches first perform task allocation (assignment of each
public goal to a single agent) to improve the efficiency of problem solving [Conitzer, 2010;
Gerkey and Matarić, 2004]. Inspired by that, MAPR has a second factorization step, which
consists on dividing the goals among the agents by following some strategy. Some of the
goal assignment (GA) strategies are:

• All, that assigns all goals to all agents;

• Best-cost (BC), where each goal g 2G is assigned to the agent ¡i 2© that could
achieve it with the least cost; and

• Load-balance (LB) that first calculates k=
ª |G|
|©|

º
, which will be the average number

of goals per agent. Then it assigns each goal g 2G to the best agent ¡i 2© as in
BC. This strategy avoids, if possible, assigning more goals than k to each agent.

• Contract-net (CN), which assigns on each iteration each goal to the best agent
by taking into account all previous assignments of goals. On the first iteration
it computes an estimation of the cost for agent ¡i to achieve the first goal, g1,
c(g1,¡i). Then, CN assigns the goal g1 to the agent that returned the least cost.
As long as an agent does not have previous goals assigned, the goal strategy will

39

CHAPTER 3. MULTI-AGENT PLANNING

compute the cost of achieving a new goal as c(g,¡i). However, if the agent has
already at least one goal assigned, the estimation cost of a new goal g is performed
as accum(g,¡i)= c

≥£
g¡i
1 , .., g¡i

m , g
§
,¡i)

¥
. This strategy is inspired in the homonym

negotiation scheme commonly employed in Multi-Agent systems [Smith, 1980].
The aim is to choose the lowest accum(g,¡i) on each goal assignment iteration.

As in [Borrajo, 2013], in order to assign a goal g 2G to an agent ¡i 2©, a relaxed
plan is computed using the FF heuristic [Hoffmann and Nebel, 2001]. Depending on
the strategy selected, GA might leave some agents without any assigned goal. Hence,
the output of goal allocation is a new MAP task, M0, with goals assigned to a set of n
agents ©0 µ ©. If the agent’s cost of a goal is infinite (it cannot be reached), the goal
is not assigned to that agent ¡i 2 © but if there is some goal that cannot be reached
individually by any agent, the previous process assigns that goal to all agents. Then,
©0 =© since all agents will have at least one goal assigned.

After the second factorization step has been applied, each ¶i of the MAP task M0 is
formally described by Definition 3.2.3. Also, M0 can be defined in terms of ¶i or using
the lifted representation.

Now, we describe through a simple example how agentification and factorization work
before generating and delivering to any planner the input M0.

Figure 3.1: Example of a simple Logistics problem where trucks (¡1, ¡2, ¡3) have to
deliver some packages to the destinations (g1, g2, g3, g4) specified on the square box.
Trucks marked with “F” (¡1, ¡2) are the only ones allowed to transport fragile packages
(p1, p4). Trucks that start in CityA can traverse any kind of road (lined, dotted). Trucks
from other cities can only traverse lined roads.

40

3.3. FACTORIZATION AND AGENTIFICATION

Example (Logistics domain). Given a Logistics domain where trucks need to
deliver packages to a set of locations, our example contains three trucks and four goals
(package-delivery to its destination). Trucks initially located at CityA can traverse any
kind of road (lined, dotted). Trucks from other cities can only traverse lined roads. Also,
only trucks marked with “F” can deliver fragile “F” packages. The initial state of the
problem is shown in Figure 3.1. The destination of each package is described inside the
square box of the figure. Costs of driving between each pair of cities are shown over the
lined/dotted city connections. There is also a cost of 1 for loading and unloading a package.
Agentification comes naturally on this example, as trucks are the ones performing the
actions. As a result, the first factorization generates the MAP task M, which contains an
individual planning task for each truck.

Table 3.1: Example of an estimated-cost matrix from the problem pictured in Figure 3.1.
Each number represents the cost returned by hFF for an agent ¡i when reaching goal
gm. c(gm,¡i)=1 means goal gm is not reachable by agent ¡i.

Agents
Goals g1 g2 g3 g4

¡1 9 9 1 2
¡2 2 2 2 9
¡3 1 2 2 1

Table 3.2: Example of the estimated-cost computation for Contract-net from the problem
pictured in Figure 3.1. Columns represent the estimated costs computed on each iteration.
Bold numbers represent that the goal has been assigned to the agent placed in the row.

Agents iter. #1 iter. #2 iter. #3 iter. #4
¡1 c(g1,¡1) = 9 c(g2,¡1) = 9 c(g3,¡1) = 1 c(g4,¡1) = 2
¡2 c(g1,¡2) = 2 c([g1, g2],¡2) = 3 c([g1, g3],¡2) = 3 c([g1, g3, g4],¡3) = 9
¡3 c(g1,¡3) = 1 c(g2,¡3) = 2 c([g2, g3],¡3) = 3 c([g2, g4],¡3) = 1

The second factorization of the MAP task M varies depending on which GA is chosen.
Table 3.1 shows the estimated costs computed for GA strategies All, BC and LB. Table
3.2 shows the estimated costs computed for CN, as the process is slightly different than
in the other strategies. Both compute the cost per truck and goal when delivering each
package to its destination. The GA strategy All assigns every goal to every agent even if
the goal cannot be reached (represented with 1 cost). There are three cases where 1
cost is returned by hFF : c(g3,¡1) because the truck ¡1 cannot traverse dotted roads as

41

CHAPTER 3. MULTI-AGENT PLANNING

it does not start at CityA; c(g1,¡3) and c(g4,¡3) because the truck ¡3 cannot transport
fragile packages (marked with “F”). The BC strategy does not assign any goal to ¡3 even
though it can reach two of the four goals. Instead, they are assigned to ¡2, who is the
first on the list of agents that can reach (g2, g3) with an estimated cost of 2. LB returns
an average of k=2. Thus, it assigns two goals per agent. After assigning g1 and g2 to ¡2,
¡2’s goal capacity has been reached. Then, g3 is assigned to ¡3 even though ¡2 could
achieve it with less cost. Finally, CN starts assigning g1 to ¡2, then g2 to ¡3. In order to
assign g3, it analyzes first the accumulated cost from ¡2 and ¡3. As the accumulated cost
for both agents, so far, it is the same (3), it will assign the goal to ¡2 and will increment
its accumulated cost. Last, g4 is assigned to ¡1.

To sum up, taking the information presented on Tables 3.1, 3.2 and the four GA
strategies mentioned before, goals would be assigned to each agent as follows:

• All: ¡1(g1, g2, g3, g4), ¡2(g1, g2, g3, g4), ¡3(g1, g2, g3, g4)

• Best-cost: ¡1(g4), ¡2(g1, g2, g3), ¡3(;)

• Load-balance: ¡1(g4), ¡2(g1, g2), ¡3(g3)

• Contract-net: ¡1(g4), ¡2(g1, g3), ¡3(g2)

After this process is completed, the M0 task is generated and any MAP planner
would receive the following as input: (1) if LB, CN or All were chosen, the MAP task
M0 = {¶1,¶2,¶3} (2) if BC was chosen, M0 = {¶1,¶2}, as ¡3 has no assigned goals. We are
using this process and the M0 task as input to our first contribution PMR.

3.4 Modelling Privacy in Multi-Agent Planning

Privacy preservation in Multi-Agent environments is a common feature that some
MAP approaches are studying and implementing in their algorithms. Agents can have
sensitive information that should be hidden from public knowledge. Thus, agents can
share the public information but should keep the private information to themselves.
MAP privacy models should offer a solid communication approach that deals with the
privacy requirements of the agents. Also, privacy models are useful to avoid bottlenecks
on excess of information sent through the network or on processing huge amount of
unmeaningful data.

At this point, there are not any standards supported by the entire community on
how to model privacy for MAP. MA-STRIPS < was one of the first and most supported

42

3.4. MODELLING PRIVACY IN MULTI-AGENT PLANNING

approaches that mentions some directions in order to model privacy in MAP. Concretely
they separate internal and public atoms (facts) and actions. The directions can be
summarized in the following two rules:

• An atom is public if it is either achieved, required or modified by at least two
actions of different agents.

• An action is public if it modifies or requires at least one public atom.

Even though MA-STRIPS offers these directions, it does not implement any privacy
model. Thus, we have selected three different models of privacy that represent the wide
variety of existing approaches. Section 3.4.1 explains the privacy model of the MA-PDDL
language. Section 3.4.2 explains the privacy model of FMAP, as an example of dealing
with privacy in distributed MAP architectures. Finally, Section 3.4.3 explains the privacy
model of MAPR, which is one of the works that inspired our first contribution and serves
as an example of privacy in distributed planning but centralized architectures.

3.4.1 MA-PDDL

As it was previously said, authors of MA-PDDL [Kovacs, 2012] were the same ones that
organized CoDMAP. Thus, they found that the definition of privacy of MA-STRIPS was
too rigid regarding the current and future versions of the competition.

The MA-PDDL approach consists mainly on declaring explicitly the private compo-
nents in the domain and problem descriptions and relaxing the definition of privacy from
MA-STRIPS. Thus, privacy related to MA-PDDL objects can be found in the problem
description and privacy related to MA-PDDL predicates, functions and constants, in
the domain. Authors suggest to start with the entire domain and problem description
being private and then to identify the public parts; rather than doing the opposite, as
MA-STRIPS would suggest. Also, authors established some rules in order to identify the
public and private components of the domain and problem:

• A declared public predicate in the domain that only contains public objects results
in a public fact.

• A declared public predicate in the domain which contains at least one private
object, results in an agent’s private fact.

• An object cannot be private to multiple agents.

43

CHAPTER 3. MULTI-AGENT PLANNING

• A declared private predicate in the domain results in a private predicate indepen-
dently of the nature of its objects.

3.4.2 FMAP

Torreño et al. [2014] proposed a specific privacy model that allows agents to maintain
hidden their private information while only communicating the relevant part of the
refinement plans that need to be strictly shared among the planning agents. Thus, each
agent declares which information is going to be shared.

As a result, FMAP minimizes the amount of information shared among agents. This
issue will be directly reflected on the efficiency of communication.

As mentioned before in Section 3.2, FMAP employs a formalization based on fluents.
Thus, authors define the privacy model as follows:

• If an agent refines the partial plan by introducing a new action, it communicates
the resulting plan to the rest of the planning agents.

• An agent will only communicate the fluents in the new action if they both share
those variables.

• Each planning agent has a partial view of the problem, which is updated when a
refinement plan is received.

• There exist three types of fluents: public, private and partially private to a planning
agent. A fluent is composed of predicates, causal links and effects. When two agents
share a public fluent they exchange every component of it. If the fluent is private,
only causal links and ordering constraints are shared between both agents. Finally,
if a fluent is partially private, all components are shared but the private information
is obfuscated, which the recipient agent reads as resource not available to use or
not accessible.

3.4.3 MAPR

MAPR [Borrajo and Fernández, 2018] follows a distributed MAP approach in a single-core
architecture where the set of agents solves the planning task iteratively. Agents do not
communicate with each other during the individual planning phase.

MAPR cannot infer the private components from the planning task as in FMAP. Thus,
the privacy approach of MAPR starts with the user declaring as input which are the agents

44

3.5. COORDINATION TECHNIQUES

and their privacy requirements. Then, MAPR applies factorization and agentification as
explained in Section 3.3 to generate an individual domain and problem for each agent.
Private components of these two files are obfuscated. Also, agents can have their own
private goals.

Agents solve the task iteratively. As a result, the first agent plans for its own set of
public and private goals using the available information from its specific domain and
problem. Once the current agents finishes planning, it obfuscates part of the sensitive
(private) information. Then, plans, goals and states are sent to the next agent, which
will only perceive as available the information that is not obfuscated. Therefore, agents
share both, their public and private knowledge, but the latter is obfuscated and will only
be understandable by its owner.

As privacy is defined at the lifted representation level (usually PDDL), the property is
attached to predicate and types and inherited by their instantiations i.e. atoms, objects.

In order to generate the individual domain and problem for each agent, the compiler
takes as input the agents’ types, the private predicates and the private types. Then, it
assigns values to instantiate those predicates and types. Now the compiler can separate
on each of the files the concrete information associated to each agent. Public knowledge is
included on every file. Actions that have associated an agent type are also instantiated by
removing the type from the parameters and adding it to the general name of the action.
Thus, the domain file of an agent contains only the actions performed by that agent
(private actions) or the actions that do not have any associated agent (public actions).
The problem file of an agent contains the public predicates and goals and its own private
predicates and goals.

MAPR assumes that the privacy definition of types is consistent. Thus, if two agents
can modify the value of the same grounded literal, the corresponding predicate cannot
be private. However, this is easy to infer in the majority of domains modelled for MAP.

3.5 Coordination techniques

When solving Multi-Agent Planning Tasks where multiple agents are involved, actions
need some coordination in order to execute the plan successfully.

Each agent’s individual plan should be: free of negative interactions among the
different agents’ plans (one agent deletes some literal that another agent plan needs); free
of redundant actions, that achieve goals unnecessarily (two agents achieve the same goal
twice); and valid (the plan achieves the goals from the initial state). Interactions among

45

CHAPTER 3. MULTI-AGENT PLANNING

agents’ plans are closely related to the (positive or negative) interaction level reflected
on predicates (preconditions and effects) and actions of the planning domain. As a result,
planning domains can vary from loosely-coupled, where there is almost no interference
among the agents’ plans to tightly-coupled, with higher interactions [Brafman and
Domshlak, 2013].

Torreño et al. [2017] affirms that the capability and efficiency of a MAP solver
is determined by the coordination strategy that governs its behaviour. Thus, there
are different classifications that could be done depending on how each solver deals
with coordination. In that work, authors suggest to explain coordination in terms of
unthreaded coordination or interleaved planning and coordination.

Unthreaded coordination refers to agents performing individual planning after receiv-
ing an individual planning task. Coordination is performed before or after the individual
planning process. Thus, communication between agents is not needed.

• When coordination is performed before the planning process starts, the MAP
algorithm should guarantee that the division in subtasks yields into a consistent
solution plan when combining the solution plans obtained from each agent. As the
main task is decomposed into independent subtasks, agents plan individually and
there should not be coordination problems. The MAP algorithm ADP [Crosby, 2015]
follows this approach.

• When coordination is performed after the planning process starts, agents plan
independently and do not employ any communication among agents while planning.
Therefore, they have to later merge their plans. In that case, some merging function
is applied to the set of plans to generate a joint plan [Foulser et al., 1992; Mali,
2000]. Plan merging has been shown to work best in loosely-coupled domains. In
relation to plan merging, Mali devised algorithms for performing plan merging by
removing or rearranging actions [Mali, 2000] Britanik and Marefat proposed to
perform plan merging within HTN planning [Britanik and Marefat, 1995]. Merging
appears at different levels of abstraction by decomposing a plan into subplans.
In the field of temporal planning, Mudrova et al. [2016] propose an algorithm
that merges partial order plans with durative actions for solving robotic tasks. A
different approach close to plan merging is conflict solving. Jordán et al. [2018]
propose one such approach, where conflicts are identified while agents generate
the solution. The algorithm works at the same time on a joint plan and penalizes
the agents that generate a conflict.

46

3.6. CODMAP: THE FIRST COMPETITION ON DISTRIBUTED AND MULTI-AGENT
PLANNERS

On the other hand, interleaved planning and coordination refers to planning syn-
chronously. Agents need to share information during planning. Thus, these approaches
incur in a high communication cost. Also, they require to modify the code of an existing
planner in order to accommodate the communication among agents. FMAP [Torreño
et al., 2014] and MAFS [Nissim and Brafman, 2014] are MAP algorithms that follow this
approach.

There is a middle-way approach between unthreated and interleaved coordination
which can be called the iterative planning and coordination process. For instance, in
MAPR [Borrajo and Fernández, 2018], goals are distributed among the agents and each
agent sends its solution plan and planning task to the next one in the sequence. Thus,
agents do not communicate with each other but as the final solution is built on top of
each individual agent’s plan, coordination issues are fixed.

3.6 CoDMAP: The first competition on Distributed
and Multi-Agent Planners

The field of MAP is very recent in Automated Planning. The most remarkable advances
in the field have been performed during the last ten years. There was not an easy way
to benchmark and evaluate different MAP approaches. There was not even a standard
description language. Therefore, MAP Researchers found the same issues as those of the
beginnings of Classical Planning. Thus, Stolba and Komenda organized in 2016 the first
simulation of a MAP competition. It was called CoDMAP, the competition on Distributed
and Multi-Agent Planners [Štolba et al., 2016a]. The MAP domains and problems were
written in MA-PDDL. Most of the planners that participated in CoDMAP ended up using
parsers that transformed MA-PDDL files into PDDL.

The competition was divided into two tracks, the centralized track (unfactored), where
the planners were allowed to run on a single computer for all agents and the distributed
track (factored), where each agent had to run on a separate machine and communicate
over TCP/IP.

The centralized track allowed researchers to explore the MAP field without dedicat-
ing much effort. The planning task was received as in any classical planner (domain,
problem). Authors should include a factorization step on their classical planners to divide
the planning task into multiple agents’ tasks. On the other hand, planners from the

47

CHAPTER 3. MULTI-AGENT PLANNING

distributed track received the task already divided. Each machine, which represented an
agent, received its part of the whole task.

The domains were in most cases multi-agent variants of the classical IPC domains:
Blocksworld, Depot, Driverlog, Elevators08, Logistics00, Rovers, Satellites, Sokoban,
Woodworking, and Zenotravel. There were two new domains called Taxi and Wireless.
Each domain had 20 problem instances, with increasing complexity. The biggest problems
had 10 agents and about 100 objects/constants. Even though some planners could deduce
the agents of each MAP task, concrete agent types were specified by the organizers. It
was mandatory to follow their instructions. MAP problems with private goals or joint
actions were not considered for the competition.

The planning systems were evaluated following the metrics from IPC (coverage, plan
cost, time). They did not include makespan.

The centralized track was composed of 12 planners in 17 configurations. For the dis-
tributed track, organizers received 3 planners in 6 configurations. Results are available
in the official website 2

3.7 Paralellization algorithms

In Automated Planning, plan ordering refers to how the actions are ordered inside
a given plan. Plan actions are always assigned to a concrete step of the plan. Thus,
there exist two popular orderings in the planning community: total-order planning and
partial-ordered planning.

Total-order planning refers to any solution plan that maintains a totally ordered
list of actions (every action is ordered with respect to every other action). In total-order
planning only one action is assigned to each plan step.

On the other hand, partial-order planning relaxes some of the total-ordering con-
straints. Now the set of actions can be partially unordered. A partial plan, as generated
by most partial-order planners, POP (e.g. UCPOP [Penberthy and Weld, 1992]), is a tuple
ºp = hA,O,Li,3, where:

• A is the set of instantiated actions in the plan

• O is the set of ordering constraints (each element of the set is a pair of actions
(ai,a j), ai,a j 2A, such that ai should be executed before a j),

2http://agents.fel.cvut.cz/codmap/
3We left out a fourth component, the set of bindings, since it is not needed for our purposes.

48

http://agents.fel.cvut.cz/codmap/

3.7. PARALELLIZATION ALGORITHMS

• and L is a set of causal links (each element is a tuple hap, l,aci, such that the
action ap adds/deletes proposition l that is a precondition of ac)

The plan steps of a partial-ordered plan are still ordered and so on, but each step
can have assigned more than one action. We say that the set of actions assigned to the
same plan step are unordered. A set of unordered actions indicates that those concrete
actions can be executed sequentially regardless of the order in which they are executed.
However, this does not imply that said set of actions are executed in parallel.

In Multi-Agent Planning, parallel plans help to improve the makespan of a given
solution. If a plan is parallelized regarding the number of agents that can perform those
actions, plan execution will be more efficient. Thus, some works on Automated Planning
have explored different procedures in order to transform a partially ordered plan into
a fully parallelized plan. For instance, Veloso et al. [1990] presented an algorithm that
achieves that transformation. Also, Borrajo and Fernández [2015] implemented a new
parallelization algorithm based in [Veloso et al., 1990]. For the sake of clarity, we are
explaining the later, as it will be used inside our contribution.

From a total-order plan, the algorithm transforms the plan first into a partial-order
plan. Thus, A is generated as the set of all actions in the totally-ordered plan, º, given
as input, plus two fictitious actions: a0 that is a virtual action that adds the initial
state; and a1, that has as preconditions the goals of the planning task. O and L are
dynamically generated by the algorithm. The algorithm also keeps track of open goals
(as in the agenda of POP planners). Open goals are either the top level goals, at start, or
preconditions of actions added to the partial plan such that there is not yet an action
that achieves them (creating a causal link).

Once the partial-order plan is built, the algorithm iterates over all actions in the
plan in reverse order, performing three operations: creating one causal link between the
corresponding action ai and all actions later in the plan (that were analyzed before by
the algorithm) that included a precondition that belongs to the effects of ai; that is, ai is
selected to add/delete that precondition. Next, it adds as open goals its preconditions.
Finally, it checks and solves threats to existing causal links; an action threats a causal
link if it deletes/adds the proposition of the causal link and can potentially be executed
between ap and ac of the causal link. This process assures that each unordered set of
actions is studied to check whether they all can be executed in parallel or not.

Then, the parallel plan is generated from the partial plan, ºp = hA,O,Li. Two varia-
bles are used: O (from the partial plan) and T. T = {(ai, ti)} is the list of pairs representing
the time instant ti when ai can be executed. T initially contains a single pair (a0,0).

49

CHAPTER 3. MULTI-AGENT PLANNING

Then, for every action in the sequential plan ak 2 º (in the order they appear in the
sequential plan), we define Bk as the subset of actions that must be executed before ak;
this is computed from O:

Bk = {ai | (ai,ak) 2O}

For all these actions, their execution time is obtained from T. Then, a new pair (ak, tk)
is added to T, where tk will be the maximum of the execution times of the operators in
Bk plus one:

tk = 1+ max
ti |(ai ,ti)2T,ai2Bk

ti

When all actions in the plan have been visited, T contains the time instants at which
every action in the plan can be executed. The parallel plan is obtained ordering T by the
ascending values of tk.

Regarding the Logistics example from 3.1, to load or unload different packages do
not present any ordering constraints, so both could be executed in parallel. However, to
load/unload and drive a truck have an ordering constraint because the location changes.
As agents come naturally on this example (trucks), the resulting parallel plan could be
as the right-side plan from Figure 3.2.

1 : Load°package p1 , ¡2 1 : Load°package p1 , ¡2
2 : Load°package p2 , ¡2 1 : Load°package p4 , ¡1
3 : Load°package p3 , ¡3 1 : Load°package p3 , ¡3
4 : Load°package p4 , ¡1 2 : Drive°truck ¡1 , A
5: Drive°truck ¡3 , C 2: Load°package p2 , ¡2
6 : Drive°truck ¡2 , B 2: Drive°truck ¡3 , C
7: Drive°truck ¡1 , A 3: Drive°truck ¡2 , B
8: Unload°package p1 , ¡2 3 : Unload°package p4 , ¡1
9 : Unload°package p2 , ¡2 3 : Unload°package p3 , ¡3
10: Unload°package p3 , ¡3 4 : Unload°package p2 , ¡2
11: Unload°package p4 , ¡1 5 : Unload°package p1 , ¡2

Figure 3.2: Example of a total-order plan (left) and a parallel plan (right) obtained from
a Logistics problem. The parallel plan takes into account that there are only three trucks
available to perform each action.

The Logistics problem is implicitly assuming that there are enough humans to
perform the acts of driving/loading/unloading packages. However, if the problem were
considering explicitly this issue, agents would potentially be the humans. Thus, agents’

50

3.8. MULTI-AGENT PLANNING ALGORITHMS

availability could also change. As a result, the parallel plan could differ from the current
version and more steps could be added to the plan due to ordering constraints and
availability.

3.8 Multi-Agent Planning Algorithms

MAP lies between the Automated Planning and Multi-Agent communities, with strong
implications in other areas, as Robotics. As it was discussed in the Introduction, ap-
proaches range from centralized to distributed planning. In case of distributed planning,
some papers employ a distributed coordinated approach when generating plans [Jonsson
and Rovatsos, 2011; Nissim and Brafman, 2013; Štolba and Komenda, 2017; Torreño
et al., 2018], while others delay coordination and perform plan merging after generating
the individual plans [Foulser et al., 1992; Ephrati and Rosenschein, 1993]. The planners
also vary from strong privacy preservation to no privacy preservation. As a result, there
are many ways of classifying MAP algorithms. Different classifications are explained in
the following survey [Torreño et al., 2017].

The CoDMAP competition showed the variation of MAP features among the wide
set of planners that participated [Štolba et al., 2015]. Regarding CoDMAP results, the
most relevant planners are explained in the following paragraphs. They are divided into
factored and unfactored planners, respectively.

• Planning State Machines (PSM) [Tozicka et al., 2015], as the name suggests,
employs non-deterministic finite state machines (NFM) to represent a set of plans
of a given problem. Each machine belongs to a different agent. Thus, each one
represents the agent’s set of local plans. In summary, an agent ¡i has to solve its
local task and has to store it into the machine. Then, agents exchange the public
information of their NFMs. This process is repeated iteratively until a solution is
found. Privacy is preserved, as agents only communicate public information.

• MAPlan [Fišer et al., 2015] can be configured with different search algorithms and
heuristic functions and can be run either centralized or distributed. Distributed
MAPlan employs the TCP/IP protocol to share agents’ public information. Regard-
ing privacy, the algorithm encrypts the private data of the states shared during the
exchange of information. They utilize obfuscation, so the algorithm grants weak
privacy.

51

CHAPTER 3. MULTI-AGENT PLANNING

• FMAP [Torreño et al., 2014] is a fully distributed algorithm that preserves the
agents’ privacy. It contains the same number of planning and execution agents.
Planning agents are in charge of solving its individual tasks. In order to provide a
messaging infrastructure, FMAP is built upon the MAS platform Magentix2 [Such
et al., 2013].

Now we describe the set of relevant unfactored planners:

• Serialized Iterated Width (SIW) [Muise et al., 2015] employs the algorithm Iterated
Width from [Lipovetzky and Geffner, 2014] to factorize the MAP problem into
subproblems; also the algorithm solves the subproblems. Even though SIW has no
heuristic guidance, it achieves good performance because it greedily solves only
one atomic goal at a time. The algorithm will not stop until all atomic goals are
achieved jointly. On each iteration, SIW merges the plan to achieve the new goal
with the previous plan that reached the previous goals.

• Agent Decomposition Planner (ADP) [Crosby, 2015] is able to divide a single-agent
planning task into a set of individual tasks, one for each agent. Tasks are solved
individually and then pieced together. The strength of ADP is the computation of
an agent factorization that results into a set of decoupled tasks, which completely
avoid interactions between the agents. Thus, individual plans are sound and plan-
merging techniques are not necessary.

• Multi-Agent Planning by plan Reuse (MAPR) [Borrajo and Fernández, 2015] builds
a solution iteratively. The first agent solves its obfuscated planning task and sends
the result to the next agent; then, the second agent it merges the solution plan
as well as the domain and problem, sends them to the next agent so on. Private
information is obfuscated.

• Centralized Multi-Agent Planning (CMAP) [Borrajo and Fernández, 2015] is based
on MAPR following a slightly different configuration. First, each agent obfuscates
its initial planning task. Then, there exists a central agent that assigns a subset
of public goals to some of the agents. After that, agents that have been assigned
goals send its obfuscated plan to a common agent. The central agent is in charge of
merging each agent’s domain and problem and also on performing a centralized
planning phase to build the final solution, taking into account the information
generated into the individual plans.

52

3.8. MULTI-AGENT PLANNING ALGORITHMS

• Greedy Privacy Preserving Planner (GPPP) [Maliah et al., 2014] did not participate
during the official competition but it was included into the summer run (post-
competition). GPPP is built on top of MAFS, a distributed privacy preserving
algorithm. The main improvement is related to the global landmark-based heuristic
function. During the first phase of GPPP, the planner performs global planning.
Thus, agents solve a relaxed MAP task that only contains public actions. After that,
the agents run an individual planning phase to compute the private plans that
build the final solution. If there exist some conflicts among the individual plans,
the global planning phase is launched again to find a solution that satisfies every
precondition. Regarding privacy, GPPP implements weak privacy, as they obfuscate
the information using private state identifiers.

53

This page has been intentionally left blank.

C
H

A
P

T
E

R

4
PLAN REUSE

T HERE is a field of Automated Planning called Plan Reuse which, as the
name suggests, tries to re-utilize the knowledge from previous or similar
plans to fix a given plan. In this Chapter, an overview of Plan Reuse is given

focusing on key concepts and explanation of different approaches.

4.1 Introduction

Planning by Reuse has been widely employed in areas such as Case-Based Planning [Bor-
rajo et al., 2015], or replanning when plan execution fails [Fox et al., 2006]. Thus,
planning by reuse belongs as well to plan repair, the area of Automated Planning that
tries to fix a plan without having to plan from scratch a new solution. Mainly, it consists
on adapting an existing plan to a new context while modifying the original plan as little
as possible. Some authors have considered the relative benefits of replanning and plan
repair from the point of view of efficiency [Nebel and Koehler, 1995; Gerevini and Serina,
2000]

A planning-by-reuse planner works best when the invalid plan and the final plan are
similar, as only a small set of actions needs to be changed or added to the invalid plan
for it to become valid. This situation is usually given on easy-to-solve interactions e.g.
grabbing the same resource or passing through the same door at the same time step. As a
result, the planner will be able to efficiently generate a valid solution without generating

55

CHAPTER 4. PLAN REUSE

an entire valid plan from scratch.

However, depending on the features of the given problem, interactions might be
harder to fix regarding plan immutability e.g. when an agent drives to pick up a package
but another agent has already picked it up or when a resource has been consumed and is
not available anymore. As a result, new actions are applied to fix the current state of the
problem, as agents’ original plans have been forcedly changed. Usually, an alternative
path has to be found for those agents that still need to achieve some goals. Thus, the final
valid plan turns out to be completely different from the invalid plan. Plan-reuse planners’
performance noticeably decreases on this second scenario. They cannot reuse most of the
actions so they look up for new actions on the search space closer to the invalid plan, but
at the same time, they are still reusing the old actions whenever possible.

4.2 Plan Reuse in Automated Planning

Plan Reuse has been studied in recent works of Automated Planning. Gerevini and Serina
[2000] define a new domain-independent planning system. They use two techniques: the
first one divides the actions of the plan to repair in subgroups to later solve the conflicts
with a Planning Graph; the second technique uses Action Graphs to reduce the number
of inconsistencies reflected in the plan that needs to be adapted. Related with MAP,
van der Krogt and de Weerdt [2005] apply a plan repair system to a MAP problem so
that agents can adapt their plans iteratively by exchanging goals in an auction until all
plans generated are valid. Krogt and Weerdt [2005] also presented an extension of the
VHPOP planner called POPR. Their approach computes a set of partial plans similar
to the given input plan. Then, it analyzes the dependencies of predicates and actions
of those plans by generating removal trees and uses a heuristic to compute the most
promising candidate. Finally, once the candidate plan is selected, plan reuse is applied to
it. The first plan reuse planner that incorporated heuristic search inside the replanning
process was SHERPA [Koenig et al., 2002]. It stores knowledge about both previous
plans and previous plan-construction processes.

Currently, one of the state-of-the-art plan-reuse planners is LPG-ADAPT [Fox et al.,
2006]. The aim of LPG-ADAPT was to adapt an existing plan to a new context while
modifying the original plan as little as possible. As we have used LPG-ADAPT in this
Thesis, a detailed explanation is given in Section 4.2.1. Also, a slightly different approach
was followed by Borrajo and Veloso [2012], which has also been studied in this Thesis.
Their algorithm called ERRT-PLAN is explained in Section 4.2.2.

56

4.2. PLAN REUSE IN AUTOMATED PLANNING

4.2.1 LPG-ADAPT

LPG-ADAPT [Fox et al., 2006] is an stochastic plan-reuse planner that employs plan repair
to fix an invalid plan. This planner is built on top of LPG [Gerevini and Serina, 2002],
which is inspired by random walk search algorithms. The strategy of LPG consists on
performing local search in the state of plans. Thus, the algorithm builds first a structure
commonly known as action graph. LPG looks for neighbors that offer a solution similar to
the initial plan thanks to an evaluation function that guides the planner through the
space regarding that similarity.

In LPG-ADAPT, authors define first a term called “plan stability” to establish an
explicit measure of similarity between the source and the target plan. Also, the planner
uses PDDL 2.1 rather than STRIPS as in LPG.

Plan repair is applied on each iteration of LPG-ADAPT as in LPG, which means that
first a local search is performed in order to identify the neighbors that could potentially fix
part of the invalid plan. As a result, candidates will usually contain small permutations
over the original plan actions.

Candidates are evaluated using a modified version of the LPG function. It originally
had three terms related to: increment of the plan execution cost, estimating the moment
of time when every unsupported precondition is satisfied and increment of the number of
search steps that are still needed to reach a solution. In LPG-ADAPT they added a fourth
term to estimate the distance of the current plan from the original plan (plan stability).
As a result, this evaluation function aims to penalize any dramatic or meaningful
changes over the original plan and benefits including sequences of small changes instead.
Thus, LPG-ADAPT has a good and fast performance in domains where the output plan
is expected to be very similar to the invalid input plan, which is the classic plan-reuse
scenario.

4.2.2 ERRT-PLAN

Borrajo and Veloso [2012] explored in ERRT-PLAN the behavior of a plan-reuse planner
and proposed a solution to adapt the algorithm to a broader set of plan reuse scenarios.
Thus, ERRT-PLAN is a stochastic plan-reuse planner that can run up to three different
versions of plan reuse.

First, the algorithm builds a solution tree inspired on the Rapidly-exploring Random
Trees (RRTs) [LaValle and Kuffner, 2001]. As a result, ERRT-PLAN has a probability of
p to expand the tree towards the goal, a probability of r to expand the tree towards an

57

CHAPTER 4. PLAN REUSE

action of the input plan and a third probability to expand the tree towards one of the
weakest preconditions. Given a plan º, the weakest preconditions of any action ai 2 º

represent the set of propositions that are required to be true before applying ai in the
current state si. As a result, the goals are achieved from ai when applying the remaining
actions of the plan; the weakest preconditions act as subgoals of º.

The algorithm employs the work by De la Rosa et al. [2006], which is a reimplemen-
tation of METRIC-FF [Hoffmann, 2003] as the heuristic planner and EHC [Hoffmann
and Nebel, 2001] as the search algorithm.

