
Aalto University
School of Science and Technology
Degree Programme of Computer Science and Engineering

Mikael Lavi

Implementing Touch-based User Interface for
Existing Software

Aalto-yliopisto
Perustieteiden korkeakoulu
Tietotekniikan talon kirjasto

Master’s Thesis
Espoo, May 15, 2012

Supervisor:
Instructor:

Professor Lauri Savioja
Marko Myllymaa, M.Sc.

^ Aalto University
/ School of Science

Aalto University
School of Science
Degree Programme in Computer Science and
Engineering

ABSTRACT OF THE MASTER’S THESIS

Author: Mikael Lavi

Title: Implementing Touch-based User Interface for Existing Software

Number of pages: 99 Date: 15.5.2012 Language: English

Professorship: Media technology Code: T-lll

Supervisor: Professor Lauri Savioja

Instructor(s): Marko Myllymaa, M.Sc.

Abstract:

The purpose of this work was to evaluate the migration steps of a windowing desktop
application into a touch based input enabled software.

The study was conducted on an already existing building information modeling software
called Tekla BIMsight. The task was to retain all the functionality already in the software
while making it possible to be used on touch-enabled devices, such as tablets or convertible
laptops with a swivel display. Design and implementation of the system has been
documented as part of the thesis, as well as most problematic issues during this period. The
effects of the implementation are validated and tested with real users and the results from that
study were documented. The usability study was conducted to obtain quantitative and
qualitative metrics of the usability.

The nature of the input mechanism, direct or indirect, affects the user experience greatly. The
final system should be as responsive as possible to maintain a good level of perceived
performance. Early prototyping and access to the target devices is critical to the success of a
migration process. There are several common mistakes that should be avoided in the design
and implementation phases. Not all the problems were critical, but many of them were
identified as very cumbersome for the user that would affect the positive user experience of
the software. With each new context for a user interface the problems need to be solved again
and only experience from such solutions can help alleviate this task.

The implemented touch support can be verified to meet the set requirements very well: It
allows the system to be used on touch based input environments and all the major user
interface elements support this.

Keywords: HCI, BIM, UI, touch, user interface, tablet, review software, evaluation

■ a Aalto-yliopisto
* * Perustieteiden

L korkeakoulu

Aalto-yliopisto
Perustieteiden korkeakoulu
Tietotekniikan koulutusohjelma

DIPLOMITYÖN TIIVISTELMÄ

Tekijä: Mikael Lavi

Työn nimi: Kosketuskäyttöliittymän toteuttaminen olemassa olevaan ohj elmaan

Sivumäärä: 99 Päiväys: 15.5.2012 Julkaisukieli: Englanti

Professuuri: Mediatekniikka Professuurikoodi: T-lll

Työn valvoja: Professori Lauri Savioja

Työn ohjaaja(t): Marko Myllymaa, DI

Tiivistelmä:

Työn tarkoituksena oli toteuttaa ja arvioida toimenpiteet ja menetelmät joilla olemassa
olevaan käyttöliittymään voidaan lisätä tuki kosketuskäytölle.

Ominaisuudet lisättiin rakennusten tietomallinnuksen tarkasteluohjelmaan, Tekla BIMsight.
Tehtävänä oli säilyttää kaikki aiemmat toiminnot ja tehdä ohjelmasta tehokkaasti käytettävä
kosketuslaitteilla, kuten tableteilla ja kääntyvällä näytöllä varustetuilla kannettavilla.
Suunnittelu ja toteutus järjestelmälle on dokumentoitu työssä ja kaikkein vaativimmat
ongelmat. Toteutetun tuen vaikutuksia arvioitiin oikeiden käyttäjien kanssa tehdyssä
käyttäjätutkimuksessa, jonka tulokset on esitetty. Käytettävyystutkimuksella hankittiin
kvantitatiivista ja kvalitatiivista tietoa tuotteesta.

Laite jolla ohjelmistoa käytetään vaikuttaa ohjelmasta saatuun käyttökokemukseen
merkittävästi. Hyvän käyttökokemuksen saavuttamiseksi lopullisen järjestelmän käytön tulisi
olla sujuvaa. Aikaisten prototyyppien kokeilu ja kohdelaitteiden saatavuus ovat tärkeitä
tekijöitä siirtymäprosessin kannalta. Yleisiä ongelmatilanteita ja haasteita joita kohdattiin
suunnittelu- ja toteutusvaiheissa on listattu työssä. Loppukäyttäjän kannalta useat ongelmat
olivat rasittavia ja vaikuttaisivat käyttökokemukseen negatiivisesti jos niitä ei korjata. Uuden
käyttöympäristön tuomat ongelmat joudutaan ratkaisemaan aina uudestaan. Vain
kokemuksella vastaavista tilanteista on merkittävästi etua itse ratkaisujen löytämiselle.

Toteutetun kosketuskäyttöliittymän tuen voidaan todeta vastaavan sille asetettuja tavoitteita
ja vaatimuksia hyvin; se mahdollistaa ohjelman käyttämisen kosketuskäyttöliittymän
omaavissa laitteissa ja kaikkein merkittävimmät käyttöliittymäelementit on tuettuina.

Avainsanat: HCI, BIM, kosketus, migraatio, tablet, sormitietokone, katseluohjelmisto,
arviointi

Acknowledgements
I found myself thinking about a thesis subject that would enable me to
write about something I am both interested and knowledgeable about
already. I want to thank Tekla, and especially Ville Rousu, for the
opportunity to write this book and thus finalise my studies.

I want to thank my supervisor Lauri Savioja for the constructive
criticism and good feedback he was able to give during writing. I thank
my instructor Marko Myllymaa for continued support around the
clock. I want to thank my parents for their endurance for encouraging
me to finish my diploma, and many thanks to my friends who were
there supporting me and reflecting my thoughts and visions with me.

i

Table of Contents
Acknowledgements... i

Abbreviations.. vi

List of Figures...vii

List of Tables.. viii

1 Introduction.. i
1.1 Research Objectives..i
l. 2 Structure of the thesis...3

2 Background.. 4

2.1 Input mechanism properties.. 4
2.1.1 Mouse.. 4
2.1.2 Touchscreen.. 5
2.1.3 Stylus... 5
2.1.4 Trackpad and Touchpad.. 6
2.1.5 Comparison... 7

2.2 Touch interaction environments... 8

2.3 Touch input technologies..9
2.3.1 Resistive touch panel..9
2.3.2 Capacitive touch panel..10
2.3.3 Infrared LED array... 10
2.3.4 Optical imaging with video camera....................................11
2.3.5 Optical imaging with infrared sensors...............................11
2.3.6 Hardware manufacturers.. 12

2.4 Support in operating systems..14
2.4.1 Microsoft touch support... 14
2.4.2 Apple touch support.. 15
2.4.3 Android..16
2.4.4 Linux multi-touch support...16
2.4.5 Operating systems in summary..17

ii

2.5 Common problems analysis.. 17

2.6 Usability..21
2.6.1 Touch interface usability metrics...................................... 21
2.6.3 Cognitive and physical load... 22
2.6.4 Perceived performance.. 23

2.7 Validation methods..24
2.7.1 System Usability Scale... 24
2.7.2 Affinity diagramming..25

2.8 Building Information Modeling... 26

3 Defining requirements..28
3.1 Functional requirements.. 28
3.2 User stories.. 29
3.3 Targeted hardware...30
3.4 Main features..31
3.5 Technical background of Tekla BIMsight................................33
3.6 Technical limitations..34
3.7 Requirements for the UI..37

4 Implementation...40
4.1 Iterations of touch support... 40

4.1.1 1st prototype: Joystick buttons..42
4.1.2 2nd prototype: Touch event translation to mouse events... 44
4.1.3 3rd prototype: Full multi-touch implementation............48
4.1.4 4th prototype: Using only WPF raw touch events............51
4.1.5 5th prototype: Performance optimization iteration......... 54

4.2 Delivered functionality of the Tekla BIMsight 1.4....................57

5 Usability evaluation... 59
5.1 Planning the evaluation.. 59

5.1.1 Evaluation goals and participants..................................... 61
5.1.2 Limitations.. 62

iii

5-2 Execution of the evaluation... 62
5.2.1 Inspection briefing..62
5.2.2 Inspection visit..63
5.2.3 Feedback for the participants.. 65
5.2.4 Debriefing the user testing.. 65

5.3 Analysis of the material...65

5.4 Findings from the evaluation... 67
5.4.1 Touch interface was easy to pick up and accepted.......... 67
5.4.2 Mental model of navigation... 67
5.4.3 Orbiting tool lead users into error situations easily.........68
5.4.4 View angle is very narrow inside buildings......................68
5.4.5 Difficulty of discovering the Tap&Hold gesture............... 69
5.4.6 Accessing part details was difficult....................................69
5.4.7 Measurement tool did not match mental model.............. 70
5.4.8 Reception of the zooming controls.....................................71
5.4.9 Other observations..72

5.5 Findings from the affinity diagramming.................................. 73

5.6 Findings from system usability scale....................................... 74

5.7 Discussion on the usability test...75

6 Results..77

6.1 Summary of prototyping...77

6.2 Lessons learned... 79
6.2.1 Prototyping of unknown technology.................................79
6.2.2 Indirect interaction is difficult with direct input............. 79
6.2.3 Direct input — experience is critical................................. 80
6.2.4 Tricks in handling the implementation of touch...............81
6.2.5 Rendering performance... 82
6.2.6 Unknown safe exits in navigation......................................83

IV

7 Conclusions.. 84

8 Future Steps..87

References... 88

Appendix A...96

Appendix B...97

Appendix C...98

Appendix D...99

v

Abbreviations
AEC Architecture, Engineering and Construction business
APDT Agile Planner on Digital Tabletop
API application programming interface
BIM Building Information Modeling
bSI buildingSMART International
CAD computer-aided design
DLU dialog box unit, a measure used in Microsoft Windows
HCI human-computer interaction
IAI International Alliance for Interoperability
IDE integrated development environment
IFC Industry Foundation Classes
ISO International Standardization Organization
LCD liquid crystal display
LED light emitting diode
MSAA Microsoft Active Accessibility
MSDN Microsoft Developer Network
PC personal computer
RFC remote procedure call
SDK software development kit
SUS System Usability Scale
UI user interface
WPF Windows Presentation Foundation
XAML extensible application markup language
XML extensible markup language
ZCR Zone of Comfortable Reach

VI

List of Figures
2.1 Touch-enabled operating systems on a timeline..........................17

2.2 Illustration of the changes in finger pose when using a wall
display (left) and when using a tabletop device (right)............... 22

2.3 Responses in Windows 7 for single.. 23

2.4 Responses in Windows 7 for double tapping...............................23

2.5 Tekla BIM workflow..27

3.1 Colouring of entire models in Tekla BIMsight..............................33

3.2 Colouring of entire selected parts in Tekla BIMsight...................33

3.3 Screen estate available to the 3D view in different devices..........37

4.1 Areas in the application UI that require attention for touch
support.. 40

4.2 Graphical comparison of the turning behaviours.........................46

4.3 . Illustration of different gestures and how the dot product
distinguishes them..53

4.4 Normal mode for the user interface.. 58

4.5 Tablet modes for the user interface...58

5.1 Visiting the construction site... 64

5.2 Team creating the affinity diagram... 66

5.3 Press and wait indicators in Microsoft Windows 7...................... 69

5.4 Press and wait indicators in Microsoft Windows 7...................... 69

5.5 Press and wait indicator in Tekla BIMsight..................................69

5.6 User attempted to use the zooming joystick as the visual clue
suggests without achieving perceptible results............................. 71

5.7 Detailed drill down of the SUS results...74

vii

List of Tables
2.1 Input device comparison.. 7

3.1 Navigation controls..32

3.2 Touch input emulated as mouse input.. 36

4.1 Test durations and numbers of calls to respective update
methods... 56

viii

1 Introduction
Designing a user interface (UI) for touch based input interface requires
more attention than pointer based input systems, such as the
(computer) mouse [l, 2]. For nearly three decades the mouse and the
keyboard have been the dominant input methods for computer
assisted design. Touch-based user interfaces are promised to bring a
more natural user experience and portability that cannot be rivalled by
previous input devices. Now touch screens are becoming more and
more popular and software vendors are looking to take advantage of
them.

The tablet computers are blooming in the computer industry [3, 4] and
they have been used in the field in heavy industry for some time
already for inspections, taking notes and following up the site.
Construction industry is just now beginning to harness the potential of
tablets and there are not many applications that support this usage
scenario well. What capabilities do the tablet computers have over
conventional laptops that make them so compelling? The direct input
ability and absolute positioning of fingers enable more direct design
paradigms to be applied on the application design, which has been
argued to add gains in efficiency [1]. Ergonomics of a device designed
for touch or styli are different from that of a mouse.

1.1 Research Objectives

The project for this thesis is to unite the worlds of small touch screen
or stylus devices with desktop environment in the same software. The
software is intended to support styli and touch on tablet computers.
Meanwhile the user experience on desktop computers should be
maintained at the same level or improved. This thesis will try to
address the general problem of migrating desktop software into a
touch input environment.

1

There are three research questions defined for this thesis. They are as
follows:

1. What quantitative measures may be applied to specialized
software in order to measure its productivity and usability?

2. How should software be designed so that multiple input
mechanisms may be supported?

3. What is efficient use of touch-based user interface and are there
means of measuring it?

The project of implementing the touch input into Tekla BIMsight [5]
represents the practical case study of this thesis. That is about studying
the implementation of the support, evaluating the results from
usability point of view, and to document future steps from that point
onward. The main research objectives are:

• Identify and document the problems that impede Tekla
BIMsight from being used on touch input devices.

• Study and document the implementation work to support touch
input devices.

• Document the implemented support.
• Validate and analyse the implemented level of support. Analysis

will concentrate on the efficient use and productivity.
The main outcome of this thesis is a documented solution for a
migration of desktop application to a tablet device that is intended to
be used outside of office environment. The solution will be built onto
Tekla BIMsight as support for tablet usage with stylus or fingers.
Prototype solutions need to be built and refined to form the final
solution that will be published as part of the next application update.

The actual support for touch input will be a team effort made by the
team responsible for the implementation of the application. Most of
the practical work committed for the completion of this work is both
contribution to the team’s efforts and this thesis. The documentation
concerning this thesis and the scientific background research are solely
part of the thesis work.

2

1.2. Structure of the thesis

First the thesis will explore the general problem domain and shed light
on the usage of the application in the background section. That section
also contains the general problems that other related works point out.
After that the problem domain is localised into the Tekla BIMsight
application. The problems faced during the implementation are
studied. The effects of the implementation are validated and tested
with real users and the results from that study are documented. Finally
a conclusion is drawn from the project, its success and future steps for
continued study. Results are presented in the final chapter with
reflection.