ERRT-PLAN receives as input the domain and problem descriptions, the probabilities
for node expansion, the solution (plan) represented as an ordered set of pairs of actions
and their weakest preconditions. On each iteration, a random number between 0.0 and
1.0 is generated. Depending on its value, one of the following three scenarios can be
executed:

• If (0< n< p), ERRT-PLAN calls EHC and performs local search towards the goal.

• If (p< n< (p+ r), ERRT-PLAN retrieves first open node in which an action a from
the past plan can be reused.

• If (1° (r+ p)), ERRT-PLAN selects one of the goals of the previous solution. Then, it
obtains the weakest preconditions and selects one to perform search towards that
goal.

The main difference of ERRT-PLAN with respect to LPG-ADAPT can be found on the
way of guiding the local search. ERRT-PLAN uses previous plans but do not necessarily
focuses on minimizing plan stability. Also, ERRT-PLAN considers goal-reuse, which is not
implemented in LPG-ADAPT.

58

Part III

Contributions

59

C
H

A
P

T
E

R

5
PMR: PLAN MERGING BY REUSE

P LAN MERGING BY REUSE (PMR) is the first contribution of this Thesis. In
this Chapter, we present our MAP algorithm in detail. A general description
as well as the description of each of its components are included in the

following sections.

5.1 Introduction

PMR focuses on solving classical deterministic planning tasks, where a set of agents
should find a common plan. The objectives are to:

• Efficiently solve MAP tasks by combining distributed and centralized MAP tech-
niques.

• Focus on big-size multi-agent tasks in terms of number of agents, goals and search
space, where agents have little or no interaction.

• Directly reuse existing planning techniques without further code modification.

• Effectively apply factorization to divide the main task into subtasks regarding
some minimization criteria such as plan length or makespan.

• Automatically adjust to the interaction level among agents and goals.

61

CHAPTER 5. PMR: PLAN MERGING BY REUSE

In order to satisfy those objectives, we run up to three different planning processes
inside our first contribution: a MAP algorithm called Plan Merger by Reuse (PMR). In
summary, our approach work as follows. First, a preprocessing step is performed to divide
the MAP task among the agents. Then, PMR performs an individual planning phase run
by each agent (distributed part), a plan merging phase to generate a joint plan and the
validation of that plan. When validation fails, PMR runs a plan-reuse episode. Only when
the factorization or the individual planning phase fail, PMR runs a centralized planning
phase. Regardless of the chosen path, PMR parallelizes the resulting plan on the last
step and the output of this process is returned as the solution. As a result, PMR is able
to adjust to different MAP situations. For the sake of clarity, we are not interested in
privacy preserving nor joint tasks.

5.2 Algorithm

Plan Merging by Reuse (PMR) receives as input a MAP task (M0). As shown in the
pseudocode in Algorithm 1, M0 is formed by a number of¶i tasks, each of them containing
the information included in Definition 3.2.3. In the first step, each agent in ¡i 2©0 builds
its plan individually (line 1). Then, we find three different scenarios:

• If all agents failed at generating a plan (lines 2-4), a centralized planner solves the
MAP task M0

joined from Definition 5.3.1.

• Otherwise, the plans are merged. If the merged plan is valid, PMR returns it as the
solution to the MAP task (lines 6-7).

• If the merged plan is invalid, PMR calls a plan repair planner that can perform
plan reuse, sending the merged plan and M0

joined as input. The plan repair planner
will try to find a solution based on the actions of the input plan (lines 9-10).

Given that we are dealing with MAP tasks, it is expected that agents can execute the
actions in their plans in parallel when possible. Thus, the aim of PMR is to minimize the
makespan. Therefore, in any of the three scenarios, if the plan is valid, it is parallelized
to improve the makespan of the solution as explained later on Subsection 5.6.

PMR contains three off-the-shelf planners: one for each agent to plan individually, P
(it can be the same or a different planner); another one capable of applying plan repair
by reusing an invalid/incomplete plan (R); and the third one, which is employed by PMR

when all the individual agents’ planning tasks fail. In this work we use the same planner,

62

5.3. PLANNING

Algorithm 1 High level description of the PMR algorithm.
Algorithm PMR (M0,P,R)

Inputs: M0: MAP task
P: planner
R: plan-reuse planner

Output: ºPMR: plan

1 Forall ¡i 2©0 do ºi =plan(M0
i,P)

2 If 8¡0
i 2©0ºi=fail

3 Then M0
joined = join-task(M’)

4 ºcen =plan-centralized(M0
joined,P)

5 ºPMR =parallelize(ºcen)
6 Else ºseq =merge(º1, . . . ,ºn) /* where n= |©0| */
7 If valid(ºseq)
8 Then ºPMR =parallelize(ºseq)
9 Else M0

joined = join-task(M’)
10 ºreuse =plan-reuse(M0

joined,ºseq,R)
11 ºPMR =parallelize(ºreuse)
12 If valid(ºPMR) Then return ºPMR

13 Else return no-solution

P, used by individual agents to run the centralized phase. In order to check the validity
of the plans, VAL, the validator from the International Planning Competition, has been
used [Howey et al., 2004]. The following sections explain in detail the main steps and
the properties of PMR.

5.3 Planning

In this first step, each agent ¡i 2©0 receives as input the description of its domain and
problem. The problem includes the facts, actions and goals assigned to ¡i. Each agent
invokes a planner P to solve its planning task. As a result, a partial solution ºi to the
overall MAP task is obtained per agent. Any state-of-the-art planner can be used for this
task and each agent could use a different planner.

Before the distributed phase starts. If all agents fail to generate a solution, it
means that more than one agent is needed in order to achieve the goals. In this case,
PMR resorts to a centralized planner. Centralized planners usually receive as input the

63

CHAPTER 5. PMR: PLAN MERGING BY REUSE

lifted representation of the planning task (one domain and one problem file). Thus, the
elements of the MAP task M0 should be first joined.

Definition 5.3.1. The M0
joined task. The merging of each ¡i 2©0 task at the planning

level is defined in the following tuple:

M0
joined =

D nS
i=1

F¡i [Fpub,
nS
i=1

A¡i [Apub,
nS
i=1

I¡i [Ipub,
nS
i=1

Gi

E

Regarding the lifted representation of the planning task, the merging can be per-
formed as stated in the following tuple:

M0
joined

PDDL = {
nS
i=1

¶PDDL
i }= {Djoined,Pjoined}= {

nS
i=1

Di,
nS
i=1

Pi}

The centralized planner receives M0
joined

PDDL as input and finds a solution from
scratch to the MAP problem (ºcen).

In Algorithm 1, we have used for the centralized phase (C), the same planner em-
ployed for individual planning (P). However, since PMR is planner-independent, we could
have used any other planner.

When the distributed phase works. If at least one agent generates a solution to
its task, PMR merges all the solutions. We have implemented a basic merge strategy,
which is a simple concatenation. Other more elaborated techniques could be used to
improve the performance of PMR. The output of the merge process is the plan ºseq. PMR

checks if that plan is valid. If so, PMR will parallelize it as explained below. Finally, if
ºseq was invalid, the plan reuse phase will be executed, providing M0

joined
PDDL and ºseq

as input.
Example (Logistics domain). Following the example explained at the end of 3.2.4,

we illustrate the result after running PMR’s individual planning phase. The goal strategy
chosen is still LB. The assignment of agents and goals was GA = ¡1(g4), ¡2(g1, g2),
¡3(g3). Agents are ordered by name. ¡1 is the first one to start planning.

The result ing individual plans obtained from the agents are the fo l lowing
.

º1 = (load ¡1 g4 B) (drive ¡1 B A) (unload ¡1 g4 A)
º2 = (load ¡2 g1 A) (load ¡2 g2 A) (drive ¡2 A B) (unload ¡2 g1 B)

(unload ¡2 g2 B)
º3 = (load ¡3 g3 A) (drive ¡3 A C$) (unload ¡3 g3 C)

Figure 5.1: Individual planning phase to solve the problem described in Figure 3.1

64

5.4. PLAN REUSE

After concatenation
ºseq = {º1©º2©º3}=

(load ¡1 g4 B) (drive ¡1 B A) (unload ¡1 g4 A)
(load ¡2 g1 A) (load ¡2 g2 A) (drive ¡2 A B)
(unload ¡2 g1 B) (unload ¡2 g2 B) (load ¡3 g3 A)
(drive ¡3 A C) (unload ¡3 g3 C) .

The plan ºseq i s val id but from the point o f view of MAP this sequence of
act ions i s not e f f i c i e n t .

Figure 5.2: Sequential plan (ºseq) that solves the problem described in Figure 3.1

5.4 Plan Reuse

We assume that the current invalid plan usually includes most of the strong actions
that would make it a valid plan. Thus, by using plan repair techniques we are expecting
PMR to generate a plan faster than planning from scratch. In the worst case, plan repair
is PSPACE-complete [Nebel and Koehler, 1995]. But, in practical terms and under
our assumption of closeness between the invalid plan and the valid one, plan repair
techniques have shown good results [Fox et al., 2006].

Usually, planners that perform plan repair receive three inputs: a domain, a problem
and a plan. Examples of plan-repair planners are LPG-ADAPT [Fox et al., 2006], ERRT-
PLAN [Borrajo and Veloso, 2012] and our contribution RRPT-PLAN, that will be explained
on Chapter 6. We use such a planner to transform an invalid input plan ºseq into a valid
plan. In case the plan-repair planner solves the planning task and the plan is valid
(ºreuse), PMR parallelizes it to improve the makespan and returns it.

Example (Logistics domain). Following the example explained at the end of Sec-
tion 3.2.4, two scenarios could trigger PMR’s plan reuse phase. The first scenario is given
when solving the problem using the goal strategy All. This implies that each agent has
to plan individually to deliver the four packages marked as goals. After concatenation
(ºseq), ¡2 will not find any of the packages at the original locations, as ¡1 has already
moved them. The same happens to ¡3. Thus, ºseq is invalid and needs to be fixed. PMR

will call the plan-reuse phase. The second scenario is given when two agents need the
same resource. For instance, suppose that trucks need drivers in order to transport the
packages. If there was only one driver per city, trucks would need that driver to move

65

CHAPTER 5. PMR: PLAN MERGING BY REUSE

from one city to another. Each agent would need to pick up a driver, and independently
of the goal strategy selected, two trucks could pick the same driver during the individual
planning phase. When concatenating the plans, ¡2 could have picked up the same driver
as ¡3 (as they are located at the beginning at the same city). Thus, a failure would arise
when ¡3 needs the driver as she is not at CityA.

5.5 Centralized planning

Centralized planning within PMR is only used when the individual planning phase fails.
For instance, a situation where PMR would fail using the same example presented at the
end of Section 3.2.4 is the following: if the All GA strategy was selected instead of LB or
BC, as agents have to achieve every goal from the problem individually, ¡1 and ¡3 would
not be able to make it because they cannot achieve all goals (see Table 3.1). ¡1 has an
estimated cost of 1 for g3 as well as ¡3 for g1 and g4. Additionally, if ¡2 was not able
to transport fragile packages, g1 and g4 could not be delivered either. As a result, ºseq

would not be generated and the centralized planner would be called instead.

5.6 Parallelization

Most state-of-the-art planners return sequential plans, since they do not usually consider
minimizing the temporal execution window. As said before, in order to benefit from
the existence of multiple agents executing in parallel a plan, we parallelize either the
sequential plans generated by merging, the centralized plan, or the repaired plan. This
function transforms the plan received as input into a parallel one.

Parallelization is performed in two steps: (1) converting the input total-order plan
into a partial-order one and (2) parallelizing the resulting plan by ordering actions in the
first time step that satisfies all ordering constraints in the partial-order plan. Details of
the parallelization process are described in Section 3.7. The cost of the parallelization is
quadratic in the number of actions in the plan.

Due to the parallelization process, more than one action might be executed at each
plan step, as long as they are not mutex. In loosely-coupled domains, parallelization
usually reduces the makespan of the solution plan proportionally to the number of agents.
As actions and predicates of one agent are independent of those of the rest of agents, a
considerable amount of actions can be executed in the same time step. However, as the

66

5.7. PROPERTIES

level of interaction increases (e.g tightly-coupled domains), parallelization will not cause
such an impact in terms of makespan.

Example (Logistics domain). Following the example, the plan ºseq described in
Subsection 5.3 is validated by VAL. As this was a simple example with no interaction
among agents, the plan is valid and the parallelization phase starts by receiving ºseq as
input. The resulting plan, ºPMR is shown below in Figure ??.

ºPMR =
1: (load ¡1 g4 B) (load ¡2 g1 A) (load ¡3 g3 A)
2 : (drive ¡1 B A) (load ¡2 g2 A) (drive ¡3 A C)
3 : (drive ¡2 A B) (unload ¡1 g4 A) (unload ¡3 g3 C)
4 : (unload ¡2 g1 B) (unload ¡2 g2 B)

Figure 5.3: Parallel plan (ºPMR) that solves the problem described in Figure 3.1

5.7 Properties

In this Section we analize the properties of PMR in terms of optimality, soundness and
completeness, respectively. There are three different flows in PMR (merging, reuse, cen-
tralized) so properties are analyzed on each particular case.

As most work on plan merging, PMR performs suboptimal planning.

• Case Merging: Agents’ plans can be locally optimal but the simple merging of
individually generated plans cannot ensure optimality, even if optimal planners
were used.

• Case Reuse: As the merging phase cannot ensure optimality, neither can reuse, as
the merged plan is received as input.

• Case Centralized: Optimality could be ensured only if an optimal planner is used
in combination with the Goal-Assignment strategy ALL. Using any other strategy
does not guarantee that assigning one goal to a certain agent and not to a different
other makes the resulting plan the optimal solution. Specially, as some of the
agents in those strategies can be left out of the planning phase.

In relation to soundness, we have three different possibilities. As PMR is configured
with off-the-shelf planners, soundness will depend on the selected planners for P and R
or C. Any sound planner satisfies Definition 2.2.

67

CHAPTER 5. PMR: PLAN MERGING BY REUSE

• Case Merging: If sound planners are employed, each individual plan is valid. After
merging, soundness cannot be ensured because the merged plan might not be valid
due to the agents’ interactions.

• Case Reuse: PMR checks for validity, and if the plan is invalid, the soundness
depends on the plan repair step. In summary, PMR is sound if R is sound.

• Case centralized: If the centralized planner is invoked, soundness is ensured by
using a sound planner in C.

In relation to completeness, PMR is complete assuming that all goals are assigned to
all agents (ALL Goal Strategy) and the selected off-the-shelf planners (P, R and C) are
complete too. Under those conditions:

• Case Merging: Individual planning is globally incomplete since there might be
a joint plan that is not contained in the space of each agent working separately.
However, it is locally complete for each agent.

• Case Reuse: Once the plans are generated, PMR calls the plan repair strategy, which
is complete.

• Case Centralized: When individual planning fails, the planner associated to C is
called, which is complete.

The parallelization step does not affect the completeness. Finally, PMR has the same
complexity as Automated Planning and MAP, which is PSPACE [Brafman and Domshlak,
2008; Bylander, 1994].

5.8 Dealing with Privacy inside PMR

Maintaining agents’ privacy is one of the recent research lines in MAP. Although we have
not considered private information in our approach, PMR supports weak privacy [Nissim
and Brafman, 2014]. In this Section we briefly discuss some privacy-related aspects.
Section 3.4.3 contains a summary of the privacy model that could be implemented in our
contributions, which is MAPR [Borrajo and Fernández, 2018]. In that paper, its authors
included a detailed explanation about the way weak privacy can be applied to similar
contributions. Therefore, next paragraphs contain the process on how PMR could support
weak privacy.

68

5.8. DEALING WITH PRIVACY INSIDE PMR

First of all, PMR receives the M0 task, which is already factorized. Previously, during
the first factorization -from the planning task to the MAP task- the private components
would be identified and encrypted.

When the planning task is given in MA-PDDL (alternatively, as a PDDL description
plus some privacy related information), the parser generates the PDDL versions. Agents’
privacy could be preserved if the parser uses an encryption algorithm for the private
components of each agent . In that case, subsequent steps can benefit from the level of
encryption of that algorithm i.e. obfuscation for weak privacy.

The encryption algorithm should maintain some properties related to later planning
tasks:

• First, VAL [Howey et al., 2004] should be able to validate an encrypted plan against
an encrypted domain and problem files.

• Second, the centralized and the plan repair planners should be able to perform
planning with an encrypted version of the domain and problem files.

• Third, the parallelization step must access the encrypted actions’ models, since it
reasons about preconditions and effects to detect mutex information.

As an example of a simple encryption mechanism, the parser can substitute private
predicate, action, type and object names for randomly generated names for each agent.
This was already suggested in [Borrajo, 2013]. As a result, when maintaining privacy,
PMR would receive the same MAP task M0 but with the agent’s information (predicates,
actions) obfuscated. Details about how to encrypt each agent’s task are given in [Borrajo
and Fernández, 2018].

Recent works in MAP present stronger and more robust privacy preserving planning
(PPP) algorithms. MAFS, SECURE-MAFS [Brafman, 2015] and GPPP [Maliah et al.,
2014] are state-of-the-art PPP algorithms. There exist new variations of MAFS such
as MAFBS [Maliah et al., 2017], which presents a new way of reducing the number
of messages exchanged among agents while preserving strong privacy; also, a recent
formalization that supports joint/collaborative actions for PPP algorithms [Shekhar
and Brafman, 2018]. On the other hand, another state-of-the-art PPP algorithm is PSM
[Tozicka et al., 2015]. Their authors recently explored privacy leakage on MAP algorithms
and proposed a new class of secure MAP algorithms (SECMAP) [Štolba et al., 2016b]
that can avoid those leaks. Also, they studied privacy preserving from the point of view of
criptography, concretely a subfield called secure multiparty computation [Tozicka et al.,
2017] .

69

This page has been intentionally left blank.

C
H

A
P

T
E

R

6
RRPT-PLAN: REUSE RANDOM PLANNING TREE

R EUSE & RANDOMLY EXPLORING PLANNING TREE (RRPT-PLAN) is the
second contribution of this Thesis. We have developed a stochastic plan-
reuse planner that combines search, sampling and plan reuse to solve

a planning task. In this Chapter, we present the contribution in detail. A general
description as well as the description of each of its components are included in the
following sections.

6.1 Introduction

Among the spectrum of different scenarios that can be given in trying to repair a plan,
the most frequent one is when the invalid input plan is very similar to the final solution.
Plan reuse will be very efficient as most of the final plan’s actions are already on the
invalid input plan. Thus, the planner reuses most of the invalid plan actions and has only
to include a small set of new actions to transform it into a valid one. However, sometimes,
the solution plan should be completely changed, as when trying to solve the Rovers
scenario described on Figure 6.1. As both problems are very similar, any plan-reuse
planner would usually choose the solution obtained from problem 6.1a to solve problem
6.1b. Unfortunately, that would not be efficient, as the plan-reuse planner would ignore
the existence of the new path 0-10. Thus, the plan-reuse planner will return as a solution
the same one obtained from problem 6.1a. In order to increase efficiency, combining

71

CHAPTER 6. RRPT-PLAN: REUSE RANDOM PLANNING TREE

Figure 6.1: Example of a simple Rovers problem. (a) depicts the initial state of a Rovers
problem where the Rover agent has to take the soil and rock samples to later send them
to the lander. (b) depicts the same problem as on the left, but now the Rover agent can
directly traverse 0-10 to reach the samples.

search and plan-reuse would help any plan-reuse planner to better solve a wide variety
of scenarios: from the ones that are very similar to the ones that look similar but they
are not.

Our approach RRPT-PLAN combines search, sampling and plan reuse. We were in-
spired by two previous works that are explained as follows.

The first previous work is ERRT-PLAN [Borrajo and Veloso, 2012], which was explained
in Section 4.2.2. The second work, RPT [Alcázar et al., 2011], was taken as a basis for
developing our contribution. RPT was explained in Section 2.7.

Our contribution, RRPT-PLAN, emulates the ERRT-PLAN behavior by receiving as input
the invalid plan, the domain and problem descriptions and the set of probabilities; the
weakest preconditions that ERRT-PLAN stored are not considered on our implementation.
RRPT-PLAN combines search, plan reuse and sampling using the state-of-the-art planner
FAST DOWNWARD [Helmert, 2006], which was the base planner used by RPT. Details on
RRPT-PLAN and the main differences regarding RPT and ERRT-PLAN are explained later
on Section 6.7.

As a result, RRPT-PLAN has three parameters:

• ≤: limits the number of expanded nodes of the local search.

• p: probability of executing local search towards the nearest goal.

• r: probability of executing plan reuse.

Depending on the initial values of the set of parameters (explained later on detail),
RRPT-PLAN performs either search, sampling or plan reuse on each iteration. The result
will be a valid plan based on the input plan. RRPT-PLAN works as outlined in Algorithm 2.
The main steps are: preprocessing, search-reuse-sampling and tracing back the solution.

72

6.2. CONFIGURATION

Algorithm 2 Description of the RRPT-PLAN planning algorithm.
Algorithm RRPT-PLAN

Parameters: ≤, p, r
Inputs: domain, problem, input-plan
Output: Plan (solution)

1 sas_description √ translate(domain, problem)
2 sas_operators √ translate(input-plan, sas_description)
3 tree √ qinit
4 f irst_iteration √ true
5 while not goalReached() do
6 n √ random() /*between 0 and 1*/

//Search towards the goal

7 if (not(f irst_iteration)^ (n <p)) then
8 tree √search(qgoal , tree, ≤)
//Plan reuse

9 else if ((f irst_iteration)_ (n ∏ p ^ n <(p+r))) then
10 f irst_iteration √ f alse
11 qreuse √ unreutil ized_nodes.pop()
12 tree √reuse(qreuse, sas_description, sas_operators, tree)
//Sampling

13 else
14 qrand √ sampleSpace(S)
15 tree √search(qrand, tree, ≤)
16 tree √search(qgoal , tree, ≤)
17 end while
//Tracing back the solution

18 solution √ traceBack(qgoal)
19 return solution

The following subsections explain in detail first the current configuration of RRPT-
PLAN and then each step of the algorithm. Subsection 6.6 describes the planning proper-
ties of RRPT-PLAN. Finally, subsection 6.7 explains the differences between RRPT-PLAN,
ERRT-PLAN and RPT.

6.2 Configuration

RRPT-PLAN follows the same configuration as RPT. Thus, the planner FAST DOWNWARD

was configured with greedy best-first search choosing lazy evaluation as its local search

73

CHAPTER 6. RRPT-PLAN: REUSE RANDOM PLANNING TREE

algorithm. The heuristic used is the hFF heuristic [Hoffmann and Nebel, 2001].
As both RPT and RRPT-PLAN are inspired on RRTs, a tree structure is built during the

planning process. RPT originally had local search and sampling phases. We have added
the plan reuse phase. Details on the implementation of the tree are explained in [Alcázar
et al., 2011].

In order to build the solution tree, we have to describe the node structure that stores
the information on each iteration:

Definition 6.2.1. RRPT-PLAN node. A node q of the solution tree T can be defined as a
tuple N= hsi,Ω i,øi, ra, cbsi, where:

• si represents the current state

• Ω i contains a pointer to the previous node

• øi stores the sequence of actions that reaches si from the parent

• ra represents the index of the last reused action of the input plan

• cbs stores the cached best supporters for every proposition q 2 F. We refer to cached
best supporters as the implementation previously included in RPT [Alcázar et al.,
2011] where the actions that first achieve a given proposition in the reachability
analysis are stored in order to compute hFF efficiently.

The following subsections explain in detail the preprocessing, the loop search-reuse-
sampling of the RRPT-PLAN algorithm and some key details.

6.3 Preprocessing

The first step of the preprocessing translates the PDDL domain and problem to the
SAS+ language [Bäckström and Nebel, 1995] by calling and using FAST DOWNWARD’s
Translate module [Helmert, 2006]. This module also returns a list of operators, which
contains every valid combination of actions and parameters that can be generated from
the given domain and problem. Our algorithm RRPT-PLAN uses that list to translate
the input plan to SAS+. Thus, for each action of the plan, the algorithm looks for the
equivalent SAS+ operator on that list (line 1, Algorithm 2). As a result, the input plan is
transformed into a sequence of SAS+ operators instead of instantiated PDDL actions.
For simplicity, along the following sections we will use the word action when referring to
these SAS+ operators. SAS+ was explained in Section 2.5.

74

6.4. SEARCH-REUSE-SAMPLING

6.4 Search-Reuse-Sampling

After preprocessing is completed, RRPT-PLAN executes a loop (lines 4-16, Algorithm 2)
that launches either the search, reuse or sampling phase until a valid solution is found.
The algorithm only returns that no solution was found after all the search space has
been explored. At each iteration, a random number (n) is generated. Depending on the
value of the random number and the values set on p and r, one of the following scenarios
is executed.

6.4.1 Search

When n< p, RRPT-PLAN runs the local search scenario (lines 6-7, Algorithm 2). Algorithm
3 describes the local search algorithm and Figures 6.2 and 6.3 show the process inside
the tree. The algorithm receives as input the node (identified as q). The local search can
only expand a maximum of ≤ nodes. In order to differentiate each node on Figures 6.2,
6.3 and Algorithm 3, a brief description of them is given below:

• qinit: first node on the tree. It contains the initial state of the problem.

• qnear: last expanded node of the tree before applying local search towards the goal.

• qnew: last expanded node after applying local search towards the goal.

• qgoal : node that contains the goal state of the problem. When it is reached, it means
that a plan has been found.

Before explaining the process, some general remarks and data structures are presented:

Algorithm 3 Description of the search process of RRPT-PLAN. Last expanded node (qnew)
is added to the tree and qnear is set as its parent.

Function search of RRPT-PLAN

Inputs: q, tree, ≤

1 qnear √ findNearest(tree, q)
2 qnew √ join(qnear, q, ≤)
3 tree √ addNode(tree, qnear, qnew)
4 return tree

75

CHAPTER 6. RRPT-PLAN: REUSE RANDOM PLANNING TREE

• After running local search, RRPT-PLAN only adds a single node to the final tree
structure, which is the last expanded node of the local search.

• A node can be expanded during search only once.

• There is an open list to store the unexpanded nodes for the local search. That list is
ordered: nodes closer to the goal first, for efficiency reasons. The algorithm always
extracts the first node on the list.

The search function is called (line 7, Algorithm 2), so the local search is performed
towards the goal state, qgoal . The algorithm takes the first node of the open list (qnear -
Algorithm 3, line 1), which is the closest expanded node found towards the goal state
(qgoal). Thus, the initial state of the local search is the one stored on qnear. Local search
is then executed until the solution is found or ≤ number of nodes are expanded. Finally,
the last expanded node from the local search (qnew - Algorithm 3, line 2) is stored on the
tree (Figure 6.3). As it was previously said, this node contains a pointer to its parent,
qnear, and also the subset of actions that were instantiated during the local search to
reach the node’s current state from its parent qnear.

6.4.2 Reuse

When p ∑ n < (p+ r), RRPT-PLAN runs the plan reuse scenario (lines 8-11, Algorithm
2). During the first iteration, the algorithm always performs plan reuse regardless of
the values of p and r. This decision is further justified in experiments from Section 7.4.
Algorithm 4 describes the steps to run plan reuse. Figures 6.4 and 6.5 show the process
inside the tree. In order to differentiate each node the Figures and Algorithm 4, a brief
description of them is given below.

• qinit: first node on the tree. It contains the initial state of the problem.

Figure 6.2: First step of RRPT-PLAN search towards the goal. Local search is run from
qnear, which is the closest expanded node found to the goal so far.

76

6.4. SEARCH-REUSE-SAMPLING

Figure 6.3: Second step of RRPT-PLAN search towards the goal. After expanding ≤ number
of nodes, qnew is the closest node to qgoal . The node qnew stores the plan to reach qnew’s
state from qnear. Finally, qnew is stored into the tree.

• qreuse: first node of the plan reuse open list. Its state is checked when trying to
reuse the first action.

• qreuse0 : node created after the first action is reused. Its state and its plan are being
updated during the plan reuse process as long as new actions can be reused. At the
end of the process it is added to the tree as child of qreuse.

• qgoal : node that contains the goal state of the problem. When it is reached, a plan
has been found.

Figure 6.4: The first step of plan reuse in RRPT-PLAN. The state of qreuse is evaluated to
see if the first action from the input plan can be directly applied.

Before explaining the process, some general remarks and data structures are presented:

• Plan reuse can be applied to a node as long as the last reused action is not the last
action of the input plan.

• There is an open list to store and provide the nodes to which plan reuse is applied.
The algorithm always extracts the first node on the list. When local search or

77

CHAPTER 6. RRPT-PLAN: REUSE RANDOM PLANNING TREE

Algorithm 4 Description of the plan reuse process of RRPT-PLAN. The node qreuse0 , which
contains the reused actions from sas_operators, is added to the tree and qreuse is set as
its parent.

Function reuse of RRPT-PLAN

Inputs: qreuse, sas_description, sas_operators, tree

1 i √ last_action_reused(qreuse)
2 state √ getCurrentState(qreuse)
3 qreuse0 √ createNewNode(state)
4 reuseSuccess √ false
5 applicable √ true
6 while (i <sizeof(sas_operators) ^ applicable) do
7 current√ sas_operators.get(i)
8 operators√ getApplicableOperators(state, sas_description)
9 if isApplicable(current, operators) then
10 reuseSuccess √ true
11 state0 √ updateState(state, current, qreuse0)
12 qreuse0 √ insert(state0, current, i, qreuse0)
13 if (goalReached()) then
14 tree √ addNode(tree,qreuse,qreuse0)
15 return tree
16 i √ i + 1
17 state √ (qreuse0).state
18 else applicable √ false
19 if reuseSuccess then
20 tree √ addNode(tree,qreuse,qreuse0)
21 return tree

sampling add new nodes to the tree, they are also automatically added to the
plan-reuse open list.

The algorithm takes the first node of the plan reuse open list (qreuse, line 1 Algorithm
4) and gets the position of the last action reused (stored on the node; by default 0 when
none of the actions has been yet reused). Then, it iterates over the sequence of actions
of the input invalid plan. For each one of them it checks if the action can be applied to
the current state of the node (Figure 6.4). If this is true, the action (current) is added
into the plan and the current state and index i are updated (lines 10-11, Algorithm 4).
In addition, when an action is added to the new plan, the algorithm checks if the goal
state has been reached as well (line 12, Algorithm 4). The reuse process will be repeated

78

6.4. SEARCH-REUSE-SAMPLING

Figure 6.5: The second step of plan reuse in RRPT-PLAN. As long as there are actions that
can be applied to the current state, they will be stored inside a new node qreuse0 which at
the end of the process, when no more actions can be reused, will be the child of qreuse.

until an action cannot be applied (Figure 6.5). In that case, the position of the last reused
action, the current state and the sequence of the reused actions are stored into the node
qreuse0 . Also, the previous node qreuse is set as parent.

6.4.3 Sampling

When (p+ r)∑ n< 1, RRPT-PLAN runs the sampling scenario. Lines 13-15 of Algorithm 2
describe the steps to run the sampling process. Figures 6.6, 6.7 and 6.8 show the process
inside the tree. In order to differentiate each node on the Figures, a brief description of
them is given below.

• qinit: first node on the tree. It contains the initial state of the problem.

• qrand: node that contains a random valid state from the search space.

• qsampling: closest node from the tree to the sampled state.

• qnew: last expanded node towards qrand.

• qneargoal : last expanded node towards the goal.

• qgoal : node that contains the goal state of the problem. When it is reached, it means
that a plan has been found.

Before explaining the process, some general remarks and data structures are presented:

• A new node is added to the tree at every iteration. If the solution is not reached
during sampling, the last expanded node is added to the tree.

79

CHAPTER 6. RRPT-PLAN: REUSE RANDOM PLANNING TREE

• After sampling, when the new node is obtained (qnew), a new local search is
performed towards the goal until the limit ≤ is reached. This is equivalent to the
Extend phase of RRTs.

First, the algorithm obtains a random valid state (qrand) after sampling the search
space (S). Then, the closest node to the sampled state is found (qsampling), Figure 6.6 by
computing hFF . Details about how the random state and the distance are computed can
be found in [Alcázar et al., 2011]. After qsampling is identified, a local search is performed
from there towards qrand. However, qrand might not be reached because of the limit ≤.
If this happens, the last expanded node is stored on the tree (qnew). The next step is to
perform a new local search from qnew towards the goal (qgoal), Figure 6.7. This is the
Extend phase, already implemented in RPT [Alcázar et al., 2011]. The last expanded node
from the Extend local search is then stored into the tree (qneargoal), Figure 6.8.

Figure 6.6: The first step of sampling in RRPT-PLAN is shown on the left. Once the
sampled node qrand is obtained, a local search is run from qsampling towards that node.
qsampling represents the closest node from the tree to the sampled node.

Figure 6.7: The second step of sampling in RRPT-PLAN is shown on the right. After local
search is performed, qnew is added into the tree. Now a local search towards the goal
(qgoal) is run.

The search-reuse-sampling phase is repeated once per iteration, independently of
the strategy (search, reuse, sampling) used. The following subsection explains how the
algorithm is capable of tracing back the solution through the tree.

80

6.5. TRACING BACK THE SOLUTION

Figure 6.8: The third step of sampling in RRPT-PLAN is shown below the previous steps.
After expanding ≤ number of nodes, qneargoal is the closest node to qgoal so it is stored
into the tree.

6.5 Tracing back the solution

In order to retrieve the solution plan º, the algorithm has to check if qgoal ’s state sgoal
satisfies every proposition in G, so that G µ sgoal . If so, RRPT-PLAN starts tracing back
the solution plan from the node qgoal. From qgoal, RRPT-PLAN obtains the link (Ωgoal)
to the parent’s node and repeats the process until the initial node (qinit) has been
reached. Figure 6.9 illustrates the process. Solution nodes are stored into a list called
Treesol = {qinit, ...,qgoal} where qinit’s state sinit = I and qgoal ’s state G µ sgoal. Nodes’
subplans are concatenated to obtain º= {øinit©ø2© ...©øgoal}. Each øi contains at least
one action of the solution plan. The concatenation gives as a result the solution plan
º= {a1,a2, ...,am}.

Figure 6.9: Tracing back the solution in RRPT-PLAN. The algorithm starts on qgoal and
goes backwards on the Tree, obtaining in each step a new solution node through the link
Ω i. Black nodes of the Figure represent the solution nodes. They are stored in order on a
list called Treesol .

81

CHAPTER 6. RRPT-PLAN: REUSE RANDOM PLANNING TREE

6.6 Properties

RRPT-PLAN is an algorithm that performs suboptimal planning. Optimality is out of the
scope of this work. Also, RRPT-PLAN is incomplete, as it cannot assure that a solution
will always be found. For instance, extreme cases where p= 1.0 (only search) or r = 1.0
(only plan-reuse) or both have 0.0 values (only sampling); these are some configurations
where RRPT-PLAN could fail to find a solution - specially if there exists some timeout.
Regarding only search (p = 1.0 r = 0.0), RRPT-PLAN can get stuck after exploring and
expanding every existing node of the search space and still not being able to obtain a
solution. Regarding only plan reuse (p= 0.0 r = 1.0), if no action of the input plan can
be reused or every action has been reused but it is not enough to solve the problem,
RRPT-PLAN will constantly enter into the reuse phase and will never obtain a solution
to the problem. Regarding only sampling (p = 0.0 r = 0.0), it is the same case as only
applying search. Sampling explores the search space randomly, but after exploring and
expanding every node of the search space, the solution might still not be found.

Finally, the plans generated by RRPT-PLAN are sound. First, when performing local
search, actions are only applied to valid planning states. Second, when reusing actions,
the successors of the current state are generated to obtain the list of applicable operators
that reach those successors. Before including the action into the plan, it is verified
that the equivalent operator of the action-to-be-reused appears on the list of applicable
operators. Third, when performing sampling, the random node will be valid, as RPT

included a procedure to only consider valid states. Fourth, we formally demonstrate
°(sinit,º) |= sgoal to proof the soundness of RRPT-PLAN. Given qinit as the first node on
the Tree, which contains sinit = I; and qgoal as the last expanded node which contains the
goal stateG µ sgoal . Given the list Treesol , which contains the sequence of nodes starting
on qinit that reaches the goal state; and given plan º which contains the sequence of
actions to reach sgoal from sinit, where øinit =; as the initial node does not contain any
action of the plan yet.

º= {øinit©ø2© ...©øgoal}= {
ø2z }| {

a1,a2, ...,ak,
ø3z }| {

ak+1, ...ap, ...,
øgoalz }| {

ar+1, ...,am} (6.1)

From the set of nodes of Treesol and the actions from º, using the function ∞(si,ai)=
si+1 we can generate every intermediate state (s ji) between the qi nodes as follows.

82

6.7. DIFFERENCES OF RRPT-PLAN REGARDING PREVIOUS WORKS

S =
D
sinit|{z}
qinit

,

ø2z }| {
(s1init, s

2
init...s

k°1
init), s2|{z}

q2

,

ø3z }| {
(s12, s

2
2...s

p°1
2), s3, ...,

øgoalz }| {
(s1r, s

2
r...s

m°1
r), sgoal| {z }

qgoal

E
(6.2)

Thus, when the subplan ø2 is applied to sinit following Equation 2.2, the resulting state
is s2.

°(sinit,ø2) |= s2 (6.3)

Theorem 6.1. RRPT-PLAN is sound.

Proof. By induction:
Base case: sinit = I is reachable from the initial state by qinit construction.
Inductive step: if si is reachable from sinit, si+1 is a reachable state from sinit.

By construction:

°(sinit,ø2©ø3...©øi) |= si (6.4)

°(si,øi+1) |= si+1 (6.5)

°(sgoal°1,øgoal) |= sgoal (6.6)

Thus, sgoal is reachable from the initial state sinit and G is satisfied.

°(sinit,ø2© ...©øgoal| {z }
º

) |= sgoal ,where G µ sgoal (6.7)

6.7 Differences of RRPT-PLAN regarding previous
works

Apart from the obvious difference in implementation (ERRT-PLAN code was based on
a reimplementation of Metric-FF in Lisp), RRPT-PLAN presents some differences with
respect to the previous works.

• First, RRPT-PLAN presents a more clear bias towards search than ERRT-PLAN.
While ERRT-PLAN considered the search step as adding one more node to the tree,
RRPT-PLAN search algorithm works by expanding ≤ nodes in the same step, where
we have found that ≤ should take big values.

83

CHAPTER 6. RRPT-PLAN: REUSE RANDOM PLANNING TREE

• Second, ERRT-PLAN sampling of goals was directed by the computation of weakest
preconditions from the input plan, while RRPT-PLAN sampling uses RPT sampling
procedure instead. However, RRPT-PLAN does not use RPT’s computation of h2
mutexes for that task. By avoiding that computation, the aim is to speed up the
process.

• Third, ERRT-PLAN and RPT considered the goal sampling step as equally relevant.
On the contrary, RRPT-PLAN assigns a very small role to goal sampling by assigning
a very low probability of using sampling.

All these differences are due to the diverse uses of ERRT-PLAN, RPT and RRPT-PLAN.
In the case of ERRT-PLAN, authors were studying the effects of different strategies of
plan reuse (replanning from scratch vs. eager use of the previous plan) in a wide variety
of scenarios. In RRPT-PLAN we are interested in a very particular kind of plan reuse
scenario, where in most cases, the reuse strategy is a mixture between the two extremes.
Finally, the obvious difference with respect to RPT is that RRPT-PLAN can partially reuse
a previous plan and that the sampling phase is not considered as important as the other
two.

84

C
H

A
P

T
E

R

7
EMPIRICAL EVALUATION

T HIS Chapter presents an empirical evaluation on the performance of our two
contributions, PMR and RRPT-PLAN. We compare them with other state-of-
the-art planners.

7.1 Introduction

We have divided the experiments and results in six different sections structured as
follows. First, Section 7.2 describes metrics and configuration environments. Section 7.3
presents some experiments specifically designed to explain the flexible behavior of RRPT-
PLAN in different plan-reuse scenarios. Section 7.4 analyzes RRPT-PLAN in terms of
parameters to select the best configuration. Section 7.5 shows the results of running
the CoDMAP competition with different configurations of PMR and other state-of-the-
art, multi-agent and centralized, planners. Then, Section 7.6 analyzes the results after
changing the CoDMAP agentification. Also, Section 7.7 shows the performance of PMR

when scaling the number of agents. Section 7.8 shows the performance of PMR against
the same set of planners previously used on Section 7.5. However, the set of problems is
harder to solve, containing a reasonable amount of agents and goals to reach. We have
also included three new domains specifically designed to evaluate the makespan metric
in order to show PMR’s potential. Finally, Section 7.9 describes some general remarks
and conclusions extracted from the extensive set of experiments.

85

CHAPTER 7. EMPIRICAL EVALUATION

7.2 Experimental setup

For each set of experiments described in the following sections, results of coverage
(number of solved problems), quality (cost and makespan) and planning time are shown.
In order to compute these metrics, we have used the scores of the International Planning
Competition (IPC)1. For computing those metrics, time, makespan and cost, we use the
formulas described in Equations 2.5 and 2.8. The time bound to solve each problem
is 1800s. For every domain presented on the tables, 20 problems were run, except for
the ones of Section 7.4 where 15 problems per domain were run instead (the reason is
explained on that Section). All the experiments were run on an Intel(R) Xeon(R) X3470
2.93GHz with 8 GB RAM.

In order to distinguish among the different configurations of PMR that appear on the
experiments, the notation used in the next sections is the following.

• Every configuration of PMR is using LAMA-FIRST as the planner P of the algorithm.
LAMA-FIRST corresponds to the first search that LAMA performs, using greedy-best-
first with unit costs for actions [Richter and Westphal, 2010]. We have also used
LAMA-FIRST for the centralized planning step.

• We have used LPG-ADAPT [Fox et al., 2006] and RRPT-PLAN for the plan reuse
experiments. When they have been used inside PMR we refer to them as PMR-LPG-
ADAPT or PMR-RRPT-PLAN. Otherwise it means they were executed outside PMR.
LPG-ADAPT has always been run in the speed mode.

• RRPT-PLAN has three additional parameters set on each configuration. We refer to
them as p, r and ≤. The way these parameters affect RRPT-PLAN is explained on
Chapter 6.

• Our configurations of PMR have been evaluated using different goal assignment
strategies. We refer to them as BC (Best-cost), LB (Load-balance) and ALL i.e. PMR-
LPG-ADAPT-BC means that PMR was executed using Best-cost as goal assignment
and LPG-ADAPT as plan reuse planner.

• We have tested our PMR configurations against two centralized planners, LAMA-
FIRST and YAHSP [Vidal, 2004]. YAHSP was the winner of the Agile track in IPC
2014. We have also run RPT [Alcázar et al., 2011] in Section 7.4 and MADAGASCAR

1ipc.icaps-conference.org

86

ipc.icaps-conference.org

7.3. RESULTS OF PMR-RRPT-PLAN AND PMR-LPG-ADAPT WHEN SOLVING
DIFFERENT PLAN-REUSE SCENARIOS

[Rintanen, 2014] in Section 7.8, which was the runner-up of the Agile track in IPC
2014.

• Also, we have compared our configurations with three multi-agent planners (CMAP-
T [Borrajo and Fernández, 2018], ADP-L [Crosby, 2015] and SIW [Muise et al.,
2015]). They will be later explained in Section 7.5. They were chosen because of
their remarkable performance on some metrics of CoDMAP.

7.3 Results of PMR-RRPT-PLAN and PMR-LPG-ADAPT

when solving different plan-reuse scenarios

The aim of this section is to analyze in detail the behavior of RRPT-PLAN. A simple
multi-agent scenario was designed to force PMR to use its plan reuse planner to fix the
plan (either RRPT-PLAN or LPG-ADAPT on these experiments). This experiment serves as
a proof-of-concept to show why a mixed search-reuse planner like RRPT-PLAN is useful in
the kind of scenarios described below. The Load-Balance (LB) strategy was chosen for
this experiment in order to assign goals using as many agents as possible and balancing
the number of assigned goals per agent at the same time.

The designed scenario contains robots (agents), hammers, nails and paintings. The
robot needs first to find and grab a hammer and a nail. It is not allowed for robots to
grab more than one hammer and nail at the same time. Once the robot has grabbed the
pair hammer, nail it should go to some room that contains a painting and hang it up.
Each scenario is completely solved when all paintings are hanged up.

The ideal multi-agent situation (reflected on Figure 7.1a) has as many robots, ham-
mers and nails as paintings. Thus, each robot will be in charge on hanging one painting
up when goals are divided among the set of agents. However, the bottleneck of the
problem is the number of hammers; if the robots need to share the hammer(s), many
interactions arise and need to be fixed by a plan reuse planner. As agents (robots) plan
individually on PMR’s first step, all of them are forced to use a hammer on their individual
plans.

Through these experiments we are able to explain the potential of our plan reuse
contribution, RRPT-PLAN, when used inside PMR. We compare PMR-RRPT-PLAN configu-
ration results with the ones obtained with PMR-LPG-ADAPT. Also we show a comparison
with PMR-LAMA at the end in order to show how PMR-RRPT-PLAN performs better in
these situations as it is in the middle of two extremes: PMR-LPG-ADAPT (plan-reuse) and

87

CHAPTER 7. EMPIRICAL EVALUATION

PMR-LAMA (centralized planning).

Figure 7.1: (a) presents the first scenario (6 robots, 6 nails, 6 hammers, 6 paintings).
This problem is an ideal multi-agent planning scenario. There are as many hammers
as robots. Thus, they do not need to share any resource during planning. In the second
scenario (b) there is only one hammer for six robots. Paintings and nails are placed as in
case (a). Interactions arise when merging the robots’ plans as they all use the hammer in
their individual plans. The third scenario (c) not only shows hammer interaction issues,
but also interactions caused by nails. Nails are grouped into two rooms. Thus, multiple
robots could have used the same nail in their individual plans.

Next, the three designed scenarios are described as well as the behaviour of PMR-
LPG-ADAPT and PMR-RRPT-PLAN on each of them. Resulting plans from both planners
per scenario can be found in Annex B. The first scenario presents six robots starting in a
common room, C, plus a hammer and a nail per room (Figure 7.1a). When computing this
ideal scenario for MAP with either PMR-RRPT-PLAN or PMR-LPG-ADAPT using the LB
strategy, the planner will assign to each robot one of the goals. Thus, each robot will move
to a different room, pick up the hammer and the nail and hang the painting on the wall.
As a result, after the individual planning step, the concatenation and parallelization of
the resulting plan will return a valid plan. There is no need for replanning in this first
case as there is no interaction among agents.

The second scenario is the same as the previous one but the difference lies in the
number of hammers: it has just one hammer in C (Figure 7.1b). This reflects a common
MAP issue on how agents deal with a shared resource (hammer) and how the planner
deals with agents’ interactions.

Each robot will plan individually to take first the hammer from C and then move
to some room to grab the nail and hang the painting up. As a result, the concatenation
of plans is not entirely valid. Some actions need to be included into the plan such as

88

7.3. RESULTS OF PMR-RRPT-PLAN AND PMR-LPG-ADAPT WHEN SOLVING
DIFFERENT PLAN-REUSE SCENARIOS

dropping the hammer so that the next robot can pick it up later, if necessary. This
issue is fixed on the plan reuse step of both PMR-LPG-ADAPT and PMR-RRPT-PLAN but
following different approaches. The LPG-ADAPT version takes as input plan the non-valid
concatenation of plans and adds the following actions between each robot’s set of actions:
move robot to C and drop hammer. Thus, from the planning point of view, the actions
from the input invalid plan were easily reused, as only some new actions were added to
the final plan to share the hammer. On the other hand, RRPT-PLAN directly reuses the
set of robot1’s actions (first agent on the list). Then, when it is time to reuse actions from
robot2, the process fails because the hammer is not in C anymore. Thus, RRPT-PLAN

changes to the search phase and decides to finish the plan using only robot1. As a result,
PMR-RRPT-PLAN returns a plan of length 24 while PMR-LPG-ADAPT returns a plan of
length 34. As there is only one hammer available, agents cannot solve their goals in
parallel. Therefore, the makespan metric on both configurations has the same value as
plan length.

Table 7.1: Besides the three problems previously generated to explain three different
cases of plan-reuse, a set of five problems were generated based on Figure 7.1c’s distri-
bution to show the impact of increasing the number of paintings and hammers while
having the same number of rooms and agents. The main difference between a and b
versions is where the hammers are placed: (i) hammers are equally divided in the set
of rooms 1, 4, 6; (ii) all hammers are placed in room 6. Paintings are equally divided
between rooms 1 and 4 as in Figure 7.1c. Nails are also grouped into two rooms (rooms 2
and 5).

Agents Paintings Hammers Rooms Hammers’ Distribution
Fig 7.1a 6 6 6 7 1 per room
Fig 7.1b 6 6 1 7 Same room
Fig 7.1c 6 6 1 7 Same room
Prob 1a 12 12 2 7 Room 1, 4
Prob 1b 12 12 2 7 Room 6
Prob 2a 12 24 3 7 Rooms 1, 4, 6
Prob 2b 12 24 3 7 Room 6
Prob 3a 12 36 4 7 Room 1, 4, 6
Prob 3b 12 36 4 7 Room 6
Prob 4a 12 48 5 7 Rooms 1, 4, 6
Prob 4b 12 48 5 7 Room 6
Prob 5 36 48 4 7 Rooms 1, 3, 4, 6

89

CHAPTER 7. EMPIRICAL EVALUATION

We can see in this example that calling a pure plan-reuse planner to fix a plan might
not always be a good choice. It will always either reuse as many actions as possible
from the input invalid plan, or, when this is not possible, it generates new ones to be
later reused. This issue can generate noise on the plan’s actions, later explained on the
third scenario. If the aim is to obtain an efficient valid plan fast, plan reuse needs to be
combined with search to solve these specific multi-agent scenarios. Also, when a shared
resource is limiting the number of agents that can perform actions, the best solution
will probably be to involve a number of agents close to the number of available shared
resources.

The third case presents six robots starting in C, six nails and paintings equally
divided among two rooms and one hammer at Room 6 (Figure 7.1c). After obtaining the
concatenated plan and checking that it is not valid, several parts of the plan need to
be fixed. Not only the actions related with grabbing and dropping the hammer must be
fixed, but also the ones related with looking for nails. In Annex B, Listing B.4 contains
the 72 actions that compose the sequential merged plan.

As nails are grouped into two different rooms that have the same distance to C
and robots plan individually, the robots pick up the hammer and the same nail on its
individual plan. Thus, to transform these sequences into a valid plan, robots only need
to look for the nails that are still available and the hammer. PMR-LPG-ADAPT reuses as
many actions as possible from the invalid plan. It also decides to use the set of six robots
to hang up all the paintings (as suggested in the input invalid plan). As a result, the final
plan has redundant actions. PMR-LPG-ADAPT adds redundancy when reusing actions
that are always valid regardless of the current state of the problem. They are supposed
to help each agent to reach its goal; e.g (1) a robot moves to a room, (2) a robot grabs a
nail, and (3) a robot drops a nail. These situations are given quite often while the set of
six robots is being forced to look for the same hammer in order to hang up the assigned
painting. Some of them even grab and drop several nails until they finally can hang
the painting up. For instance, it might happen once a robot grabs a nail, as heuristics
consider it is one step closer towards the goal. However, the robot might enter into some
room where there is another robot that already grabs the hammer, but it does not grab
any nail. Usually, the first robot drops the nail when there are no other available nails in
the room. As a consequence, the other robot can grab it and hangs the painting up. From
the point of view of planning, even though there were parts of the input plan that could
be reused, they only cause PMR-LPG-ADAPT to return a worse plan (more actions).

On the other hand, when using the PMR-RRPT-PLAN approach, the set of actions

90

7.3. RESULTS OF PMR-RRPT-PLAN AND PMR-LPG-ADAPT WHEN SOLVING
DIFFERENT PLAN-REUSE SCENARIOS

performed by robot1 will be directly reused until it finishes hanging the first painting.
When moving robot2 to room6 and realizing that the hammer is not there, the plan-reuse
phase ends and the search phase starts, discarding the rest of the actions from the input
plan. As a result, again only robot1 is used to hang all the paintings up and redundant
actions are avoided except for the one action from robot2 moving to room6. Even though
only one robot is used to execute the whole plan, the plan length is 43. That value is still
lower than the one from PMR-LPG-ADAPT, which returns a plan of length 159. Regarding
makespan, PMR-LPG-ADAPT returns 118 and PMR-RRPT-PLAN, 42.

Table 7.2: This table shows the plan length (L) and makespan (M) obtained for every
scenario of the Hammer domain with multi-agent planners PMR-RRPT, PMR-LPG-AD, PMR-
LAMA, CMAP-T, ADP-L, SIW and centralized planners LAMA, YAHSP and RPT. Results of
YAHSP were not included as it was not able to solve any problem. Makespan values of ADP-
L and SIW were obtained after paralellizing their resulting plans with our parallelization
algorithm.

PMR-RRPT PMR-LPG-AD PMR-LAMA CMAP-T ADP-L SIW LAMA RPT
L M L M L M L M L M L M L M L M

7.1a 24 3 24 3 24 3 24 3 24 23 24 3 24 3 24 3
7.1b 24 24 34 34 24 24 24 24 24 24 24 24 24 24 24 24
7.1c 43 42 159 133 43 38 43 38 38 38 34 32 43 38 43 38
1a 76 46 122 119 85 74 - - 74 74 96 49 - - 85 76
1b 89 84 121 85 - - - - 74 74 96 49 - - 79 32
2a 148 82 235 235 157 146 157 146 146 146 134 91 157 146 157 146
2b 161 150 - - - - - - 146 146 95 68 - - 157 146
3a 221 118 380 371 229 218 229 218 218 218 184 45 229 218 229 218
3b 233 223 - - - - - - 218 218 180 74 - - 241 111
4a 294 154 497 491 301 290 301 290 - - 237 30 301 290 303 292
4b 299 163 - - - - - - 290 290 226 51 - - 280 131
5 297 140 - - - - - - - - 211 52 - - - -

Table 7.2 and Table 7.3 show the plan length, makespan and time obtained for
each PMR configuration, other multi-agent and centralized planners on each Hammer
problem. The first three rows are related to the three cases explained above. The following
rows represent new problem-variations generated from the Figure 7.1c scenario where
paintings and nails are equally divided into two sets of different rooms and hammers’
location vary. The aim is to show the evolution of plan length, makespan and time when
increasing number of paintings and hammers. Due to this fact, the complexity of the
problem increases depending on where the hammers are initially placed and the number
of interactions that have arisen.

91

CHAPTER 7. EMPIRICAL EVALUATION

Table 7.3: Time in seconds that each configuration of PMR, CMAP-T, ADP-L, SIW, LAMA
and RPT took to solve the Hammer domain scenarios. YAHSP results are not shown as it
was not able to solve any problem. Time limit per problem was 1800s. When (-) appears
on a cell means that the problem was not solved by the planner on time. Problems solved
in less than 1 second are all considered as 1.00s.

PMR-RRPT PMR-LPG-AD PMR-LAMA CMAP-T ADP-L SIW LAMA RPT
7.1a 1.80 2.25 1.79 1.00 1.00 1.00 1.00 1.00
7.1b 1.00 1.66 1.64 1.00 1.00 1.00 1.00 1.00
7.1c 1.08 1.63 1.12 1.00 1.00 1.00 1.00 1.00
1a 43.84 4.40 40.05 2.83 1.24 2.48 2.07 2.67
1b 4.01 39.20 - - 1.23 4.54 - 3.91
2a 107.15 16.81 115.97 13.16 6.47 14.18 10.55 16.71
2b 14.37 - - - 6.37 14.27 - 22.11
3a 159.07 43.89 140.42 48.30 22.43 43.00 39.02 91.75
3b 59.81 - - - 30.69 65.66 - 110.62
4a 173.96 90.48 182.78 136.98 - 94.81 110.20 329.29
4b 126.81 - - - 77.31 103.73 - 329.18
5 659.55 - - - - 1447.2 -

As Table 7.2 shows, PMR-LAMA and PMR-LPG-ADAPT are not able to solve most of the
problems where all hammers are placed on the same room (version b problems). PMR-
LAMA gets lost on the search space as there is a huge number of possible combinations of
movements with the same heuristic estimation (known as plateaux) to solve the problem.
On the other hand, PMR-LPG-ADAPT gets lost when reusing the actions of the invalid
plan, as most of them are valid, but they still do not solve the problem. This ends up
generating redundancy and causes the planner to search for new actions, while always
looking up at the ones on the invalid plan again on each iteration. However, PMR-RRPT-
PLAN performs better than the other two configurations, as it has the opportunity to
change between plan reuse, search and sampling to solve the problem and this has an
impact on the number of problems solved as well as on the makespan metric. PMR-RRPT-
PLAN is more flexible and in summary obtains the best performance on the three metrics
regarding the three PMR configurations. Regarding multi-agent planners CMAP-T, ADP-L
and SIW, the best configuration is SIW. SIW’s serialization of goals allows the planner to
use efficiently most of the agents, resulting in the improvement of makespan at the same
time. ADP-L and CMAP-T behave very similar to LAMA, the centralized planner. These
planners (except for SIW) try to solve the problem with the smallest possible number
of agents, as a consequence of minimizing the plan length. ADP-L is the only one able

92

7.4. ANALYZING THE IMPACT ON PERFORMANCE OF RRPT-PLAN’S PARAMETERS

to avoid the plateaux of the search space and does not get lost on version b problems.
The centralized planner YAHSP was run as well, but it was not able to solve any of the
problems.

When hammers are distributed among rooms 1, 4 and 6 (version “a” problems) the
interactions are easier to solve by all planners. On PMR configurations, when agents plan
individually, they choose the hammer that is closer to the set of paintings they have to
hang up. Thus, less number of interactions arises and agents are better self-organized.
The same effect is given on the rest of the planners.

Regarding times on Table 7.3, PMR-LPG-ADAPT is faster when it is capable of solving
the problems but PMR-RRPT-PLAN is more regular on performance.

7.4 Analyzing the impact on performance of
RRPT-PLAN’s parameters

After explaining the difference between the performance of RRPT-PLAN and a classical
plan reuse planner, such as LPG-ADAPT, we wanted to test both of them outside of PMR

against a centralized planner, LAMA-FIRST. This experiment is divided into two parts.
Firstly, we present an analysis of RRPT-PLAN’s performance depending on a set of values
assigned to its parameters p, r and ≤. The aim is to find the best parameter configura-
tion for RRPT-PLAN. Secondly, after choosing the best configuration for RRPT-PLAN, we
compare the results obtained in coverage, quality and time against the ones obtained by
LPG-ADAPT and LAMA-FIRST. Both parts of the experiment share the same benchmark,
which was created as follows: first, a set of hard planning problems was generated
(Rovers, Zenotravel, Driverlog, Depots, Elevators and Logistics) per domain. These do-
mains were chosen because they have different levels of interaction and dependency
among the different elements of the domain, which is a feature that directly affects the
difficulty of reusing a previous plan. Any agent’s decision from Rovers or Zenotravel
seldom interfere the decisions taken by the other agents. There are not common resources
either. These domains are commonly called loosely-coupled domains. This is the easiest
scenario to be solved by a plan reuse planner, as interactions, if any, are easy to solve.
However, Driverlog and Depots’ agents share partially the domain resources, as most of
them need to be delivered to some concrete places. On Elevators and Logistics the level
of interaction is similar but dependency increases, as the problem goals usually need
collaboration among two agents besides dealing with the sharing of common resources.
These domains are commonly called tightly-coupled domains.

93

CHAPTER 7. EMPIRICAL EVALUATION

We made three versions of each problem; the first one contains one more goal than
the original problem; the second contains five more and ten more goals were added to
the third. For each domain we took three original problems per domain so we created
nine new problems based on the originals.

The original problems were first run with LAMA-FIRST in order to obtain the resulting
plans. These plans were later used as input plans for RRPT-PLAN, ERRT-PLAN and
LPG-ADAPT for each one of the modified problems. As the number of added goals gets
increased, the resulting plans should be very similar at the beginning but more different
as more goals are added to the original version. Also, as LAMA-FIRST and RPT are not
able to reuse, they had to run each modified problem from scratch.

As it was mentioned in Chapter 6, RRPT-PLAN has three parameters that change
the behaviour of the algorithm. Parameters p and r control the probability of running
local search, plan reuse or sampling, e.g. values p= 0.6, r = 0.3 cause RRPT-PLAN to have
a probability of 0.6 to run the local search phase, 0.3 to run plan-reuse and 0.1 to run
the sampling one. In addition, the parameter ≤ limits the number of expanded nodes
per iteration during local search, e.g a value of ≤= 1000 means that 1000 nodes will be
expanded at most per local search iteration.

We have tested eight different configurations of RRPT-PLAN in this experiment ex-
plained as follows.

1. p= 0.3, r = 0.3; this configuration gives equal probability to search and reuse and
0.4 to sampling.

2. p = 0.3, r = 0.6; this configuration benefits plan-reuse over search and leaves a
probability of 0.1 to sampling.

3. p = 0.3, r = 0.7; same to the previous one but RRPT-PLAN will not perform the
sampling phase.

4. p= 0.6, r = 0.3; this configuration benefits local search over plan-reuse and leaves
a probability of 0.1 to sampling.

Each of these parameter configurations was tested for ≤= 1000 and ≤= 10000 to analyze
the impact on the solution when allowing a smaller or greater number of nodes to be
expanded during search. For this experiment, the execution of plan reuse on the first
iteration of RRPT-PLAN is avoided in order to focus on the impact of these probabilities.
We also show the comparison against LAMA-FIRST and LPG-ADAPT, ERRT-PLAN and RPT.
Results of ERRT-PLAN are not shown on the tables neither in the heatmaps below, as it

94

7.4. ANALYZING THE IMPACT ON PERFORMANCE OF RRPT-PLAN’S PARAMETERS

was not able to solve any of the problems in 1800 seconds. ERRT-PLAN uses Enforced Hill
Climbing (EHC) as the search method [Hoffmann and Nebel, 2001]. Since EHC performs
a form of hill climbing without backtracking, the heuristic can guide the search towards
dead-end states, big plateaux, or very long paths. Therefore, ERRT-PLAN could not solve
any problem.

First, we show the individual results obtained by the eight different configurations of
RRPT-PLAN plus the individual results of RPT, LAMA-FIRST and LPG-ADAPT depicted in
four heatmaps. Each one corresponds to either domains with low level of interaction/de-
pendency or to the ones in which the solution plan is more difficult to reuse. Heatmap
values are ranged between 0 and 1, being 0 the worst (blue) and 1 the best (red) value.
Figure 7.2 shows quality scores for Rovers, Zenotravel and Satellite domains, respectively.
Figure 7.3 shows quality scores as well but for Driverlog, Elevators, Logistics and Depots.
Figures 7.4 and 7.5 have the same division of domains but show time scores instead.

By observing the four heatmaps in both quality and time scores, the worst configura-
tion is p= 0.3, r = 0.3 independently of the value of ≤. Giving equal probability to each
RRPT-PLAN phase, and specially assigning to sampling a medium-high probability, causes
the planning process to explore many different paths over the search space. Thus, it ends
up obtaining a bad solution and usually wastes more time than the other RRPT-PLAN

configurations. Another general conclusion that can be extracted is that the limit number
of expanded nodes (≤) does not have a big impact in efficiency; ≤= 1000 configurations
usually perform slightly better.

Results are also shown on Tables 7.4, 7.5 and 7.6. Table 7.4 shows the number of
problems solved per configuration. Table 7.5 shows the summary of the obtained quality
score per configuration. Finally Table 7.6 shows the summary of the time scores per
configuration.

Table 7.4 shows that coverage is very similar between RRPT-PLAN and LPG-ADAPT.
LAMA-FIRST and RPT perform a bit worse, especially on domains where the interaction is
higher (e.g. Depots, Logistics, Driverlog). Neither of them is able to employ plan reuse.
Thus, they had to run each modified problem from scratch and those domains are harder
to solve. RRPT-PLAN (p = 0.6, r = 0.3) is the best configuration followed by RRPT-PLAN

(p= 0.3, r = 0.6).

Quality results show that RRPT-PLAN and LPG-ADAPT results are similar. The dif-
ference between them can be found on the results from the Depots domain, where
LPG-ADAPT performs slightly better (Figure 7.3). The best configuration is LPG-ADAPT

followed closely by RRPT-PLAN (p= 0.6, r = 0.3) and (p= 0.3, r = 0.6).

95

CHAPTER 7. EMPIRICAL EVALUATION

Figure 7.2: Quality per problem and configuration on loosely coupled domains (Rovers,
Zenotravel, Satellite). The original problem was added one, five and ten goals respectively.
The plan that returned the original problem was sent to RRPT-PLAN and LPG-ADAPT as
input for plan reuse.

On the other hand, regarding time, the fastest configuration is LPG-ADAPT. If we
considered only planning time, RRPT-PLAN results would be similar to those of LPG-
ADAPT. Before starting to plan, our planner, first translates the domain and the problem
and computes mutexes and disambiguation (which is useful for search and sampling).
Thus, our planner’s performance is worse than LPG-ADAPT in time (not in quality).

96

7.4. ANALYZING THE IMPACT ON PERFORMANCE OF RRPT-PLAN’S PARAMETERS

Figure 7.3: Quality per problem and configuration on tightly coupled domains (Driverlog,
Elevators Logistics, Depots). The original problem was added one, five and ten goals
respectively. The plan that returned the original problem was sent to RRPT-PLAN and
LPG-ADAPT as input for plan reuse.

LPG-ADAPT’s preprocessing phase only translates the domain and problem. LAMA-FIRST

applies the same translation process as RRPT-PLAN but it does not compute mutexes and
disambiguation. As it can be seen on Table 7.7, the fastest preprocessing is performed
by LPG-ADAPT. Also, the impact on computing mutexes and disambiguation can be
seen by comparing RRPT-PLAN and LAMA-FIRST preprocessing results. On the other

97

CHAPTER 7. EMPIRICAL EVALUATION

Figure 7.4: Time (s) per problem and configuration on loosely coupled domains (Rovers,
Zenotravel, Satellite). The original problem was added one, five and ten goals respectively.
The plan that returned the original problem was sent to RRPT-PLAN and LPG-ADAPT as
input for plan reuse.

hand, even though it is not explicitly reflected on Tables 7.6 and 7.7, the harder the
problem, the closer the time score gets RRPT-PLAN to the one of LPG-ADAPT. The reason
is the following: when the number of added goals of the problem increases, plan reuse
performance decreases, as the input plan is not similar anymore. On the other hand,

98

7.4. ANALYZING THE IMPACT ON PERFORMANCE OF RRPT-PLAN’S PARAMETERS

Figure 7.5: Time(s) per problem and configuration on tightly coupled domains (Driverlog,
Elevators Logistics, Depots). The original problem was added one, five and ten goals
respectively. The plan that returned the original problem was sent to RRPT-PLAN and
LPG-ADAPT as input for plan reuse.

search becomes more useful. Results from Table 7.6 show the poor performance of a
centralized planner (LAMA-FIRST) in comparison with those that employ plan-reuse.
When the problems are similar, reusing input plans is faster than planning from scratch.
Table 7.7 shows the average time employed on preprocessing by each planner on each
domain.

99

CHAPTER 7. EMPIRICAL EVALUATION

Table 7.4: Coverage score obtained on each domain. Planners: RRPT-PLAN with eight
different configurations, RPT (centralized), LAMA-FIRST (centralized) and LPG-ADAPT
(plan reuse). The columns represent the values obtained using the set of probabilities
(p, r) and ≤ limit of expanded nodes. The ‘Total’ row refers to the addition of the scores of
each configuration. Nine problems per domain were run.

Problem ≤

RRPT-PLAN
RPT LAMA-FIRST LPG-ADAPT0.3 0.3 0.3 0.6 0.3 0.7 0.6 0.3

Elevators
1000 9 9 8 9 9

9 610000 9 9 8 9 9

Logistics
1000 9 8 9 9 9

5 910000 9 8 9 9 9

Depots
1000 8 7 4 8 9

4 910000 8 8 4 7 6

Zenotravel
1000 9 9 9 9 9

9 910000 9 9 9 9 9

Rovers
1000 9 9 9 9 9

9 910000 9 9 9 9 9

Satellite
1000 9 9 9 9 9

9 910000 9 9 9 9 9

Driverlog
1000 7 9 7 9 4

7 910000 7 9 9 9 9

Total
1000 60 60 55 62 58

52 6010000 60 61 57 61 60

Table 7.5: Quality score obtained on each domain. Planners: RRPT-PLAN with eight
different configurations, RPT (centralized), LAMA-FIRST (centralized) and LPG-ADAPT
(plan reuse). The ‘Total’ row refers to the addition of the scores of each configuration.