3

2. Background

2.1 Input mechanism properties

Understanding different input mechanisms and their properties will
enable us to study the common problems that they pose. Different
kinesthetic and ergonomic properties that are involved will have a
significant effect on the overall feeling ’ of the user experience. Physical
properties of different input methods are evaluated so that the
question of relevant support would be clearer later on.

2.1.1. Mouse

Mouse as an input mechanism is an indirect pointing device. When
user moves the device a virtual pointer moves on the screen according
to the programmed logic. The cursor speed is nowadays determined
with ballistic algorithms [6], so that it is easier for user to hit even lxi
pixel targets with gentle movements and also rapidly move across
larger distances. The indirect nature of mouse is present also in the fact
that the mouse cursor may be moved without taking action on the user
interface. Moving the mouse cursor over a control is called hovering
and usually the system displays some in-place help, or tool-tip help, for
the user when hovering over controls.

The mouse is also a non-haptic control as the common mouse does not
inhibit any feedback mechanisms. A force feedback mouse device was
developed by Salcudean in 1993 [7], but they did not gain much
popularity as, for example, the wheel mouse did. The generic mouse
nowadays has two physical buttons, left and right, and the pressible
scroll-wheel as the middle button. A modern mouse using PS/2
connection reports movement at 10-200 times per second [8] and
gaming mice connected to universal serial bus (USB) at a staggering
1000 Hz intervals with accuracy of even 5700 dpi [9].

4

2.1.2. Touchscreen

Touch input over a display device is a direct input mechanism where
input is active when fingers touch the surface of the screen. Input is
targeted at the absolute coordinates of the finger relative to the image
on the screen. When a finger is pressed onto the screen it hides the
content directly underneath it. This is called occlusion and it presents
the main disadvantage of touch screens. Touch input mechanisms do
not support hovering over controls. The directness lends to the fact
that any input, even unintended, is still valid input. The directness is
also referred to as being more natural [2] for the user: “Touch provides
a natural, real-world feel to interaction. Direct manipulation and
animation complete this impression, by giving objects a realistic,
dynamic motion and feedback.” [2] It is more haptic than the mouse
generally is but commercially available touch screens do not yet have
simulated textures, so the haptic sense of fingers is not fully utilized.
There is however ongoing research for this field as well [11]. The whole
device may be vibrated when a successful input has been registered to
provide feedback, as it is done in some mobile devices [10].

2.1.3. Stylus

Stylus input as implemented by Wacom or N-Trig utilize an active
stylus for input mechanism. Styli come integrated into the display
device or with a separate recognition panel for the stylus. Some devices
are also able to detect touch and stylus [12, 13, 14, 15]. The device is
able to recognize the location of the styli and the pressure of the
contact point with a high resolution [12]. The ability to use a pen to
draw on a computer screen has made the styli very popular among
artists who may use it as a regular pen. The behaviour of the styli may
differ according to manufacturer, but usually the styli support hovering
to move the mouse cursor on the operating system and to register
input when the tip is pressed down on the screen.

Styli may be configured to behave with a relative movement mapping
or an absolute movement mapping. When configured to use the
relative movement mapping the stylus resembles the mouse very

5

closely as the cursor is dragged with the stylus and pressed when the
styli hits the panel. If the stylus is mapped with an absolute movement
mapping then using stylus behaves almost as touch but with a better
input resolution because of the smaller contact surface.

Most styli feature a function button on the side and the other end of
the stylus may be used as an eraser tip. Depending on the driver
support the functionalities may be altered to suit the user’s needs.

2.1.4. Trackpad and Touchpad

A trackpad features a panel that is able to detect finger touches. This
device is also known as a touchpad. When user just taps a finger onto
the panel it is recognised as a click event. When a finger is dragged
across the panel it is interpreted as cursor movement. Trackpads often
come with physical buttons for mouse functions close to the trackpad,
situated in front of the trackpad. These devices have been limited in
bus bandwidth in PS/2 interface that has been in use for mouse devices
for some time. Trackpads using this interface have limitation of two
fingers to be real-time tracked, and limitation of four in recognized
finger contacts. [16,17]

Modern trackpads feature recognition of multiple fingers and
operating systems have begun to take advantage of this. Other gestures
on the trackpad are for example scrolling, which in some cases may be
invoked with two fingers dragging on the trackpad, dragging a single
finger on one edge of the trackpad or dragging a finger in a circular
motion on the trackpad. Synaptics is one manufacturer of these devices
and they report that the latest models feature 1000 dpi accuracy when
using their improved internal bus to connect the device to the system.
A more modern approach of the trackpad is the external mouse device
called Apple Magic Trackpad [18], which has multi-touch gesture
support in addition of being a very big trackpad.

6

2.1.5. Comparison

Of the devices presented above the mouse and the trackpad are the
only indirect input devices. A stylus may be both a direct and an
indirect input device depending on the solution as the system may
reside directly over a display device or just be an external device for a
desktop computer making it indirect. Trackpads are always indirect as
the touch sensitive area is always a separate device from the display
device. They represent a go-between solution between the stylus and
touchscreen in the sense that fingers may be used without the need for
a specialized pointing device, but gestures and the directness of the
touchscreen are not utilized. It is more like a mouse than touchscreens
are. Table 2.1 lists different devices and their main categorical features.

Table 2.1: Input device comparison.

Device Direct Indirect

Mistake

Likelihood 11 Accuracy *

Update

Frequency

Mouse X Rare 1000-5700 dpi 100-1000 Hz

Trackpad X Happens 1000 dpi 100 Hz

Stylus X (X) Less common 2540 lpi 133 Hz

Touchscreen X Common 1000-4000 dpi Depends

* Accuracy for stylus is in lines per inch and other devices are in dots per inch.

Update frequencies on each device are high in most cases. Considering
those devices in wired connection with the computer, the update
frequency might depend on the connection. Wired devices or
integrated hardware usually bear the possibility of utilizing as much
bandwidth as is available. Touchscreen update frequency might pose
another kind of problem if the amount of fingers reported affects the
update frequency directly and that is why Table 2.1 indicates this speed
to be varying. Ambiguous input will be discussed later in section 2.5
where studies [1, 19] indicate that mistake likelihood is higher for
direct input devices than indirect input devices. Mistake likelihood is
an estimate based on the studies where different mechanisms were
compared.

7

2.2 Touch interaction environments

Tablet computers are handheld computers that are operated with
touch or stylus input. The device is roughly similar to any laptop
available on the market, but it is missing the typical input mechanisms
like the keyboard and the trackpad or IBM’s track joystick. Tablet
computers ship with special drivers or software to accommodate for
the lack of a physical keyboard and offer — in similar fashion to
smartphones — a virtual keyboard for text input. Touch UI is the latest
trend in smartphones and most of the new phones reaching the market
are touch interactive instead of physical keyboard. This has brought
touch technologies to the consumer markets.

Tablet/Laptop convertibles are portable computers with a swivel joint
between the screen and hull of the computer. The screen may be folded
display downwards for transportation and opened to operate in a
laptop mode. The screen may also be folded on the hull with the
display facing outwards transforming it into a thick tablet computer.
One such example device is the Dell XT2 [15]. Other tablet/laptop
computers like the Asus Transformer Prime [20] use the keyboard
dock to transform the tablet into a laptop computer.

Tabletop is used to describe a touch interactive computer in which the
image is projected onto a tabletop — hence the name. Tabletops may
combine different technologies in order to achieve the result but a
common approach is to project the image using one technology and
detect touch using another. In section 2.3.5 a novel approach to
tabletops is introduced. Similar devices may be mounted on walls to
turn them into interactive wall displays. An interactive wall may as well
be achieved by projecting or rear-projecting an image onto the wall and
detecting when users fingers touch the wall to enable interaction.
Tabletops and interactive walls range in size from single user devices
utilizing the increased screen estate to multi-user setups taking
advantage of the collaboration aspects. In tabletop multi-user
environments, the design of the content displayed on the screen should
reflect the intricacies of the environment.

8

Wang, Ghanam and Maner migrated Agile Planner [21, 22] software to
be used on SMART Technologies digital tabletop and touch wall [23].
They note in their experience, that there were few studies available on
migrating desktop software to digital tabletops. In other works their
own work has been mentioned a few times as reference on using
Windows Presentation Foundation for their implementation of Agile
Planner on Digital Tabletop (APDT) [21]. This work is especially
interesting because the platform is the same as in this project.

Their interest in the project was on multimodal input system (i.e.
touch, gestures, handwriting and voice). APDT was intended to change
traditional practices on tabletop planning meetings. They noted that
the advantages of computerized environment were good. They
anticipated in the beginning of the project that their lack of handling
several touch points at the same time might have repercussions later in
the project, and found it to have severe influence on the overall
perceived performance saying “People actually could notice that this
limitation was hindering the interaction that would usually be more
dynamic in traditional mode.” [21] This seems to point out the human
ability to give great value for small details. Lastly they found that
people preferred to use keyboards instead of touch for text input saying
“using a keyboard is regarded more “natural” in a computer
environment” [21], which might indicate that the tactile feedback is
appreciated.

2.3 Touch input technologies

2.3.1. Resistive touch panel

A resistive touch panel is made of two layers that have electrically
resistive coating and which are separated by a thin space. The layers
are coated so that the coating faces the other layer and that the coating
forms lines horizontally on the other and vertically on the second. The
control logic is able to sense the variation in the resistance between the
two layers when an object, such as finger, is pressed against the panel.
The horizontally aligned layer represents the vertical position and vice
versa. The benefits of resistive technology include low cost of

9

manufacturing, substantial resistance to the elements, and usability
with pens and other pointed items. The downside is that the panel may
easily be damaged by sharp objects. Resistive technology is limited in
the number of points detectable on the panel and most of the devices
only support one touch point. This technology is still often used in
restaurants and places where liquids may be spilled onto the surfaces.

2.3.2. Capacitive touch panel

The capacitive sensor grid operates on a similar principle as the
resistive grid, in that is has an electrically conducting coating on it, but
uses the conducting quality of human skin to sense the distortion in
the electrostatic field of the panel that is measurable in capacitance.
The benefit in this technology is that it can sense a more subtle touch
than resistive panel would sense, because the electrostatic field of the
panel is altered when the finger just barely touches the panel. From
usability point of view this is very good. The downside is that the panel
cannot be used with any objects that do not conduct electric current,
and this is especially present in cold weather, when attempting to use
the panel with gloves. There are different variations of this technology
such as surface capacitance, projected capacitance, mutual capacitance
and self-capacitance [24]. Capacitive technologies support multiple
touch points, with different limitations in different variations of the
technology. This seems to be the main technology present in modern
smartphones that have touch-screen panels.

2.3.3. Infrared LED array

Infrared LED (light emitting diode) grid is a technology where arrays
of infrared LEDs and photodetectors are aligned to the edges of the
display device to form a sensor net over the display [25]. Two such
devices are the HP TouchSmart integrated computer [26] and Dell
SX2210T Flat Panel [27]. Dell refers to this as optical touch technology
[27]. When any object is placed onto the net the sensors detect that
some light sources are no longer visible. This can be translated into a
location and possibly the size of the object pressed against the display.
The major disadvantage with this technology is that it cannot

10

distinguish between several touch points reliably, because the points
may too easily occlude each other on the grid thus resulting in false
detections.

2.3.4. Optical imaging with video camera

Infrared light may also be used in optical detection and there are a few
variations to this. The first one uses a construction where the picture is
projected onto an opaque screen either from behind the screen or from
above. Under the screen there is an infrared light source, such as a
bulb or LEDs, which emit infrared light through the screen. When the
light hits any objects that reflect it back, the reflected light is sensed by
the video camera that is placed under the screen. The pictures seen by
the camera are sent to the control logic which uses imaging
technologies to sense where the fingers, palms and arms of the user are
and reports these to the software. This approach has virtually no
limitation in the number of touch points it can detect and it is able to
detect other things reflecting back from the screen such as tags and
shapes placed on the screen. The limitations of this specific solution is
that it requires space for the construction as there has to be enough
distance for the camera to see everything that is happening on the
screen. Touchlib is a good example of an open source software
platform that enables building of such a system [28]. Such systems are
commercially available from, for example, Microsoft Surface [29] and
Multitouch.fi [30].

2.3.5. Optical imaging with infrared sensors

A later innovation called PixelSense [31], developed by Microsoft
Research, Applied Sciences Group, has a similar approach to the
optical sensor presented above, but without the optics of the camera or
the space requirements. It has a conventional liquid crystal display
(LCD) element that forms the image displayed on the screen.
Underneath that is the backlight that has pairs of white LEDs and
infrared LEDs. Above the LCD element is the sensor layer that has
photoelectric sensors for detecting light reflecting back onto the
screen. The control logic collects the individual values and forms a

11

picture that can then be evaluated using image detection algorithms as
with previous technology. This technology has the benefit of producing
large displays that have virtually no limitations for the number of
detectable touch points and it makes this ideal for multi-user products.
One disadvantage is that the imaging technology requires quite a lot of
processing power. Another disadvantage is that this technology is very
new and immature and the cost of producing the display unit is still
rather high, and there is only one producer at the moment. This
technology is interesting but irrelevant at the moment when
considering tablet products since it is not applicable there yet.

In a way a similar approach is also used in the Microsoft Touch Mouse
that utilizes a capacitive sensor grid for detecting the touch but then
transforms this in the driver into an image that is then processed with
image recognition algorithms. This is in addition to the indirect
movement produced by moving the mouse on a surface.

2.3.6. Hardware manufacturers

There are several hardware manufacturers for touch panels and touch
input systems such as Wacom, N-Trig, Samsung, 3M, Multitouch.fi
and Synaptics to name a few.

Apple was the first to include multitouch support in their laptop line
and after that other manufacturers, such as Synaptics have been
providing similar solutions with their hardware and drivers as well.
Apple as a hardware manufacturer is known for its famous touch
devices, such as the iPhone smartphone and iPod MP3 players. The
iPhone was debuted in 2007 and it was noted as the most successful
smartphone on the market.

Samsung is a South-Korea based manufacturer of several touch-
enabled devices that range from cell phones and tablets to televisions
and other touch devices. Lately they partnered with Microsoft to
produce the new technology called PixelSense [31] and are now the
sole manufacturer of the Microsoft Surface 2.0. It is able to distinguish
50 individual points simultaneously. They are in a significant role on

12

the touch device market and they employ several different technologies
in their products.

Synaptics is the hardware manufacturer that has been supplying
probably the most touchpad devices to laptops around the world. Their
products mostly utilize capacitive technology for sensing finger
movement on the touch device and so far multitouch gestures have not
been widely available in Windows products. [17]

Wacom was the first in the market with stylus devices and only lately
taken part in the touch-enabled market. Their main target segment still
remains the artistically talented market whose users want to have
powerful tools to use with their styli. Wacom Bamboo products are
able to distinguish 16 distinct touch points [32].

N-Trig devices are sub modules for LCD-panels and they provide
driver support for Windows, Linux and Android operating systems.
They were established in 1999 in Israel. Their product is used in, for
example, the convertible tablet-laptop Dell XT2 [15] and Fujitsu
STYLISTIC Q550 [14].