Problem ≤

RRPT-PLAN
RPT LAMA-FIRST LPG-ADAPT0.3 0.3 0.3 0.6 0.3 0.7 0.6 0.3

Total
1000 42.88 55.26 52.75 56.11 45.28

49.26 56.8510000 36.16 54.49 54.19 55.84 51.73

In order to choose the best configuration of RRPT-PLAN to later compare itself against
other planners in the following experiments, we decided to choose (p = 0.3, r = 0.6,
≤= 1000). There was a minimal difference regarding the p = 0.6, r = 0.3 configuration.
We realized that it was due to the execution of the plan reuse phase on the first iteration
on both configurations. The stochasticity of RRPT-PLAN on this experiment turned out to
discover the following: in order to stabilize the performance and commitment of RRPT-
PLAN inside and outside of PMR, it is essential to always first execute plan reuse on the
first iteration. This is also why we chose a higher probability on r (0.6 instead of 0.3).

100

7.5. RESULTS IN CODMAP PROBLEMS

Table 7.6: Time score obtained on each domain. Planners: RRPT-PLAN with eight different
configurations, RPT (centralized), LAMA-FIRST (centralized) and LPG-ADAPT (plan reuse).
The ‘Total’ row refers to the addition of the scores of each configuration.

Problem ≤

RRPT-PLAN
RPT LAMA-FIRST LPG-ADAPT0.3 0.3 0.3 0.6 0.3 0.7 0.6 0.3

Total
1000 26.25 37.18 34.02 38.22 22.33

29.33 58.5010000 26.01 36.71 35.93 37.12 23.83

Table 7.7: Average time (in seconds) spent on preprocessing each problem per planner
and domain.

Problem RRPT-PLAN RPT LAMA-FIRST LPG-ADAPT
Elevators 38.22 217.41 42.12 2.96
Logistics 107.93 667.03 121.82 14.43
Depots 3.38 6.51 3.43 0.2
Zenotravel 86.21 484.21 102.49 4.01
Rovers 63.68 463.38 70.14 2.2
Satellite 23.81 103.56 32.33 1.2
Driverlog 18.58 173.05 24.09 1.59

7.5 Results in CoDMAP problems

In this Section the results of the CoDMAP benchmark are shown. CoDMAP was a
preliminary version of what could be a multi-agent planning competition in the future,
that took place in 2015. Here we have rerun the competition with our contributions to
compare ourselves against two centralized planners (LAMA-FIRST, YAHSP) and three of
the best multi-agent planners that participated in the competition (ADP-L, CMAP-T, SIW).
There are 12 domains with 20 problems each. The time limit to solve each problem was
1800 seconds. We have also used the same agentification as it was explicitly noted on
the MA-PDDL files (official language of the competition). Tables 7.8 and 7.9 show the
obtained results in coverage (number of problems solved).

We have used the three different goal allocation strategies: Best-cost (BC), Load-
balance (LB) and All. Since PMR can solve each problem in three different ways, we show
the coverage obtained on each one separately: merge (M, when plans are valid after
merging), centralized planning (C, when no agent could generate any plan) or plan reuse
(R, when the merged plan was invalid). The configuration PMR ALL was added in order
to make PMR complete. It shows a similar behavior as a centralized algorithm. Thus,
when PMR ALL fails in the M and R steps, it usually solves the problems in the C step.
On the other hand, PMR LB and BC solve more problems in the M and R steps than

101

CHAPTER 7. EMPIRICAL EVALUATION

Table 7.8: PMR with LPG-ADAPT and RRPT-PLAN configuration in combination with up to
three goal assignments: BC (Best-cost); LB (Load-balance) and ALL. In PMR, M: merging;
R: plan-reuse; C: centralized. Partial is the total score in coverage of each step in PMR.
Each domain has 20 problems. It is the same set of problems used on CoDMAP.

PMR-LPG-ADAPT PMR-RRPT-PLAN
BC LB ALL BC LB ALL

M R C M R C M R C M R C M R C M R C
Driver. 19 1 0 8 12 0 0 20 0 19 1 0 8 12 0 0 20 0

Zenotra. 20 0 0 20 0 0 0 20 0 20 0 0 20 0 0 0 20 0
Elevators 1 0 19 1 0 19 0 0 20 1 0 19 1 0 19 0 0 20
Logistics 0 0 20 0 0 20 0 0 20 0 0 20 0 0 20 0 0 20

Rovers 20 0 0 19 0 0 9 3 8 20 0 0 19 0 0 9 3 8
Satellites 20 0 0 20 0 0 16 0 4 20 0 0 20 0 0 16 0 4
Sokoban 1 3 7 0 4 7 0 0 17 1 3 7 0 2 7 0 0 17

Taxi 0 0 20 0 0 20 0 0 20 0 0 20 0 0 20 0 0 20
Blocks 20 0 0 0 20 0 0 20 0 20 0 0 0 20 0 0 20 0

Wireless 0 0 2 0 0 2 0 0 5 0 0 2 0 0 2 0 0 5
Depots 0 0 17 0 0 17 0 0 17 0 0 17 0 0 17 0 0 17
Woodw. 0 0 20 0 0 20 0 0 20 0 0 20 0 0 20 0 0 20
Partial 101 4 105 68 36 105 25 63 131 101 4 105 68 34 105 25 63 131
Total 210 209 219 210 207 219

PMR ALL. The aim of PMR is to solve as many problems as it can executing the M and R
phases.

The best configurations of our contributions in coverage are PMR-LPG-ADAPT-ALL and
PMR-RRPT-PLAN-ALL followed by PMR-RRPT-PLAN-BC. In general, all our contributions
are similar in terms of coverage, they all have passed the barrier of 200 problems solved
(over 240). Our contributions had very good coverage in all domains, except for Wireless
that was the hardest domain in CoDMAP; none of the planners obtained good results on
it.

Analyzing the coverage results of PMR in relation to which phase solved the problems
allows us to classify the domains in three groups. This classification reflects in turn the
interaction level among agents and goals: low, medium and high.

Low interaction domains: Zenotravel, Rovers and Satellites. PMR often solves
problems in these domains by merging the individual agents’ plans, because these plans
are mostly independent. However, it depends on the type of goal allocation strategy
selected. Take, for instance, the Zenotravel domain. Both BC and LB assign only one
agent to each goal. Since the plans generated by agents can solve all their individual

102

7.5. RESULTS IN CODMAP PROBLEMS

Table 7.9: Coverage score per configuration in CoDMAP domains.

PMR-RRPT-PLAN MULTI-AGENT SINGLE-AGENT
BC LB ALL CMAP-T ADP-L SIW LAMA-FIRST YAHSP

Driverlog 20 20 20 20 20 18 20 16
Zenotravel 20 20 20 20 20 20 20 12
Elevators 20 20 20 20 20 20 20 2
Logistics 20 20 20 20 20 20 20 20

Rovers 20 19 20 20 20 20 19 4
Satellites 20 20 20 20 20 20 19 10
Sokoban 11 9 17 13 17 17 17 7

Taxi 20 20 20 20 20 20 20 20
Blocks 20 20 20 20 20 20 20 17

Wireless 2 2 5 5 9 7 5 18
Depots 17 17 17 17 17 19 16 14

Woodworking 20 20 20 17 20 18 20 2
Total Cover. 210 207 219 212 223 219 216 142
Total Cost 181.61 165.33 181.87 184.17 188.34 179.05 189.22 128.27

Total Mkspn 127.60 139.02 136.24 140.12 146.66 - 149.72 140.90
Total Time 186.87 173.48 175.86 201.72 207.59 191.84 197.14 126.69

goals and do not interfere with other agents’ plans, the merge step solves all problems.
But, in the case of the ALL strategy, it will assign each passenger to all airplanes. The
first agent will move all passengers, the second agent will also move all of them, and
so on. Therefore, the merged plan will be invalid (all airplanes will try to move all
passengers). These problems are easily solved then by plan repair.

Medium interaction domains: Driverlog, Blocks and Depots. In these domains,
when the goal assignment strategy selects several agents for planning, problems are
mostly solved in the plan repair step. So, individual agents are able to solve their
problems, but the merged plans are invalid due to interaction among the plans to achieve
the goals. Then, the plan repair step can generate a valid plan by solving the negative
interactions.

High interaction domains: Elevator, Logistics, Sokoban, Taxi, Wireless and Wood-
working. In these domains, a single goal might need the collaboration among two or more
agents. For instance, in the Logistics domain, most packages need at least two trucks
and one airplane to reach their destination. In those cases, PMR individual plans will fail
and the centralized planning solves most problems.

A key related issue is how domains are modeled. For instance, if the only agents
considered in the Logistics domain are the airplanes, then BC and LB would solve all

103

CHAPTER 7. EMPIRICAL EVALUATION

problems just by either merging the resulting individual plans or by plan repair. Similarly,
in the case of Elevator and Taxi, one could define fast elevators or taxis respectively as
the only agents and PMR would solve all problems without the centralized planner.

We have compared our contributions against the winner of CoDMAP in coverage,
ADP-L [Crosby, 2015]. Note that ADP-L does not preserve privacy and it uses a different
agents’ configuration than the one proposed in the competition. We also compare against
CMAP-T [Borrajo and Fernández, 2018] that obtained the best coverage and time score
from the planners that preserved privacy. Finally we also included SIW [Muise et al.,
2015] as it was one of the best planners of the competition. Results of this comparison
are shown on Table 7.9.

Regarding Table 7.9, ADP-L obtains the best coverage followed up by SIW and PMR-
ALL (both with LPG-ADAPT and RRPT-PLAN). YAHSP coverage is the worst. Related to
coverage in the official CoDMAP, after the summer-run2 PMR-ALL would share the first
position with ADP-L, which was 219. However, in our CoDMAP rerun, ADP-L solved 223
problems.

Regarding time scores (Table C.1 in the Appendix B), the fastest planner is ADP-
L followed very closely CMAP-T. The performance on time of PMR configurations is
homogeneous. The time score in PMR was computed using the total amount of time spent
by the whole process. Since the individual agents’ planning processes were executed
in sequence, the total time is computed as the sum of all these processes. However,
considering that the merging phase could be implemented fully distributed, the total
time would be the maximum planning time among all agents, instead of the sum, plus
the time spent on plan reuse or centralized, if needed.

In relation to quality scores, Tables C.2 and C.3 (in the Appendix B) show the results
of makespan and cost of plans, respectively. As LAMA and ADP-L did not compute the
makespan metric, our parallelization algorithm was applied to their resulting plans to
fairly compare the results of makespan. SIW makespan results are not shown in the table
because our parallelization algorithm could not support the use of constants that they
include in the PDDL domain and problem to respect the privacy of objects and fluents
after they transform the MA-PDDL files into PDDL [Muise et al., 2015]. This issue does
not happen when the domain and problem are directly given in PDDL.

Regarding PMR configurations, it can be seen how BC is better in cost and LB in
makespan. The difference between these numbers lies in the number of agents involved
in the planning process. BC often includes the minimum necessary number of agents to

2http://agents.fel.cvut.cz/codmap/results-summer/

104

http://agents.fel.cvut.cz/codmap/results-summer/

7.6. RESULTS CHANGING AGENTIFICATION

plan (the ones that expectedly achieve goals with the minimum cost), so the plans’ cost
will usually be low (good score). In the extreme, some problems were solved using only
one agent. However, the makespan is penalized given that the same agent is achieving
all goals, so many actions cannot be executed in parallel. On the other hand, LB tries to
include as many agents as possible, as long as they can solve at least one of the goals of
the problem. The makespan will be better than that of BC, because actions can be easily
parallelized. But, the cost is penalized when choosing LB, as it uses agents whose plans
are worse in terms of cost. Also, potentially more interactions need to be solved (causing
an increase in the number of plans solved by R instead of M).

PMR-RRPT-PLAN configurations perform better on quality and PMR-LPG-ADAPT con-
figurations, better on time. Moreover, PMR-LPG-ADAPT-ALL, which was one of the best
configurations in coverage, is the worst of our configurations in quality scores. The ALL
strategy uses all agents in the problem to plan leading to long merged plans. PMR-RRPT-
PLAN-ALL performs better in quality than PMR-LPG-ADAPT-ALL because it obtains
better results mainly in Driverlog and Blocks thanks to the combination of plan-reuse
and search. Although ADP-L obtains a better value in makespan than all PMR-LB config-
urations, it is mainly due to the difference in solved problems in Wireless and Sokoban.
It is also remarkable the result obtained by LAMA-FIRST (best configuration in cost and
makespan) because it is a centralized planner. This clearly shows that the CoDMAP
problems are not hard to solve, even for classical planners. As a result, even when agents
try to solve all goals at once in centralized planning, the impact in time is minimal.

7.6 Results changing agentification

After running the CoDMAP experiments and identifying three different levels of interac-
tion, we propose a new set of experiments focused on the high level group of interaction
domains. The aim is to analyze the planner’s performance regarding different agentifica-
tions.

As it was mentioned before, CoDMAP organizers specified which were the agents on
each domain of the competition. This directly affected the performance of the participat-
ing planners, especially in our case, as we factorize the problem regarding agents and
goals. In some domains, such as Depots or Logistics, our contributions were not able to
generate the MAP task for the set of problems. Thus, the centralized planner solved the
task instead.

Here we want to evaluate (1) if by just changing the agents of the problem, PMR is

105

CHAPTER 7. EMPIRICAL EVALUATION

Table 7.10: Makespan score in domains solved during plan reuse phase. Depots, Logistics
and Elevators are CoDMAP versions in MA-PDDL. Depots-truck, Logistics-airplanes,
Elevators-fast are modelled in PDDL and indicate that the agentification has been
changed with respect to CoDMAP. Makespan from SIW and ADP-L is obtained through
our parallelization algorithm. SIW values marked with (*) mean that the makespan could
not be obtained because of a parsing problem.

PMR-RRPT-PLAN-BC PMR-RRPT-PLAN-LB SIW CMAP-T ADP-L
Depots 16.10 16.18 0.00* 12.04 16.18

Logistics 6.78 5.08 0.00* 8.65 12.27
Elevators 13.66 19.92 0.00* 7.21 6.49

Depots-trucks 10.12 6.56 17.10 12.41 8.06
Logistics-air 18.56 16.12 9.89 17.27 18.24

Elevators-fast 9.37 13.20 8.41 19.25 17.05
Total Mkspn 74.61 77.06 35.40 76.83 78.28

Total Cost 87.63 84.25 87.61 100.59 90.28

capable of generating the MAP task correctly and solve the problem using the plan reuse
phase instead and (2) if the plan-reuse performance increases or decreases.

In order to carry out this analysis we run PMR-RRPT-PLAN with strategies LB and
BC and compare our results against SIW, CMAP-T and ADP-L.

Table 7.10 summarizes the IPC scores obtained in makespan. Last two row also
reflect the score obtained in cost. The detailed table of cost is placed in Annex B (C.4.)

In Depots-trucks we changed agents from drivers and places to trucks; Elevators-fast
considers fast elevators as agents and Logistics just the airplanes instead of airplanes
and trucks. As goals are previously assigned to agents in PMR, these agentifications allow
to compute the estimation costs per agent and goal.

The aim is also to evaluate what would happen in these domains if a centralized
planner is run after the individual planning phase instead of running plan-reuse. By
doing this we are also evaluating the complexity of the given problems.

As it can be seen in the results of makespan, ADP-L obtains the best score, followed
closely by PMR-RRPT-PLAN-LB. Bearing in mind that these problems are not difficult to
solve, multi-agent centralized planners obtain good results. New agentifications benefit
BC and LB configurations in Logistics. However, the planner that takes the greatest
advantage using the new agentification is CMAP-T. It is an example of how much the
planner performance can vary when choosing one agentification or another.

PMR-BC scores are very similar to those obtained by PMR-LB. This is due to the fact
that the LB strategy tries to use as many agents as possible. As in these problems

106

7.7. RESULTS SCALING THE NUMBER OF AGENTS

the interactions between agents are higher, it penalizes the makespan metric. BC
configurations are not designed to optimize makespan but in this case they indirectly
take advantage of choosing the minimum number of agents.

7.7 Results scaling the number of agents

In order to analyze how PMR configurations scale with the number of agents regarding
makespan and cost, we have generated three medium-sized problems in Zenotravel,
Driverlog and Logistics domains respectively.

The Zenotravel problem has 63 goals. Then, we increased the number of agents. For
each instance of the Zenotravel problem, agents were increased by 10 starting on 10
agents and stopping at 70. The configuration used for this experiment was PMR-RRPT-
PLAN. Zenotravel belongs to the low interaction group identified in Section 7.5. The
domains that belong to this group are the ones where generally PMR performs better, as
most problems are solved during merging or plan-reuse phases, avoiding the centralized
planning step. Thus, we were interested in exploring in detail the evolution of makespan
and plan length when increasing the number of agents.

Results are shown in Figure 7.6. X axis represents the number of available agents per

0

100

200

300

400

500

600

700

800

900

10 20 30 40 50 60 70

C
os
t

Max. number of available agents

Scaling Cost - Zenotravel

BC
LB
ALL

0

10

20

30

40

50

60

70

10 20 30 40 50 60 70

M
ak
es
pa
n

Max. number of available agents

Scaling Makespan - Zenotravel

BC
LB
ALL

Figure 7.6: Evolution of Cost and Makespan in a Zenotravel problem when increasing
the number of agents gradually (x axis). The configuration used was PMR-RRPT-PLAN
with Best-cost (BC), Load-balance (LB) and ALL.

107

CHAPTER 7. EMPIRICAL EVALUATION

problem that can be selected to plan by each Goal-Assignment strategy. In Zenotravel,
BC uses 10, 16, 18, 21, 21, 22 and 23 agents per problem while LB uses 10, 20, 30,
34, 37, 59 and 62. As Zenotravel belongs to the low interaction level group, the bigger
the number of agents is, the better the makespan obtained by LB. The performance
decreases drastically using ALL (only 3 problems out of 7 were solved in 1800s), because
all goals are assigned to all agents in the problem, which makes the process of solving
the interactions harder during plan-reuse.

When solving a MAP problem with PMR, our goal is to obtain the makespan effect
shown on Zenotravel. This will not be possible in every domain, as it will mainly depend
on the number of interactions (coupling), but it is the ideal scenario to follow regarding
the potential of our contributions.

Driverlog belongs to the medium interaction level group of domains and the selected
problem contains 64 goals. Thus, as the level of interaction increases, the problems are
solved in the plan-reuse step. The aim of Driverlog is to deliver a set of packages by using
drivers to drive trucks. BC uses 5, 9, 12, 16, 20, 23 and 26 agents (drivers) per problem;
meanwhile LB employs 5, 10, 15, 20, 23, 30 and 35. Even though the number of agents
increases, the number of trucks is fixed to 8. Thus, here the cost and the makespan are
closer in both LB and BC. In this domain it is more difficult to paralellize actions due to
the higher level of interaction between agents. Also, the LB strategy tends to use as many

0

100

200

300

400

500

600

700

800

900

5 10 15 20 25 30 35

C
os
t

Max. number of available agents

Scaling Cost - Driverlog

BC
LB

0

100

200

300

400

500

600

5 10 15 20 25 30 35

M
ak
es
pa
n

Max. number of available agents

Scaling Makespan - Driverlog

BC
LB

Figure 7.7: Evolution of Cost and Makespan in a Driverlog problem when increasing
the number of agents gradually (x axis). The configuration used was PMR-RRPT-PLAN
with Best-cost (BC), Load-balance (LB) and ALL. However, ALL results are not shown
because none of the problems were solved when using that goal strategy.

108

7.7. RESULTS SCALING THE NUMBER OF AGENTS

agents as possible, which could add redundant actions to the plan. As a consequence, the
BC strategy has better results in both makespan and cost. It uses a smaller number of
agents, so less redundant actions are included. Also parallelization has partially lost the
impact it had in Zenotravel’s makespan. Finally, ALL could not solve any problem in 30
minutes, thus the results do not appear in the two bottom figures of Figure 7.7.

Logistics belongs to the high interaction level group and the chosen problem has 16
goals (Figure 7.8). The main difference regarding previous problems is that Logistics
has two potential agent types: trucks and airplanes. Here, we have chosen airplanes
as agents to fix interactions in plan-reuse. We wanted to avoid the centralized stage.
The topology of the Logistics problem is a grid of cities where trucks can drive inside
them and airplanes can fly everywhere. We have increased the number of agents in
five per problem. The maximum number of needed airplanes would be equivalent to
the number of packages to be delivered (in this case, 16). Thus, 16 agents are employed
on ALL configurations except on the first problem, in which PMR uses 15, which is the
maximum number available. LB employs 10 agents in the first problem and 16 in the
rest. However, BC uses 5, 6, 8, 9, 9, 10 and 11 agents, respectively. Having fewer agents
than goals in Logistics makes a package to be exchanged more times between airplanes
and trucks until it reaches the final destination. Thus, fewer actions can be parallelized.
This issue provokes the opposite effect as in the BC configuration from Driverlog. Now,

0

50

100

150

200

250

300

350

400

450

15 20 25 30 35 40 45

C
os
t

Max. number of available agents

Scaling Cost - Logistics

BC
LB
ALL

0

20

40

60

80

100

120

140

15 20 25 30 35 40 45

M
ak
es
pa
n

Max. number of available agents

Scaling Makespan - Logistics

BC
LB
ALL

Figure 7.8: Evolution of Cost and Makespan in a Logistics problem when increasing the
number of agents gradually (x axis). The configuration used was PMR-RRPT-PLAN with
Best-cost (BC), Load-balance (LB) and ALL.

109

CHAPTER 7. EMPIRICAL EVALUATION

the makespan decreases gradually as the number of planning agents increases. In ALL
results this effect is not appreciated. The policy forces that all goals are assigned to all
agents. Thus, redundancy and package-exchanges between trucks and airplanes result
in gradually obtaining worse makespan.

7.8 Hard Multi-Agent Planning problems

One of the key goals when working on multi-agent environments consists on improving
the distribution of the work load among agents, which directly improves the makespan of
the resulting plans. Also, ideally, one would expect multi-agent planners that maximize
the work-load distribution to scale up as the number of agents increases.

In this Section we show some experiments on eight domains whose problems are
harder to solve than the ones used on previous experiments. Table 7.11 shows the number
of agents, goals and main features of those problems. For these experiments we have
used the same planners and configurations shown on the CoDMAP experimentation
(Section 7.5). We have additionally added Madagascar [Rintanen, 2014], the runner-up
of the Agile track in IPC 2014. This centralized planner optimizes the minimum horizon
length of plans, which sometimes results in obtaining more parallel actions. We refer to
Madagascar as MAD in the Tables below.

In order to select the domains on this experimentation, we decided to include some
domains from the group of low interaction (Zenotravel, Satellite, Rover), and some from
the group of medium interaction (Driverlog, Blocks). We excluded the ones that had
higher interaction (Elevator, Logistics) as they were only solved on the centralized phase,
so the work-load distribution of PMR would not affect the result.

Table 7.11: Maximum number of agents, goals and main problem features in hard
problems.

#Agents #Goals Features
Zenotravel 65 104 21 cities, 6 levels of fuel

Satellite 29 114 446 instruments, 85 planets, 86 stars, 87 phenomenons
Rover 135 95 59 waypoints, 81 cameras, 14 objectives

Driverlog 68 131 85 packages, 19 locations, 37 path nodes
Blocks 4 28 30 blocks

Rover-graph 4 268 400 waypoints, 60 cameras, 20 objectives
VRP 5 79 80 packages, 159 locations

Depots-robots 2 3 5 humans, 9 pods, grid 4x5, 4 directions

110

7.8. HARD MULTI-AGENT PLANNING PROBLEMS

Additionally, we show on the same tables the results obtained on three domains
that were specifically chosen to show the strength of PMR on makespan. Two of those,
Rover-graph and the new version of Depots-robots, are contributions of this Thesis. After
all the previous experiments, we realized that the MAP problems that fitted PMR best
were those where the initial state can be easily divided in regions for the agents to “work”
on a specific part of the search space. The lower the number of interactions between
them the better.

The Rover-graph domain is an evolution of the usual Rover where two huge grids
of waypoints are generated independently and then joined by an edge between those
grids. The aim was to test how the planners’ performance evolves when a different
configuration of the environment penalizes the use of a single agent to solve the whole
problem. The number of goals of the set of problems oscillates between 150-200. The
minimum number of propositions per problem is 5100. The goals are the same as in the
classical Rover domain (e.g. communicate soil, image, rock data etc.). The number of
agents varies from 2 to 6. The two grids contain around 400 waypoints in total. On this
variation of the usual Rover problem, planners (centralized-based ones specially) get lost
because of the size of the search space. Instead of applying factorization to alleviate the
agents’ individual planning process, those planners employ the smallest possible number
of agents to solve the problem. As a result, an agent has to deal with almost all the goals,
which makes its planning task harder to solve.

Depots-Robots is the planning version of a warehouse environment inspired on the
Kiva Robots [Wurman et al., 2007] where robots have to deliver to humans a list of
products from the storage pods to complete a list of delivery orders. This new version

Table 7.12: Coverage results in hard and specific problems.

PMR-RRPT-PLAN
BC LB CMAP-T ADP-L SIW LF YAHSP MAD

Zenotravel 20 20 20 20 1 20 0 18
Satellite 20 20 20 20 1 20 0 20

Rover 20 20 20 20 0 20 0 0
Driverlog 0 3 6 6 0 8 0 0

Blocks 16 16 16 15 13 14 14 0
Rover-graph 18 18 20 20 19 8 0 0

VRP 20 19 17 20 5 17 0 12
Depots-robots 13 13 11 9 12 11 0 5

Total 127 129 130 130 51 118 14 55

111

CHAPTER 7. EMPIRICAL EVALUATION

works over a grid of waypoints where pod storages are placed in columns, leaving one
column empty between each pair of them for robots to move. The first and last row of the
grid are empty. The last row is where humans are situated for the reception of products.
The original version, where restrictions on the placements of pods and empty rows are
not applied, is described in [Borrajo and Fernández, 2018]. Robots are spread through
the grid. Thus PMR can indirectly assign to a robot a specific zone of the grid to pick
up the nearby packages. As a result, planners that factorize the problem for each robot
regarding human goals and pods’ locations will obtain better results.

VPR is the usual Vehicle Routing Problem where trucks need to deliver packages to
some cities. The aim is to reduce the cost as much as possible. Here, again the problem
can be easily divided as trucks will only care of delivering the packages by themselves.
Usually, when goals are well-balanced among the agents, a different portion of the grid
of waypoints is assigned to each of them. Thus, the problem is easier to solve for PMR;
factorization again is key to simplify the planning tasks.

Coverage results on Table 7.12 show how a planner like SIW that had promising
results on CoDMAP now cannot solve more than half of the problems due to their
complexity. The rest of the planners, including our configurations, except for YAHSP have
a similar coverage.

Table 7.13 shows that our LB configuration outperforms the rest of the planners
regarding makespan. These planners were again multi-agent (CMAP-T, ADP-L, SIW) and
centralized (LAMA, YAHSP, MADAGASCAR) planners. Hence, even though our configu-
rations might be slower, they are still capable of solving harder problems by involving
multiple agents. Dividing the number of goals as much as possible among the agents has

Table 7.13: Makespan score in hard and specific problems

PMR-RRPT-PLAN
BC LB CMAP-T ADP-L SIW LF YAHSP MAD

Zenotravel 8.74 17.41 12.17 7.39 0.53 13.26 0.00 17.89
Satellite 5.41 15.39 8.40 3.07 0.81 9.26 0.00 19.57

Rover 2.52 20.00 4.25 2.49 0.00 3.88 0.00 0.00
Driverlog 0.00 2.84 4.85 5.94 0.00 6.85 0.00 0.00

Blocks 4.59 2.36 6.57 6.57 7.10 6.04 14.00 0.00
Rover-graph 15.48 17.44 14.77 12.05 10.46 6.90 0.00 0.00

VRP 5.33 18.39 1.76 3.92 0.15 3.34 0.00 10.73
Depots-robots 9.48 11.11 10.00 6.37 9.55 9.27 0.00 1.59
Total Mkspn 51.55 104.95 62.78 47.81 28.61 58.81 14.00 49.78

Total time 98.14 79.93 88.47 113.29 31.69 97.25 7.65 52.48

112

7.9. DISCUSSION ON THE EXPERIMENTS’ RESULTS

a direct impact on makespan. In the VRP, Rover-graph and Depots-robots domains, PMR-
RRPT-PLAN-LB increases the makespan score more than the other planners; problems
can be easily divided, creating balanced subtasks for each agent. In VRP, PMR-RRPT-PLAN

outperforms the rest of planners, as it is a good example of domain, where multi-agent
planning can improve through factorization. This can also be seen on Rover-graph with
CMAP-T and LAMA. The main difference between them is factorization. CMAP-T is able
to solve every problem while LAMA cannot scale enough to solve a task of 200 goals.
Domains such as Zenotravel, Satellite and Rover, that have a low number of interactions,
are also good for our LB configuration.

Table C.5 in the Appendix B shows the time score, where ADP-L and LAMA are the
fastest ones. PMR is slower, because of the goal assignment phase, as our algorithm spends
some time on identifying which agent solves best each goal. The fastest configurations
usually assign all goals to all agents by default. This strategy works well when optimizing
for time or coverage. However, we claim that the makespan score should be the main
performance criteria if the goal is to generate plans in a real multi-agent environment,
where a big number of agents is available to work.

7.9 Discussion on the experiments’ results

After describing the results of six different sets of conducted experiments some specific
conclusions and remarks can be extracted from them:

• The performance of PMR and its adaptability cannot be appreciated on easy MAP
tasks. For instance, results on CoDMAP (Section 7.5) reflect that the centralized
planner LAMA was able to solve more problems than PMR’s BC, LB and CMAP-T;
even its coverage results are very close to those of ADP-L and SIW. This indicates
that MAP planners do not usually have a remarkable advantage over centralized
approaches on easy MAP tasks without privacy concerns.

• Regarding interactions among agents, PMR works best on low and medium inter-
action domains. Those are generally identified as loosely-coupled domains by the
planning community. Some of those domains are: Rovers, Satellite, Zenotravel,
Depots, Hammer and VRP.

• PMR biases towards optimizing the makespan metric, independently of the MAP
task received as input. Thus, the more the task can be factorized and work equally

113

CHAPTER 7. EMPIRICAL EVALUATION

distributed among agents, the better the makespan obtained will be. Usually, those
tasks are the loosely-coupled ones.

• PMR scales well on hard loosely-coupled planning tasks, and also in those that
contain a topology that can be factored for the agents to work independently. This
can be appreciated on the results from Rovers-graph or VRP.

• The goal assignment strategy Load-Balance works best for loosely-coupled domains,
as it balances the amount of goals among the agents. In turn, this has a direct
impact on improving the makespan. Best-cost biases towards improving the plan
length and works best for tightly-coupled domains. As less agents are used during
planning, it will reduce the number of conflicts to solve.

• RRPT-PLAN behaves very similar to LPG-ADAPT, which is important regarding that
LPG-ADAPT is considered the state-of-the-art replanner.

In addition, RRPT-PLAN covers the full range of reuse scenarios from the best case
for reuse (when the input incorrect plan is very similar to the final correct one) and
the worst case (when the input and final plans are very different).

• The plan-reuse phase of RRPT-PLAN is more useful when it is selected first. If
we assume that the input plan is similar to the final plan, running plan-reuse
first will automatically include most of the input plan actions into the final plan,
boosting the performance of RRPT-PLAN as a result. However, in case the input
plan is completely different from the final plan, we expect that the plan-reuse will
fail fast and RRPT-PLAN will switch to the search phase. This issue was tested on
the experiments with increasing number of goals in Section 7.4.

Also, some limitations have been identified:

• The main issue that faces PMR with tightly coupled domains is the number of
interactions to solve. If the planning task presents many interactions, the plan-
reuse phase could be potentially solved better by planning from scratch. Examples
of such planning tasks are the ones defined in the IPC for the Driverlog or Sokoban.
However, one must take into account that the distribution of problems generated
by the IPC organizers for each domain, albeit randomly generated, usually focus on
a specific subarea of the set of potential problems that can be generated. Therefore,
it is easy to see that even in these two tightly-coupled domains, one can generate
problems with lower interaction. For instance, one could have several rooms in

114

7.9. DISCUSSION ON THE EXPERIMENTS’ RESULTS

Sokoban, each with its own set of robots, or one could have different network
subgraphs in Driverlog, each one with its own set of drivers and vehicles. So, the
property of being tightly-coupled is connected to the planning task (domain and
problem) and not only to the domain.

• There exists a bottleneck on the goal assignment process. When the MAP task
contains a considerable amount of goals, the time spent on estimating the cost per
goal-agent can be heavily increased if the search space of the problem is big. In
real-life environments, this issue can be solved by including external information
to boost the cost estimation process, as shown in the next Chapter.

• Given that our objective was to focus on loosely-coupled tasks, PMR cannot deal
with joint actions (actions that require more than one agent to be executed, as
moving a table by using two agents).

115

Part IV

Application in robotics

117

C
H

A
P

T
E

R

8
USE CASE: PMR ON ROBOTICS ENVIRONMENTS

R EAL-WORLD ROBOTIC SCENARIOS, in which a set of robots need to solve
a certain amount of tasks, usually requires the combination of path-
planning and motion-planning techniques. In this Chapter we show a

combined approach between Actuation Maps and Multi-Agent Planning to boost the
path-planning computation. Our approach will be able of solving big size problems in
terms of goals, environment and search space.

8.1 Introduction

Many real-world robotic scenarios require performing task planning to decide courses
of actions to be executed by (possibly heterogeneous) robots. A classical centralized
planning approach has to find a solution inside a search space that contains every
possible combination of robots and goals. This leads to inefficient solutions that do not
scale well. Multi-Agent Planning (MAP) provides a new way to solve this kind of tasks
efficiently. Previous works on MAP have proposed to factorize the problem to decrease
the planning effort i.e dividing the goals among the agents (robots). However, these
techniques do not scale when the number of agents and goals grow. Also, in most real
world scenarios with big maps, goals might not be reached by every robot so it has a
computational cost associated.

This section presents a joint work with Tiago R. Pereira, Antonio M. Moreira and

119

CHAPTER 8. USE CASE: PMR ON ROBOTICS ENVIRONMENTS

Manuela M. Veloso [Luis et al., 2019; Pereira et al., 2018] where we propose a combination
of robotics and planning techniques to alleviate and boost the computation of the goal
assignment process. Actuation Map (AMs) was an approach already proposed by Pereira
et al. [2015] to analyze the reachability limit of robots’ motion and actuation in building
floors to perform an efficient assignment of tasks afterwards. The joint work aims to
combine AMs and MAP to efficiently solve path-planning tasks.

Given a map, AMs can determine the regions each agent can actuate on. Thus, specific
information can be extracted to know which goals can be tackled by each agent, as well
as cheaply estimating the cost of using each agent to achieve every goal. Experiments
show that when information extracted from AMs is provided to a multi-agent planning
algorithm, the goal assignment is significantly faster, speeding-up the planning process
considerably. Experiments also show that this approach greatly outperforms classical
centralized planning.

From a MAP point of view, the multi-robot problem we propose forces us to deal
with two issues regarding the performance of the planning process: (1) the size of the
search space grows with the number of waypoints and goals; and (2) some goals are
not feasible for some robots. On one hand, real-world scenarios are big enough to make
almost impossible for a planner to solve this problem in a reasonable amount of time by
just assigning all goals to all agents (following a centralized planning approach). On the
other hand, some Multi-Agent planners invoke a goal-allocation phase before starting
to plan to decrease the effort of computing individual plans such as PMR or [Borrajo
and Fernández, 2018]. During goal allocation, a relaxed plan is computed per goal and
robot to either return an estimated cost or to identify unfeasibility. This process would
be repeated multiple times, concretely |Agents|£ |Goals|, resulting in a large amount of
time lost, especially to identify unfeasible goals i.e exploring most of the search space.

Here we consider Actuation Task as a robot performing an operation that results in
some task being executed in the environment. Therefore, the actuation capabilities could
be modeled not only as the operations where a robot changes its surrounding, but also as
any perception-like operation e.g. the planning problem to solve would be mathematically
equivalent if the overall goal was not to clean all reachable space, but instead to measure
the temperature everywhere.

Our framework allows to solve planning problems where sensing operations need
to be executed at specific waypoint locations e.g. mapping the Wi-Fi signal strength in
buildings, taking measurements of temperature and humidity on a set of pre-defined
locations such as a computer cluster and server sites, different kinds of inspection or even

120

8.2. THE COVERAGE PROBLEM

surveillance problems. In general, for each robot and domain a different actuation model
can be considered e.g the actuation radius being smaller than the robot’s footprint, the
actuation range being exactly the same as the robot’s footprint, or extending it further
than the footprint. An example of the last case is a mobile manipulator, where an arm
can be extended and actuate on regions beyond the robot’s range in terms of its shape
and footprint.

8.2 The coverage problem

Our approach can be easily applied to any robotic problem that involves at least the
following elements:

• a map of the environment;

• a set of potential goals, such as cleaning actuation goals, to be executed by a set of
agents over the environment;

• a way to model that scenario into a PDDL domain and problem.

The map can be modeled in different ways (e.g. a navigation graph, a grid of waypoints,
a building floor etc.). In this work, the starting point is an image representing the world’s
floor plan. From that image, we extract a navigation graph over a grid of waypoints,
which is used to generate the PDDL problem. However, from the floor plan, additional
information can be extracted related to the environment, which is accomplished through
the process of building the AMs. The potential of our approach relies on the ability
to extract information from the map related to the tasks. Then, that information is
transformed into a set of estimation costs that can speed up the planning process.

The set of potential goals can vary depending on the problem to solve. In this case
we are focusing on the coverage problem and as a result it is enough for the robots to
move through the environment. On alternative problems, the goals could be: looking for
objects, opening doors or achieving some clients’ orders through the environment.

The coverage problem planning task is to find a route for each robot so that all the
feasible space is covered by the robots’ actuators, while minimizing the execution time.
Vacuum cleaning robots can be potential candidates for this problem. We assume that we
have a team of heterogeneous robots with different sizes. While the smallest robot can
reach more areas, a bigger robot cleans a wider area while traveling a smaller distance.

121

CHAPTER 8. USE CASE: PMR ON ROBOTICS ENVIRONMENTS

We have computed the estimated cost as the distance from the robots to each of the
waypoints on the coverage problem.

For vacuum cleaning robots, the sensing is performed through the robot’s actuator
that cleans the floor. Cleaning a specific waypoint location can be seen as the robot accom-
plishing a specific cleaning task, and therefore the coverage problem would represent a
robot moving through a map and executing multiple tasks, i.e., actuating on all available
waypoints on the environment with the objective of cleaning all reachable regions of the
environment. Some other alternatives tasks would be looking for objects, opening doors
or achieve some clients’ orders through the environment. Also, the actuation capabilities
of each robot depends on the specific actuator each robot uses, e.g., its shape and size.

Some other examples of problems to solve could include heterogeneous robots exe-
cuting surveillance tasks, cooperative mapping of the environment or search and rescue
tasks. Also, other measurements for computing estimated costs could be related to the
distance to a required object, the dangerousness or reliability of a path, or the features
of a robot, such as maximum velocity or the existence of manipulation capabilities.

In order to transform this kind of problems into PDDL we have to model (1) a domain;
(2) a problem; and compute (3) a set of estimated costs.

In this Section we are only considering heterogeneous teams of circular robots that
actuate in a 2D environment, where the world is represented by a 2D image that can be
down sampled to a 2D grid of waypoints. The AM gives information about the actuation
capabilities of each robot, as a function of robot size and initial position [Pereira et al.,
2015]. In the example with vacuum cleaning robots, the AM represents the regions of
the world each robot can clean.

We assume that robots are circular and thus the only Robot feature is its size, with
2D grid positions being rotation-invariant. Other shapes will be later considered in our
approach by extending the PDDL domain file to take into consideration robot orientation
as well.

The domain has two types of objects: robots, which act as agents; and waypoints,
which represent positions in the discretized world. We consider a coverage problem,
where the goal is to have the robots actuating on waypoints. In this version of the
coverage problem, robots actuate a waypoint if it is inside its actuation radius. Thus,
they do not need to be exactly placed on the waypoint to actuate it.

Therefore, following the MAP task defined in 3.2.2, the set G is a list of waypoints to
actuate on (positions that need to be covered). The PDDL domain we created has four
predicates:

122

8.2. THE COVERAGE PROBLEM

• At(robot, waypoint): defines the robot position;

• Connected(robot, waypoint, waypoint): establishes the connectivity between
waypoints, specified for each robot, and given the robot heterogeneity, some connec-
tions might be traversable by some robots and not by others;

• Actuated(waypoint): indicates which waypoints were already actuated; this pred-
icate is used to specify goals;

• Actuable(robot, waypoint, waypoint): shows which waypoints can be actu-
ated by a robot when located on a different waypoint location.

Robots have to actuate every waypoint in G (as long as the goal is feasible). The
waypoints, when connected, generate a navigation graph for a certain robot. The three
actions that are defined in the domain are called navigate (Figure 8.1), actuate-on
(Figure 8.2) and actuate-other (Figure 8.3). The action actuate-on is used to actuate
the current position of the robot. The third action is employed to mark a waypoint as
actuated if the waypoint is identified as actuable from the robot’s current location i.e. the
waypoint is located inside the robot’s actuation radius on the real environment. Actions
navigate and actuate-/on/other can be executed by an agent when it is placed on a
waypoint. Both actuate-on and actuate-other have as effect the predicate actuated.

(: action navigate
:parameters (? r ° robot ?y ° waypoint ?z ° waypoint)
:precondition (and (connected ? r ?y ?z) (at ? r ?y))
: effect (and (not (at ? r ?y)) (at ? r ?z))

)

Figure 8.1: Action Navigate in PDDL

(: action actuate°on
:parameters (? r ° robot ?y ° waypoint)
:precondition (at ? r ?y)
: effect (actuated ?y)

)

Figure 8.2: Action Actuate-on in PDDL

123

CHAPTER 8. USE CASE: PMR ON ROBOTICS ENVIRONMENTS

(: action actuate°other
:parameters (? r ° robot ?y ° waypoint ?z ° waypoint)
:precondition (and (at ? r ?y) (actuable ? r ?y ?z))
: effect (actuated ?z)

)

Figure 8.3: Action Actuate-other in PDDL

In order to generate a PDDL problem, the waypoints’ grid resolution is defined in
advance using a discretization step. After that, a navigation graph and a set of reachable
waypoints are defined for each robot, taking into account their physical characteristics.
All this information is generated on the preprocessing step, further explained in Section
8.6.

MultiAgent Planning
 Task Generation

Actuation Maps
(Feature Extraction)

If any
conflicts

arise

MultiAgent Planning
Algorithm

Conflicts solver
 (Plan-Reuse Planner)

Environment
Map

Features
Robot1

Features
Robot2

Features
Robotm

...

Input information

2 1

3 4

General
knowledge

Figure 8.1: Complete architecture that combines Actuation Maps and Multi-Agent
Planning

8.3 Architecture

This work combines Actuation Maps (AM) with MAP. The contributed architecture can
be seen in Figure 8.1. It has been divided into four modules and receives as input the
map of the environment, the general knowledge related to the task to solve and the
features of the set of robots. The aim of each module is described as follows:

124

8.4. ACTUATION MAPS

1. Actuation Maps module: it is in charge of generating the AMs for each given
robot. It also extracts the map features that can potentially alleviate the planning
process (e.g. estimation costs), and it generates the planning problem in PDDL. It
is explained on Section 8.4.

2. Multi-Agent Planning Task Generation module: once the outputs from the prior
module and the domain are received as input, the goal assignment process is
launched. This module is in charge of dividing the goals among the agents by
following some goal strategy. Then, a set of domain and problem is generated for
each agent, which is known as factorization. We have used the MAPR factorization
explained on Section 3.2.

3. Multi-Agent Planning Algorithm module: the individual planning process and the
merging phase of PMR are run on this module.

4. Conflicts solver module: if any interactions need to be solved, this module employs
a plan-reuse-planner to fix them. It is explained on Section 8.7.

The following section explains the essential information regarding AMs. The aim is
to fully understand later the preprocessing step.

8.4 Actuation Maps

Our system receives as input the Environment map which represents a 2D environment
(e.g. building floor plan) and m Robot models with the agents’ features. There is a third
input provided by the user that refers to the General knowledge of the environment (i.e:
tasks to solve). These three inputs represent the input information described in Figure
8.1.

The formalization of Actuation Maps (AMs) for circular-robots was carried out by
the coauthors of this contribution, T. Pereira, A. Moreira and M. Veloso. For the sake of
simplicity and to respect authorship, throughout this section we are only focusing on the
key concepts of AMs. The formalization of AMs for circular-robots is defined in [Pereira
et al., 2015].

We assume there is an occupancy grid map, i.e., a gray-scale image representing
the environment. In this image each pixel has a value with the probability of the
corresponding world position being occupied by an obstacle. This occupancy grid map is

125

CHAPTER 8. USE CASE: PMR ON ROBOTICS ENVIRONMENTS

first transformed into a binary image of free and obstacle pixels, using a fixed threshold.
An example of the resulting black and white image is shown in Figure 8.2(a).

The Actuation Space represents what the robot can actuate from any point reachable
from its initial position. In Figure 8.2 we show the Actuation Spaces after applying the
partial morphological closing operation to the original map (explained in [Pereira et al.,
2018]). The Actuation Spaces belong to two robots with different sizes.

(a) Map (b) Robot1 (c) Robot2

Figure 8.2: Simulated map and two heterogeneous robots with different sizes in (a);
colored regions represent the navigable space for 2 robots with different sizes, depending
on size and initial position of robots.

While the Actuation Space is the set that contains all the waypoints that can be
actuated by a robot, its representation as an image, as shown in Figure 8.3, is the
AM. We also use the term AM to refer to the overall technique to determine actuation
capabilities of robots. In the figures below we show the AMs. The AM can be used as a

(a) Map with 2 Robots (b) Actuation Map 1 (c) Actuation Map 2

Figure 8.3: Colored regions in Figure (b) and Figure (c) represent actuation spaces
for respective robots, i.e. the points in the environment that each robot can actuate,
depending on their size and initial position shown in Figure (a); the actuation capability
in this example is completely coincident with the entire robot footprint, i.e., the actuation
range is equal to the robot radius.

126

8.5. DISCRETIZATION

(a) Navigability (b) Actuation

Figure 8.4: In Figure (a), the free configuration space for the bigger robot in Figure 8.2(a),
with the discretization waypoints shown as green dots. The blue lines represent the
connectivity between waypoints in the navigation graph of the robot. Using parameters
± and Æ it is possible to maintain the topology of the free configuration space by allowing
points in the navigation graph that were originally unfeasible for the robot. In Figure
(b), the actuation map of the same robot, and the respective actuation graph represented
with yellow lines.

visual representation to show what the robot can actuate from any reachable point from
its initial position. We use them to visually represent in figures the sets corresponding to
each robot’s actuation space.

As an example, we can consider again the vacuum cleaning robot case. The actuation
space represents the regions the robot can clean; and the non-actuable regions are
positions that the robot cannot clean. For circular vacuum cleaning robots, corners of
the environment are non-actuable regions they cannot clean due to the robot’s circular
shape.

8.5 Discretization

For the planning problem, it is possible to consider each individual pixel as a waypoint.
However, that approach results in a high density of points that would make the planning
problem excessively complex. Moreover, there is some redundancy in having points
that are too close to each other, as their difference is not significant in terms of the
environment size and localization accuracy.

Therefore, we reduced the set of locations from all pixels to a smaller set of locations.
We considered again waypoints distributed into a grid, but now the grid-size is

greater than one pixel. Then, we can find the connectivity between points to construct

127

CHAPTER 8. USE CASE: PMR ON ROBOTICS ENVIRONMENTS

the navigation graph of each robot, shown in Figure 8.4(a). It is also possible to find
which waypoints can be actuated from other waypoints using the distance between them,
as shown in Figure 8.4(b), by considering the maximum actuation radius. However, the
problem of such discretization is the change in the actuation space topology. Adjusting
the position of waypoints could allow a better representation of the topology of the
environment, but the multi-robot nature of the problem compromises that solution.

In order to deal with multiple robots with different reachable sets, for each agent, we
independently adjust the waypoint position -temporarily- in a hidden manner invisible to
the other agents. When discretizing each robot’s configuration space, we might consider a
waypoint as belonging to the free configuration space even if it is strictly outside it, as we
assume an error margin to compensate for the discretization error. Nevertheless, we still
maintain the original waypoint position in further steps, such as determining actuation
feasibility of that waypoint, and for visualization purposes as well. When determining
the navigation graph of each robot, an unreachable waypoint position might be moved to
the closest point in the configuration space, if the adjustment is under a given margin
±. As stated previously, the adjustment is always temporary to the construction of the
connectivity graph of each robot. After the navigation connectivity is tested, the waypoint
position resets to its default grid position for the next steps, such as determining the
actuation feasibility, and the navigation and actuation graphs of other robots.

Moreover, when determining the connectivity of waypoints for the navigation graph,
only the eight grid neighbors are considered. A§ is then used to determine the real
distance between waypoints (e.g., around obstacles), and connectivity is only considered
if the real distance is at most a factor of Æ= 1.2 the straight line distance between them.

Finally, all waypoints that belong to the robot actuation map should be connected to
some waypoint of its navigable graph. If that is not the case after the previous steps, we
connect the isolated waypoints to the closest navigable vertex in line of sight, even if
their distance is greater than the maximum actuation distance, again to compensate for
the discretization error. Therefore, while the planner may return an actuate action to
cover waypoint A from the navigable waypoint B in the discretized world, a real robot
would have to move closer from the waypoint B to waypoint A in order to actuate the
latter.

The grid density is chosen manually in order to adjust the level of discretization. As
for the Æ and ± parameters, they were tuned empirically such as the free space topology
is still maintained even while using lower density discretization of the environment.
By trial and error, we found empirically that Æ= 1.2 works for all the tested scenarios.

128

8.6. PREPROCESSING

As for the ± parameter, we set it to always start with a value of 3 pixels, then build
the discretized model and verify if it is valid, i.e., if all the waypoints belonging to
the actuation map become feasible for the respective robot in terms of the discretized
representation. If not, we increment the parameter until a topologically consistent
representation is found (number of feasible goals equals number of waypoints inside
actuation map). Even though this fine-tuning methodology seems sensitive to the robot
heterogeneity, the truth is that the final ± value depends on the size of the bigger robot,
because the correct discretization of the configuration space is more sensitive to the ±

parameter for bigger robots. Through experimentation, we found out that if a certain
value of the ± parameter works well for the biggest robot, it always produces the correct
discretization for smaller robots. Moreover, we also observed that ±= 4 pixels worked
well for all the different and very diverse maps we tested in our experiments with
circular robots, only failing for the any-shape experiments where the configuration space
discretization is more sensitive to the possible robot orientation. For the any-shape robot
experiments, we found that ±= 6 pixels was enough to obtain a good discretization for all
the environments tested. The consistency of the ± parameter over different environment
maps shows that these parameters can be map-independent to a certain extent, with
most of the work being easily automated.

8.6 Preprocessing

The contributed preprocessing step is shown in Figure 8.5. This is the point where both
techniques, AMs and MAP, are combined and complement each other. In this Section we
describe the generation of goals, the detection of unfeasible regions and the computation
of estimated costs. Section 3.2.4 described the process of generating the MAP task and
how the task is factorized (divided) in subtasks.

When converting the original map and the Actuation Space to the PDDL description,
it is possible to consider each individual pixel as a waypoint in a grid with the size of
the whole image. However, that approach results in a high density of points that makes
the planning problem excessively complex. There is also redundancy in having points
that are too close to each other, as their difference is not significant in terms of the
environment size and localization accuracy.

Therefore, we reduce the set of possible locations by downsampling the grid of
waypoints. The downsampling rate sr is set manually. If the original pixel resolution
is used, the resulting grid of waypoints G

0 contains all pixels and is equivalent to G.

129

CHAPTER 8. USE CASE: PMR ON ROBOTICS ENVIRONMENTS

PDDL Problem
Generation

Goal Assignment

Actuation
 Transformation

Robot1

Actuation
 Transformation

Robot2

Actuation
 Transformation

Robotm
...

#robots
#waypoints

Grid of waypoints
List of goals

Discretization and
Merging of Maps

Estimated Cost
per Goal-Agent

List of feasible and
unfeasible goals

per agent

Factorization

Domain1
Problem1

Domain2
Problem2

Domainm
Problemm

...

Environment
Map

Features
Robot1

Features
Robot2

Features
Robotm

...

Input information

Environment
Map

Features
Robot1

Features
Robot2

Features
Robotm

...

Input information

General
knowledge

PDDL Domain

Figure 8.5: Preprocessing stage before the planning process starts. First, inputs are
processed in order to generate the AM for each agent. Then, a discretization is applied to
generate all the required information for planning such as the navigation graph for the
PDDL problem, the list of estimated costs, etc. Once this information has been generated,
the Goal-Assignment starts and the MAP problem is divided into subproblems with
specific goals assigned to each individual problem.

Otherwise, the set G0 represents the grid of waypoint positions after downsampling.

Using the Actuation Space it is possible to very easily find UG, the list of unfeasible
goals per agent:

UG = {g 2G0,¡i 2© | g 62Ai(r0i)} (8.1)

The positions in the actuation space (Ai(r0i)) are feasible actuation goals for agent ¡i.

130

8.6. PREPROCESSING

The information from theUG list can speed-up goal assignment by avoiding computation
related to unfeasible goals, but it does not provide any information about the cost for
each robot to accomplish a feasible actuation goal.

For that purpose, we contribute the following extension. We build the navigable space
Li in an iterative procedure, from the starting position r0i . In the first iteration we have
L

0
i (r

0
i)√ {r0i }, and then the following rule applies:

L
j
i (r

0
i)= {p 2G | 9q 2L j°1

i (r0i) :p neighbor of q

^p 2C f ree
i ^p 62La

i (r
0
i) 8a< j} (8.2)

When using this recursive rule to build the navigable space, we guarantee that any
point in the set L j

i (r
0
i) is exactly at distance j from the initial position r0i .

Furthermore, if we build the actuation space sets with the intermediate navigable
sets L j

i (r
0
i),

A
j
i (r

0
i)=L

j
i (r

0
i)©Ri (8.3)

then the intermediate actuation set A j
i (r

0
i) represents the points that can be actuated

by the robot from positions whose distance to r0i is j. The actuation space defined in the
previous section can also be alternatively defined as

Ai(r0i)= {p 2G | 9a :p 2Aa
i (r

0
i)} (8.4)

The actuation cost is defined for g 2Ai(r0i):

AMi(r0i , g)=min{ j | g 2A j
i (r

0
i)}+1 (8.5)

The actuation cost AMi(r0i , g) represents, for each g 2Ai(r0i), the minimum number
of actions needed for the robot to actuate the grid waypoint g if starting from the
initial position r0i , measured in the pixel-based grid G. In Equation 8.5, the minimum j§

represents the minimum distance (i.e., minimum number of navigate actions) needed to
travel from r0i to some point from where g can be actuated. The added one in Equation 8.5
accounts for the one actuate action needed to actuate g, after the j§ navigate actions
needed to reach a place from where the robot can actuate g.

Thus, the cost function C presented previously in Section 3.2 is defined in Equation
8.6, where sr is the downsampling rate. The division by sr transforms the estimated cost
of actions measured in the pixel-based grid G, ACi(r0i , g), to the respective cost value
in the downsampled grid of waypoints G0. The ceil function rounds up the result of the
division to the smallest integer value that is not less than ACi(r0i , g)/sr. The cost function

131

CHAPTER 8. USE CASE: PMR ON ROBOTICS ENVIRONMENTS

C is domain-dependent and works for the coverage problem. If a different problem is
given as input, the cost function should be redefined.

c(AMi(r0i , g))= ceil
°
AMi(r0i , g)/sr

¢
(8.6)

Finally, the Estimated Cost per Goal-Agent list EC is defined in Equation 8.7.

EC = {hg,¡i,ci | g 2G0 ^¡i 2©^ g 2Ai(r0i)^ c 2 c(AMi(r0i , g))} (8.7)

Once the discretization of maps has been performed, we have all the information
needed to generate the MAP task M, which is formed by a domain (received as input) and
a problem (generated through the discretization). The inputs to the Goal Assignment
(GA) phase are (1) the PDDL domain; (2) the PDDL problem; (3) the list of estimated costs
where c is computed as the number of steps for an agent to reach the goal position g from
its initial position; and (4) the list of unfeasible goals UG = {g 2G,¡i 2© |C(g,¡i)=1}.
As long as EC is provided, UG is not used inside the MAP algorithm. The case when EC
is not provided is later explained in this Section.

In Multi-Agent systems, in order to perform task allocation [Conitzer, 2010; Gerkey
and Matarić, 2004] some strategy has to be determined or implemented, as the aim it
is to divide the MAP task in subtasks to alleviate the planning process afterwards. In
addition, a goal-assignment strategy (GAS) needs to be chosen to define the way goals
are assigned to agents by the system. In our approach, we have chosen the Load-Balance
(LB) strategy previously defined in Section 3.3. The LB assignment strategy is used
when minimizing the maximum number of actions per agent (makespan). As a second
option, we also chose the Best-Cost (BC) when minimizing the total number of actions
over all robots (plan length).

As stated in [Borrajo, 2013], only when the information about estimated cost per
pair robot-goal is not available for some reason, our MAP algorithm would perform
Goal Assignment by computing a relaxed plan using the FF heuristic [Hoffmann and
Nebel, 2001]. However, in that work, when a goal was unfeasible for every agent, it was
assigned to all of them. In our approach, when the goal has been identified as unfeasible
by all agents, the relaxed plan is not computed for that pair robot-goal and the goal is
not included into the M task. This behavior is not common in classical deterministic
Automated Planning, as planners expect that the problem does not contain any unfeasible
goal. As our approach separates goal allocation from planning, we can easily deal with
unfeasible goals. This small contribution gives us more flexibility when working for
real environments, as it is better to obtain a plan that solves 95% of the goals than

132

8.7. DEALING WITH INTERACTIONS

just failing during planning. To plan using soft-goals [Krulwich, 1992] or working on
oversubscription planning [Smith, 2004; García-Olaya et al., 2011] would have been other
ways to deal with unfeasibility, but they are out of the scope of this work. In summary,
there are two contributions to the GA process: (1) the detection and deletion of unfeasible
goals is a contribution that helps not only on skipping the computation of those relaxed
plans but also avoids the planning process to fail; and (2) to use information from AMs,
as the algorithm receives and processes the estimated costs from the AMs to skip the
computation of the relaxed plans. The MAP algorithm to solve the MAP task is PMR.

On Figure 8.6 we show a solution example obtained from the MAP algorithm. It
corresponds to the scenario called Corridor-High later on the experiments.

(a) Waypoints (b) Path 1 (c) Path 2 (d) Path 3 (e) Path 4

Figure 8.6: These figures represent the Corridor scenario used in the experiments. The
waypoint discretization is shown in Figure (a). The resulting path for each robot is
shown in Figures (b) to (e), after solving the planning problem using load balance as
goal-strategy. Path 1 belongs to the smallest robot. Path 4, to the biggest one.

8.7 Dealing with Interactions

Real-world robotics environments might imply to deal with potential interactions among
robots (at the very least) e.g. collisions, sharing a resource, or cooperation. On the
previous description of the coverage problem we did not explicitly consider any kind of
interactions. Our idea was (1) to test first the scalability of the MAP algorithm; and (2)
to generate, as fast as possible, a valid solution. Robots might occasionally collide at
some specific step of the solution plan. However, that collision could be easily resolved
during execution by forcing one of the robots to wait until the other robot has left the

133

CHAPTER 8. USE CASE: PMR ON ROBOTICS ENVIRONMENTS

conflict zone. Then, the stopped robot will continue executing the rest of its plan. On the
other hand, there is a subarea of Automated Planning called Planning by Reuse that has
been widely employed in areas such as Case-Based Planning [Borrajo et al., 2015], or
replanning when plan execution fails [Fox et al., 2006]. Usually, planners that perform
plan reuse receive three inputs: a domain, a problem and a plan to be fixed. Examples
of this kind of planners are LPG-ADAPT [Fox et al., 2006] or ERRT-PLAN [Borrajo and
Veloso, 2012]. More information about Plan Reuse is given in Chapter 4.

Therefore, an improvement of our approach is to detect and fix potential collisions
right after the individual planning process using an off-the-shelf plan reuse planner, as
PMR does. This new feature makes our architecture more robust when executing the
solution plan in a real environment. Thus, we slightly changed our PDDL domain to
track the collisions by adding a new predicate called occupied.

• Occupied (waypoint): indicates that there is a robot on that waypoint.

That predicate is set as a new precondition of the navigate action described in
Figure 8.3. This allows the agent to only traverse a connection if the destination waypoint
is not occupied by a robot. The predicate occupied in combination with the parallelization
algorithm avoids two situations: (1) Two robots cannot be on the same waypoint at the
same plan step. (2) As we build a parallel plan, neither of them can swap positions during
the same plan step. The reason is that in order to move robot1 to y from z, y should be
not occupied first. The same happens to z for robot2. Thus, both actions are mutually
exclusive and the parallelization algorithm does not allow both actions to be performed
together. One of the robots would need to move somewhere else first.

As the MAP algorithm starts with the individual planning phase, no collisions will be
detected at that point (line 1). After concatenation, the solution plan is validated by VAL
(line 3). The validator will detect, if any, mutex actions related to occupied positions as
explained above. If so, the plan will be invalid. As a result, the M0 task and the invalid
plan are sent to the plan reuse planner (line 6). When the plan is fixed, the parallelization
step is applied (line 7). Finally, the MAP algorithm runs VAL again (line 8). If the plan
is valid, it is returned as the solution. The configuration of our algorithm is the same
as the previous version - the Single-Agent Planner is LAMA-UNIT-COST. The plan reuse
planner is LPG-ADAPT.

134

8.8. EXTENDING THE APPROACH TO ANY-SHAPE ROBOTS

(: action navigate
:parameters (? r ° robot ?y ° waypoint ?z ° waypoint)
:precondition

(and (connected ? r ?y ?z) (at ? r ?y)
(occupied ?y) (not (occupied ?z))

)
: effect

(and (not (at ? r ?y)) (not (occupied ?y))
(at ? r ?z) (occupied ?z)

)
)

Figure 8.4: Action Navigate that now checks occupied positions

8.8 Extending the Approach to Any-Shape Robots

For the case of non-circular robot footprints (Figure 8.7), given that the robot model
is not rotation invariant, we need to discretize orientation as well. We use a world
representation that is composed of multiple layers, where each layer represents one
orientation. Then, we determine individually for each orientation the corresponding
actuation space. Again, for the sake of simplicity and to respect authorship, throughout
this section we are only focusing on the key concepts of the extended approach for
any-shape robots. The entire formalization can be found in [Pereira et al., 2016].

First, the algorithm needs images to model both the robot and its actuation capa-
bilities. Both are parametrized by images that can be rotated and scaled to represent

Figure 8.7: Environment and robot models used to test the extended approach to any-
shape robots .

135

CHAPTER 8. USE CASE: PMR ON ROBOTICS ENVIRONMENTS

(a) Robot ModelR for
µ = 0ž

(b) Robot Model R for
µ = 45ž

(c) Robot Model R for
µ = 90ž

Figure 8.8: Example of an image representing the robot footprint, rotated for three
different angles, and used as structuring element in the morphological operations applied
to the respective orientation layers; robot center shown in red.

any robot. As input, it is also necessary to give the center of the robot and actuation in
terms of their model images, and their relative position. Figure 8.8 shows an example of
how the input image of the robot has been rotated to build a model of the robot for each
possible orientation.

Figure 8.9: Three adjacent layers of the discretized orientation, showing in blue the
neighbor points of a central orange dot, representing the connectivity/motion model.

In order to model a robot that navigates through waypoints, we need to establish the
type of connectivity between points in different layers, such as it is equivalent to the
type of motion the robot actually has. As an example, using the connectivity graph from
Figure 8.9, where one point is connected to all its neighbors in the same layer, and the
respective positions in adjacent layers, is equivalent to considering an omnidirectional
model of navigation.

Therefore, while on the rotation-invariant scenario the domain was discretized in
a series of 2D waypoints, for the any-shape case there are two types of waypoints: the

136

8.8. EXTENDING THE APPROACH TO ANY-SHAPE ROBOTS

(a) Robot 1 Graphs - 0º
Layer

(b) Robot 1 Graphs - 45º
Layer

(c) Robot 1 Graphs - 90º
Layer

(d) Robot 2 Graphs - 0º
Layer

(e) Robot 2 Graphs - 45º
Layer

(f) Robot 2 Graphs - 90º
Layer

Figure 8.10: The connected and actuable graphs shown in blue and yellow, respectively;
as shown for each layer, the yellow actuation graph connects 3D waypoints to the original
2D green waypoints, and the blue connectivity graph connects 3D waypoints not only to
neighbors in the same layer, but also in adjacent layers.

3D waypoints representing (x, y,µ) position, and the 2D waypoints representing (x, y)
positions invariant to orientation.

The navigability graph now becomes a graph of 3D waypoints connected to each other,
modeling the motion capabilities of robots in the world in terms of both rotation and
translation, individually or combined, as exemplified for different orientation layers on
Figure 8.10.

As a result, the actuation space gives the actuation capabilities for each orientation
for a given robot shape and starting position. We show in Figure 8.11 the navigable and
actuation spaces for different layers, given the robots and map shown in Figure 8.7.

After determining the actuation space for each layer, we can obtain the overall
actuation map in a rotation-invariant representation by projecting the multiple layers
into one single 2D image.

The actuation graph is now a graph of 3D waypoints connected to 2D waypoints, rep-
resenting the actuation of a rotation-independent position in the projected 2D actuation

137

CHAPTER 8. USE CASE: PMR ON ROBOTICS ENVIRONMENTS

(a)
Robot
1

(b)
Robot 2

(c) Robot 1 - Nav-
igable Space - 0º
Layer

(d) Robot 1 - Nav-
igable Space - 45º
Layer

(e) Robot 1 - Nav-
igable Space - 90º
Layer

(f) Robot 1 - 2D Pro-
jected Navigability

(g) Robot 1 - Ac-
tuation Space - 0º
Layer

(h) Robot 1 - Actu-
ation Space - 45º
Layer

(i) Robot 1 - Actu-
ation Space - 90º
Layer

(j) Robot 1 - 2D
Projected Actuation
Map

(k) Robot 2 - Nav-
igable Space - 0º
Layer

(l) Robot 2 - Nav-
igable Space - 45º
Layer

(m) Robot 2 - Nav-
igable Space - 90º
Layer

(n) Robot 2 - 2D Pro-
jected Navigability

(o) Robot 2 - Ac-
tuation Space - 0
Layer

(p) Robot 2 - Actu-
ation Space - 45º
Layer

(q) Robot 2 - Actu-
ation Space - 90º
Layer

(r) Robot 2 - 2D
Projected Actuation
Map

Figure 8.11: Navigable and Actuation Space for 2 non-circular robots with different sizes,
for the scenario shown in Figure 8.7.

138

8.8. EXTENDING THE APPROACH TO ANY-SHAPE ROBOTS

(a) Robot 2 - Graphs
on Free Configuration
Space - 0º Layer

(b) Robot 2 - Graphs
on Navigable Space - 0º
Layer

(c) Robot 2 - Graphs on
Free Configuration Space
- 90º Layer

(d) Robot 2 - Graphs on
Navigable Space - 90º
Layer

Figure 8.12: The discretized graphs constructed are independent of the initial robot
positions, allowing to run the problem from different initial positions; the white regions
(navigable space, dependent on initial position) are covered by the graphs, but some black
regions (if grey in the respective configuration space, independent of initial position) are
also covered by the constructed graphs.

map, from a 3D robot waypoint location, also shown in Figure 8.10. The predicates on
the PDDL problem are represented as follows:

• Connected (robot, 3Dwaypoint, 3Dwaypoint)

• Actuable (robot, 3Dwaypoint, 2Dwaypoint)

For each 2D waypoint in the circular robot scenario, there are now nµ 3D waypoints
in the same (x, y) position, representing the different orientations a robot can have on
the same 2D waypoint. As we show in Figure 8.12, the two graphs are constructed
independently of the initial position, allowing very easily to change the starting location
of any robot and solve a different instance of the same problem. Thus, there were no
modifications in the modeling of the PDDL problem. The 3D to 2D representation is
transparent to the planning process.