Computer vendors usually license their products to use one
manufacturer and they provide the vendor with the proper operating
system drivers to integrate to their computers properly. Such vendors
are Dell, Acer and HP among others.

SMART Technologies is a hardware vendor specialising in touch
input driven whiteboards and panels that integrate with plasma or
LED displays [23]. Their products utilize Optical imaging with video
cameras at the sides of the whiteboards.

13

2.4 Support in operating systems

Different technologies presented above are applied in various
environments by different software vendors and hardware
manufacturers. Below are listed some solutions that are commercially
or freely available on the market at the moment.

2.4.1. Microsoft touch support

Microsoft often showcases their tabletop computer projects Surface
and Surface 2.0, when referring to multi-touch application
development. The Surface project was a research project primarily
although it is now available commercially as Samsung SUR40 [33] for
Microsoft Surface. It runs Embedded Windows 7 internally but the
software solutions are implemented against the software development
kit (SDK), Surface SDK 2.0 [34]. The Embedded Windows 7 has two
operation modes compared to the regular installation; Surface mode
where applications run in fullscreen and all notification windows are
suppressed, and Windows mode where they have full access to
Windows functionality. This enables execution of all normal software
on the Surface as well as the touchable [2] software especially designed
for the environment. Since the operating system on the Surface is
Windows 7, all other touchable [2] software that runs on Windows 7
runs on the Surface too.

Microsoft Corporation is one of the commercial vendors to bring touch
device support to a business market, where others may build and
develop on their platform with off-the-shelf products. Microsoft
produces hardware and also forms partnerships with hardware
vendors to produce products that benefit their operating system. Touch
support is possible in Windows Vista [2] to some extent, but Windows
7 was their first operating system to offer full multi-touch support [2].

Microsoft offers Visual Studio™ product line for developers as the
supported development environment. Visual Studio built-in language
support enables programming in C/C++, VB.NET (Visual Basic .NET),
Visual C# and Visual F# by default. Other languages may later be

14

added as extensions for Visual Studio. The suite of tools includes
integrated development environment (IDE), compiler, debugger,
extensions support, authoring tools for creating installers and other
tools. Microsoft offers Visual Studio in several bundles depending on
the suite that the developer requires. The “Express” line of Visual
Studio products is free development environment, without the
extensions support, that Microsoft distributes through the
DreamSpark service. Visual Studio Professional is the standard
commercial version offered for professional developers. Ultimate and
Team System versions add tools for metrics and developer
communities. [35]

2.4.2. Apple touch support

Apple Corporation has become well known touch device manufacturer
ever since they debuted with their first iPhone in 2007. What is at
times lost is that they have significant experience from building touch-
enabled devices from 2002 already, with the first iPod that featured a
touch-sensitive wheel controller instead of a scrolling wheel.

In 2008 Apple and their operating system OS X boasted a multi-touch
trackpad on their MacBook Air notebook. The trackpad was new
because it brought the multi-touch input to computer users with an
off-the-shelf product and enabled them to use their fingers to pinch,
swipe, rotate and zoom to access features on the applications. These
were however limited to certain functions and were not made available
system wide yet. [36,37]

Developing software for Apple iOS™ or Mac OS X™ systems requires
the Apple Development suite called Xcode that contains all the tools
needed to develop on the platform. The suite includes an integrated
development environment that enables easy development and
debugging of new software. Tools included are IDE, compiler,
debugger, authoring tools for installations, publishing tools and other
tools. The supported programming languages in the Xcode
environment are C, C++ and Objective-C. The development tools are
available for a yearly fee on the developer program. [38, 39]

15

2.4.3« Android

The first Google Android device to hit the market was in October 2008
when the T-Mobile Gi was released in the United Kingdom [40]. The
device did not offer much when it was released in terms of touch-
enabled control mechanisms, because the multi-touch features had
been disabled on the first release, supposedly to avert patent
infringements with Apple.

Android platform features a rich and open-source SDK that supports
developing mainly in Java programming language, but in special cases
native libraries may be created in C++. Android devices range from
smartphones to tablet computers with various hardware
configurations.

2.4.4. Linux multi-touch support

Linux is known as an operating system that comes in various
distributions. Linux is developed as an open source initiative and this
makes the distinction between any Linux based operating system a
little difficult. Any support that Linux then has, can be attributed as
either a generic support that can be integrated into any distribution, or
something that comes as out of the box functionality with a specific
distribution.

Canonical is a company that specialises in the development and
support of the Ubuntu distribution of Linux, especially they target
corporations in selling the enterprise solutions of Ubuntu that range
from cloud computing clusters to secure laptops running Ubuntu. Now
they are engaged in the multi-touch support development for Ubuntu.
In October 2010 with the release of Ubuntu 10.10 codenamed the
Maverick Meerkat, they also announced the uTouch library, which
featured a full gesture library for recognizing gestures performed by
the user [41]. This enabled the users to quickly move, maximize and
restore their windows or call up the dash by performing multi-fingered
gestures over a multitouch display.

16

Later on with the release of Ubuntu 11.04 the full support for
multitouch input was added, even for legacy applications that did not
support it. This support was achieved with a mid-ware service that sits
close to the windowing system and communicates actions to the
applications. It is called Ginn and it enables mapping touch gestures to
specific features in the applications with a simple mapping
configuration in an extensible markup language (XML) file. Ginn is
short for "Gesture Injector: No-GEIS, No-Toolkits" [42, 43].

2.4.5. Operating systems in summary

Figure 2.1 below illustrates when different parties enter the world-wide
market of touch or multi-touch-enabled devices. In the figure the start
ups related to Apple and Google are highlighted. Microsoft Research is
the institution where all of Microsoft's research is done and thus it is
difficult to know how long they had been working on touch
applications. It is also interesting to compare the time periods that are
associated with the experience and development on different time
periods before a major release. Equally interesting is to see when the
first major releases are in relation to other timelines. Linux
Multipointer X is contradictory in the sense, that it required a lot of
knowhow from the user to take the release into use.

Window» Mobile 6 Windows Mobile f>-5 Windows Phone 7
with touch with multi-touch released

release released

♦------ ♦-----♦----♦---
IIP P »vill km Windows Phone
XI out) Tablet postponed

♦------------♦---------♦----♦------------------
Mobile Sold to Google Android T-MobdeGi

Start-up in / annownecd released

—♦--------♦--------------«------------ ♦----------
•GesturePad Sold to Apple 1st iPhone iPod Touch Magicmouse

released , released released

4-------4---------4---------------- 4----
Mult ipointrr X Multi-cursor Multipoint X uToucti

proposed Window merged with released in
Manager IJnux Ubuntu 10.10

1998 1999 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Figure 2.1: Touch-enabled operating systems on a timeline. [44,45]

Google Android

Apple

Microsoft

Major release

I?

2.5 Common problems analysis

Several experimental studies have been conducted on touch input
systems that choose usually several research questions to test in their
experimental setting. These studies contain well quantified research
material that may be applied to interface design later on. However, the
studies lack a good listing of common problems or a quick summary of
them. Ryall et al [19] showed good initiative when they listed out in
their experience the most of the relevant problems concerning tabletop
computers — I think those problems also concern tablet computers
too, although maybe not in completely the same extent. Since then a
few more papers [1, 46, 47, 48, 49, 50] contribute valuable insight to
the problems, but do not bring much more problems on the table.

Following is a listing of the problems pointed out by many authors [1,
19, 46, 47, 48, 49, 50, 51], that will be evaluated in relevance and
seriousness to the case of Tekla BIMsight. This is done in order to
understand their true meaning concerning this context and to refine
the questions that need answering when designing the software in
question later on.

Occlusion [19] affects all touch based displays and happens whenever
user attempts to touch the screen. Some solutions circumvent this
feature by project a picture onto the user’s hand and utilizing that area
[46]. On devices where the displayed picture is on the device and not
projected, occlusion is inevitable.

Reach of the user or the Zone of Comfortable Reach (ZCR) as
explained in the paper about Magic Desk [47], is how far the user
affects mostly tabletops. The question of reaching items may rise with
tablets as well if the grip of the device is very important and the reach
of user’s fingers, especially thumbs, is important while retaining the
grip on the device.

Forlines et al question if the advantages of proprioception, the ability
to track body parts kinesthetically, are counteracted with the problems
of occlusion and reach [47], saying: “From a human physiological

18

standpoint, proprioception, one’s inherent ability to keep track of the
location of one’s body parts kinesthetically might be expected to result
in significant advantages for direct-touch bimanual input; however,
it is unclear whether occlusion and the reaching over large distances
on a tabletop will counteract this benefit.”

Clutching [49] is the activity of returning the pointer device to earlier
position in order to move the virtual cursor further on the display
device. This is apparent on relative trackpads on laptops where user
needs to move the cursor with a low control-to-display ratio across the
display. Same problem is also present with a control interface of a 3D
model which is trajectory based movement. To rotate the model
around, user needs to clutch several touch gestures to make up a more
significant total movement. There are studies for reducing the need of
clutching [49, 51].

Tools are always made to solve certain problems the users face.
Designers should be able to decide what paradigms they want use in
the solutions, when they design these tools for the user interface [19].
Accot et al compared the differences in quantitative performance
between trajectory based applications to point based selection
performance [50]. It is a good reference as to how the design principle
of a tool may be affected on the chosen paradigm that it implements.

The second big problem related to the paradigms mentioned above, is
the order of design and implementation for the different control
mechanisms. A briefing by Microsoft for developers that are starting
out with touch interface design, [2] suggests, that developers go about
the problem on a touch first basis. Mouse and pen devices have more
limited ways of expressing gestures when compared to touch based
systems. For example, a generic wheel mouse has three buttons and
the mouse wheel, and styluses generally have one or two
distinguishable tips and one or more buttons for alternate behaviour.
Gesture recognition systems may be built for both devices, but still
multi-touch input has more expressional power with a single finger.
Even more complexity is added to the touch system design when

19

flicking, dragging, pinching and rotating gestures are considered,
raising the complexity by a factor of three at least.

Finger resolution [19] may mean many things. On a low level, it
could be interpreted to mean the resolution of identifying single touch
points. On a bit higher level of analyzing multi-touches we could
interpret it to mean the amount of fingers that the device is able to
distinguish or maybe even the pose of those fingers that are touching
the device surface.

Ambiguous input or unintended input [19] is the principal problem
of direct touch systems. Users must understand that all touching of the
system will affect the system if the system is built to react to all
touches. However, the designers of the system should also take into
account what it is that the system does by default with the touch.
Direct touch control is in essence a modal control mechanism and a
paradigm shift from the indirect control of a mouse controlled system.

The problems presented above concern in some or all cases tablets as
well as tabletop systems.

Tabletop computers inhibit some very distinctive problems that are
partly problems on tablets as well. To name a few more issues specific
to tabletop; multiple users are hardly a problem for a tablet computer,
which may be easily passed to the other user for review, so multi-user
coordination [19, 21, 22, 48] is more related to tabletop systems.
Orientation [19] is also the problem that persists more on tabletop
systems with multiple users, rather than on tablet computers. Unless
the application is especially built to utilize the orientation, which
nowadays is, more often than not the case like, for example, with
panoramic photographing applications.

Crowding and cluttering [19] are tabletop problems, but might
affect software that encourages users to approach a touch-enabled wall
projection.

Ergonomic issues [19] affect all devices and all form factors.
Designers and developers should consider the ergonomics of control

20

placement and refer to guidelines set for different devices by the
manufacturer in their developer documentation. Tabletops also suffer
from the ergonomics of the furniture as noted in their study of
tabletops [19,46,47,48].

Text input [19, 21] is deemed difficult on touch based devices for
several reasons. People sense with their hands far more than they do
with their eyes with the device they use for typing text. There even is a
device for the Apple iPad that offers users the tactile feedback of a
keyboard on the virtual keyboard of the iPad [52]. Other studies
pointed out that users preferred a wireless keyboard in a computer
environment over the handwriting recognition system of the APDT
[21]. The project group on APDT suggest even to have wireless
keyboards available for the users for faster text input [21].

2.6 Usability

2.6.1. Touch interface usability metrics

There are interesting studies made on the Human Computer
Interaction (HCI) with input methods [1,19, 21, 46, 47, 48, 49, 50, 51].
HCI has been studied to understand which input method is the best at
different tasks. Forlines et al studied the performance between mouse
and direct-touch on quantitative performance and subjective
preference. Their experiments were designed to test the two devices for
unimanual and bimanual scenarios. They point out the key problems
in user interface design for touch devices that are furthermore
supported by Fitts law, that hitting a target that is smaller than the
device targeting it is very difficult [1, 53]. They acknowledge that
mouse may be better at some tasks than direct touch and raise the
question of “the appropriateness of a direct-touch tabletop interface
for a single user working on tasks requiring only single-point
interaction”. They point out that there are physical challenges on
tabletop displays when dealing with recognising finger touches,
because the touch area, on the device changes when user reaches for
items that are further away from the user as illustrated in Figure 2.2.

21

The study does not coincide with this project’s premises, but the
problems faced in that study are relevant.

Figure 2.2: Illustration of the changes in finger pose when using
a wall display (left) and when using a tabletop device (right).

Magic desk [47] developers note in their work the absence of migration
studies as well. They found little studies investigating the integration of
multi-touch in desktop environment and set out to investigate the
integration of multi-touch controls on users’ desktop and the optimal
positioning of the control surfaces. They found, that the multi-touch
displays commercially available on market today are actually the worst
configuration for the users: “The vertical screen is a poor region for
performing one-handed tasks.” They base their experiments on
ergonomic design and on study of digital tabletop usage.

2.6.2. Cognitive and physical load

In software production context efficient use is often described in the
sense of usability or user experience. It may also be defined in the
sense of industrialization, when it is measured on the performance of
an individual and how many work units they produce. It should be no
surprise then, that both worlds share a common ground in the theory.

Physical load is that of using the UI and having to cope with the
inaccuracy of the control device used i.e. the control size versus the
finger accuracy that comes from users’ finger size.

Cognitive load is the load user has to bear when they have to remember
where items are displayed on the UI, where some of the control
mechanisms may be hidden for reducing the physical load on the UI.

These two measures are tightly bound together, so that when another
one is decreased by some changes in the UI, the other usually

22

increases. A very low measure in physical load usually translates to a
larger cognitive load and vice versa.

2.6.3. Perceived performance

Perceived performance is the experience user gains from the product
that is not necessarily related to any otherwise measurable metric. It is
the qualitative vision of the user’s expectations and how the product
fulfils them. It is very difficult to show that the perceived performance
is good, but it is possible to show by ways of user testing that perceived
performance is not at an acceptable level.

Nielsen’s usability heuristics [54, 55, 56] contain several similar
elements that deal with accounting for perceived performance. That is,
how can you design software so that the user will have a good
impression after using the software?