The navigate action moves through 3D waypoints, and the actuate action makes
2D waypoints have the actuable predicate. The list of goals to solve the problem is still
given by a list of 2D waypoints that cover all the space. Thus, for the same map, the
coverage problem is still the same in terms of goal waypoints and model. However, now
we plan for robots to move through the environment and actuate goal positions from
some planned orientation. The PDDL domain did not need any further modifications.

If we project the multiple layers of the graphs in a 2D image, we can analyze which
waypoints are navigable in terms of the robot motion, and which ones are only feasible

139

CHAPTER 8. USE CASE: PMR ON ROBOTICS ENVIRONMENTS

(a) Robot 1 (b) Robot 2

Figure 8.13: All goal waypoints are shown as spheres on top of the Actuation Map: green
represent unfeasible waypoints, in red the ones covered by the connected graph, and
in blue the ones only covered by the actuable graph; for the smaller robot 1, the two
graphs are the same.

through an actuation action. As we show in Figure 8.13, some of the waypoints are not
feasible by any of the robots, and all the feasible waypoints lie inside the Actuation Space
(grey region of the images).

8.9 Experiments and results

In this Section we show the results of the experiments that were designed to test the
impact of the preprocessing on two different versions of our algorithm, PMR. First, on the
following Section we describe the five scenarios designed to run the experiments. Then,
on Section 8.9.2 the experiments on the coverage problem are analyzed. These results
were partially included on [Pereira et al., 2018]. Finally, on Section 8.9.3 we show the
results on the coverage problem including collision detection.

8.9.1 Simulation Setup

Here we describe in detail the scenarios used for running the experiments. We designed
five different scenarios, shown in Figure 8.14, each one with two levels of waypoint
density (H, the higher, and L, the lower density). The scenarios are designed for circular
robots except for the last one (called Rooms) that is designed for any-shape robots.

140

8.9. EXPERIMENTS AND RESULTS

(a) Mutual Exclusive (b) Maze

(c) Corridor (d) Extremities (e) Rooms

Figure 8.14: Maps of the five scenarios used in the experiments. Grey regions represent
out-of-reach regions which cannot contain goal waypoints. They are unfeasible for all the
robots. Robots are represented with blue circles/rectangles positioned in the region of
their starting position.

• Mutual Exclusive: three wide parallel horizontal halls, connected between them
by two narrow vertical halls; 3 robots move within the horizontal sections, one in
each, and their actuation reachabilities are mutually exclusive.

• Maze: maze-like scenario with narrow halls and passages with different sizes,
resulting in bigger robots not reaching some parts of the maze, or needing to
traverse bigger paths to arrive to the same locations as smaller robots.

• Corridor: four wide sections with openings of different sizes connecting them; the
opening decreases from the top to the bottom, with all 4 robots being able to actuate
in the top region, to only one being able to reach the bottom.

• Extremities: wide open section with three halls departing to different directions,

141

CHAPTER 8. USE CASE: PMR ON ROBOTICS ENVIRONMENTS

where all 4 robots actuate; at the end of each hall there is a room that can be
accessed through an opening, with only one robot reaching the extremity connected
with the smallest opening, to three reaching the one connected with the biggest
opening.

• Rooms: simple floorplan environment with some room-like spaces connected through
passages of different sizes as well, used to test the non-circular robot case where
they can traverse the passages using only certain orientations.

Furthermore, in Table 8.1 we present the size of each map image, and the number
of agents and feasible and unfeasible goals for each scenario. We present in Table 8.1
the grid size in terms of the downsampled grid of waypoints. The original image had a
pixel size approximately 10 times bigger, with a pixel resolution corresponding to 10cm.
Therefore, the maps we tested represent environments with a size always bigger than
300 square meters.

We have generated two problems per scenario, one of them with low density of
waypoints (which we identify as L in tables) and the other one with a higher density of
waypoints (H). We have also designed versions of Maze, Extremities and Rooms for 10
robots in order to test the behavior of the planners in crowded scenarios. Rooms2r is a
similar version of RoomsL but for circular robots.

Table 8.1: Number of agents, feasible and unfeasible goals and respective grid size for
each problem. Scenarios are designed for circular robots except for those marked with
(*), where robots are any-shape

Scenario Agents Feasible Unfeasible Grid Size
CorridorH 4 819 118 49x19
CorridorL 4 384 92 33x13
ExtremeH 4 1993 1325 51x63
ExtremeL 4 896 589 34x42
MutExH 3 499 513 45x21
MutExL 3 223 242 30x14
MazeH 3 1389 154 38x38
MazeL 3 672 100 25x25

Rooms2r 2 192 52 13x13
Rooms10r 10 192 52 13x13

Extreme10r 10 1442 589 34x42
Maze10r 10 672 100 25x25
RoomsH* 2 835 182 28x28
RoomsL* 2 131 61 13x13

142

8.9. EXPERIMENTS AND RESULTS

For the experiments on this Section, the actuation model is always considered to be
equal to the robot footprint.The Actuation Map determination was developed in C++.

8.9.2 Experiments on the Coverage problem

In this Section we show some experiments that test the impact of the preprocessing in
our approach, called MAP. In these experiments, MAP only contains the first two steps of
PMR: individual planning and merging. As it was previously said, we have modeled five
different scenarios that include up to four agents with different sizes, and thus different
actuation capabilities. Planning results are shown using as metrics the time in seconds,
the length of the resulting plan and the makespan. In non-temporal domains, we refer
as makespan the length of the parallel plan (number of execution steps, where several
actions can be executed at the same execution step). Given that we are dealing with
MAP tasks that have no interactions, it is expected that agents can execute their actions
in parallel whenever possible.

Four different configurations of our approach have been set up:

• MAP-LB-EC with estimated-cost information (EC). EC refers to the configuration
that combines Actuation Maps and MAP.

• MAP-BC-EC with estimated-cost information (EC), also combining Actuation Maps
and MAP.

• MAP-LB, same as before but without EC information.

• MAP-BC same as before but without EC information.

As it was mentioned in Section 3.2.4, in low-interaction domains, applying the LB
strategy fosters the parallelization of actions, which minimizes the makespan metric.
The BC strategy focuses on minimizing the plan length metric. We also run the problems
without the preprocessing stage in order to evaluate our impact in terms of computation
time and plan quality.

Furthermore, the following state-of-the-art planners have been chosen as a compari-
son baseline:

• LAMA [Richter and Westphal, 2010], centralized planer and winner of IPC 2011.

• YAHSP [Vidal, 2004], a greedy centralized planner.

• ADP [Crosby, 2015], a multi-agent planner that automatically detects agents.

143

CHAPTER 8. USE CASE: PMR ON ROBOTICS ENVIRONMENTS

• SIW [Muise et al., 2015], a multi-agent planner that factorizes the problem into
subproblems solving one atomic goal at a time until all atomic goals are achieved
jointly.

• CMAP [Borrajo and Fernández, 2015], a multi-agent planner that employs a cen-
tralized approach to solve the problem.

The three multi-agent planners that have been chosen participated on the 1st Com-
petition of Distributed and Multi-agent Planners (CoDMAP1) and obtained good results
on the final classification.

Neither of these five planner perform a goal allocation phase separated from the
planning process. Thus, we had to test them using the equivalent PDDL problems that do
not contain unfeasible goals. Also, in order to fairly compare the results of the makespan
metric, we had to apply our parallelization algorithm to the resulting plans of ADP and
SIW, as they only return the sequential plan.

We have generated two problems per scenario, one of them with less number of
waypoints (which we identify as L in tables) and the other one with a high density of
waypoints (H), except for the last two scenarios that only have one density level (Maze
and Rooms), making it a total of eight problems. The Rooms scenario works for any-shape
robots while the rest work for circular robots. Before discussing the results on the tables
we need to clarify that a maximum of two hours was given to each planner to solve each
scenario. YAHSP results do not appear in the tables because it could not solve any of the
scenarios.

The maximum time spent on the preprocessing for any scenario was 170 milliseconds,
for the Extremities problem with 4 robots. We included the preprocessing times (to
generate the AMs) in the GA column of Table 8.2, and in the total time in Tables
8.3. Hardware used for running the planner was IntelXeon 3,4GHz QuadCore 32GB
RAM. AMs were computed using a 2.5GHz DualCore 6GB RAM. Table 8.2 shows the
remarkable impact that information from Actuation Maps (AMs) has in combination with
the MAP algorithm. Goal assignment (GA) times in Table 8.2 are minimal (MAP-LB-EC)
in comparison with the ones of MAP-LB, where it needs to compute the relaxed plans for
every goal-agent pair. Even though the individual planning and parallelization time for
MAP-LB-EC is similar to MAP-LB, the time gains in GA completely dominate the overall
planning time. Before running any problem, MAP performs a MAP compilation of the
original problem to generate each agent’s individual problem after goals are assigned (M’

1http://agents.fel.cvut.cz/codmap/

144

http://agents.fel.cvut.cz/codmap/

8.9. EXPERIMENTS AND RESULTS

task). Usually this transformation takes seconds and it is included in GA time. However,
we observed that given the size and complexity of any-shape scenarios (RoomsH and
RoomsL), the compilation time increases considerably and becomes more than half of
the time spent on solving the task. This phenomenom is marked with + in column Total
time from Table 8.2.

Table 8.2: Detailed time results in seconds for the MAP algorithm using the Load Balance
strategy with and without estimated cost information. From left to right total time, goal
assignment time, individual planning time and parallelization time. Symbol + indicates
that the MAP compilation time is very high.

Time (s)
MAP-LB-EC MAP-LB

Scenario Total GA Planning Parallel Total GA Planning Parallel
CorridorH 88.07 0.90 68.34 18.83 1748.38 1672.46 58.83 17.09
CorridorL 13.37 0.29 10.54 2.54 484.48 179.19 303.28 2.01
ExtremH 639.54 4.53 427.91 207.10 timeout
ExtremL 86.78 1.22 64.11 21.45 5491.00 5377.80 84.64 28.56
MutExH 10.59 0.44 7.36 2.79 1276.18 1265.62 7,78 2.78
MutExL 2.10 0.11 1.64 0.35 103.40 100.72 2.31 0.37
MazeH 1200.37 0.69 944.21 255.47 timeout
MazeL 1179.21 0.24 1152.71 26.26 882.93 603.78 240.3 38.85
Rooms2r 0.19 0.05 0.05 0.09 8.31 5.70 1.85 0.76
Rooms10r 4.70 0.19 4.17 0.34 40.54 36.34 3.84 0.36
Extreme10r 93.79 2.97 68.89 21.93 timeout
Maze10r 36.37 0.81 28.74 6.82 2121.11 2070.49 39.6 11.02
RoomsH 6180.37+ 9.85 1022.19 1922.87 timeout
RoomsL 448.63+ 2.31 2.54 95.05 timeout

Regarding time results in Table 8.3, MAP-LB-EC is generally faster if all total times
are summed up except in Maze. Also, the impact of combining information from AMs with
MAP can be easily appreciated if columns from MAP-LB-EC and MAP-LB are compared.
The same happens with BC configurations. Our two configurations MAP-LB-EC and MAP-
BC-EC solved every problem. There is an exception in RoomsH, in which the parallel plan
of both solutions could not be obtained in the remaining time before the 7200 seconds
were reached. In general, the easiest scenario to be solved using planning is the Mutual
Exclusive (MutExH, MutExL) because it is designed for each robot to traverse a mutual
exclusive subset of waypoints. This is the reason why time results are very similar
among all planners except for MAP-LB and MAP-BC where the planner needs to compute
the relaxed plans for each pair robot-goal. However, CMAP had some trouble during

145

CHAPTER 8. USE CASE: PMR ON ROBOTICS ENVIRONMENTS

Table 8.3: Total time results in seconds. From left to right MAP with estimated-cost
information in Load-balance (LB-EC); MAP without estimated cost information in LB;
MAP with estimated cost information in Best-cost (BC-EC); MAP without estimated
cost information in BC; ADP, SIW and CMAP are other multi-agent planners and LAMA
is a centralized planner. Symbol * indicates that the planner solved the problem but
parallelization over-passed the alloted time (7200s).

Total Time (s)
MAP Other approaches

Scenario LB-EC LB BC-EC BC SIW ADP CMAP LAMA
CorridorH 88.07 1748.38 304.91 1791.85 129.71 484.48 1761.82 95.45
CorridorL 13.37 484.48 33.78 203.00 10.98 85.97 187.57 22.74
ExtremH 639.54 timeout 642.04 timeout 1923.32* 439.58* timeout timeout
ExtremL 86.78 5491.00 82.51 5547.00 156.71 402.15 91.24 72.07
MutExH 10.59 1276.18 10.55 1277.47 11.65 6.15 1277.89 6.93
MutExL 2.1 103.40 2.09 97.27 0.81 0.89 96.38 1.06
MazeH 1200.37 timeout 2718.96 timeout 429.87 meml. 2575.24 2005.42
MazeL 1179.21 882.93 161.03 1213.26 37.92 meml. timeout 334.8
Rooms2r 0.19 8.31 2.64 8.42 0.77 2.24 7.32 1.54
Rooms10r 4.7 40.54 4.18 36.06 2.26 2.04 34.21 2.55
Extrm10r 93.79 timeout 98.44 timeout 258.72 169.68 timeout 76.56
Maze10r 36.37 2121.11 29.63 2110.11 61.95 20.04 2099.74 29.7
RoomsH 6180.37* timeout 6120.28* timeout timeout timeout timeout timeout
RoomsL 448.63 timeout 447.56 timeout 286.34 140.1 timeout 132.02

planning in the high density scenario. The circular robot version of Rooms (Rooms2r) is
also very easy to solve, even though the number of goals is higher than the any-shape
version (RoomsL). If times from Rooms2r and RoomsL are compared, the complexity
of just changing from circular to any-shape robots can be empirically appreciated. ADP

reached the memory limit in Maze when planning the solutions before the two hours
limit. Even though ADP is a multi-agent planner, the effort of computing plans in big-size
environments when all goals are assigned to all agents is very big. LAMA has the same
issue as ADP because of its centralized approach (Maze, Extremities, RoomsH). From the
set of planners that we chose to compare our approach, SIW is the one that obtains the
best results.

Table 8.4 shows the results regarding the plans’ length and Table 8.5 the results
regarding makespan. We have used the words timeout to indicate that a planner con-
sumed the alloted time and could not return a solution, memlimit to indicate that the
planner’s memory limit was reached before timeout and parallel to indicate that the

146

8.9. EXPERIMENTS AND RESULTS

Table 8.4: Plan length: from left to right MAP with estimated-cost information in
Load-balance (MAP-LB-EC); MAP without estimated cost information in LB; MAP with
estimated-cost in Best-Cost (MAP-BC-EC); MAP without estimated cost information in
BC; SIW, ADP, CMAP and LAMA. Symbol * indicates that the planner solved the problem
but parallelization over-passed the alloted time (7200s).

Plan Length
MAP Other approaches

Scenario LB-EC LB BC-EC BC SIW ADP CMAP LAMA

CorridorH 1511 1512 1653 1556 1543 3545 1541 1471
CorridorL 727 692 784 791 699 627 746 748
ExtremH 3830 timeout 3830 timeout 3580* 8687* timeout timeout
ExtremL 1715 1850 1715 1786 1627 2848 1659 1546
MutExH 658 658 658 658 758 773 658 658
MutExL 301 301 301 301 306 302 301 301
MazeH 3358 timeout 3004 timeout 2570 meml. 1353 2686
MazeL 1599 1387 1434 1441 1236 meml. timeout 1345
Rooms2r 142 333 313 315 303 398 302 319
Rooms10r 292 344 287 286 266 318 268 268
Extrm10r 1604 timeout 1627 timeout 1534 2692 timeout 1612
Maze10r 1480 1852 1308 1261 1202 1452 1224 1253
RoomsH 1403* timeout 1337* timeout timeout timeout timeout timeout
RoomsL 370 timeout 336 timeout 366 627 timeout 370

planner solved the problem but the parallelization algorithm could not return a solution
in the remaining time to reach 7200s (SIW, ADP in ExtemeH; MAP-LB-EC, MAP-BC-EC

in RoomsH). The best configurations overall regarding plan length are MAP-BC-EC and
SIW. Moreover, MAP-LB-EC configuration is generally the best for reducing makespan.
Configurations MAP-LB or SIW also obtain good results in specific scenarios. This issue
can be explained by the discretization errors from Equation 8.5, which are greater when
the downsampling rate is bigger. When allocating goals, the estimation costs are the
only guide for the MAP algorithm. The consequence of having slightly inaccurate cost
estimates results in the allocation of some goals to different agents than the ones that
the estimated costs from the relaxation of plans would suggest. However, this issue does
not have a big impact on makespan and plan length results.

From the set of planners chosen to compare our approach, SIW obtains the best
performance on time, plan length and makespan. SIW is able to solve most of the
scenarios due to its serialization of goals. The importance of factorizing a MAP problem
is a conclusion that can be extracted after observing Tables 8.4 and 8.5, as the planners

147

CHAPTER 8. USE CASE: PMR ON ROBOTICS ENVIRONMENTS

Table 8.5: Makespan: from left to right MAP with estimated-cost information in
Load-balance (MAP-LB-EC); MAP without estimated cost information in LB; MAP with
estimated-cost in Best-Cost (MAP-BC-EC); MAP without estimated cost information in
BC; SIW, ADP, CMAP and LAMA.

Makespan
MAP Other approaches

Scenario LB-EC LB BC-EC BC SIW ADP CMAP LAMA

CorridorH 609 583 1353 862 973 1699 717 698
CorridorL 298 256 657 601 265 1073 444 452
ExtremH 905 timeout 905 timeout parallel parallel timeout timeout
ExtremL 376 702 376 1091 450 1378 564 484
MutExH 117 117 117 117 149 155 117 117
MutExL 58 58 58 58 64 58 58 58
MazeH 1631 timeout 1631 timeout 1941 meml. timeout 1369
MazeL 696 993 1035 1384 837 meml. 1288 1217
Rooms2r 264 262 264 271 214 342 212 237
Rooms10r 47 55 57 54 59 73 67 67
Extrm10r 258 timeout 258 timeout 214 816 timeout 552
Maze10r 246 367 213 246 212 288 221 243
RoomsH parallel timeout parallel timeout timeout timeout timeout timeout
RoomsL 240 timeout 242 timeout 180 510 timeout 177

that do not perform factorization (LAMA, ADP, CMAP, YAHSP) have to solve bigger and
more complex tasks.

Regarding our configurations, MAP-BC-EC and MAP-LB-EC perform better in general
than equivalent configurations without estimation costs. On the other hand, the lower
the number of agents used to plan, the harder the planning task. Total time in BC is
usually worse than in LB configurations on scenarios with higher density of waypoints
and multiple robots to plan (CorridorH, MazeH).

8.9.3 Experiments Detecting Potential Collisions

In this Section we show the results obtained on the same scenarios as in the previous
Section but using instead the PDDL domain that detects collisions described in Section
8.7. In Tables 8.6 and 8.7, we refer to MAP&R-LB-EC as running the Algorithm 1 using
the LB strategy. MAP&R-BC-EC runs the BC strategy instead. We have also compared
our approach against the same set of planners as in Section 8.9.2. The maximum time
for each planner to solve each scenario is two hours. YAHSP results are not shown in the

148

8.9. EXPERIMENTS AND RESULTS

tables as it was not able to solve any problem.
The aim of this experiment is to analyze the impact of detecting and fixing collisions

on makespan and time metrics. Plan length is not relevant on this experiment, as the
difficulty lies on the planner’s ability to manage several agents and collision avoidance
at the same time. That is a feature that directly affects the makespan result.

Regarding time results in Table 8.6, it can be seen that the number of problems
solved decreases considerably. Also, time results have increased in all planners. This is
due to the collision avoidance effect. On one hand, centralized approaches can deal with
it more easily, as the master agent has the whole control of the agents. However, it is
still facing the same issue as in the previous experiments: the tasks are harder to solve
and now the search space is bigger.

Table 8.6: Time in seconds from left to right MAP with estimated-cost information in
Load-balance (MAP&R-LB-EC); MAP with estimated-cost in Best-Cost (MAP&R-BC-EC);
SIW, ADP, CMAP and LAMA.

Total Time (s)
Scenario MAP&R-LB-EC MAP&R-BC-EC SIW ADP CMAP LAMA

CorridorH timeout timeout 263.82 timeout timeout 293.11
CorridorL 73.57 81.51 50.64 193.54 202.16 53.24
ExtremH timeout timeout timeout timeout timeout timeout
ExtremL timeout timeout 752.5 timeout timeout timeout
MutExH timeout timeout 7.61 9.01 1328.77 70.08
MutExL 3.25 3.35 1.35 1.06 104.45 3.25
MazeH timeout timeout 986.17 memlimit timeout timeout
MazeL timeout timeout 67.34 memlimit 945.04 timeout
Rooms2r 4.78 4.71 1.5 5.85 8.47 2.24
Rooms10r 7.11 7.12 4.86 3.51 40.42 9.62
Extreme10r timeout timeout timeout timeout timeout timeout
Maze10r 406.75 timeout 466.03 memlimit 2196.02 560.40
RoomsH timeout timeout timeout timeout timeout timeout
RoomsL 3406.21 3092.80 timeout timeout timeout timeout

Our approach is halfway between the centralized and the distributed approach. The
first part of our algorithm is distributed while the plan-reuse phase is centralized. Thus,
the success of our algorithm depends on the number of collisions and the difficulty of
solving them. LPG-ADAPT focus first on reutilizing the greater possible number of the
actions from the invalid plan. When a collision is detected, LPG-ADAPT will search for a
valid action on the part of the search space that is closer to the invalid action and its
current planning state. This causes LPG-ADAPT to iteratively explore the search space

149

CHAPTER 8. USE CASE: PMR ON ROBOTICS ENVIRONMENTS

starting from a very concrete section. The exploration distance will be increased as long
as the valid action is still not found. This approach works well if the collision requires a
small change to be fixed i.e. it only affects to a couple of navigation steps - the solution
can be found near the search space of the action and current state. But if the way to
avoid the collision affects to a bigger part of the plan i.e. robots have to move back several
waypoints and change path directions, LPG-ADAPT might get stuck on the search space,
as it will try to search first on the space closer to the invalid action and the solution
might be far away from there. Thus, timeout will be reached before a solution is found.
Scenarios not solved by our approaches on Table 8.6 fail for that reason. On the other
hand, Multi-Agent centralized approaches as SIW solve more problems. Next paragraphs
contain a discussion on this aspect. We analyze why this particular situation is given
with SIW even though MAP centralized approaches are generally worse in performance
on big scenarios.

SIW only solves one atomic goal at a time (serialization), which means that goals are
not assigned to agents in the first step of the algorithm. The process is interleaved with
search. Thus, only one estimation is computed per iteration and current positions of the
agents are updated after each goal is reached. Agents work individually but coordination
(and thus, collisions) are checked after each iteration. The centralized approach followed
by SIW is very efficient on the coverage problem. Collisions can be fully avoided because
of solving first only one goal at a time and then updating robots’ positions. Thus, the
algorithm obtains good results in number of problems solved and time. However, when
the size of the problem increases, as in the any-shape scenarios, SIW has more difficulties
to solve the problem in time. This scenario penalizes SIW because the search space is
huge in comparison with circular robot scenarios. Planning one goal at a time following
a centralized approach now becomes a worse choice. SIW has to usually deal with the
following situation when collisions are given: a set of goals has been reached and the
next goal on the list cannot be achieved unless the previous part of the plan is partially
modified. In any-shape scenarios this aspect takes more time to fix given the size of the
search space.

Regarding our approach, even though we obtain estimation costs through AMs, they
are not as effective in guidance as SIW’s serialization. The estimation of costs is provided
to our approach at the beginning. If agents have to modify their route due to collisions,
their estimations and assignment of goals might not be as useful as in the beginning. It
can even penalize the agent’s performance. Also, if an agent needs to change its route
several times, it could mean that the original assignment of goals is completely useless.

150

8.9. EXPERIMENTS AND RESULTS

Table 8.7: Makespan: from left to right MAP with estimated-cost information in Load-
balance (MAP&R-LB-EC); MAP with estimated-cost in Best-Cost (MAP&R-BC-EC); SIW,
ADP, CMAP and LAMA.

Makespan
Scenario MAP&R-LB-EC MAP&R-BC-EC SIW ADP CMAP LAMA
CorridorH timeout timeout 1289 timeout timeout 847
CorridorL 801 806 490 1378 452 424
ExtremH timeout timeout timeout timeout timeout timeout
ExtremL timeout timeout 704 timeout timeout timeout
MutExH timeout timeout 158 211 131 135
MutExL 87 87 80 80 101 95
MazeH timeout timeout 1061 memlimit timeout timeout
MazeL timeout 1481 758 memlimit 1139 timeout
Rooms2r 293 293 189 465 228 250
Rooms10r 61 61 61 107 77 54
Extreme10r timeout timeout timeout timeout timeout timeout
Maze10r 293 timeout 432 memlimit 221 282
RoomsH timeout timeout timeout timeout timeout timeout
RoomsL 250 250 timeout timeout timeout timeout

Also, plan reuse planners are not efficiently prepared to perform an extensive search.
They would rather prefer to reutilize actions from previous plans, which in the coverage
problem results in generating redundant actions around the planning task. We have
tried different features of LPG-ADAPT (low memory, speed mode, increasing different
fixed constants...) to check if its performance could be improved but neither of them
helped.

Regarding makespan results from Table 8.7, MAP&R-LB-EC and SIW are the two
planners that obtain the best results. Although the RoomsL scenario might seem easier
to solve by just looking at Table 8.1. However, as it works for any-shape robots, the grid
of waypoints is bigger and harder to navigate from the planning point of view. The search
space is very big and thus centralized approaches are especially penalized. The reason of
failing on the Extremities and Maze scenarios is due to the changes on the robots’ paths
caused by the collision avoidance or the topology of the scenario. Those scenarios contain
narrower areas and large halls where only some robots can reach the end. Thus, robots
might spend a lot of time looking for the correct path while at the same time avoiding
the rest of the agents.

As a final conclusion, we would like to discuss the overall performance of our contri-
bution. MAP-LB-EC and MAP-BC-EC clearly complement each other on the set of proposed

151

CHAPTER 8. USE CASE: PMR ON ROBOTICS ENVIRONMENTS

scenarios. This is an advantage, as the algorithm can be easily adapted to different
situations and environments. It is true that we lost some performance on collisions, but
we have empirically shown that it is also related to the topology of the scenario and the
coverage problem itself. The unexpected advantage of SIW in the experiments detecting
collisions has also been addressed and analyzed. The serialization of goals and the nature
of the coverage problem where interactions are given occasionally, makes any centralized
(Multi-agent or Single-agent) planner to behave well. LAMA is closer to SIW and our
approaches in that sense, and it is not even a MAP algorithm. We also want to put in
value the scalability of our approach. Through the experiments we have shown that we
can successfully deal with different topologies, number of agents, agent’s orientation,
huge planning tasks, unfeasible goals, independent goal-assignment and pre-processed
estimation costs. State-of-the-art planners are not used to satisfy all these features at
the same time.

8.10 Further improvements: Contract-Net and
simplifying the model

In order to improve the latest experiments, with and without collisions, we had to pay
attention to the behavior of the resulting plans.

On one hand, depending on the topology of the scenario, the agents’ paths generated
after planning could be optimized if the accumulated cost is taken into account during
the Goal-Assignment process. Thus, we proposed to run again the set of problems using
instead the Contract-net goal strategy explained in Section 3.3.3.

On the other hand, we were obtaining a considerable amount of timeouts when
detecting collisions. As the environments have a considerable size and each of the
robots starts at different random positions, we thought that maybe the domain could be
simplified in some way. That is how we found that the planner was extra-instantiating
the predicate occupied due to the current modelling of the domain. We were double-
checking that both positions (current and destination) were not occupied. As robots
plan individually on the first step, there was no reason to include (occupied ?y) in
the preconditions of the navigate action from Figure 8.4. The only occupied position at
that point is the current position of the robot. Besides, as the robot moves, the occupied
position is updated on the effects.

Thus, we can eliminate that precondition (occupied ?y) and maintain the rest. We
can also use this navigate version on the plan reuse phase as long as the initial positions

152

8.10. FURTHER IMPROVEMENTS: CONTRACT-NET AND SIMPLIFYING THE
MODEL

Table 8.8: Makespan: from left to right in MAP with estimated-cost information in
Load-balance (MAP-LB-EC), Best-cost (MAP-BC-EC) and Contract-net (MAP-CN-EC). Also,
results from SIW are included, as it was the best approach.

Makespan - No Collisions
MAP Other approach

Scenario LB-EC BC-EC CN-EC SIW

CorridorH 609 1353 543 973
CorridorL 298 657 232 265
ExtremH 905 905 1442 1712
ExtremL 376 376 620 450
MutExH 117 117 117 149
MutExL 58 58 58 64
MazeH 1631 1631 1185 1941
MazeL 696 1035 584 837
Rooms2r 264 264 228 214
Rooms10r 47 57 58 59
Extreme10r 258 258 485 214
Maze10r 246 213 383 212
RoomsH parallel parallel parallel parallel
RoomsL 240 242 274 180

of the robots are marked as occupied, which means that the scenario has been correctly
modelled.

The following Tables show the makespan results obtained with Contract-net and
the makespan results obtained after rerunning the collision experiments with the new
domain. Table 8.8 shows how the new goal-strategy Contract-net works better in sce-
narios with narrow and multiple halls, as in the Maze. The real cost of having one
goal waypoint in a certain hall and another one assigned to the same robot but on the
neighbour hall is very high. This behavior is greatly reduced with Contract-net. The
same phenomenon is given in the Corridor scenario, even though there are no halls. As
a result, the robots obtain optimized paths to actuate every waypoint from each room.
Finally, Table 8.9 shows a noticeable improve in our configurations regarding the number
of problems solved in comparison with Table 8.7. The SIW planner is still better in some
scenarios such as Extreme but the difference in performance is now small. Also, the
BC configuration works better than LB or CN in scenarios where a higher number of
planning agents are available (Extreme10r, Maze10r). This is due to the fact that neither
LB or CN can easily avoid to plan with all the available agents, which ends up in having
larger and more redundant plans.

153

CHAPTER 8. USE CASE: PMR ON ROBOTICS ENVIRONMENTS

Table 8.9: Makespan: from left to right MAP with estimated-cost information in Load-
(MAP&R-LB-EC), Best-cost (MAP&R-BC-EC) and Contract-net (MAP&R-CN-EC). Also,
results from SIW are included, as it was the best approach.

Makespan - Collisions
MAP &R Other approach

Scenario LB-EC BC-EC CN-EC SIW

CorridorH 836 1551 836 1289
CorridorL 248 762 249 490
ExtremH 3537 2027 3537 1232
ExtremL 1648 937 1643 704
MutExH 99 99 99 158
MutExL 71 71 71 80
MazeH timeout timeout timeout 1061
MazeL 1293 1481 1287 758
Rooms2r 179 57 172 61
Rooms10r 371 277 371 189
Extreme10r 1658 497 1667 timeout
Maze10r 1415 414 1443 432
RoomsH timeout timeout timeout timeout
RoomsL 250 248 250 timeout

154

Part V

Conclusions

155

C
H

A
P

T
E

R

9
CONCLUSIONS AND FUTURE WORK

I N THIS CHAPTER we summarize the contributions of this Thesis, present
the conclusions and describe future directions of our work.

9.1 Conclusions

In this thesis, we have successfully addressed the challenges presented in Chapter 1.

First, we contributed with PMR, an algorithm capable of solving a MAP task by
merging individual plans and applying plan-reuse techniques. A key feature of PMR is
that automatically adapts to the interaction level among agents and goals, varying its
behavior from distributed to centralized. It generates individual plans and merges them
in the merging phase (M) with a low computational effort if the domain has a low degree
of interaction. Otherwise, it uses plan reuse (R) in domains with more interaction and
resorts to centralized planning (C) in case of domains with strong interactions.

Moreover, PMR can easily be configured to target coverage, cost or makespan by just
changing its goal allocation strategy. The aim was to focus on minimizing the makespan
in big-size problems that have low interaction. Actually, the potential of PMR was neither
appreciated on CoDMAP results nor on the experiments that changed the agentification.
Thus, we moved into harder problems in terms of size. Therefore, the results of PMR-
RRPT-PLAN have shown that it easily adapts to any type of MAP problem, independently
of the problem’s features (e.g. number of agents, goals, interactions). It specifically

157

CHAPTER 9. CONCLUSIONS AND FUTURE WORK

adapted with success to those that had little interaction and a topology that fostered the
goal-assigment to divide indirectly the available space of actuation among the agents.
PMR-RRPT-PLAN maintains good results on coverage and time and remarkable results on
makespan, specially in combination with the Load-balance strategy.

Another advantage of PMR is that it only includes off-the-shelf planners on its three
phases (M, C and R). Hence, we can trivially improve the performance of PMR by just
changing the planners used by better ones once they are developed.

Regarding plan reuse, the second contribution presented was RRPT-PLAN, an algo-
rithm that combines plan reuse, sampling and local search to solve a planning problem.
RRPT-PLAN receives the domain, the problem and an input plan (usually invalid) from
which it will try to reuse actions to include in the final plan. We have shown in the
experiments that RRPT-PLAN adapts to diverse plan reuse scenarios, including the ones
that are not usually considered by state-of-the-art plan reuse planners. This aspect was
tested using the Hammers domain.

Third, we contributed with a joint work that showed how to combine information
from Actuation Maps with Multi-Agent Planning to solve multi-robot path planning
problems. The key was to skip the computation of estimated cost during planning, which
was our main bottleneck to scale. We employed Actuation Maps in a preprocessing step
to determine the feasibility of pairs robot-goal and to extract an estimated cost. That cost
was used later to avoid the computation of relaxed plans during Goal-Assignment. The
environment map was discretized into a grid of waypoints. The goals were distributed
thanks to a goal-allocation algorithm and unfeasible goals identified and discarded
from the planning task. Then, the planning task was factorized for each robot. Each
robot generates its individual path, that results in a maximal space coverage in terms of
actuation. We also contributed with and adapted version of PMR to fix agents’ interactions
after the individual planning phase. On the experiments we designed a total of six
scenarios, five for circular robots and one for any-shape robots.