One measurement that may be used for perceived performance is the
responsiveness of a given UI. If a UI is always responsive to the user’s
interactions it is perceived to be so, and it contributes to the overall
good impression of the performance of the UI. Responsiveness may in
this case also be the immediate response of anything, such as giving a
rolling circle that lets the user know of a background processing going
on. Microsoft Windows 7 single tapping and double tapping gesture
responses are illustrated in the Figures 2.3 and 2.4.

Figure 2.3 & 2.4: Responses in Windows 7for single and double tapping.
Responsefor a tap is like touching a pool of water where an expanding disc forms.

Perceived performance is not the same measure as actual performance.
It can easily be shown that software or even hardware with limited
performance may deliver a better perceived performance than software

23

running on much more powerful system can deliver. This aspect is very
much present with the design of a touch interface and thus presents a
significant impediment if not done properly.

2.7 Validation methods

There are several validation methods available in usability evaluations.
Jakob Nielsen is usually referred to as he presented the ten usability
heuristics [54] that encourage for quick and dirty evaluation of a user
interface. In addition to these the whole aspect of usability evaluation
is encouraged to be a continuing process that takes place throughout
the development cycle of a product, instead of being a single step in the
lifecycle of the development [55, 57]. For this thesis two methods were
specifically chosen to be utilized because of the nature of the
evaluation; the System Usability Scale (SUS) [58] and affinity
diagramming [57]. The choices were made because of previous good
experience with these methods. SUS enables the software to be
comparable between different versions of the software, and there are
plans to use the score from this study later on. The affinity
diagramming is intensive and immersive for the team processing the
results, thus making the sharing of information very efficient. The
processed results are quite easy to understand and produce a nice
mapping of the possibly many findings. The methods will be presented
below briefly.

2.7.1. System Usability Scale

To obtain quantitative information about the goodness of the
application, SUS questionnaire [58] was used. It is a questionnaire
with 10 items which the subjects will fill out according to how much
they agree on the questions. The form (in Appendix A) is scored so that
the odd questions are given (value - 1) points and even items are given
(5 - value) points. Results are summed up and multiplied by 2,5 points
to reach the overall score which ranges from 25, the worst score
imaginable, to 100 and the best score imaginable.

24

The SUS as an evaluation method has been discussed in more in the
study by Bangor et al. [59]. The practical range of the SUS score is that
the minimum that would make the product passable being 70 points,
and the absolutely great products scoring points over 90. The study
indicates that individual evaluations on the SUS score rarely go under
30 points and that the lowest quarter score under 62.26 points [59].
The second lowest quarter scores up to the low 70 in points, second
best quarter to the high 70 and the best quartile up to low 90. This
means, that a user interface scoring 50 is not 50% worse than an
interface scoring 100, but significantly much worse. The SUS scoring is
not thoroughly trustworthy if there are a low number of participants,
but it is a good indicator of the general level of in-usability for any
system. According to the study, the SUS may be used to show that a
product is not yet acceptable, but it cannot be used to show that the
tested product will be accepted. [59]

2.7.2. Affinity diagramming

The affinity diagramming process was adapted to the contextual
inquiry by Holtzblatt et al. [57] in order to make sense from the vast
amount of material they had to begin with. Creating the affinity begins
with enough notes, observations, critique and other insightful
information written on pieces of paper. These paper notes, in the book
usually around even 1500 altogether, are placed on a board or table so
that those in close affinity to each other are placed close to each other
[57]. Each participant will in turn place a new note on the whole and
others should then look for more notes that closely resemble that note
[57]. The affinity diagram represents the affinity between individual
notes in relation to one another and the completed diagram reveals
their grouped relationships which reveal hot-spots of trouble in the
evaluated system [57].

In this work the method will be used so that each participant will in
turn place a new note on the diagram, picking the place with closest
affinity to other pieces on the diagram already placed there, and
elaborating the chosen affinity a little. This will, in turn, communicate
the affinity to all participants and everyone present at the time is

25

allowed to contribute their opinion to the choice. An important part of
creating the affinity diagram was to give meaning to the relationships,
and have the persons explain their reasoning when they put a new note
in place. Notes on the diagram may be reorganized as pleased when
placing new notes, provided that the action is explained to the others.

2.8 Building Information Modeling

Building Information Modeling (BIM) is both a technological approach
to construction modeling and a set of processes, designed to support
the use of shared technology platform in the architecture, engineering
and construction business (AEC). The drawings that are the essence of
computer-aided design (CAD) are in BIM produced from modeling the
intelligent 3D geometry. The disciplines involved in the BIM process
include architectural and conceptual design, modeling the actual
design, detailing, erection, fabrication, site management and after
delivery building management. It is a life cycle model for buildings, as
Figure 2.5 illustrates. It is nowadays the leading way of working in all
aspects of the industry, and all of the established technology vendors
offer their solutions that implement BIM to different extent. In
addition to this there are several other software vendors targeting at
building add-on tools for other BIM software. [60]

BIM models are exchanged using the Industry Foundation Classes
(IFC) specification. It is a neutral data exchange format specified for
the use of AEC business. It has been registered with the International
Standardization Organization (ISO) as ISO 16739. The International
Alliance for Interoperability (LAI, or buildingSMART International,
bSI) is the committee that manages the standardisation process,
certifies implementations of the standard and supports the
development of the standard. [60, 61]

26

Architectural design

Project
Conceptual
design

Erection P
management

Sales Et
bidding

Fabrication f
Integration

Erection
drawings

Procurement
Et purchasing

Detailing

Figure 2.5: Tekla BIM workflow. Copyright Tekla Corporation (www.tekla.com).

The Building Information Modeling (BIM) software that Tekla
Corporation specializes in is targeted at the Building & Construction
market [5]. Tekla Structures is the main product for that market and
its function according to Tekla is to enable “the creation and
management of accurately detailed, highly constructible 3D
structural models regardless of material or structural complexity”.
Tekla Structures is capable of producing the IFC model files that may
be imported to Tekla BIMsight [5]. There exists several other software
available that are able produce this data format [60, 61]. The
implementations include IFC2X3 [62] certified commercial products
and non-certified free software products and open source projects that
are nonetheless capable of handling IFC data model to some level [60].

27

3. Defining requirements
Tekla BIMsight is an application intended to enable model-based
project cooperation between different disciplines of a building project
throughout the BIM workflow. Tekla BIMsight enables project
stakeholders to identify and solve issues already in the design phase,
before construction [63]. It has the capability to display the IFC data
model files. Its main features are to review several models at the same
time, navigate in them, measure distances, check for visual and
computational clashes, and to add notes with markings to illustrate the
flaws found from the models [63].

In future Tekla BIMsight will be used on site with a tablet device. This
requirement establishes the need to develop support for touch and pen
input in Tekla BIMsight user interface. Due to the limitations in
usability issues on a tablet device, there was a need to develop support
for touch-based user interface in Tekla BIMsight. The target is to build
a minimal support for the devices so that the benefits of having a BIM
application on site can be demonstrated.

The project was developed using agile methods and requirements
gathering was not specifically the implementation team’s
responsibility. However with this work the sources for the
requirements will be explained although listing is omitted.

3.1 Functional requirements

Functional requirements for the development of the touch input
interface was as follows:

“Full current and future capabilities of Tekla BIMsight
can be used efficiently and effectively on a range of devices

including desktop and laptop Windows PCs, Mobile Windows based
devices, and future potential to use on popular mobile devices.”

Business segment stated the following as a priority statement to the
actual requirements: “The target is to enable effective use of Tekla
BIMsight on the Motion J3500 Tablet.” Before the project began it was

28

concluded within the project group and stakeholders of the project,
that for Tekla BIMsight to be efficiently usable on a tablet device,
especially the target device Motion J3500 [64], it would need to have
at least these three features on a usable level to guarantee minimal
support:

1. Navigation
2. Measurement
3. UI Layout Improved (optional)

The business segment guided the project team with the implication
that the device would mainly be used with a styli in the beginning, but
when work with the multi-touch support began and it showed a lot of
promise, the focus changed so that the touching was preferred over
stylus use. From now on we will concentrate more on the problems
faced with the multi-touch features. We assume that stylus usage does
not require additional effort from the project team. We also assume
that the stylus is the middle ground between using a mouse and
touching the display directly, in that it is implementation-vise closer to
a mouse as a pointing device.

Usability defines several metrics for defining what efficient use is.
Project group has usability experts working with the developers, so
attention to the efficient use of the application is constantly evaluated
with the modifications. The important findings of this work will be
documented in this thesis.

3.2 User stories

In the beginning of the project user interface designer Osmo Tolvanen
prepared user stories to support the scoping of specification for the
touch support. The four user stories are as follows: [65]

1. As a field engineer, I need to be able to see and navigate through
the model while I am walking on site so that I can get a big
picture of the situation and answer the questions of my men
regarding details of the construction.

29

2. As a field engineer, I need to be able to use the model for
checking measurements that are missing from the drawings my
men are using. This happens while I am out on site so that I do
not have to always go back to the field office to find the answer,
and the walk back to spot to tell the answer.

3. As a field engineer, I add data of the issues found during
construction to the project. I take photos and create short notes
to be shared with the back office people.

4. As a Project Engineer/Project Manager my company has
supplied me a high end tablet computer. I do not have a second
computer. I need to carry out full design coordination activity
on this tablet.

3.3 Targeted hardware

Tekla BIMsight is targeted at Windows tablets. There are currently a
limited number of Windows tablets available. The most notable of
those are laptop Hewlett-Packard Elitebook 2y6op [66] and tablets
Motion J3500 [64], Motion F5V [67], Acer Iconia Tab [68], and the
coming Samsung Slate 7 [69]. The main target of the project is Motion
J3500 tablet computer that has Wacom Penabled touchscreen that can
detect two touch points and a pen.

There are however other touch devices available on the market than
just tablets. Since the scope includes pen enabled input as well as the
touch based input, most of the graphics tablets such as those produced
by Wacom are viable development devices too. Wacom also has devices
for desktop environment that can detect touch and pen input. Dell
produced a number of computer displays that had an infrared led array
on the side. The production has since 2008 [27] been cancelled but the
development team had access to one of these devices. Benefit of such
device in development work is that developer has access to high-end
development computer and is able to debug touch handling code
directly on desktop. Lastly HP produces TouchSmart [26] desktop
computers which utilize similar infrared array as the Dell display [27]

SO

does and it is a viable replacement for scarcely available tablet
computers.

3.4 Main features

Before the requirements gathering had started the latest version that
was released to the public internet was Tekla BIMsight 1.3. It was
released on October 27th 2011. This version supported mouse
navigation only. The main features of the application are listed below.
The most relevant features to touch implementation will be covered
more closely after the listing. [70]

• Add and remove projects and models
• View, navigate and search in the models
• Save snapshots of the 3D view
• Change colour and visibility of the objects and the models
• Clip the model using dynamic clipping planes
• Check for conflicts visually and with conflict checking tools
• Measure in the models
• Add notes in the projects
• Add relevant project documentation and link it to model objects
• Add mark-ups in the model view to highlight items

The first thing a user need to do, when opening the application, is to
either open an existing project or create a new project. The project
consists of the models added to that project, their placement, notes,
snapshots, documents and detected clashes between the parts. When
creating a new project user is presented with a dialog to add new
models to it. When a model has been added to a project it will
immediately be opened. When a model is opened for the first time it
will be cached to the data folder so that the opening process will be
faster next time. [70]

The most visible and interactive feature of the application is the
navigation in the 3D view. User has six tools available for navigating
within the 3D view. [70]

31

• Orbiting around a point
• Panning the view
• Turning the view around the camera point
• Dynamic zooming
• Zooming into an object
• Rotating the view perpendicular to a surface

These functions are tied to be used with the mouse only. Table 3.1 will
list the mapping of the functions to the control buttons. [70]

Table 3.1: Navigation controls

Function Mapping

Orbit the view around a picked point Drag with left mouse button

Pan the view Drag with middle mouse button

Turn the view around the camera
point

Drag with right mouse button

Open context menu Click right mouse button

Dynamic zooming in/out Roll mouse scroll wheel
up/down

Additionally when the user double clicks on a single object in the
model, the application will zoom the camera so that the object fits to
the view. User may press the Alt-button to modify this behaviour; to
turn the camera parallel to the surface they double click upon.

Saved views are snapshots taken of the current situation visible in the
3D view. They retain the view angle, direction, representation,
colouring of the parts and mark-ups for later use. User will be able to
create new saved views by clicking on the “Create new view” button
next to the view stripe located at the bottom of the user interface.
Saved views are useful for capturing a certain aspect that needs to be
shared with peers, or to enable quick access to a certain representation
of view angle that displays interesting detail. To open a saved view user
will need only to click on the view and the 3D view will be restored to
represent that view with a fly-through animation. [70]

32

Changing the 3D view representation is possible by modifying the
representation of all the parts at once or by modifying the colouring of
groups of parts as Figures 3.1 and 3.2 display. Using the toggle buttons
user is able to switch between solid, transparent and X-ray
representation for all the parts at once. Setting the representation for
selected parts is done through the context menu for either a single
part, or a group of parts. Through the same context menu single parts
and groups of parts may also be hidden. Another way to hide parts is
using the buttons visible on the toolbar under the View tab above the
3D view. The 3D view may also be switched to represent a perspective
view angle or an orthogonal view angle. [70]

Figure 3.1 & 3.2: Colouring of entire models and selected parts in Tekla BIMsight.

There are different annotations drawn onto the 3D view that
supplement information about the visible parts or their relationships.
The different types of annotations are flags for detected clashes,
documents and notes, redline mark-ups drawn by the user and
measurements between the parts.

3.5 Technical background of Tekla BIMsight

Tekla BIMsight is built with Microsoft .NET 4.0 and its graphical user
interface is built upon Windows Presentation Foundation (WPF). In
WPF the user interface is described using Extensible Application
Markup Language (XAML). Microsoft does not specifically encourage
one type of use with WPF and there are several customizations with the
WPF part of the implementation. Development started out with
version 3.0 of .NET but was upgraded to use the latest version because
of updates to WPF. Tekla BIMsight is a highly modularized application
that has several reusable components. The implementation utilizes so

33

called application composition framework that is available in .NET
through the use of assembly named Windows.Composition.dll.
Composition enables the high modularization of the application into
several separate assemblies that are then combined into the
application. The separate components are also highly reusable. It is
intended that those components would be reusable in other Tekla
software later on. [71]

Tekla uses proprietary in-house 3D technology for its applications. The
3D engine is built on OpenGL and it has C++ bindings. There is a
wrapper library for .NET that is in use in Tekla BIMsight and it is
enabled for WPF. This library is limited to what functionality has been
implemented upon it and it is not directly available for the project
group to modify. The project group has circumvented some parts of the
interface, to make it more convenient to utilize with Tekla BIMsight.
The wrapper did not provide touch events from low level to the higher
level application logic layer. This set limits to the project groups for
using the 3D component with touch input.