Our approach greatly reduces the GA time. We were able to also reduce the overall
planning time when preprocessed information was provided to the MAP algorithm.
The gains in performance depend greatly on the topology of the environment and the
characteristics of each robot.

Finally, experiments from the third contribution also proved that when solving big
size multi-agent problems using planning, it is essential to first factorize the problem
into subtasks. Also, it is helpful when working on problems that explicitly involve
agents’ interactions. Experiments on collision avoidance showed the importance of task

158

9.2. FUTURE WORK

factorization and the topology of the scenario in order to successfully fix collisions.

9.2 Future Work

There are different research lines and ideas that could define future directions of our
contributions.

Regarding PMR, we could work on different plan merging strategies to merge more
efficiently the individual plans obtained from the agents. Also, we could work on new
policies and techniques that improve the goal-assignment process.

Regarding RRPT-PLAN, we could allow probabilities to change their values over
planning time to adapt the algorithm to different situations e.g. decrease reuse after all
the input plan has been evaluated.

Regarding the combination of Actuation Maps and Multi-Agent Planning, we would
like to extend the preprocessing technique to other domains and consider different -robot
or agent- models. Our approach can be easily extended to path planning tasks or real-
time strategy videogames. We gave some examples of the former such as surveillance
tasks or search and rescue tasks. Videogames could be an interesting domain to explore
when designing bots that play automatically. Our approach could improve the player/bot
performance when extracting information from the map to decide which goals are
more relevant to achieve first. On the other hand, we also would like to improve the
performance of fixing interactions. Plan reuse works well when collisions only affect to
a couple of actions. For biggest plan modifications plan-reuse is not enough. We would
also like to study in the future the possibility of using plan-reuse in order to deal with
dynamic environments during plan execution. We would need to create a technique
to efficiently update the PDDL problem file according to the changes detected in the
environment regarding obstacles.

159

A
P

P
E

N
D

I
X

A
PLANNING DOMAINS

P LANNING BENCHMARKS mainly consist on sets of domains and problems
that represent different environments or situations. In order to help the
reader, here we provide a brief explanation of the domains employed on the

experiments of this Thesis. The origin of most of these domains were the classical Inter-
national Planning Competition. They all had been adapted to multi-agent environments.

• Blocks: It comes from the classical Blocksworld. In the original version, a set
of blocks should be piled up into a tower following a certain ordering by using a
robotics hand. In the multi-agent environment there exist multiple hands available
to pick up blocks.

• Depots: It can be described as a blocksworld version that includes transportation.
The aim is to move the crates between depots and distributors. At the begin-
ning, crates are placed on pallets the middle of both. In order to move the crates,
distributors use trucks. A crate can be placed on a hoist, at a depot or on a truck.

• Depots-robots: The aim is to use robots to deliver specific pods to human workers.
The environment simulates a warehouse. Robots can pick up pods and move
through the environment. Pods are fixed in columns. Humans are situated in line
in the lower row.

• Driverlog: The aim is to deliver a set of packages to different locations. In order to
do that, there exist drivers which either drive the trucks between locations or walk

161

APPENDIX A. PLANNING DOMAINS

to reach a truck. Locations are mapped into a grid. If two locations are connected,
it means that the driver can drive from one point to the other.

• Elevators: There is a set of passengers located in different floors of a building.
They need to be transported to a different floor. Thus, there exist a set of fast and
slow elevators that will carry out that mission dividing their resources between
the different floors.

• Hammers: There are some rooms in which a set of robots have to hang up specific
paintings. Rooms are connected by halls. A robot needs a hammer and a nail in
order to hang up the painting successfully.

• Logistics: Another transportation task similar to Driverlog. There are several
cities and several packages to be delivered. Also, there are sets of trucks and
airplanes to deliver the packages. Drivers are implicitly included on each truck.
Airplanes are allowed to travel between cities while trucks can only drive inside a
city. Thus, cooperation is usually needed to achieve the goals.

• Rover: It it simulation of a future space environment e.g. Mars ground. A space
robot (Rover) has to pick up samples and communicate the results to the base. They
have different tools available to perform each task. Rovers work individually by
moving through a grid of waypoints.

• Rover-graph: The goals to achieve are the same as in Rover. The main difference
can be found in the size of the grid of waypoints and its connections. There are two
big islands of waypoints only connected by one edge.

• Satellite: In an outer-space environment there are several satellites with different
capabilities. The aim is to use different tools to perform different task e.g. take
pictures, get samples. Some tools need to be powered and calibrated in advance.
Satellites work individually.

• Sokoban: Simulation of the classical puzzle game where players need to push
boxes to certain cells of the game environment in order to win. This environment is
similar to a maze and neither walls nor blocks can be traversed. Thus, players can
block themselves or reach a dead-end if they push boxes in the wrong direction.

• Taxi: This is a new domain designed for CoDMAP. It reflects an on-demand trans-
portation problem between taxis and passengers inside a connected grid of roads.

162

Taxis can drive only one person per ride and can drop the person off into a location
only if it is free-of-taxis.

• VRP: Emulates the classical vehicle routing problem. There is a grid of roads
where each road (edge of the graph) has a certain cost assigned. Thus, the aim is to
deliver a set of packages into a set of locations by minimizing the cost of traversing
each of the roads. The best solution would be the one that delivers every package
and sums the least cost.

• Wireless: This is a new domain designed for CoDMAP. It emulates a wireless
sensor network where data messages that are initially allocated to different nodes
of the network have to be sent to a base station. Node sensors can transmit the
messages with their node neighbours (wireless radio reach each other). Each time
a message is sent, the node sensor decreases its energy in one.

• Woodworking: The aim is to process raw wood to obtain pieces of wood with a
certain color or shape. In order to do that, the domain provides different tools,
which act as agents of the environment.

• Zenotravel: There are several planes with limited fuel whose aim is to transport
different passengers to different airports. Also, some of the planes should be parked
at a concrete airport after delivering every passenger.

163

A
P

P
E

N
D

I
X

B
APPENDIX B: PLANS OBTAINED IN THE HAMMERS

DOMAIN

THIS APPENDIX contains the resulting plans obtained with PMR-LPG-ADAPT and PMR-
RRPT-PLAN in Section 7.3. The aim is to show in detail the differences of LPG-ADAPT and
RRPT-PLAN when applying plan-reuse and search.

Figure B.1: Resulting plan obtained by PMR-LPG-ADAPT and PMR-RRPT-PLAN for the
scenario shown in Figure 7.1a

0: (MOVE_TO_ROOM ROBOT1 COMMON_ROOM ROOM6)
0: (MOVE_TO_ROOM ROBOT2 COMMON_ROOM ROOM5)
0: (MOVE_TO_ROOM ROBOT3 COMMON_ROOM ROOM4)
0: (MOVE_TO_ROOM ROBOT4 COMMON_ROOM ROOM3)
0: (MOVE_TO_ROOM ROBOT5 COMMON_ROOM ROOM2)
0: (MOVE_TO_ROOM ROBOT6 COMMON_ROOM ROOM1)
1: (PICK_UP_HAMMER ROBOT1 HAMMER6 ROOM6)
1: (PICK_UP_NAIL ROBOT1 NAIL6 ROOM6)
1: (PICK_UP_HAMMER ROBOT2 HAMMER5 ROOM5)
1: (PICK_UP_NAIL ROBOT2 NAIL5 ROOM5)
1: (PICK_UP_HAMMER ROBOT3 HAMMER4 ROOM4)
1: (PICK_UP_NAIL ROBOT3 NAIL4 ROOM4)
1: (PICK_UP_HAMMER ROBOT4 HAMMER3 ROOM3)
1: (PICK_UP_NAIL ROBOT4 NAIL3 ROOM3)
1: (PICK_UP_HAMMER ROBOT5 HAMMER2 ROOM2)
1: (PICK_UP_NAIL ROBOT5 NAIL2 ROOM2)
1: (PICK_UP_HAMMER ROBOT6 HAMMER1 ROOM1)

165

APPENDIX B. APPENDIX B: PLANS OBTAINED IN THE HAMMERS DOMAIN

1: (PICK_UP_NAIL ROBOT6 NAIL1 ROOM1)
2: (HANG_PAINTING ROBOT1 PAINTING6 HAMMER6 NAIL6 ROOM6)
2: (HANG_PAINTING ROBOT2 PAINTING5 HAMMER5 NAIL5 ROOM5)
2: (HANG_PAINTING ROBOT3 PAINTING4 HAMMER4 NAIL4 ROOM4)
2: (HANG_PAINTING ROBOT4 PAINTING3 HAMMER3 NAIL3 ROOM3)
2: (HANG_PAINTING ROBOT5 PAINTING2 HAMMER2 NAIL2 ROOM2)
2: (HANG_PAINTING ROBOT6 PAINTING1 HAMMER1 NAIL1 ROOM1)

Figure B.2: Resulting plan obtained by PMR-LPG-ADAPT for the scenario shown in Figure
7.1b

0: (PICK_UP_HAMMER ROBOT1 HAMMER1 COMMON_ROOM)
1: (MOVE_TO_ROOM ROBOT1 COMMON_ROOM ROOM6)
2: (PICK_UP_NAIL ROBOT1 NAIL6 ROOM6)
3: (HANG_PAINTING ROBOT1 PAINTING6 HAMMER1 NAIL6 ROOM6)
4: (MOVE_TO_ROOM ROBOT1 ROOM6 COMMON_ROOM)
5: (DROP_HAMMER ROBOT1 HAMMER1 COMMON_ROOM)
6: (PICK_UP_HAMMER ROBOT2 HAMMER1 COMMON_ROOM)
7: (MOVE_TO_ROOM ROBOT2 COMMON_ROOM ROOM5)
8: (PICK_UP_NAIL ROBOT2 NAIL5 ROOM5)
9: (HANG_PAINTING ROBOT2 PAINTING5 HAMMER1 NAIL5 ROOM5)

10: (MOVE_TO_ROOM ROBOT2 ROOM5 COMMON_ROOM)
11: (DROP_HAMMER ROBOT2 HAMMER1 COMMON_ROOM)
12: (PICK_UP_HAMMER ROBOT3 HAMMER1 COMMON_ROOM)
13: (MOVE_TO_ROOM ROBOT3 COMMON_ROOM ROOM4)
14: (PICK_UP_NAIL ROBOT3 NAIL4 ROOM4)
15: (HANG_PAINTING ROBOT3 PAINTING4 HAMMER1 NAIL4 ROOM4)
16: (MOVE_TO_ROOM ROBOT3 ROOM4 COMMON_ROOM)
17: (DROP_HAMMER ROBOT3 HAMMER1 COMMON_ROOM)
18: (PICK_UP_HAMMER ROBOT4 HAMMER1 COMMON_ROOM)
19: (MOVE_TO_ROOM ROBOT4 COMMON_ROOM ROOM3)
20: (PICK_UP_NAIL ROBOT4 NAIL3 ROOM3)
21: (HANG_PAINTING ROBOT4 PAINTING3 HAMMER1 NAIL3 ROOM3)
22: (MOVE_TO_ROOM ROBOT4 ROOM3 COMMON_ROOM)
23: (DROP_HAMMER ROBOT4 HAMMER1 COMMON_ROOM)
24: (PICK_UP_HAMMER ROBOT5 HAMMER1 COMMON_ROOM)
25: (MOVE_TO_ROOM ROBOT5 COMMON_ROOM ROOM2)
26: (PICK_UP_NAIL ROBOT5 NAIL2 ROOM2)
27: (HANG_PAINTING ROBOT5 PAINTING2 HAMMER1 NAIL2 ROOM2)
28: (MOVE_TO_ROOM ROBOT5 ROOM2 COMMON_ROOM)
29: (DROP_HAMMER ROBOT5 HAMMER1 COMMON_ROOM)
30: (PICK_UP_HAMMER ROBOT6 HAMMER1 COMMON_ROOM)
31: (MOVE_TO_ROOM ROBOT6 COMMON_ROOM ROOM1)

166

32: (PICK_UP_NAIL ROBOT6 NAIL1 ROOM1)
33: (HANG_PAINTING ROBOT6 PAINTING1 HAMMER1 NAIL1 ROOM1)

Figure B.3: Resulting plan obtained by PMR-RRPT-PLAN for the scenario shown in Figure
7.1b

0: (PICK_UP_HAMMER ROBOT1 HAMMER1 COMMON_ROOM)
1: (MOVE_TO_ROOM ROBOT1 COMMON_ROOM ROOM6)
2: (PICK_UP_NAIL ROBOT1 NAIL6 ROOM6)
3: (HANG_PAINTING ROBOT1 PAINTING6 HAMMER1 NAIL6 ROOM6)
4: (MOVE_TO_ROOM ROBOT1 ROOM6 COMMON_ROOM)
5: (MOVE_TO_ROOM ROBOT1 COMMON_ROOM ROOM1)
6: (PICK_UP_NAIL ROBOT1 NAIL1 ROOM1)
7: (HANG_PAINTING ROBOT1 PAINTING1 HAMMER1 NAIL1 ROOM1)
8: (MOVE_TO_ROOM ROBOT1 ROOM1 COMMON_ROOM)
9: (MOVE_TO_ROOM ROBOT1 COMMON_ROOM ROOM2)

10: (PICK_UP_NAIL ROBOT1 NAIL2 ROOM2)
11: (HANG_PAINTING ROBOT1 PAINTING2 HAMMER1 NAIL2 ROOM2)
12: (MOVE_TO_ROOM ROBOT1 ROOM2 COMMON_ROOM)
13: (MOVE_TO_ROOM ROBOT1 COMMON_ROOM ROOM3)
14: (PICK_UP_NAIL ROBOT1 NAIL3 ROOM3)
15: (HANG_PAINTING ROBOT1 PAINTING3 HAMMER1 NAIL3 ROOM3)
16: (MOVE_TO_ROOM ROBOT1 ROOM3 COMMON_ROOM)
17: (MOVE_TO_ROOM ROBOT1 COMMON_ROOM ROOM4)
18: (PICK_UP_NAIL ROBOT1 NAIL4 ROOM4)
19: (HANG_PAINTING ROBOT1 PAINTING4 HAMMER1 NAIL4 ROOM4)
20: (MOVE_TO_ROOM ROBOT1 ROOM4 COMMON_ROOM)
21: (MOVE_TO_ROOM ROBOT1 COMMON_ROOM ROOM5)
22: (PICK_UP_NAIL ROBOT1 NAIL5 ROOM5)
23: (HANG_PAINTING ROBOT1 PAINTING5 HAMMER1 NAIL5 ROOM5)

Figure B.4: Sequential plan obtained after merging in the scenario shown in Figure 7.1c
0: (MOVE_TO_ROOM ROBOT1 COMMON_ROOM ROOM6)
1: (PICK_UP_HAMMER ROBOT1 HAMMER1 ROOM6)
2: (MOVE_TO_ROOM ROBOT1 ROOM6 COMMON_ROOM)
3: (MOVE_TO_ROOM ROBOT1 COMMON_ROOM ROOM4)
4: (DROP_HAMMER ROBOT1 HAMMER1 ROOM4)
5: (MOVE_TO_ROOM ROBOT1 ROOM4 COMMON_ROOM)
6: (MOVE_TO_ROOM ROBOT1 COMMON_ROOM ROOM2)
7: (PICK_UP_NAIL ROBOT1 NAIL4 ROOM2)
8: (MOVE_TO_ROOM ROBOT1 ROOM2 COMMON_ROOM)
9: (MOVE_TO_ROOM ROBOT1 COMMON_ROOM ROOM4)

167

APPENDIX B. APPENDIX B: PLANS OBTAINED IN THE HAMMERS DOMAIN

10: (PICK_UP_HAMMER ROBOT1 HAMMER1 ROOM4)
11: (HANG_PAINTING ROBOT1 PAINTING6 HAMMER1 NAIL4 ROOM4)
12: (MOVE_TO_ROOM ROBOT2 COMMON_ROOM ROOM6)
13: (PICK_UP_HAMMER ROBOT2 HAMMER1 ROOM6)
14: (MOVE_TO_ROOM ROBOT2 ROOM6 COMMON_ROOM)
15: (MOVE_TO_ROOM ROBOT2 COMMON_ROOM ROOM4)
16: (DROP_HAMMER ROBOT2 HAMMER1 ROOM4)
17: (MOVE_TO_ROOM ROBOT2 ROOM4 COMMON_ROOM)
18: (MOVE_TO_ROOM ROBOT2 COMMON_ROOM ROOM2)
19: (PICK_UP_NAIL ROBOT2 NAIL4 ROOM2)
20: (MOVE_TO_ROOM ROBOT2 ROOM2 COMMON_ROOM)
21: (MOVE_TO_ROOM ROBOT2 COMMON_ROOM ROOM4)
22: (PICK_UP_HAMMER ROBOT2 HAMMER1 ROOM4)
23: (HANG_PAINTING ROBOT2 PAINTING5 HAMMER1 NAIL4 ROOM4)
24: (MOVE_TO_ROOM ROBOT3 COMMON_ROOM ROOM6)
25: (PICK_UP_HAMMER ROBOT3 HAMMER1 ROOM6)
26: (MOVE_TO_ROOM ROBOT3 ROOM6 COMMON_ROOM)
27: (MOVE_TO_ROOM ROBOT3 COMMON_ROOM ROOM4)
28: (DROP_HAMMER ROBOT3 HAMMER1 ROOM4)
29: (MOVE_TO_ROOM ROBOT3 ROOM4 COMMON_ROOM)
30: (MOVE_TO_ROOM ROBOT3 COMMON_ROOM ROOM2)
31: (PICK_UP_NAIL ROBOT3 NAIL4 ROOM2)
32: (MOVE_TO_ROOM ROBOT3 ROOM2 COMMON_ROOM)
33: (MOVE_TO_ROOM ROBOT3 COMMON_ROOM ROOM4)
34: (PICK_UP_HAMMER ROBOT3 HAMMER1 ROOM4)
35: (HANG_PAINTING ROBOT3 PAINTING4 HAMMER1 NAIL4 ROOM4)
36: (MOVE_TO_ROOM ROBOT4 COMMON_ROOM ROOM6)
37: (PICK_UP_HAMMER ROBOT4 HAMMER1 ROOM6)
38: (MOVE_TO_ROOM ROBOT4 ROOM6 COMMON_ROOM)
39: (MOVE_TO_ROOM ROBOT4 COMMON_ROOM ROOM1)
40: (DROP_HAMMER ROBOT4 HAMMER1 ROOM1)
41: (MOVE_TO_ROOM ROBOT4 ROOM1 COMMON_ROOM)
42: (MOVE_TO_ROOM ROBOT4 COMMON_ROOM ROOM2)
43: (PICK_UP_NAIL ROBOT4 NAIL4 ROOM2)
44: (MOVE_TO_ROOM ROBOT4 ROOM2 COMMON_ROOM)
45: (MOVE_TO_ROOM ROBOT4 COMMON_ROOM ROOM1)
46: (PICK_UP_HAMMER ROBOT4 HAMMER1 ROOM1)
47: (HANG_PAINTING ROBOT4 PAINTING3 HAMMER1 NAIL4 ROOM1)
48: (MOVE_TO_ROOM ROBOT5 COMMON_ROOM ROOM6)
49: (PICK_UP_HAMMER ROBOT5 HAMMER1 ROOM6)
50: (MOVE_TO_ROOM ROBOT5 ROOM6 COMMON_ROOM)
51: (MOVE_TO_ROOM ROBOT5 COMMON_ROOM ROOM1)

168

52: (DROP_HAMMER ROBOT5 HAMMER1 ROOM1)
53: (MOVE_TO_ROOM ROBOT5 ROOM1 COMMON_ROOM)
54: (MOVE_TO_ROOM ROBOT5 COMMON_ROOM ROOM2)
55: (PICK_UP_NAIL ROBOT5 NAIL4 ROOM2)
56: (MOVE_TO_ROOM ROBOT5 ROOM2 COMMON_ROOM)
57: (MOVE_TO_ROOM ROBOT5 COMMON_ROOM ROOM1)
58: (PICK_UP_HAMMER ROBOT5 HAMMER1 ROOM1)
59: (HANG_PAINTING ROBOT5 PAINTING2 HAMMER1 NAIL4 ROOM1)
60: (MOVE_TO_ROOM ROBOT6 COMMON_ROOM ROOM6)
61: (PICK_UP_HAMMER ROBOT6 HAMMER1 ROOM6)
62: (MOVE_TO_ROOM ROBOT6 ROOM6 COMMON_ROOM)
63: (MOVE_TO_ROOM ROBOT6 COMMON_ROOM ROOM1)
64: (DROP_HAMMER ROBOT6 HAMMER1 ROOM1)
65: (MOVE_TO_ROOM ROBOT6 ROOM1 COMMON_ROOM)
66: (MOVE_TO_ROOM ROBOT6 COMMON_ROOM ROOM2)
67: (PICK_UP_NAIL ROBOT6 NAIL4 ROOM2)
68: (MOVE_TO_ROOM ROBOT6 ROOM2 COMMON_ROOM)
69: (MOVE_TO_ROOM ROBOT6 COMMON_ROOM ROOM1)
70: (PICK_UP_HAMMER ROBOT6 HAMMER1 ROOM1)
71: (HANG_PAINTING ROBOT6 PAINTING1 HAMMER1 NAIL4 ROOM1)

Figure B.5: Resulting plan obtained by PMR-LPG-ADAPT for the scenario shown in Figure
7.1c

0: (MOVE_TO_ROOM ROBOT1 COMMON_ROOM ROOM6)
0: (MOVE_TO_ROOM ROBOT2 COMMON_ROOM ROOM6)
0: (MOVE_TO_ROOM ROBOT3 COMMON_ROOM ROOM6)
0: (MOVE_TO_ROOM ROBOT4 COMMON_ROOM ROOM6)
0: (MOVE_TO_ROOM ROBOT6 COMMON_ROOM ROOM1)
0: (MOVE_TO_ROOM ROBOT5 COMMON_ROOM ROOM6)
1: (PICK_UP_HAMMER ROBOT1 HAMMER1 ROOM6)
2: (MOVE_TO_ROOM ROBOT1 ROOM6 COMMON_ROOM)
3: (MOVE_TO_ROOM ROBOT1 COMMON_ROOM ROOM2)
4: (PICK_UP_NAIL ROBOT1 NAIL6 ROOM2)
5: (MOVE_TO_ROOM ROBOT1 ROOM2 COMMON_ROOM)
6: (MOVE_TO_ROOM ROBOT1 COMMON_ROOM ROOM4)
7: (DROP_NAIL ROBOT1 NAIL6 ROOM4)
8: (PICK_UP_NAIL ROBOT1 NAIL6 ROOM4)
9: (DROP_NAIL ROBOT1 NAIL6 ROOM4)

10: (PICK_UP_NAIL ROBOT1 NAIL6 ROOM4)
11: (DROP_NAIL ROBOT1 NAIL6 ROOM4)
12: (PICK_UP_NAIL ROBOT1 NAIL6 ROOM4)
13: (DROP_NAIL ROBOT1 NAIL6 ROOM4)

169

APPENDIX B. APPENDIX B: PLANS OBTAINED IN THE HAMMERS DOMAIN

14: (PICK_UP_NAIL ROBOT1 NAIL6 ROOM4)
15: (DROP_NAIL ROBOT1 NAIL6 ROOM4)
16: (PICK_UP_NAIL ROBOT1 NAIL6 ROOM4)
17: (DROP_NAIL ROBOT1 NAIL6 ROOM4)
18: (PICK_UP_NAIL ROBOT1 NAIL6 ROOM4)
19: (DROP_NAIL ROBOT1 NAIL6 ROOM4)
20: (PICK_UP_NAIL ROBOT1 NAIL6 ROOM4)
21: (HANG_PAINTING ROBOT1 PAINTING6 HAMMER1 NAIL6 ROOM4)
22: (MOVE_TO_ROOM ROBOT1 ROOM4 COMMON_ROOM)
23: (MOVE_TO_ROOM ROBOT1 COMMON_ROOM ROOM4)
24: (DROP_HAMMER ROBOT1 HAMMER1 ROOM4)
25: (MOVE_TO_ROOM ROBOT1 ROOM4 COMMON_ROOM)
26: (MOVE_TO_ROOM ROBOT1 COMMON_ROOM ROOM2)
27: (PICK_UP_NAIL ROBOT1 NAIL4 ROOM2)
28: (MOVE_TO_ROOM ROBOT1 ROOM2 COMMON_ROOM)
29: (MOVE_TO_ROOM ROBOT1 COMMON_ROOM ROOM4)
30: (PICK_UP_HAMMER ROBOT1 HAMMER1 ROOM4)
31: (PICK_UP_NAIL ROBOT1 NAIL4 ROOM4)

32: (DROP_NAIL ROBOT1 NAIL4 ROOM4)
33: (PICK_UP_NAIL ROBOT1 NAIL4 ROOM4)
34: (MOVE_TO_ROOM ROBOT1 ROOM4 COMMON_ROOM)
35: (MOVE_TO_ROOM ROBOT1 COMMON_ROOM ROOM3)
36: (DROP_NAIL ROBOT1 NAIL4 ROOM3)
37: (MOVE_TO_ROOM ROBOT1 ROOM3 COMMON_ROOM)
38: (MOVE_TO_ROOM ROBOT1 COMMON_ROOM ROOM6)
39: (DROP_HAMMER ROBOT1 HAMMER1 ROOM6)
40: (PICK_UP_HAMMER ROBOT2 HAMMER1 ROOM6)
41: (MOVE_TO_ROOM ROBOT2 ROOM6 COMMON_ROOM)
42: (MOVE_TO_ROOM ROBOT2 COMMON_ROOM ROOM4)
43: (DROP_HAMMER ROBOT2 HAMMER1 ROOM4)
44: (MOVE_TO_ROOM ROBOT2 ROOM4 COMMON_ROOM)
45: (MOVE_TO_ROOM ROBOT2 COMMON_ROOM ROOM3)
46: (PICK_UP_NAIL ROBOT2 NAIL4 ROOM3)
47: (MOVE_TO_ROOM ROBOT2 ROOM3 COMMON_ROOM)
48: (MOVE_TO_ROOM ROBOT2 COMMON_ROOM ROOM4)
49: (PICK_UP_HAMMER ROBOT2 HAMMER1 ROOM4)
50: (MOVE_TO_ROOM ROBOT2 ROOM4 COMMON_ROOM)
51: (MOVE_TO_ROOM ROBOT2 COMMON_ROOM ROOM6)
52: (DROP_HAMMER ROBOT2 HAMMER1 ROOM6)
53: (PICK_UP_HAMMER ROBOT3 HAMMER1 ROOM6)
53: (MOVE_TO_ROOM ROBOT2 ROOM6 COMMON_ROOM)
54: (MOVE_TO_ROOM ROBOT3 ROOM6 COMMON_ROOM)

170

54: (MOVE_TO_ROOM ROBOT2 COMMON_ROOM ROOM4)
55: (MOVE_TO_ROOM ROBOT3 COMMON_ROOM ROOM2)
55: (MOVE_TO_ROOM ROBOT2 ROOM4 COMMON_ROOM)
56: (PICK_UP_NAIL ROBOT3 NAIL5 ROOM2)
56: (MOVE_TO_ROOM ROBOT2 COMMON_ROOM ROOM2)
57: (MOVE_TO_ROOM ROBOT3 ROOM2 COMMON_ROOM)
57: (DROP_NAIL ROBOT2 NAIL4 ROOM2)
58: (MOVE_TO_ROOM ROBOT3 COMMON_ROOM ROOM4)
59: (HANG_PAINTING ROBOT3 PAINTING4 HAMMER1 NAIL5 ROOM4)
60: (MOVE_TO_ROOM ROBOT3 ROOM4 COMMON_ROOM)
61: (MOVE_TO_ROOM ROBOT3 COMMON_ROOM ROOM4)
62: (DROP_HAMMER ROBOT3 HAMMER1 ROOM4)
63: (MOVE_TO_ROOM ROBOT3 ROOM4 COMMON_ROOM)
64: (MOVE_TO_ROOM ROBOT3 COMMON_ROOM ROOM2)
65: (PICK_UP_NAIL ROBOT3 NAIL4 ROOM2)
66: (MOVE_TO_ROOM ROBOT3 ROOM2 COMMON_ROOM)
67: (MOVE_TO_ROOM ROBOT3 COMMON_ROOM ROOM4)
68: (PICK_UP_HAMMER ROBOT3 HAMMER1 ROOM4)
68: (DROP_NAIL ROBOT3 NAIL4 ROOM4)
69: (PICK_UP_NAIL ROBOT3 NAIL4 ROOM4)
70: (MOVE_TO_ROOM ROBOT3 ROOM4 COMMON_ROOM)
71: (MOVE_TO_ROOM ROBOT3 COMMON_ROOM ROOM5)
72: (PICK_UP_NAIL ROBOT3 NAIL3 ROOM5)
73: (MOVE_TO_ROOM ROBOT3 ROOM5 COMMON_ROOM)
74: (MOVE_TO_ROOM ROBOT3 COMMON_ROOM ROOM1)
75: (HANG_PAINTING ROBOT3 PAINTING2 HAMMER1 NAIL3 ROOM1)
76: (MOVE_TO_ROOM ROBOT3 ROOM1 COMMON_ROOM)
77: (MOVE_TO_ROOM ROBOT3 COMMON_ROOM ROOM6)
78: (DROP_HAMMER ROBOT3 HAMMER1 ROOM6)
79: (PICK_UP_HAMMER ROBOT4 HAMMER1 ROOM6)
79: (MOVE_TO_ROOM ROBOT3 ROOM6 COMMON_ROOM)
80: (MOVE_TO_ROOM ROBOT4 ROOM6 COMMON_ROOM)
80: (MOVE_TO_ROOM ROBOT3 COMMON_ROOM ROOM2)
81: (MOVE_TO_ROOM ROBOT4 COMMON_ROOM ROOM5)
81: (DROP_NAIL ROBOT3 NAIL4 ROOM2)
82: (PICK_UP_NAIL ROBOT4 NAIL1 ROOM5)
82: (PICK_UP_NAIL ROBOT4 NAIL2 ROOM5)
83: (MOVE_TO_ROOM ROBOT4 ROOM5 COMMON_ROOM)
84: (MOVE_TO_ROOM ROBOT4 COMMON_ROOM ROOM1)
85: (HANG_PAINTING ROBOT4 PAINTING3 HAMMER1 NAIL2 ROOM1)
85: (DROP_NAIL ROBOT4 NAIL1 ROOM1)
86: (PICK_UP_NAIL ROBOT6 NAIL1 ROOM1)

171

APPENDIX B. APPENDIX B: PLANS OBTAINED IN THE HAMMERS DOMAIN

86: (MOVE_TO_ROOM ROBOT4 ROOM1 COMMON_ROOM)
87: (MOVE_TO_ROOM ROBOT6 ROOM1 COMMON_ROOM)
88: (DROP_NAIL ROBOT6 NAIL1 COMMON_ROOM)
89: (PICK_UP_NAIL ROBOT4 NAIL1 COMMON_ROOM)
89: (MOVE_TO_ROOM ROBOT6 COMMON_ROOM ROOM6)
90: (MOVE_TO_ROOM ROBOT4 COMMON_ROOM ROOM4)
91: (HANG_PAINTING ROBOT4 PAINTING5 HAMMER1 NAIL1 ROOM4)
92: (MOVE_TO_ROOM ROBOT4 ROOM4 COMMON_ROOM)
93: (MOVE_TO_ROOM ROBOT4 COMMON_ROOM ROOM1)
94: (MOVE_TO_ROOM ROBOT4 ROOM1 COMMON_ROOM)
95: (MOVE_TO_ROOM ROBOT4 COMMON_ROOM ROOM1)
96: (DROP_HAMMER ROBOT4 HAMMER1 ROOM1)
97: (MOVE_TO_ROOM ROBOT4 ROOM1 COMMON_ROOM)
98: (MOVE_TO_ROOM ROBOT4 COMMON_ROOM ROOM2)
99: (PICK_UP_NAIL ROBOT4 NAIL4 ROOM2)

100: (MOVE_TO_ROOM ROBOT4 ROOM2 COMMON_ROOM)
101: (MOVE_TO_ROOM ROBOT4 COMMON_ROOM ROOM1)
102: (PICK_UP_HAMMER ROBOT4 HAMMER1 ROOM1)
103: (MOVE_TO_ROOM ROBOT4 ROOM1 COMMON_ROOM)
104: (MOVE_TO_ROOM ROBOT4 COMMON_ROOM ROOM6)
105: (DROP_HAMMER ROBOT4 HAMMER1 ROOM6)
106: (PICK_UP_HAMMER ROBOT5 HAMMER1 ROOM6)
106: (MOVE_TO_ROOM ROBOT4 ROOM6 COMMON_ROOM)
107: (MOVE_TO_ROOM ROBOT5 ROOM6 COMMON_ROOM)
107: (MOVE_TO_ROOM ROBOT4 COMMON_ROOM ROOM2)
108: (MOVE_TO_ROOM ROBOT5 COMMON_ROOM ROOM1)
108: (DROP_NAIL ROBOT4 NAIL4 ROOM2)
109: (DROP_HAMMER ROBOT5 HAMMER1 ROOM1)
110: (MOVE_TO_ROOM ROBOT5 ROOM1 COMMON_ROOM)
111: (MOVE_TO_ROOM ROBOT5 COMMON_ROOM ROOM2)
112: (PICK_UP_NAIL ROBOT5 NAIL4 ROOM2)
113: (MOVE_TO_ROOM ROBOT5 ROOM2 COMMON_ROOM)
114: (MOVE_TO_ROOM ROBOT5 COMMON_ROOM ROOM1)
115: (PICK_UP_HAMMER ROBOT5 HAMMER1 ROOM1)
116: (MOVE_TO_ROOM ROBOT5 ROOM1 COMMON_ROOM)
117: (MOVE_TO_ROOM ROBOT5 COMMON_ROOM ROOM6)
118: (DROP_HAMMER ROBOT5 HAMMER1 ROOM6)
119: (PICK_UP_HAMMER ROBOT6 HAMMER1 ROOM6)
119: (MOVE_TO_ROOM ROBOT5 ROOM6 COMMON_ROOM)
120: (MOVE_TO_ROOM ROBOT6 ROOM6 COMMON_ROOM)
120: (MOVE_TO_ROOM ROBOT5 COMMON_ROOM ROOM2)
121: (MOVE_TO_ROOM ROBOT6 COMMON_ROOM ROOM1)