3.6 Technical limitations

Tekla BIMsight has been implemented with Microsoft .NET
Framework 4.0 [.NET]. It uses the Windows Presentation Foundation
(WPF) for the user interface. Many of the controls are custom made
and bear little resemblance to any of the controls provided as part of
the SDK. This limitation cannot be changed in any situation and the
software has been targeted at Microsoft Windows operating systems.

[71]

The implementation of Tekla BIMsight relies heavily on the 3D
component and IFC component that are Tekla specific and are
installed as plug-ins by the application installer. These libraries
provide the low-level functionality upon which the application has
been built on. The application architecture is built up from modules
that should enable using independent components separate from the
other components, but in reality the application requires all the
components to be available in order to function properly. The 3D

34

component has bindings to WPF in order to be embedded into the user
interface.

The 3D view is not available to the development team to modify
directly. The 3D view is provided as a library and the development
team has built additional support for implementing a more modular
interaction mechanism for it than what has been implemented in the
library.

The interaction mechanisms are called Behaviors and they are
controlled by the Manipulator. It takes all input that the 3D view
receives, interprets it and passes new events through the interfaces
defined in the mechanism into the individual Behaviors, by calling the
base class methods coupled for those events. The Behaviors may
override the necessary methods in order to have access to the specific
input. Behaviors may be modal or not, that enables certain type of a
state machine to be constructed with the Behaviors. All the
navigational controls and the tools in Tekla BIMsight are implemented
in this fashion. [71]

This architecture and the 3D component were designed to support
mouse and keyboard input only and touch input was not handled on
any level. Raw touch and stylus input was not passed over to the
component as the component was not subscribed to the raw input
events. The 3D component uses OpenGL to render the 3D view onto
the control region. The WPF bound control area region is bound to the
OpenGL process using the HWND handle of that control in order to
have the interoperability between the two technologies over that region
of screen. In practice another application window is created to match
and follow the specified region and OpenGL then has the ownership of
that region of the screen when it is on top. This Win32 and WPF
application interoperability comes with a technical limitation that is
referred to as the airspace violation [72]. WPF controls hosted within
the same window cannot be rendered on top of the area owned by the
Win32 application and the Win32 application cannot render on other
regions than what it has ownership of.

35

The airspace violation also limits the ability to receive input as the
input processing mechanism of Windows is built to handle the regions
that are bound to the technologies. Suppose that the Win32 region is
hosted on top of the WPF region. If the mouse cursor is dragged from
the WPF region over the Win32 region, it appears to the application
code as if mouse had left the region of the WPF such as when the
mouse cursor leaves the window region. If the mouse input is forced to
be captured in the WPF control then the Win32 will never receive the
input. This in turn would disable the input handling that has been
implemented into the 3D component used by Tekla BIMsight.

It is possible to use Tekla BIMsight version 1.3 with touch-enabled
devices or with stylus to a certain extent. Stylus input may be emulated
by the drivers in Windows versions previous to Windows 7. This
support depends entirely on the driver implementation and it is not
possible to gain any support for the application other than what has
been configured to the drivers. Windows 7 is the first Microsoft
operating system to support touch input and it has the possibility to
produce an emulated input too. Touch input may be configured so that
it acts as a mouse device and the programs that have not implemented
any level of touch support may still be used — to a certain extent.
Table 3.2 describes how different gestures have been mapped in the
emulation mode of the touch input handling.

Table 3.2: Touch input emulated as mouse input.

Touch input Emulated event

Single finger tap Left mouse button click

Press & Hold with single finger Right mouse click

Pinching with two fingers Mouse scroll wheel

Single finger drag Dragging with left mouse button

36

The technical limitations may be summarized as following:

• Mandatory use of .NET Framework 4.0.
• Mandatory use of Windows Presentation Foundation.
• No direct access available to touch input through the 3D view.
• No direct access to the 3D component in order to implement the

support.
• Possibility to subscribe to the application programming

interface (API) of Touch API in .NET Framework when
operating system supports this.

• Airspace problems with WPF and Win32 interoperability.
• Input handling of the 3D component.

3.7 Requirements for the UI

The user interface was already at an early stage identified to be
problematic for touch interaction and a proposal of an improved
interface was made. The full refactoring effort of the UI was not
invested among the prototypes, but rather pushed back to a later time.
Herein are listed the problems and requirements that were identified
from the user interface at this time.

1s*
1
I

Desktop Desktop Laptop Protector Motton J3500 Motton FSv Tnmtie Yuma

Window Sa»

Figure 3.3: Screen estate available to the 3D view in different devices.

3D view is the most important control area on the application. On a
small screen device the UI suffers greatly from the fact that the 3D
view area is not maximizable. There are always some controls eating up
the space and calculations were made to elaborate how much screen
estate is available to the 3D view. Estimate of the available screen area,

37

illustrated in Figure 3.3, was made by estimating the constant area that
different controls were using by default and reducing that from the
screen area in different resolutions when the window would be
maximized.

The UI needs to be such that it meets with the minimum requirements
to support touching. According to the Microsoft Developer Network
(MSDN) documentation [2] applications for Microsoft Windows are
considered to be:

Touchable when [2]:
1. The program's interactive controls are at least 23x23 pixels

(13x13 DLUs).
2. The program has good keyboard and mouse support for relevant

system gestures such as flicks, multitouch gestures, and drag-
and-drop are functional.

3. No tasks require using hover or the touch pointer.
4. All controls use Microsoft Active Accessibility (MSAA) to

provide programmatic access to the UI for assistive
technologies.

Touch-enabled when [2]:
5. The most frequently used controls are at least 40x40 pixels

(23x22 DLUs).
6. Relevant gestures are supported (including panning, zoom,

rotate, two-finger tap, press and tap), and the effect occurs at
the point of contact.

7. The program provides smooth, responsive visual feedback while
panning, zooming, and rotating so that it feels highly
interactive.

38

Touch-optimized when [2]:
8. Tasks are designed for easy touch by placing the most frequently

performed commands directly on the UI or content instead of in
drop-down menus.

9. The program's special experiences are designed to have an
immersive touch experience (possibly using raw touch input
data), with multi-touch manipulations and details like having
feedback with real-world physical properties, such as
momentum and friction.

10. Tasks are forgiving, allowing users to correct mistakes easily
and handle inaccuracy with touching and dragging.

11. Tasks are designed to avoid or reduce the need for heavy text
input or precise selection.

To reach the minimum level of touchable application support the
application would need to fulfil the requirements 1-4 mentioned above.
Of those the requirements 3 and 4 will require attention because
neither is yet met.

To reach the second level support of being touch-enabled, attention
would need to be put to all requirements 5-7. Buttons are currently
small, there is no gesture support and performance is unknown.

To reach the last level so that the application would be touch-
optimized, requirements 8-11 would need to be met and none of them
are met currently.

39

4. Implementation
There were several areas that required attention in the application to
make it fully touchable like Microsoft documentation suggests [2].
Places that need attention are illustrated in
Figure 4.1. The elements in the UI are lists of all kinds (in orange),
buttons and their size (in pink) and the 3D navigation (red) that is
based now on mouse input. A series of prototypes were created for the
touch input system and this chapter will mainly concentrate on them.
The prototypes covered the angle of attempting to go around the
problems and then finally solving it after all. The original intent was to
produce the minimal necessary support for touch input devices and not
a full compatibility.

Figure 4.1: Areas in the application UI that require attention for touch support.

The effort of finding the information necessary for the touch
implementation was taken on by two persons in the development team
and one person in the technology unit. The person in technology unit is
also responsible for the implementation of the 3D component and he
was looking to build the low level support for touch input directly.

4.1 Iterations of touch support

The implementation was done in several iterations or sprints over a
period of two months. During the development period problems were
solved as they arose and the design of the solution changed many

40

times. Five sprints passed during that time that roughly coincided with
the prototypes of functionality implemented. The prototypes
overlapped each other sometimes and most of the time they were
passed over from one sprint to another. The different prototype
implementations may be summarized as follows:

1. 3D Technology component as a source of touch events
2. Emulating mouse events with touch events
3. Using both WPF Manipulation and WPF raw touch events
4. Using only WPF raw touch events
5. Performance optimization iteration

First sprint goal was to “Enable 3d navigation with pen”. By this time
the assumption was still to emphasize the stylus control over touch
control, as it was assumed to be easier. While the team would
investigate possibilities for going around the technical limitations in
other ways, it was known at the time that the technology unit would be
implementing the low level events support and we would have access
to that by the end of the sprint.

In the beginning of the sprint it was also acknowledged, that we would
not be completely done with the new navigational system and that we
would need to refine it. It was written down as following: “Since there
is no specification available we expect that we will need to fine tune
these controls in next sprint according to feedback.” The goal was also
to investigate many possible solutions for the navigational controls, as
we assumed the user interface to be of great importance to the users.

Part of the reasons for choosing the sprint goal was that we attempted
to go around the limitations mentioned in previous chapter, such as
that we did not have the possibility to subscribe to low level events
through the 3D component, nor could we use WPF events because of
the airspace problems. We then chose the obvious route for us and we
attempted to go around the problem by enabling the navigational
controls for the user, by providing them a user interface with which to
accomplish most of the things they would need. The goal became then
to create control buttons for navigation.

41

4.1.1. 1st prototype: Joystick buttons

Our main goal was to produce testable control buttons for navigation
in Sprint l. We were trying to fill the use story: “As a user I want to be
able to navigate in the model using a pen, a touch-enabled device or a
mouse”. Better navigation was tested first with virtual joystick buttons.
First testable version of this functionality did not feel ‘fluent’ and many
who tested it did not see the value of the solution.

Our proposal was to create a digitally simulated analogue joystick
buttons, which the user could continuously use to control their
navigation in the model. These controls would be a joystick for each
action separately; rotation, zooming and panning. Rotation would
require two dimensions to work properly, zooming functionality one
dimension and panning also two dimensions to function.

Rotation and panning buttons would be divided into 4 regions to get
the user's attention to the idea that the control could be used to affect
change in those directions. In the center of the control there would be a
fifth button called the 'knob' that represents the virtual joystick. By
dragging the knob towards the edges of the control user is modifying
the speed at which the 3D view is changed. Zooming is limited to
vertical directions only because it only requires one-dimensional
changes. Hence the distance of the knob from the centre position
equals the speed of change.

The controls would have other ways of using them in addition to the
knob. User may press any of the four regions of the control to modify
the 3D view by steps. Rotating and panning will then have 4 button
areas, whereas zooming will have 2 areas.

Optionally, when user presses the knob itself this should toggle the
corresponding behaviour to become active for the left mouse drag on
the 3D view. This doubles as the default tool behaviour already present
in the toolbar buttons.

The navigation was first implemented so that every 150 ms the location
of the knob was checked and another animation sequence to fulfil that

42

alteration was initiated. It was recognised that this should be done so
that the animation is continuous and that it feels fluent instead of
‘chunky’ as it felt with the first attempt. To express it otherwise, the
animation itself was fluent, but unresponsive to user actions.

Improved version of this was to attempt to draw whenever possible —
slower machines when they can and faster machines more often — and
upon each redraw get the passed time since last redraw and affect the
change needed by

position = speed * time passed

Instead of just affecting some change every time a redraw occurs. This
yielded much more consistent behaviour for the joysticks continual
change.

The joystick buttons were achieved with an overlay window that adapts
to the changes of the main window that is the parent control of the
overlay. This is described by its creator as following: ”Adding
FloatingControl creates a new styles and transparent window
that follows the location of parent control of FloatingControl. If
sizing binding of window is needed, it can be done in XAML code that
creates the control, since window resizes to its content.” Below is a
sample of how the overlay window is defined:

<Grid x:Name="ModelViewGrid" >
<ContentPresenter
Content="{TemplateBinding Viewport3D}" AllowDrop="True" />
WindowVerticalOffset="0"
WindowHorizontalOffset="0" >
<Border
Background="Transparent"
Height="{Binding ElementName=ModelViewGrid, Path=ActualHeight}"
Width="{Binding ElementName=ModelViewGrid, Path=ActualWidth}">

Content of the overlay window is placed here

</Border>
</WPF:FloatingControl)

</ContentPresenter>
</Grid>

The overlay window still required a lot of finalizing work, so it was
continued in the following prototypes. More support would be
implemented according to needs.

43

This approach partly overcomes the airspace problem and enables any
controls to be drawn correctly with alpha transparency and capture all
the events from that display region. This was completely opposite to
the documentation in MSDN [73], but it is understandable considering
that this approach only works with Windows Vista and later versions.
This presents a new technical limitation to the software, as Windows
XP is not supported by this solution. Windows XP still has a large user
base with Tekla BIMsight and they will not be able to use any controls
implemented with this approach. Therefore it was decided that only
those controls vitally requiring this approach would use it.

4.1.2. 2nd prototype: Touch event translation to mouse
events

The sprint goal set by the team stated that we would “Implement the
chosen navigation controls.” However, throughout the sprint the final
decision for the choice of the navigational controls was delayed.

When the newly implemented support of receiving low level events
through the 3D components interfaces became available, the team
started to investigate how to utilise them. The goal was laid out to “Try
the design possibilities provided by 3D-component multitouch
support”.

The first mechanism that was thought out was a mechanism that would
utilise the existing navigational mechanisms to the extent that would
be easy to implement in order to achieve minimal support. Already at
the time, there was an idea that it might be necessary in the long run to
implement a proper system, but it was chosen that we would rather
first try out a simple solution. This solution interpreted the touch input
provided by the 3D component interfaces into mouse events consumed
by the navigation behaviours described in Chapter 3.5.

The mechanism would rely on toggle buttons that would be visible on
the user interface which would enable user to switch between different
behaviours or tools. These behaviours were to be orbiting, turning,
panning and zooming at first. This mechanism was built into the

44

behaviour mechanism so that users had a full control over the tool that
they were using with the mouse buttons. The second mechanism was
the touch input interpreter that was working alongside the behaviour
mechanism, feeding it with the events coming from the low level touch
interfaces. Together they enabled a rudimentary touch control over the
3D component where the touch inputs were coming from the 3D
component directly.

When the first functional prototype was working, we got to try it out
and the solution looked very promising. We then started to experiment
with variations on the mechanism and the behaviours. The tools
offered for the user actually have certain behaviours corresponding to
the action of pressing one finger down, and other behaviours for when
the user is pressing down two fingers.

The functions that modified the camera within the previously listed
behaviours were also experimented on to create new behaviours. One
such behaviour was walking in the model when the vertical movement
of one’s finger changed the zoom factor of the camera and the
horizontal movement of the finger was interpreted as camera
translation sideways; or panning of the camera (sideways only). Later
on this experimentation proved useful and the panning was modified
to turning the camera sideways (yaw) and the behaviour was named
walking, because the camera was also set to follow any surface
underneath it. Other observations of the implementation were as
follow:

• When walking forward, finger movements should reflect the
resulted direction. Up moves the camera forward, but moving
the finger left yields turning right.

• Changing the mode between walking and orbiting when user
selects some parts.

• The variables used to determine exact behaviour of walking
need a little bit of work and the ‘clutchy’ movement should be
fluent.

45

When the behaviours were given for others to test we received
feedback that the behaviours of the camera felt odd. The result of the
discussion was that the way rotation was working was not good
enough. It followed the paradigm that when user drags the point on
the screen as if they were dragging the camera lens to some direction,
as illustrated on left side in the Figure 4.2. All other actions followed
the assumption that user picks a point and that point stays under the
finger. This needed to change. The solution was to change the
paradigm so that the user was dragging a point in the 3D world in the
direction of the finger movement, as illustrated in Figure 4.2 on the
right side. This allows for a better connection with the model and the
real world. The end result of both actions is illustrated by the changed
image of the 3D view underneath each.

Figure 4.2: Graphical comparison of the turning behaviours.
The left side shows the old way and right side the new way and

lower image of a model is the final result in both.

The good thing about emulating mouse movements with the touch
input was that it utilised existing framework of the behaviours. There
was a serious flaw with the approach though, and that was in the
interpretation of the events. We had serious difficulties in interpreting
the events just right when the amount of fingers was changed in the
middle of input. This was especially highlighted, because the mouse
navigation was relying on modal input events in a way. That is, when
one button was pressed down and mouse had been dragged, the action

46

of pressing down the mouse button ends with the releasing of the same
button. Emulating this behaviour correctly was nearly impossible.

Touching with a finger triggered a MouseMoved event from the mouse
driver. It could be that other mouse events were leaking as well and we
did not check for them. Furthermore after last touch event had
indicated that the finger had been lifted, MouseMoved events would be
received with parameters indicating mouse left button was still being
pressed down. This caused behaviours to work incorrectly.

In the prototype all mouse event were turned off permanently when
first touch event was received. A flag in the 3D component
IsMultitouchFound was supposed to tell if multitouch device was
present, but that information was not reliable.

It was observed that it was a lot easier for users to produce unwanted
actions with fingers than by using a mouse. For example:

• Tapping of two fingers (aka. right mouse button click)
surprisingly easily produced a double click.

• Double tapping to different points in screen was easy and
natural to do, which means location checks must be done within
the timeframe of the taps. In practice a user might tap their
fingers from little finger to index finger in rapid motion.

• When dragging by touch it was easy to:
o Accidentally touch the screen with another part of the

hand, especially when using multiple fingers,
o Accidentally lift a finger from screen when moving can

happen occasionally as well.

47

• Flicking (touch+move+lift) could be done faster by touching
than with a mouse. Flicking was also more natural to do with a
finger than the mouse. This became obvious with timers in
behaviours like orbiting and area selection when:

o Touch started the area selection timer,
o Then by moving the cursor the modal orbit was started,
o Then lifting the finger stopped the modal orbit, which

broke the event chain without telling it to the area
selection behaviour and finally,

o The timer for area selection fired and that behaviour was
activated.

The two persons working on the support believed the problems could
be resolved, but the rest of the team decided to push for another
solution that would be more maintainable later on. Furthermore the
lesson from this mechanism was that it is very difficult and mostly not
feasible to attempt to emulate another input device. This mechanism
was later on fully removed from the application code base.

4.1.3. 3rd prototype: Full multi-touch implementation

For this next prototype a full touch support would be implemented
according to the interfaces provided in the WPF. This support is would
be built using the Manipulation interface [73] in the framework.

The prerequisite for implementing this mechanism and for at all
catching the events produced by the framework was the transparent
floating window on top of the 3D component. It was realised that if we
are able to draw transparent controls on top of the 3D component that
are able to receive input directly, then maybe we could subscribe to the
events being transmitted to the window by the framework and proxy
them back to the parent window. The way to proxy the events to the
proper handler was done through event proxy that works through two
subscription methods in the WorkspaceManipulator:

public void AttachInputProvider(Control control)
public void DetachInputProvider(Control control)

48

The attaching method subscribes the manipulator to the relevant
events through the specified Control instance that already has the
necessary events as public members. The detachment method is there
to provide a safe destruction mechanism. Events for single finger
movements are passed on as raw touch events, while multi-fingered
events are handled as manipulation events. The relevant manipulation
events are as follows:

Touchdown
TouchMove
TouchUp
Manipulationstarting
ManipulationlnertiaStarting
ManipulationStarted
ManipulationDelta
ManipulationCompleted

The behaviour mechanism that is integral part of the navigation
mechanism required changes in order to incorporate new messaging
event in it. An event called ManipulationChanged method was
introduced in the behaviour handler interfaces. The virtual method
consists of the following parts:

Response ManipulationChanged(
Workspace workspace,
Vector2 origin,
ManipulationDelta delta,
ManipulationVelocities velocities) {...}

This mechanism passes just the necessary information about the
manipulation event that has just happened and nothing more. This
approach is good enough if you do not want to know anything more
about the actions that take place with fingers. The shortcoming with
this approach was that it was very difficult to find the original
Manipulator instances responsible for the change and to utilise that in
the behaviours. Another shortcoming was that the performance
appeared to be really bad. Another good thing about using this ready
built mechanism was that it had a simple implementation of a physics
engine to simulate inertia for finger gestures. Other notes from the
ManipulationChanged event handling were following:

49

• Better to perform simple operations with repetition than
complicated tests

• If inertia is available it should be used, because it increases the
amount of calls and smoothes the gestures.

• When using inertia, remember to compensate for the "loss of a
finger", that is when a finger is lost from Manipulators.

One very handy operation that was done during the processing of the
ManipulationDelta event was to compensate for the loss of a finger
input. For the kind of behaviour that was used in multi-fingered
operation we did not have a special need to maintain the touch points
and to use that information in the behaviour. The behaviour
mechanism works so that the modal behaviour that is active will not
stop until all fingers are released. Rather we would observe an odd
twitching when a finger was released during the two fingered pan
behaviour. It was possible to fix this problem by monitoring the center
position of the fingers, then when a finger was lost from the input to
add a compensating vector to the input position so that the behaviour
would continue smoothly. Example below is the compensation
mechanism, where e is the event parameter:

if (manipulators.Count == e.Manipulators.Count())
{

positionOffset = new Vector2();
>
else if (positionOffset.Length.Near(ø.ø))
{

positionOffset = previousPositiön - position;
>

We also found out by reading the documentation [73] further, that the
interpretation from the raw touch events into the Manipulation events
was made in another process through and not in managed code. The
other process was an unmanaged process and it was called with
Remote Procedure Calls (RPC). It occasionally got delayed and was
waited for until the RPC timeout cancelled the waiting. It is a nice
possibility that Microsoft decided to implement the Manipulation
events, but we felt that we needed to do better than that. The
interpreter for the WPF Manipulation events was built into the
external window and made to interpret the manipulation events into
actual changes in the 3D camera.

SO

This prototype had performance problems with most gestures and it
always felt like the interaction was lagging behind badly. Pinch
zooming and panning with two fingers were especially bad with
manipulations. Another thing with the approach was that it had to
combine single touch input and multi touch input in a way that was
awkward to handle in the tools that finally implement the behaviours.
The good thing was that the inertia was working well and made coping
a little easier. The conclusion in the end was that the dependency on
manipulation events had to go. It was not fulfilling our needs properly.

4.1.4. 4th prototype: Using only WPF raw touch events

In this prototype the combination of multi and single touch events was
merged in order to achieve more easily maintainable code base and to
simplify the structure. Another hope was that if we can cut down on the
time it takes to handle the events, we could improve the performance.

Testing the previous implementation gave us a good view into the
performance directly when using the software, it was not good enough.
It seemed as input was being handled a second later than it should
have affected the model view. This gave us a hint that there might be
something wrong in the handling of the events. Further testing
revealed us that the events being pushed from the driver were not
handled at the same speed at which they were delivered, so that there
were always more events in the queue than what was being handled.
This was not clear to discover as we had already had some problems
interpreting how the events arrived to the event handler methods in
the first place, because with manipulation events we ended up
sometimes receiving a TouchMove event after TouchUp event.
Further study revealed that in fact the events were in a sense being
pushed to the application and that there really were always more
events queued up than what the handler could cope with. The handler
methods were taking too long to execute and we needed to change that.
The bottleneck was especially in handling the TouchMove events.

The solution that was devised for this was to have the handler methods
OnTouchDown, OnTouchMove and OnTouchUp only catch the events

Si

and mark them down for processing later on. The methods sanity
check the input before handling it further and make certain, that the
input provider captures the device feeding the input so that the whole
screen may be used during an single input action. The events arrive
and are forwarded as following:

1. Event TouchDown is received and the manipulator involved is
registered as a followed source for TouchMove events. All
previous TouchMove events need to be dispatched before
registering additional sources. Objects and geometry under the
manipulator are updated.

2. Event TouchMove is received. Input is sanity checked against
the registered manipulation sources. The event is handled only
if the manipulation source is registered. Next duplicate inputs
are filtered out by comparing the previously registered touch
position. The input is stored to be handled later. If a timeout of
1/25 seconds has passed a call to method
DispatchPendingTouchMove is invoked to be raised with a
dispatcher queue priority for rendering items.

3. Event TouchUp is received. Input is sanity checked to be from a
touch device. All pending TouchMove events are dispatched. If
the source for the event is registered then it will be unregistered
and device capture released.

4. When DispatchPendingTouchMove is called the timestamp
of the dispatch is recorded and the behaviour mechanisms
TouchMove handler methods are invoked.

There is by default only one such handler instance in the behaviour
stack that accepts the input from the 4th step described above. That is
in the TouchNavigation class that is responsible for initiating the
proper behaviours to handle the input correctly. It takes care of
identifying gestures from the given input so that they might more
easily be used in the actual behaviour implementations.

The gesture recognition is built into the Manipulation Processor
class that is easy to extend to recognize more gestures. Currently the

52

recognition only distinguishes between single-fingered operation and
multi-fingered operation. When multiple fingers are used the
recognition dot product is calculated between the movement vectors of
the fingers to distinguish between gestures. Movement vectors are
determined by subtracting the initial position of the finger from the
last position. The resulting movement vectors are normalised. Dot
product is calculated between the normalised vectors and then
interpreted. Below the function is explored in two-finger gestures of
panning, pinching and rotating. Only the first two scenarios were
implemented and are in use.

dp = v1 • v 2=v ii*v 2i + t lj*v2j

Pan Pinch out and in Rotating

V1 V X
\ /

Nx /
v7w

1 > dp > tol
tol > 0

-tot > dp > -1
-tol < 0

tol > dp > -tol

Figure 4.3: Illustration of different gestures and
how the dot product distinguishes them.

Detecting the rotating movement of the fingers is difficult with this
detection method. In the Figure 4.3 the circle drawn over the fingers is
the trajectory of the fingers, when the tangents of the fingers
movements set circle. If the fingers are exactly at the opposite sides of
the circle, the detection mechanism would read the movement as a
pinching gesture. Identifying the rotation movement of the fingers
reliably would require identifying the circular trajectory to some center
point. This was not implemented and the value of the dot product
would be the same with pinching if used directly. When the amount of
fingers was changed the behaviour would also be changed

53

immediately. In future we wish to be able to utilise the geometric
points under the fingers of the users.

TouchMove handler in TouchNavigation calls the
ManipulationProcessor to process the input. As a result a gesture
is returned. The result details if the input has been single-fingered or
multi-fingered action and in case of multi-touch it gives information if
the gesture was pan or pinch. The mechanism identifies the tool in use
in the navigation and instantiates the corresponding behaviour into the
behavioral stack. Constructor injection is used to pass the singleton
instance of the ManipulationProcessor to the behaviours to allow
them access to the processed input. The singleton is maintained in
TouchNavigation class.

After the implementation was finished the performance was again
evaluated with the team members testing the software on the tablet
devices and the desktop displays available. The performance for
interpreting the touch input had already increased significantly and
now the system was able to cope with the finger movements with
relatively less delay than previously. It was obvious to the people who
had used the system before and after that there was a delay when
comparing the performance of the mouse input to touch input. And the
issue really was somewhere there still. It made sense to assume that
since the mouse based input is working so well, why should the touch
input handling not work as or close to as fluently?

4.1.5. 5th prototype: Performance optimization iteration

To solve the remaining performance problems their more precise
location had to first be pinpointed. With the 5th and final round of
implementation the target was to get rid of the rest of the problems in
the touch input system so that it would at least be reliable in use even if
the performance was not yet on acceptable level.

There were problems remaining with the touch input system still, as a
bug description entered after finishing the 4th prototype states: “WPF
UI is not responsive on touch, but 3d view navigation still works.”

54

This specific problem was solved by disabling manipulation events in
the overlay window after which the problem would no longer recur.
There were small problems with the UI, renewed snapshots features,
architecture and maintainability issues and fine tuning of the gesture
recognitions.

The performance of the touch navigation had been poor regardless of
several attempts at improving it. The touch input event system was fast
enough to process all the events, but there was a certain bottleneck
elsewhere.

A performance test was laid out for finding out the exact spot of the
problem for achieving higher rendered frames per second rate. The
emphasis was to look at the methods that directly trigger the rendering
activity in the software. There is only a single class that possess the
feature to manipulate the 3D camera properties and that is in
Work space Camer a. It was then logical to try to trace those methods
that call the CopyFrom method from that class. There are few locations
that use this method:

1. Camera animation behaviours
2. Incremental navigation buttons
3. Presentation manipulation
4. Loading of snapshots
5. Navigation input behaviours for mouse and touch together

The most interesting of these spots is the 5th line and, for example, for
orbiting behaviour the usage of a method called UpdateCamera. This
method is called in methods TouchMove and MouseMoved which are
the callbacks for touch input mechanism and mouse input mechanisms
respectively. These methods were monitored in the performance
testing tool called JetBrains dotTrace with evaluation license. The
measurement tool works so that first the application is launched and
preliminary launch related things may be executed manually in the
program being evaluated. After that the capturing for performance
measurements is initiated to collect the actual data. Data was only
collected for certain duration of time in which the application was

55

saturated with the respective input and then shut down immediately as
the data collection ends too.

The test for this defect was conducted on the Motion Tablet J3500 with
about 1900 objects visible. Part of this study was to take a look at the
JetBrains performance profiler, dotTrace, with Tekla BIMsight. Results
were staggering.

Table 4.1: Test durations and numbers of calls to respective update methods.

Device Test duration Number of calls

Mouse 22 s 628

Touch 25 s 68

The Table 4.1 above presents the results of the performance results and
it is interesting to find that in fact even if the touch input handling
mechanism is able to process hundreds or thousands of input events
during this test run, only less than hundred calls to modify the 3D view
are made. If we assume that the numbers may be directly translated
into frames rendered per second (fps) these yield 28 fps or mouse
input and <3 fps for touch input. These numbers reflect closely the
experience that the touch input in the software feels like in action.