172

121: (DROP_NAIL ROBOT5 NAIL4 ROOM2)
122: (DROP_HAMMER ROBOT6 HAMMER1 ROOM1)
123: (MOVE_TO_ROOM ROBOT6 ROOM1 COMMON_ROOM)
124: (MOVE_TO_ROOM ROBOT6 COMMON_ROOM ROOM2)
125: (PICK_UP_NAIL ROBOT6 NAIL4 ROOM2)
126: (MOVE_TO_ROOM ROBOT6 ROOM2 COMMON_ROOM)
127: (MOVE_TO_ROOM ROBOT6 COMMON_ROOM ROOM1)
128: (PICK_UP_HAMMER ROBOT6 HAMMER1 ROOM1)
128: (DROP_NAIL ROBOT6 NAIL4 ROOM1)
129: (PICK_UP_NAIL ROBOT6 NAIL4 ROOM1)
130: (DROP_NAIL ROBOT6 NAIL4 ROOM1)
131: (PICK_UP_NAIL ROBOT6 NAIL4 ROOM1)
132: (HANG_PAINTING ROBOT6 PAINTING1 HAMMER1 NAIL4 ROOM1)

Figure B.6: Resulting plan obtained by PMR-RRPT-PLAN for the scenario shown in Figure
7.1c
0: (MOVE_TO_ROOM ROBOT1 COMMON_ROOM ROOM6)
0: (MOVE_TO_ROOM ROBOT2 COMMON_ROOM ROOM6)
1: (PICK_UP_HAMMER ROBOT1 HAMMER1 ROOM6)
2: (MOVE_TO_ROOM ROBOT1 ROOM6 COMMON_ROOM)
3: (MOVE_TO_ROOM ROBOT1 COMMON_ROOM ROOM4)
4: (DROP_HAMMER ROBOT1 HAMMER1 ROOM4)
5: (MOVE_TO_ROOM ROBOT1 ROOM4 COMMON_ROOM)
6: (MOVE_TO_ROOM ROBOT1 COMMON_ROOM ROOM2)
7: (PICK_UP_NAIL ROBOT1 NAIL4 ROOM2)
8: (MOVE_TO_ROOM ROBOT1 ROOM2 COMMON_ROOM)
9: (MOVE_TO_ROOM ROBOT1 COMMON_ROOM ROOM4)

10: (PICK_UP_HAMMER ROBOT1 HAMMER1 ROOM4)
11: (HANG_PAINTING ROBOT1 PAINTING6 HAMMER1 NAIL4 ROOM4)
12: (MOVE_TO_ROOM ROBOT1 ROOM4 COMMON_ROOM)
13: (MOVE_TO_ROOM ROBOT1 COMMON_ROOM ROOM2)
14: (PICK_UP_NAIL ROBOT1 NAIL5 ROOM2)
15: (MOVE_TO_ROOM ROBOT1 ROOM2 COMMON_ROOM)
16: (MOVE_TO_ROOM ROBOT1 COMMON_ROOM ROOM1)
17: (HANG_PAINTING ROBOT1 PAINTING1 HAMMER1 NAIL5 ROOM1)
18: (MOVE_TO_ROOM ROBOT1 ROOM1 COMMON_ROOM)
19: (MOVE_TO_ROOM ROBOT1 COMMON_ROOM ROOM2)
20: (PICK_UP_NAIL ROBOT1 NAIL6 ROOM2)
21: (MOVE_TO_ROOM ROBOT1 ROOM2 COMMON_ROOM)
22: (MOVE_TO_ROOM ROBOT1 COMMON_ROOM ROOM1)
23: (HANG_PAINTING ROBOT1 PAINTING2 HAMMER1 NAIL6 ROOM1)
24: (MOVE_TO_ROOM ROBOT1 ROOM1 COMMON_ROOM)

173

APPENDIX B. APPENDIX B: PLANS OBTAINED IN THE HAMMERS DOMAIN

25: (MOVE_TO_ROOM ROBOT1 COMMON_ROOM ROOM5)
26: (PICK_UP_NAIL ROBOT1 NAIL1 ROOM5)
27: (MOVE_TO_ROOM ROBOT1 ROOM5 COMMON_ROOM)
28: (MOVE_TO_ROOM ROBOT1 COMMON_ROOM ROOM1)
29: (HANG_PAINTING ROBOT1 PAINTING3 HAMMER1 NAIL1 ROOM1)
30: (MOVE_TO_ROOM ROBOT1 ROOM1 COMMON_ROOM)
31: (MOVE_TO_ROOM ROBOT1 COMMON_ROOM ROOM5)
32: (PICK_UP_NAIL ROBOT1 NAIL2 ROOM5)
33: (MOVE_TO_ROOM ROBOT1 ROOM5 COMMON_ROOM)
34: (MOVE_TO_ROOM ROBOT1 COMMON_ROOM ROOM4)
35: (HANG_PAINTING ROBOT1 PAINTING4 HAMMER1 NAIL2 ROOM4)
36: (MOVE_TO_ROOM ROBOT1 ROOM4 COMMON_ROOM)
37: (MOVE_TO_ROOM ROBOT1 COMMON_ROOM ROOM5)
38: (PICK_UP_NAIL ROBOT1 NAIL3 ROOM5)
39: (MOVE_TO_ROOM ROBOT1 ROOM5 COMMON_ROOM)
40: (MOVE_TO_ROOM ROBOT1 COMMON_ROOM ROOM4)
41: (HANG_PAINTING ROBOT1 PAINTING5 HAMMER1 NAIL3 ROOM4)

174

A
P

P
E

N
D

I
X

C
EXTRA RESULTS ON MAP

THIS APPENDIX contains detailed results that were summarized in Chapter 7.

C.1 CodMAP problems extra results

The following tables show specific results on Time, Makespan and Cost obtained on the
CoDMAP experiments from Section 7.5.

Table C.1: IPC scores in Time per configuration in CoDMAP domains.

PMR-RRPT-PLAN
BC LB ALL CMAP-T ADP-L SIW LF YAHSP

Driverlog 18.92 17.44 16.54 19.66 17.29 16.04 18.40 14.53
Zenotravel 19.31 18.00 15.74 19.84 18.80 18.75 18.64 10.71
Elevators 16.78 16.73 16.45 19.40 20.00 19.32 18.48 1.58
Logistics 20.00 19.65 19.07 20.00 20.00 20.00 20.00 20.00

Rovers 17.16 15.56 16.26 19.87 19.34 17.68 18.10 2.97
Satellites 18.54 17.70 17.04 20.00 19.31 17.96 17.18 7.46
Sokoban 8.82 6.56 11.32 12.13 15.16 15.52 13.14 5.76

Taxi 19.84 19.83 17.77 20.00 20.00 20.00 20.00 19.03
Blocks 20.00 15.25 14.98 20.00 18.42 16.56 18.19 14.88

Wireless 0.77 0.75 1.77 1.79 8.95 3.24 3.35 15.17
Depots 13.48 12.75 13.01 14.27 12.73 15.03 12.91 12.60

Woodworking 13.26 13.26 15.91 14.76 17.59 11.75 18.75 2.00
Total 186.87 173.48 175.86 201.72 207.59 191.84 197.14 126.69

175

APPENDIX C. EXTRA RESULTS ON MAP

Table C.2: IPC scores in Makespan per configuration in CoDMAP domains.

PMR-RRPT-PLAN
BC LB ALL CMAP-T ADP-L LF YAHSP

Driverlog 11.82 12.65 8.86 10.99 13.84 12.43 16.00
Zenotravel 11.22 17.03 17.03 11.08 10.62 12.88 12.00
Elevators 16.25 16.41 16.41 17.96 16.30 17.44 2.00
Logistics 15.09 15.09 15.09 15.39 15.28 16.14 20.00

Rovers 10.56 9.86 9.75 17.51 11.06 16.39 4.00
Satellites 7.68 16.01 15.95 9.82 7.31 9.08 10.00
Sokoban 7.78 6.50 6.50 11.43 13.64 14.36 7.00

Taxi 13.37 13.37 13.37 13.37 13.43 13.32 20.00
Blocks 8.38 6.02 6.95 7.79 11.10 9.69 17.00

Wireless 1.89 1.89 1.89 4.52 7.21 4.55 18.00
Depots 10.13 10.76 11.00 9.49 7.19 10.00 14.00

Woodworking 13.43 13.43 13.43 10.80 19.67 13.43 0.90
Total 127.60 139.02 136.24 140.12 146.66 149.72 140.90

Table C.3: IPC scores in Cost per configuration in CoDMAP domains.

PMR-RRPT-PLAN
BC LB ALL CMAP-T ADP-L SIW LF YAHSP

Driverlog 16.90 15.57 14.28 17.27 18.30 14.40 17.92 14.64
Zenotravel 19.38 16.31 18.26 17.07 18.09 13.64 18.61 10.06
Elevators 15.95 15.87 15.11 14.25 15.23 14.59 15.74 2.00
Logistics 18.91 18.91 18.94 19.17 19.34 13.34 19.60 19.82

Rovers 18.64 16.87 18.10 19.43 19.11 16.94 18.41 3.75
Satellites 16.44 14.17 13.26 19.51 17.29 18.54 18.21 7.98
Sokoban 8.54 6.64 15.06 11.65 13.61 16.39 14.54 6.71

Taxi 18.94 18.94 18.94 18.94 18.67 16.03 18.62 16.11
Blocks 13.35 8.00 13.35 12.62 12.81 18.98 12.54 14.52

Wireless 1.93 1.93 4.44 4.44 9.00 6.39 4.47 17.44
Depots 15.07 14.54 14.54 14.62 9.05 14.66 12.97 13.25
Woodw. 17.57 17.57 17.57 15.20 17.85 15.18 17.57 2.00

Total 181.61 165.33 181.87 184.17 188.34 179.05 189.22 128.27

176

C.2. EXTRA RESULTS OF PMR CHANGING CODMAP AGENTIFICATION

C.2 Extra results of PMR changing CoDMAP
agentification

The following tables show specific results on Time and Cost when CoDMAP agentification
is changed, which is explained on the experiments from Section 7.6.

Table C.4: Cost score in domains were plan reuse phase is executed inside PMR and
agentification is changed (Depots-our, Logistics, Elevators-fast)

PMR-RRPT-PLAN-BC PMR-RRPT-PLAN-LB SIW CMAP-T ADP-L
Depots 15.58 15.60 15.91 16.06 9.93

Logistics 19.28 19.28 13.60 19.54 19.72
Elevators 17.22 17.13 15.79 15.40 16.64

Depots-trucks 8.38 3.63 17.03 14.20 6.89
Logistics-air 18.65 17.59 13.05 18.99 19.73

Elevators-fast 8.53 11.01 12.23 16.40 17.36
Total 87.63 84.25 87.61 100.59 90.28

177

APPENDIX C. EXTRA RESULTS ON MAP

C.3 Hard MAP problems extra results

The following table shows specific results on Time obtained on the Hard problems
experiments from Section 7.8

Table C.5: Time score score in hard and specific problems.

PMR-RRPT-PLAN
BC LB CMAP-T ADP-L SIW LF YAHSP

Zenotravel 16.66 15.37 14.03 17.15 0.40 15.63 0.00
Satellite 16.61 15.58 15.53 19.86 0.53 18.72 0.00

Rover 10.34 10.25 10.22 19.40 0.00 19.87 0.00
Driverlog 0.00 2.05 4.37 5.22 0.00 7.56 0.00

Blocks 14.37 4.46 15.13 10.13 7.54 9.19 7.57
Rover-graph 8.33 8.33 9.60 20.00 11.73 6.23 0.00

VRP 20.00 12.16 10.79 13.57 1.56 11.03 0.00
Depots-robots 11.57 11.48 8.86 7.94 10.16 9.23 0.00

Total 97.89 79.68 88.53 113.27 31.92 97.47 7.57

178

REFERENCES

V. Alcázar, M. M. Veloso, and D. Borrajo. Adapting a rapidly-exploring random tree for
automated planning. In SOCS, 2011.

C. Bäckström and B. Nebel. Complexity results for SAS+ planning. Computational
Intelligence, 11:625–655, 1995.

B. Bonet and H. Geffner. Planning as heuristic search. Artificial Intelligence, 129(1):5 –
33, 2001. ISSN 0004-3702. doi: https://doi.org/10.1016/S0004-3702(01)00108-4. URL
http://www.sciencedirect.com/science/article/pii/S0004370201001084.

D. Borrajo. Plan sharing for multi-agent planning. In R. Nissim, D. L. Kovacs, and
R. Brafman, editors, Proceedings of ICAPS DMAP Workshop, pages 57–65, 2013.

D. Borrajo and S. Fernández. MAPR and CMAP. In Proceedings of CoDMAP-15, 2015.
URL http://agents.fel.cvut.cz/codmap/results/CoDMAP15-proceedings.pdf.

D. Borrajo and S. Fernández. Efficient approaches for multi-agent planning. KAIS, 14:
253–302, 2018.

D. Borrajo and M. M. Veloso. Probabilistically reusing plans in deterministic planning.
In Proceedings of ICAPS Workshop on HSDIP, 2012.

D. Borrajo, A. Roubíčková, and I. Serina. Progress in case-based planning. ACM
Comput. Surv., 47(2):35:1–35:39, 2015. ISSN 0360-0300. doi: 10.1145/2674024. URL
http://doi.acm.org/10.1145/2674024.

R. I. Brafman. A privacy preserving algorithm for multi-agent planning and search. In
IJCAI, pages 1530–1536, 2015. ISBN 978-1-57735-738-4. URL http://dl.acm.org/

citation.cfm?id=2832415.2832462.

R. I. Brafman and C. Domshlak. From one to many: Planning for loosely coupled multi-
agent systems. In ICAPS, pages 28–35, 2008. URL http://www.aaai.org/Library/

ICAPS/2008/icaps08-004.php.

179

http://www.sciencedirect.com/science/article/pii/S0004370201001084
http://agents.fel.cvut.cz/codmap/results/CoDMAP15-proceedings.pdf
http://doi.acm.org/10.1145/2674024
http://dl.acm.org/citation.cfm?id=2832415.2832462
http://dl.acm.org/citation.cfm?id=2832415.2832462
http://www.aaai.org/Library/ICAPS/2008/icaps08-004.php
http://www.aaai.org/Library/ICAPS/2008/icaps08-004.php

REFERENCES

R. I. Brafman and C. Domshlak. On the complexity of planning for agent teams and its
implications for single agent planning. Artificial Intelligence, 198:52–71, 2013. doi:
http://dx.doi.org/10.1016/j.artint.2012.08.005.

R. I. Brafman, C. Domshlak, Y. Engel, and M. Tennenholtz. Planning games. In IJCAI,
pages 73–78, 2009. URL http://dl.acm.org/citation.cfm?id=1661445.1661458.

M. Brenner. Multiagent planning with partially ordered temporal plans. In IJCAI, pages
1513–1514, 2003. URL http://dl.acm.org/citation.cfm?id=1630659.1630916.

J. Britanik and M. Marefat. Hierarchical plan merging with application to process
planning. In Proceedings of IJCAI, pages 1677–1684, 1995. URL http://dl.acm.

org/citation.cfm?id=1643031.1643116.

T. Bylander. The computational complexity of propositional strips planning. Artificial
Intelligence, 69(1-2):165–204, 1994.

V. Conitzer. Comparing multiagent systems research in combinatorial auctions and
voting. AMAI, 58(3-4):239–259, 2010. doi: 10.1007/s10472-010-9205-y.

S. A. Cook. The complexity of theorem-proving procedures. In STOC, pages 151–
158, 1971. doi: 10.1145/800157.805047. URL http://doi.acm.org/10.1145/800157.

805047.

M. Crosby. ADP an agent decomposition planner. Proceedings of CoDMAP-15, page 4,
2015.

M. Crosby, M. Rovatsos, and R. P. A. Petrick. Automated agent decomposition for
classical planning. In ICAPS, 2013. URL http://www.aaai.org/ocs/index.php/

ICAPS/ICAPS13/paper/view/6051.

T. De la Rosa, D. Borrajo, and A. Olaya. Replaying type sequences in forward heuristic
planning. In AAAI’06 Workshop on Learning for Search, 2006.

S. Edelkamp and M. Helmert. Exhibiting knowledge in planning problems to minimize
state encoding length. In European Conference on Planning, pages 135–147, 1991.

E. Ephrati and J. S. Rosenschein. Multi-agent planning as the process of merging
distributed sub-plans. In In Proceedings of the Workshop on Distributed Artificial
Intelligence, pages 115–129, 1993.

180

http://dl.acm.org/citation.cfm?id=1661445.1661458
http://dl.acm.org/citation.cfm?id=1630659.1630916
http://dl.acm.org/citation.cfm?id=1643031.1643116
http://dl.acm.org/citation.cfm?id=1643031.1643116
http://doi.acm.org/10.1145/800157.805047
http://doi.acm.org/10.1145/800157.805047
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS13/paper/view/6051
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS13/paper/view/6051

REFERENCES

R. E. Fikes and N. J. Nilsson. Strips: A new approach to the application of theorem
proving to problem solving. In Proceedings of IJCAI, pages 608–620, 1971. URL
http://dl.acm.org/citation.cfm?id=1622876.1622939.

D. Fišer, M. Štolba, and A. Komenda. Maplan. In Competition of Distributed and
Multiagent Planners, pages 8–10, 2015.

D. Foulser, M. Li, and Q. Yang. Theory and algorithms for plan merging. Artificial
Intelligence, 57(2-3):143–181, 1992.

M. Fox and D. Long. PDDL2.1: An extension to PDDL for expressing temporal planning
domains. JAIR, 20, 2003.

M. Fox, A. Gerevini, D. Long, and I. Serina. Plan stability: Replanning versus plan repair.
In ICAPS, pages 212–221, 2006.

A. García-Olaya, T. de la Rosa, and D. Borrajo. Using the relaxed plan heuristic to
select goals in oversubscription planning problems. In J. A. Lozano, J. A. Gámez, and
J. A. Moreno, editors, Advances in Artificial Intelligence, pages 183–192, 2011. ISBN
978-3-642-25274-7.

H. Geffner. The model-based approach to autonomous behavior: A personal view. In
AAAI, 2010.

A. Gerevini and I. Serina. Fast plan adaptation through planning graphs: Local and
systematic search techniques. In AIPS, pages 112–121, 2000.

A. Gerevini and I. Serina. LPG: A planner based on local search for planning graphs with
action costs. In ICAPS, pages 13–22, 2002. URL http://www.aaai.org/Library/

AIPS/2002/aips02-002.php.

B. P. Gerkey and M. Matarić. A formal analysis and taxonomy of task allocation in
multi-robot systems. International Journal of Robotics Research, 23(9):939–954, 2004.

P. Haslum and H. Geffner. Admissible heuristics for optimal planning. In AIPS, pages
140–149, 2000. ISBN 1-57735-111-8. URL http://dl.acm.org/citation.cfm?id=

3090475.3090491.

M. Helmert. The fast downward planning system. JAIR, 26:191–246, 2006.

181

http://dl.acm.org/citation.cfm?id=1622876.1622939
http://www.aaai.org/Library/AIPS/2002/aips02-002.php
http://www.aaai.org/Library/AIPS/2002/aips02-002.php
http://dl.acm.org/citation.cfm?id=3090475.3090491
http://dl.acm.org/citation.cfm?id=3090475.3090491

REFERENCES

M. Helmert. Concise finite-domain representations for pddl planning tasks. Artificial
Intelligence, 173:503–535, 2009. doi: 10.1016/j.artint.2008.10.013.

J. Hoffmann. The metric-ff planning system: Translating "ignoring delete lists" to nu-
meric state variables. Journal of Artificial Intelligence Research, 20(1):291–341, 2003.
ISSN 1076-9757. URL http://dl.acm.org/citation.cfm?id=1622452.1622463.

J. Hoffmann and B. Nebel. The FF planning system: Fast plan generation through
heuristic search. JAIR, 14:253–302, 2001.

R. Howey, D. Long, and M. Fox. VAL: Automatic plan validation, continuous effects and
mixed initiative planning using PDDL. In ICTAI 2004, pages 294–301, 2004.

A. Jonsson and M. Rovatsos. Scaling up multiagent planning: A best-response approach.
In ICAPS, pages 114–121, 2011.

P. Jonsson and C. Bäckström. State-variable planning under structural restrictions:
algorithms and complexity. Artificial Intelligence, 100(1):125 – 176, 1998. ISSN
0004-3702. doi: https://doi.org/10.1016/S0004-3702(98)00003-4.

J. Jordán, A. Torreño, M. de Weerdt, and E. Onaindia. A better-response strategy for
self-interested planning agents. Applied Intelligence, 48(4):1020–1040, 2018. doi:
10.1007/s10489-017-1046-5. URL https://doi.org/10.1007/s10489-017-1046-5.

S. Koenig, D. Furcy, and C. Bauer. Heuristic search-based replanning. In AIPS, pages
294–301, 2002. URL http://dl.acm.org/citation.cfm?id=3036884.3036923.

D. Kohan Marzagão, N. Rivera, C. Cooper, P. McBurney, and K. Steinhöfel. Multi-
agent flag coordination games. In AAMAS, pages 1442–1450, 2017. URL http:

//dl.acm.org/citation.cfm?id=3091125.3091324.

J. R. Kok, M. T. Spaan, and N. Vlassis. Non-communicative multi-robot coordination
in dynamic environments. Robotics and Autonomous Systems, 50(2):99 – 114, 2005.
ISSN 0921-8890. doi: https://doi.org/10.1016/j.robot.2004.08.003. URL http://www.

sciencedirect.com/science/article/pii/S0921889004001290.

D. L. Kovacs. A multi-agent extension of PDDL 3.1. In ICAPS, pages 19–27, 2012.

J. Kozlak, J.-C. Créput, V. Hilaire, and A. Koukam. Multi-agent environment for dynamic
transport planning and scheduling. In Computational Science ICCS, pages 638–645,
2004. doi: 10.1007/978-3-540-24688-6_83.

182

http://dl.acm.org/citation.cfm?id=1622452.1622463
https://doi.org/10.1007/s10489-017-1046-5
http://dl.acm.org/citation.cfm?id=3036884.3036923
http://dl.acm.org/citation.cfm?id=3091125.3091324
http://dl.acm.org/citation.cfm?id=3091125.3091324
http://www.sciencedirect.com/science/article/pii/S0921889004001290
http://www.sciencedirect.com/science/article/pii/S0921889004001290

REFERENCES

R. V. D. Krogt and M. D. Weerdt. Plan repair as an extension of planning. In ICAPS,
pages 161–170, 2005.

B. Krulwich. Planning for soft goals. In Proceedings of AIPS 1992, pages 289 – 290,
1992. ISBN 978-0-08-049944-4. doi: 10.1016/B978-0-08-049944-4.50047-1. URL
https://www.sciencedirect.com/science/article/pii/B9780080499444500471.

S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. I. J. Robotics Res.,
20(5):378–400, 2001.

N. Lipovetzky and H. Geffner. Width-based algorithms for classical planning: New
results. In ECAI, 2014.

N. Luis, T. Pereira, S. Fernández, A. Moreira, D. Borrajo, and M. Veloso. Using pre-
computed knowledge for goal allocation in multi-agent planning. Journal of Intelligent
& Robotic Systems, 2019. ISSN 1573-0409. doi: 10.1007/s10846-019-01022-0. URL
https://doi.org/10.1007/s10846-019-01022-0.

A. D. Mali. Plan merging & plan reuse as satisfiability. In ECP, pages 84–96, 2000.

S. Maliah, G. Shani, and R. Stern. Privacy preserving landmark detection. Fron-
tiers in Artificial Intelligence and Applications, 263:597–602, 2014. doi: 10.3233/
978-1-61499-419-0-597.

S. Maliah, R. I. Brafman, and G. Shani. Increased privacy with reduced communication
in multi-agent planning. In ICAPS, 2017.

L. Mudrova, B. Lacerda, and N. Hawes. Partial order temporal plan merging for mobile
robot tasks. In Proceedings of ECAI 2016, volume 285, pages 1537 – 1545, 2016.

C. Muise, N. Lipovetzky, and M. Ramirez. MAP-LAPKT: Omnipotent multi-agent plan-
ning via compilation to classical planning. In Competition of Distributed and Multia-
gent Planners, 2015. URL http://www.haz.ca/papers/muise_CoDMAP15.pdf.

B. Nebel and J. Koehler. Plan reuse versus plan generation: A theoretical and empirical
analysis. Artificial Intelligence, 76:427–454, 1995.

N. Nigam. The multiple unmanned air vehicle persistent surveillance problem: A review.
Machines, 2(1):13–72, 2014. ISSN 2075-1702. doi: 10.3390/machines2010013.

183

https://www.sciencedirect.com/science/article/pii/B9780080499444500471
https://doi.org/10.1007/s10846-019-01022-0
http://www.haz.ca/papers/muise_CoDMAP15.pdf

REFERENCES

R. Nissim and R. I. Brafman. Cost-optimal planning by self-interested agents. In AAAI,
2013.

R. Nissim and R. I. Brafman. Distributed heuristic forward search for multi-agent
planning. JAIR, 51:293–332, 2014. doi: 10.1613/jair.4295. URL http://dx.doi.org/

10.1613/jair.4295.

E. P. D. Pednault. Adl and the state-transition model of action. Journal of Logic and
Computation, 4(5):467–512, 1994. doi: 10.1093/logcom/4.5.467. URL http://dx.doi.

org/10.1093/logcom/4.5.467.

J. S. Penberthy and D. S. Weld. UCPOP: a sound, complete, partial order planner for
ADL. pages 103–114. Morgan Kaufmann, 1992.

T. Pereira, M. Veloso, and A. Moreira. Multi-robot planning using robot-dependent
reachability maps. In Robot 2015: Second Iberian Robotics Conference, pages 189–201.
Springer, 2015.

T. Pereira, M. Veloso, and A. P. Moreira. Visibility maps for any-shape robots. In IROS’16,
the IEEE/RSJ International Conference on Intelligent Robots and Systems, volume 29,
pages 428–459, 2016.

T. Pereira, N. Luis, A. Moreira, D. Borrajo, M. Veloso, and S. Fernandez. Heterogeneous
multi-agent planning using actuation maps. In 2018 IEEE International Conference
on Autonomous Robot Systems and Competitions (ICARSC), pages 219–224, 2018. doi:
10.1109/ICARSC.2018.8374186.

S. Richter and M. Westphal. The LAMA planner: Guiding cost-based anytime planning
with landmarks. JAIR, 39:127–177, 2010.

J. Rintanen. Madagascar : Scalable planning with SAT. 2014.

S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson Education,
2 edition, 2003. ISBN 0137903952.

J. M. Santos, T. Krajník, and T. Duckett. Spatio-temporal exploration strategies for
long-term autonomy of mobile robots. Robotics and Autonomous Systems, 88:116 –
126, 2017. ISSN 0921-8890. doi: https://doi.org/10.1016/j.robot.2016.11.016.

S. Shekhar and R. I. Brafman. Representing and planning with interacting actions and
privacy. In ICAPS, 2018.

184

http://dx.doi.org/10.1613/jair.4295
http://dx.doi.org/10.1613/jair.4295
http://dx.doi.org/10.1093/logcom/4.5.467
http://dx.doi.org/10.1093/logcom/4.5.467

REFERENCES

D. E. Smith. Choosing objectives in over-subscription planning. In ICAPS, 2004.

R. G. Smith. The contract net protocol: High-level communication and control in a
distributed problem solver. IEEE Transactions on Computers, C-29(12):1104–1113,
Dec 1980. ISSN 0018-9340. doi: 10.1109/TC.1980.1675516.

J. M. Such, A. García-Fornes, A. Espinosa, and J. Bellver. Magentix2: A privacy-
enhancing agent platform. Engineering Applications of Artificial Intelligence, 26(1):96
– 109, 2013. ISSN 0952-1976. doi: https://doi.org/10.1016/j.engappai.2012.06.009.

A. Torreño, E. Onaindia, A. Komenda, and M. Štolba. Cooperative multi-agent planning:
A survey. ACM Comput. Surv., 50(6):84:1–84:32, 2017. ISSN 0360-0300. doi: 10.1145/
3128584. URL http://doi.acm.org/10.1145/3128584.

A. Torreño, E. Onaindia, and Ó. Sapena. FMAP: Distributed cooperative multi-agent
planning. Applied Intelligence, 41(2):606–626, 2014. doi: 10.1007/s10489-014-0540-2.

A. Torreño, Óscar Sapena, and E. Onaindia. FMAP: A platform for the development
of distributed multi-agent planning systems. Knowledge-Based Systems, 145:166 –
168, 2018. ISSN 0950-7051. doi: https://doi.org/10.1016/j.knosys.2018.01.013. URL
http://www.sciencedirect.com/science/article/pii/S0950705118300212.

J. Tozicka, J. Jakubuv, and A. Komenda. Psm-based planners description for codmap
2015 competition. pages 29–32, 2015.

J. Tozicka, M. Štolba, and A. Komenda. The limits of strong privacy preserving multi-
agent planning. In ICAPS, 2017.

R. van der Krogt and M. de Weerdt. Self-interested planning agents using plan repair.
In Workshop on Multiagent Planning and Scheduling, ICAPS, pages 36–44, 2005.

M. Veloso, M. A. Pérez, and J. G. Carbonell. Nonlinear planning with parallel resource
allocation. In Proceedings of the DARPA Workshop on IPSC, pages 207–212, 1990.

M. Veloso, J. Biswas, B. Coltin, and S. Rosenthal. CoBots: Robust symbiotic autonomous
mobile service robots. In IJCAI, 2015.

V. Vidal. The YAHSP planning system: Forward heuristic search with lookahead plans
analysis. In Proceedings of the 4th IPC, pages 59–60, 2004.

185

http://doi.acm.org/10.1145/3128584
http://www.sciencedirect.com/science/article/pii/S0950705118300212

REFERENCES

M. Štolba and A. Komenda. The MADLA planner: Multi-agent planning by combination
of distributed and local heuristic search. Artificial Intelligence, 252:175 – 210, 2017.
ISSN 0004-3702. doi: https://doi.org/10.1016/j.artint.2017.08.007. URL http://www.

sciencedirect.com/science/article/pii/S0004370217301042.

M. Štolba, A. Komenda, and D. L. Kovacs, editors. Proceedings of CoDMAP, 2015.

M. Štolba, A. Komenda, and D. L. Kovacs. Competition of Distributed and Multiagent
Planners (codmap). In AAAI, 2016a.

M. Štolba, J. Tozicka, and A. Komenda. Secure multi-agent planning algorithms. In
ECAI, 2016b.

P. R. Wurman, D. Raffaello, and M. Mountz. Coordinating hundreds of coopera-
tive, autonomous vehicles in warehouses. In Proceedings of IAAI, pages 1752–
1759, 2007. ISBN 978-1-57735-323-2. URL http://dl.acm.org/citation.cfm?

id=1620113.1620125.

R. Zlot and A. Stentz. Market-based multirobot coordination for complex tasks.
The International Journal of Robotics Research, 25(1):73–101, 2006. doi: 10.1177/
0278364906061160.

186

http://www.sciencedirect.com/science/article/pii/S0004370217301042
http://www.sciencedirect.com/science/article/pii/S0004370217301042
http://dl.acm.org/citation.cfm?id=1620113.1620125
http://dl.acm.org/citation.cfm?id=1620113.1620125

	List of Tables
	List of Figures
	Glossary
	Introduction
	Introduction
	Motivation
	Objectives
	Thesis Outline

	State of the art
	Automated Planning
	Introduction
	Planning models and modelling languages
	The propositional formalization
	The PDDL representation
	The PDDL domain
	The PDDL problem
	PDDL official versions

	The multi-valued formalization
	Metrics and evaluation
	Automated Planning algorithms
	Rapidly-exploring Random Trees
	Randomly-exploring Planning Tree

	Multi-Agent Planning
	Introduction
	MAP task formalizations
	MA-STRIPS
	MA-PDDL
	The FMAP formalization
	The MAPR formalization

	Factorization and Agentification
	SIW
	ADP
	MAPR

	Modelling Privacy in Multi-Agent Planning
	MA-PDDL
	FMAP
	MAPR

	Coordination techniques
	CoDMAP: The first competition on Distributed and Multi-Agent Planners
	Paralellization algorithms
	Multi-Agent Planning Algorithms

	Plan reuse
	Introduction
	Plan Reuse in Automated Planning
	lpg-adapt
	errt-plan

	 Contributions
	PMR: Plan Merging by Reuse
	Introduction
	Algorithm
	Planning
	Plan Reuse
	Centralized planning
	Parallelization
	Properties
	Dealing with Privacy inside pmr

	RRPT-plan: Reuse Random Planning Tree
	Introduction
	Configuration
	Preprocessing
	Search-Reuse-Sampling
	Search
	Reuse
	Sampling

	Tracing back the solution
	Properties
	Differences of rrpt-plan regarding previous works

	Empirical evaluation
	Introduction
	Experimental setup
	Results of pmr-rrpt-plan and pmr-lpg-adapt when solving different plan-reuse scenarios
	Analyzing the impact on performance of rrpt-plan's parameters
	Results in CoDMAP problems
	Results changing agentification
	Results scaling the number of agents
	Hard Multi-Agent Planning problems
	Discussion on the experiments' results

	Application in robotics
	Use case: pmr on Robotics environments
	Introduction
	The coverage problem
	Architecture
	Actuation Maps
	Discretization
	Preprocessing
	Dealing with Interactions
	Extending the Approach to Any-Shape Robots
	Experiments and results
	Simulation Setup
	Experiments on the Coverage problem
	Experiments Detecting Potential Collisions

	Further improvements: Contract-Net and simplifying the model

	 Conclusions
	Conclusions and Future Work
	Conclusions
	Future Work

	Planning domains
	Appendix B: Plans obtained in the Hammers domain
	Extra results on MAP
	CodMAP problems extra results
	Extra results of pmr changing CoDMAP agentification
	Hard MAP problems extra results

	References