The original problem was in the fact that there were many touch events
coming through and they saturate the pipeline where the rendering
calls are being made, that being the veiy same pipeline. The solution to
fix this was to build a sort of double buffer for the touch input events
and then send another event to the same pipeline to trigger the
processing of the past move events which is saturated already as stated.

The working solution is to use the same approach on the workspace
camera, which directly triggers the 3D view to render. All
modifications to WorkspaceCamera no longer directly trigger the
rendering on the 3D view, but rather just push modifications to a
transaction in the WorkspaceCamera that will be committed to the
3D view when the Rendering event is triggered for the

56

WorkspaceManipulator. That event gets triggered by WPF every
time the UI needs to be redrawn.

Second part of the solution is to trigger the processing of the input
events from the first buffer sparsely enough for the gesture recognition
to function with the input, and so that it has enough input to process,
and yet often enough so that the touch interaction does not feel
sluggish to the user. This happens so that the call is not invoked until:

1. A certain time period has passed to allow the input events to be
gathered (1/25 s)

2. The previous dispatcher object has been disposed of
3. And the call gets invoked in the dispatcher queue using the

rendering priority so that it is in sync with rendering.

4.2 Delivered functionality of the Tekla
BIMsight 1.4

All the features specified earlier were delivered when the version 1.4 of
Tekla BIMsight was released. The new features that were highlighted
in the release notes of the version 1.4 [74,75] were the following:

• View groups as major new functionality
• Slide shows as major new functionality
• Touch controls as usability enhancements
• Possibility to hide and show navigation controls
• Ability to switch for the Tablet user interface mode

The user interface was reviewed and tested thoroughly during the
development period to have all the UI elements respond to touch.
Some areas required more attention as explained earlier, but other
places work with the out-of-the-box functionality that the .NET
framework provides. Popup controls such as the colour picker and part
information popup were made to support touch input. All the lists were
made scrollable with touch. All critical controls in the UI may be
toggled to become larger for tablet devices using the Tablet user
interface mode. The differences are illustrated in Figures 4.4 and 4.5.

57

w

8

Figure 4.4 & 4.5: Normal and Tablet modes for the user interface.
Both images were captured from the exact same area.

The 3D view is fully controllable using either mouse or fingers or
stylus. There are additional navigational controls available to support
stylus users, but they may also benefit users of fingers and mouse as
well. These controls are located above the 3D view and at the top right
corner of 3D view area. Performance of the 3D is only limited by the
hardware and the resulting performance should be equivalent on any
of the input mechanisms.

58

5 Usability evaluation
The system was usability tested after the implementation to evaluate
the goodness of the choices made for the implemented system.
Methods used in the usability evaluation have been described in more
detail in section 2.7.

The user testing was designed to evaluate the usefulness of Tekla
BIMsight on a construction site. The evaluation was a walk-through
session with an expert on BIM usage on site and non-formal interview.
The evaluation was conducted using standard usability testing
methods by meeting with users and observing their activities and
interviewing them. Test session featured the filling of System Usability
Scale questionnaire (in Appendix A). For analysing the material gathered
from the sessions an affinity diagram was created later after the session.

The test session was organized by Taru Lääkkö on behalf of Tekla. She
was the test participants primary contact person. She instructed the
users how they needed to prepare for the evaluation sessions and
provided them the necessary information.

Prior to the visit the evaluation team will review their equipment
according to the predetermined checklist (in Appendix B). so that all
the required equipment and tools are not forgotten. The most
important things were:

• Consent forms for material use rights
• Copies of the SUS forms for the test participants
• Checklist for the instructor that contains all steps in each phase
• Help reference material for the user
• Video camera for recording the sessions, along with charger and

tripod.

5.1 Planning the evaluation

The design of the usability evaluation started from the need to
understand the way of working with a tablet computer on a
construction site by a subject whose main task is coordinating the tasks

59

there with other people. The subjects would most likely be working in
an office on site, but should also have an occasional need to go to the
construction to inspect the work first hand. The main target of the
evaluation was to understand what that need was, coordinate the visit
beforehand and the activities on the visit. The visit was arranged on
February yth, 2012.

The people present on the visit were instructor, camera operator and
two observers. Roles were appointed at the briefing meeting on the day
before the evaluation session. People attending the visit as the
evaluation team were Mikael Lavi, Taru Lääkkö, Osmo Tolvanen and
Marko Myllymaa. The evaluation session was been designed by Mikael
Lavi with assistance of Taru Lääkkö.

The evaluation was conducted in three phases; first in the construction
site office, then on the site with the expert using the Motion J3500
tablet device and finally back at the office for SUS and feedback. The
research objectives for these sessions were the following and the team
was looking for qualitative answers for them.

1. What is the main method of navigating in the model and how
will they adapt it with the tablet device?

2. How quickly would the users be able to adopt the touch-enabled
navigation controls?

3. What is the reception of the measuring tool using touch?
4. What is the user’s preference for the input mechanism; touch,

styli or neither? Why?

The first objective was targeted to provide us with feedback on how to
instruct the user better with the touch navigation. By understanding
how they adapt their existing navigational behaviour to the current
implementation, we could maybe provide more insightful guidance to
other users on repeating the adaptation. We were more specifically
interested on their primary navigational tool and were looking for that
information.

For example one supposed model of an efficient navigational
behaviour is to have the ‘Turn tool’ active for one finger dragging and

60

rely on the pinch zooming and panorate gestures when navigating
inside a building. Outside the building we have observed that the Orbit
tool is more useful.

5.1.1. Evaluation goals and participants

The evaluation was conducted on Skanska Oy construction site. There
were two test participants. Before the visit to the site, the subject was
asked to pick a few targets for inspection on site. These points were
supposed to represent real targets for inspection, and to reflect actual
usage scenario for the test subjects. One participant was required to
prepare the model files necessary for the evaluation session and asked
to prepare a project in Tekla BIMsight that contains the relevant
models. Additionally it was requested that the project would have been
filtered to represent that area where the inspection will take place. The
users are not assumed to know how to operate the software before the
evaluation.

User #1 is a development engineer from Skanska BIM Competence
Center and an expert on BIM and its usage on the site as well. User #2
had a similar background and he was responsible for picking out the
inspection points on site. He has previously been using Tekla BIMsight
and his tasks in the BIM Competence Center include evaluating new
ways of using this software on site. He has also taken part in a previous
usability evaluation session in Tekla headquarters with others when
the software was still in development.

Upon arriving in the construction office, the test subjects need to give
their consent (in Appendix Cl for the recorded material to be used in
evaluation purposes by Tekla and in this thesis work. Consent from the
users was asked for snapshots of the video material, mention of the
company and mention of persons participating in the evaluation. All
sessions were recorded using a handheld video camera capable of
recording io8op video footage. Next the instructor of the session gave
a quick overview of the plan for the session. This was done to give the
subjects rough idea of what to expect.

61

5.1.2. Limitations

The evaluation was focused in this evaluation to the navigation and
measurement tools. Users feedback was gathered at all times if they
encounter difficulties, but to keep the focus in predetermined areas
users were instructed not to dwell too much in the problems.

Another limitation that the instructor was to tell the users, was the
limitation that the user cannot measure distance between two planes.
This is technically limited out from the functionality of the tool.

The instructor asked the participants to think aloud when they were
using the software, and to elaborate as much as possible. They were
encouraged to think aloud and explain their thoughts as they explore
the user interface and do their round. The evaluators were also asking
relevant questions when such came up.

5.2 Execution of the evaluation

5.2.1. Inspection briefing

The aim of the inspection briefing was to understand how the users
were using Tekla BIMsight when navigating the model, marking views
down to return to them later on, and how they used notes. The briefing
went so that User #1 was asked to present, using Tekla BIMsight,
where he had planned to take the evaluation team visiting on the
inspection round. He was instructed to do this using the Motion J3500
in the laptop mode, with the docking station and a mouse, to accustom
him to the device in familiar context. During this briefing the user
should was encouraged to create the views that were supposed to be
used on the inspection round. By creating the views in the new version
of the software, the user was immersed into the software more.

When the briefing was done and all preparations for the inspection
round were taken care of the users were shown how to use the touch
features on the tablet computers. The Motion J3500 device was
separated from the docking station and the mouse for this. The user
was then given the documentation as help reference, and given a quick

62

introduction to what he could do with the touch controls. Other users
were able to follow the demonstration from the projector that was still
connected to the tablet. The controls that were demonstrated are as
follows:

• All navigation tools: Orbit, Pan, Walk and Turn
• Area selection
• Creating and activating views
• Focusing on a part by double-tapping on it
• Fitting entire model to view by double-tapping on background
• Using the stylus on a single task to show it to the participants

The users were presented with three exploratory tasks for finding out
how the zooming joystick and the measurement and marking tools
work. We wanted to find out what they were expecting the tools to do,
and did the controls fulfil their expectations. It was also interesting to
see how learnable and easy to use the controls were.

Using the stylus was presented in one of the tasks presented by the
instructor. This was done to introduce the stylus usage to the
participants and then allowing them to explore it, and choose which
input method they wanted to use. We were interested in their views of
which method is more suitable for them.

5.2.2. Inspection visit

When on the construction site, the evaluation team had an interest to
observe certain aspects of the software being in the field use. We were
interested in:

• What navigation model the users prefer in the field; touching
with fingers or using the stylus?

• What are the user’s preferences on the navigation modes and
multi-touch gestures?

• Do the users prefer gestures instead of the modes or the buttons
or vice versa?

• How much do they use free navigation? Or do they only rely on
switching between the views?

63

• What problems do the users have with the navigation that they
chose to use?

• Will the users want to have the zooming glass feature on other
input methods than touching? Or using zooming otherwise than
in a small area?

• How will they measure objects that are very distant in
relationship to each other?

• How will the users access the part details if they need them?
Will they find out what they are looking for easily?

• How do the users expect the zooming joystick to behave?

In Figure 5.1 the evaluation team and the subject are shown in the
environment of the construction site where the discussion was
ongoing. From left to right there are the instructor, the observer, the
main test participant and the cameraman.

Figure 5.1: Visiting the construction site.

As part of the evaluation, it was interesting to observe how the users of
the tablet device would react to workers coming to ask for certain
measurements from him and have him provide the figures on the spot.
To simulate this, User #1 was given a task to provide some arbitrary
and interesting measurement from the model by pointing out the
asked measure in the building itself. This task was not described
beforehand to the user and it was given during the visiting round on
the construction site.

64

5.2.3. Feedback for the participants

After the inspection visit was done the group moved back to the
construction office for a while to gather feedback from the visit. During
this the participants were first given the SUS forms (in Appendix X) to
fill out. After they had filled these they were asked to give feedback of
the visit and how they felt about the evaluation so far. This was an
important step in debriefing the users and giving them an opportunity
to be heard and ask questions of the product if necessary. All proposals
and questions were written down and reviewed later as additional
material.

5.2.4. Debriefing the user testing

Instant feedback with the evaluation team after the session had been
finished was collected as free form discussion and the observations
were also recorded with a voice recorder and by taking notes. The
significance of these notes was the intuition and immediate
observations that the team would otherwise easily forget as more time
would pass.

5.3 Analysis of the material

The main method of analysis was the affinity diagramming and the
discussions related to that, as described in the background. The setup
for the affinity diagramming session consisted of a collection of
beforehand written notes, which signified observations from the
problems at hand. Those notes were then grouped on a wall according
to their affinity to each other. If the notes are not too overlapping in
content, they should usually form distinct groupings with reasoning
within the team how their affinity was formed.

The analysis of the material began by reviewing the video material
gathered from the session. During this review notes of important
findings or observations should be written down for further analysis.
The notes are supposed to bite size chunks so they describe in as few
words as possible the problem or the observation and the writer of the
note may elaborate more on demand about the note.

65

All the hand written notes should also be processed in a similar
manner to the video material to produce a number of separated notes
from the hand written notes and the instant feedback gathered from
the team immediately after the session with the users.

When creating the affinity diagram, the team that was present in the
evaluation was also supposed to be present. More people were invited
along to speed up the process and share the information. The group
that was present in creating the affinity diagram was a mixed group of
people from the evaluation team and from the implementation team
and everyone's opinions were valued equally.

The participants took turns to place a note onto the wall and explaining
their choice as they made it. The distance of the note, in relationship to
other notes, signified its affinity to them. Explaining the reasoning of
the placement was an important step in sharing the understanding of
the meaning placed onto the note, rather than the position of the note.
Notes on the wall were allowed to be reorganized as pleased when
placing another note, provided that the action was also explained to
the other participants. Figure 5.2 displays an example from the work
process.

Figure 5.2: Team creating the affinity diagram.

After all the notes prepared from the collected material had been
placed onto the wall and some groupings had emerged, the team
reviewed the wall and the merged groups. They then tried to value the
groups by ordering their importance as findings. The groups were
described in text and photographed for later use. The final result is
visible in Appendix D.

66

54 Findings from the evaluation

5.4.1. Touch interface was easy to pick up and accepted

All users were able to use the touch interface immediately without any
prior briefing. When the test unit was set up and the user was asked to
introduce the model to the testing team, they immediately started
using the touch interface on the device. Only after specifically asked to
do the introduction using the mouse, did the user abandon using touch
until further notice.

The users also stated that they preferred using the touch interface
instead of the stylus, even regarding the regulations that may enforce
the use of protective gloves on site. They said that if anyone had ever
used any touch interface previously, then getting to know this touch
interface would be easy enough.

5.4.2. Mental model of navigation

We found that the user #1 had a mental model of navigation based on
using the physical buttons of the mouse, and that model was migrated
to the touch-based user interface directly. The mental model allowed
user #1 to use the left mouse button for clicking and dragging, scroll
wheel and middle mouse button clicking and dragging. The right
mouse button was used only for opening the context menu. We
attempted to show how to improve this model without encouragement,
but the user did not take it into use.

The users also preferred using the orbiting tool, which had been the
default tool in the previously published version of the software. User #1
explored the other tools as well but did not adopt them after trial.
Further investigation would be in order to find out why. We assumed
that the user was most confident in using the orbiting tool and this is
why he, maybe even subconsciously, chose to use only this tool even if
it leads him to error situations, such as navigating into a wall.

In addition to just navigating, the users acknowledged that they might
start using the snapshots as a safe exit from a difficult position in order

67

to get back to a familiar position in the model. The users did not use
the undo functionality at all. It remained unknown whether the
functionality was known or not, and this presented an interesting
speculation as to why the users wanted to have a way of easy exit, when
was it already there. This in turn proved that either they did not know
of the undo feature, or that they knew it, but it had not fulfilled their
expectations.

5.4.3. Orbiting tool lead users into error situations easily

The navigational model of user #1 made it so, that even when he was
navigating inside the building he was using the orbiting tool. It often
got him lost inside the model when some element blocked the line of
sight in relation to the orbiting point. The orbiting tool picks the
rotation point on the closest surface under the cursor, when the
behaviour begins. If that rotation point is far away when the view is
inside a building, the speed of movement may be too great for subtly
allowing the user to switch the view angle. This could be corrected by
adjusting the rate of change either directly or by adjusting the logic by
which the rotation point is picked.

When using the orbiting tool the users tended to end up inside another
element blocking the view partly or completely. The users then opened
the context menu using the right mouse button to access the hide
command for that element. This behaviour suggests that it could be
beneficial, when orbiting, to adjust the visibility of the elements that
get in the direct line of sight between the view and the rotation point.

5.4.4. View angle is very narrow inside buildings

It remains a speculation, but it seemed that the view angle was too
narrow to allow users to see enough when navigating inside buildings.
This observation was made when users compared Tekla BIMsight to a
product called BIMx, which featured a much wider view angle of the
model being presented.

68

5.4*5* Difficulty of discovering the Tap&Hold gesture

The users had significant trouble in finding out how to make the
context menu appear with the touch interface. All three users first
attempted the Tap&Hold gesture but they failed to hold for a period
long enough and thus the gesture recognition failed. They then
attempted other gestures with more fingers and double tapping. Only
after instructions did they find the Tap&Hold and were able to
successfully in open the context menu. After analysing this finding, it
was found that the product inhibits the classic usability error suggested
by Jakob Nielsen that “the system should always keep users informed
about what is going on” [56]. We found that the product did not give
enough indication that the recognition process had been started. In
Windows this is accomplished by showing the user a round circle that
fills up during the duration of the Tap&Hold gesture and the user has
the needed feedback, as presented in Figure 5.3 and 5.4. The 3D
component could not accommodate this response because of the
implementation, and the problem was addressed by adding a custom
rotating disc to indicate background processing, as presented in
Figure 5.5.

Figures 5.3,5.4 & 5.5: Press and wait indicators in Microsoft Windows 7
and in Tekla BIMsight. The two left images illustrate the animation in

Windows 7. Tekla BIMsight has a rotating disc.

5.4.6. Accessing part details was difficult

Users stated in the test, that they wanted to access the part details
easily. In the office they attempted to access those details by several
means. First they attempted double tapping on parts, which only
brought the parts into view for them. The second attempt was finding
the details on the context menu, where only the name of the part was

69

visible. Upon further instruction of user #1 they discovered, that
pressing on the name opens the part details on the right-hand panel. It
is noteworthy that in the main product of Tekla Building &
Construction, Tekla Structures, part details are opened by double
clicking on the parts. They also proposed that opening the part details
could be done when the part selection changes.

5.4.7. Measurement tool did not match mental model

The measurement tool was implemented to display the distance
between two points that the user picks from the model. Since touch
interface is a direct action interface, as explained in the background,
the tool was specified to require two separate points to be picked by the
user. Upon picking each point the user may linger on the point to
reveal a magnifying glass to pinpoint the exact position they want to
pick. When the finger is released, the point is accepted.

User #1 attempted first to tap certain parts of the model when using
the measurement tool for the first time. It seemed as if he was
expecting a confirmatory action to follow the first action, and then
when nothing happened tried it again. After this strategy failed to yield
any satisfactory results he attempted to draw a line from one point to
another, presumably to literally “draw a line”. This next model of
behaviour was closer to the model the implementation relies on and on
an occasion revealed the zooming glass feature to the user very briefly.
However, user expected the line to be drawn from the first point to the
last point immediately and not that he would be picking the points
separate from one another. The user also commented that hitting
precise targets was very difficult with the tool. This was also the reason
that the user had difficulties in finding the magnifying glass and
understanding its behaviour in relation to his actions.

During the visit the team asked the user to measure the installation
height of a wire bed and the user complied with the task. After
completing the task the user stated that this use case was flawed,
because he would always have the information available through the
part details embedded in the model file. This lead to the finding that

70

one of the main use cases for the measurement tool was assumed
incorrectly and strongly backed by the user stating: “This is the kind of
information I have at hand on the part details already.”

5.4.8. Reception of the zooming controls

Users discovered the zooming joystick after being informed of its
existence by the instructor. Users then discovered that they can press
on the zooming buttons and the view changes accordingly. The
draggable joystick control however seemed to puzzle User #1 at least.
He could not affect perceptible changes in the 3D view event thought
he was using the tool as designed. Figure 5.6 displays the movement
that the user performed, highlighted with green arrows, and we can
clearly see that the result does not indicate any change. The control
would have allowed continuing dragging over the bounds of the control
to affect a greater movement, and to use the confines of the control to
affect subtle zooming.

Figure 5.6: User attempted to use the zooming joystick as
the visual clue suggests without achieving perceptible results.

On a later discussion after the analysis, the joystick control was
explained by the designer to have been implemented to include the
dragging control against original design just because it happened to
have fit the space nicely. Later on the control was modified to better fit
the dragging control and this combination of modifications to the
design lead to an inferior design.

The zooming slider should reflect the amount of zoom, instead of just
sitting at the center of the slider. It should reflect some absolute

71

amount of zoom and the slider should be longer to allow finer control
over the zoom for the user.

5.4.9. Other observations

Other unexpected features that were observed during the planning
process of the usability evaluation are listed below. Most of these
problems have already been fixed in the actual software, but they were
found during the conducted evaluation. The most critical limitations
that were observed in the software were the following:

• Users attempted to open the colouring dialog using touch and
found that it did not close automatically if they touched
somewhere else in the user interface.

• Two-fingered panning and pinching gestures do not work when
the measuring tool is active.

• The navigation circle that allows users to continuously use the
tool in use does not indicate the active tool. It should perhaps
repeat the information in the center of the navigation circle like
mouse cursor reflects the active tool.

• Converting information that comes from the parts does not
work correctly if there is a plus or minus sign in front of the
value.

It was an observation on behalf of the evaluators that users might
benefit from using the hard keys found on the target tablet device.
Therefore, a feature request was recorded from this that:

“Add more shortcuts that may be bound to the hard keys
found in the target devices sides. There are altogether four
shortcut buttons on the device and a directional pad that
could be utilized for navigation or other functions, if there
were more shortcuts available in the software.”

72

5-5 Findings from the affinity diagramming

The raw findings listed herein are interpreted from the material
analysis with the affinity diagram and presented as they were
interpreted from there. The affinity diagram that was created may be
found in the Appendix D. Findings are as follows:

1. Touch input was easy to pick up.
2. Hitting small targets was very difficult with touch, because it

was not precise enough and too sensitive.
3. Part details are important to the users and information

retrieval should be improved.
4. Measurement tool was difficult to use when measuring

pipelines from the model. This was a specific use case.
5. Most important measurements were in the part details

already. Measuring tool needed more suitable use cases.
6. Users did not know keyboard shortcuts.
7. Users did not use undo.
8. Users preferred using clipping planes instead of hiding parts.
9. Users wanted to have the relevant objects visible and would

go to great lengths in hiding obstructing parts.
10. Users preferred using touch instead of the stylus and multi-

touch instead of the activated tools.
11. iPad presented difficult competition to the application,

because users kept comparing the touch interface to it.
12. Users wished to have access to their documents. They

suggested adding links to the objects themselves.
13. BIM on site was seen as a valuable asset that users would like

to utilise even more.
Furthermore several problems were recorded from the software, that
that were reported to the development team.

1. Clipping planes broke the graphics display.
2. Clipping planes were not cutting the model in straight angle.
3. There were problems when loading models, especially the

architecture model was not displayed.
4. View angle was very narrow for navigating inside buildings.
5. Empty notes could not be saved, and single snapshots could

not be shared.

73

5-6 Findings from system usability scale

System usability scale introduced in 2.7.2 was processed from the
forms (in Appendix A) that the users filled out at the end of the
evaluation session. As explained before, the results were summed up
and multiplied by 2,5 points to reach the overall score which ranges
from 25, the worst score possible, to 100, the best score possible. Below
are the final results for the SUS questionnaire:

User #1 47,5
User #2 25
User #3 67,5

Summary SUS score 46,7

Percentile of the study 3,50%

As previously stated the SUS scores are not linear in the grading and
the percentile the questionnaire scored is more important. The
empirical study on SUS indicated that individual evaluations on the
SUS score rarely go under 30 points and that the lowest quarter scored
under 62.26 points [59]. This means that the evaluation of this system
scored in the lowest quarter and that significant improvements on
usability are warranted. Figure 5.7 is a more detailed graphical
representation of the results. First different user results are presented
as how much they contributed points in each question and then the
average in the bottom. As the individual scores above already present,
User #2 was very critical about the system, User #1 less critical and
User #3 almost positive about the system.

Figure 5.7: Detailed drill down of the SUS results.

74

5.7 Discussion on the usability test

In relationship to the original plan the test was a success and most of
the research questions set before the user testing were answered in
observations and in findings. The execution of the test did not follow
the plan precisely and there is room for improvement in the test tasks.
Should the test have been more formal and structured than what it
was, it may have also affected the participants’ willingness to give
information in such a rich manner as they did. Additionally the
usability evaluation footage was composed into a 15 minute annotated
video clip containing the evidence from the findings.

The questions that remained without observations were:

• Will the user want to have the zooming glass feature on other
input methods than touching? Or using zooming otherwise than
in a small area?

• How will they measure objects that are very distant in
relationship to each other?

The users stated that they preferred the touch interface instead of the
stylus, but it should be further investigated if this view is shared among
other users as well and not limited to just this group. Users also
preferred using the multi-touch gestures instead of the tool palette and
single touch gestures and the four-way navigation controls.

The users seemed to be tapping on the interface a lot and it is worth
considering that the user interface should support this kind of activity
more. Another approach might be to further study other touch-based
user interfaces, in order to understand their fundamental operating
logic better and consider mimicking it to a degree.

75

After additional analysis it was concluded that the mental model
chosen for the measuring tool may be wrong and it should be revised
later on. Furthermore, when considering the ten usability heuristics,
the system should inform the user what was expected, what was the
system status, prevent the error situations and help user recover from
error situations [55, 56] all of which were violated.

A future investigation should be initiated to find out if there are some
tools in the software that do not solve the problem they are meant to
solve in the use of a user, does the tool solve another problem for the
user and how well the tool matches to the use case associated to it.

76

6 Results
In this chapter the results will be summed up. The subjects covered
here deal with why the development team chose to change the
implementation so drastically after the third prototype, what were the
problems in the already attempted solutions, what were the good
lessons in the previous versions and how they should be applied later
on.

6. l Summary of prototyping

The development team lacked the prior knowledge about touch input
systems. Online material provided a starting point, but proved to be of
limited use as very detailed implementation documentation was hard
to come by. The strongest support came from the API documentation
[2, 72, 73, 76, 77]. Additionally the requirements were not very detailed
at the time when implementation was supposed to begin and the main
requirement remained for long as follows: “Create any minimal
support for tablet devices so that the software is usable.” This resulted
in more research work for the team in finding out details how to do the
implementation.

First concern overall was the performance of the system. The team
already had experience with the current 3D technology that presented
the possible problems with the performance on low-end devices. A
decision was made in rather early phase to go ahead with the
implementation in any case and wait for more powerful hardware to
compensate for possible low performance now. The main target was
still to create the essential support for tablet devices. This was a known
risk that was chosen so that the business requirements could be
fulfilled. The result was that the risk was mitigated in the end with
good engineering effort and devotion.

For a long time there was a false feeling of “quick win” and that the
“tablet support” could be done quickly and cheaply. In the sprint
planning meetings for sprints 1, 2 and 3 it was estimated that the
feature could be finalized in the respective sprint within several days.

77

Prototypes were demonstrated with success during Sprint l and 2
demo meetings. During the sprints 1 and 2 the implementation effort
relied on two persons. The team shares a strong sense of devotion and
shared responsibility and therefore at the end of each implementation
sprint the outcome is evaluated by the entire team. In the middle of
implementing the 3rd prototype the internal quality of the approach
was questioned and the team started to evaluate the feasibility of the
solution. The results from those sprints were not satisfying the
expectations of the team. To correct this entire team was dedicated to
finding out a better solution. After that the whole team was involved in
finding right architecture for the touch support. Series of planning
meetings were held to exchange ideas, synchronize and quickly adjust
directions. New approach was chosen and quickly implemented with a
backtracking list available of known problems and future steps for
architecture. The facts leading to this conclusion were the following
[78]:

Meaning of “tablet support” was not well defined until late
implementation phase. No requirements existed that would have been
accepted by both the business owner and the development team.
Approximately three sprints were spent on prototyping and playing
around with different solutions in order to help product owner to
decide desired functionality. The only tangible results from this time
were the paper prototypes for a renewed UI.

Target hardware devices, namely Motion J3500, were not available for
development team until Sprint 3. Combining WPF with native 3D
visualization components gave additional technical challenges due to
the airspace problems that needed to be resolved. The devices were
received in sprint 4 and this enabled the team to start testing the real-
life performance too.

Low performance of tablet devices was a known issue. The plan was to
give it an attempt to deliver the functionality, even without knowing
the real life performance, and wait for better hardware to come
available if the problems persists. This risk could not be affected

78

directly so it could only be mitigated. The result of the 4th prototype
fulfilled the internal quality requirements that the team had set. The
performance problem was finally solved also as described with the 5th
prototype.

6.2 Lessons learned

6.2.1. Prototyping of unknown technology

Lessons learned from the realisation of the risk of an unknown
technology were written down as part of the effort of the evaluation
described above. These lessons are not unique to this situation but
describe the situation very well. To mitigate the risks it was suggested
that the following steps should be taken [78]:

1. Do not skip requirements analysis phase. The lack of experience
from touch-based user interfaces affected a lot.

2. Invest time into prototyping, research and learning of unknown
technology before committing into implementation.

3. Do not start implementation and making long term promises
about releasable features when there are many unknowns.

4. Having target devices early is very important to reduce number
of surprises.

6.2.2. Indirect interaction is difficult with direct input

Time was spent on investigating how to provide a user interface to
accomplish the things that the user should be able to do with the final
touch interaction. This was done as an attempt to transform the touch
input into mouse events that fed the behaviour mechanism. This
attempt was deemed failure on many accounts. It was very difficult to
adapt the two mechanisms together, when the basic operation
principles are so different in the sense of mouse being an indirect
mechanism and touch being direct input. One of the biggest problems
with this was the difficulty of adapting the press and release events to
mouse events so that the mouse events would be both synchronous and
in a proper ordering. This was especially cumbersome when one finger
was released after two fingers had been pressed down. Furthermore

79

the lesson from this mechanism was that it was very difficult and
mostly infeasible to attempt to emulate another input device with a
different device.

6.2.3. Direct input — experience is critical

Feedback at an early phase is vital for fine tuning a delicate control
mechanism. Having the devices readily available helps to gather the
first impressions on a new interaction model. One feature where this
was constantly apparent, was on the performance of the touch
interaction. Many people who were loosely connected to the product
development were able to come and try out the current
implementation and give immediate feedback with the devices.

It is more natural to have the points under your fingers follow your
fingers. It was observed with the 2nd prototype that for example, if you
pick two points on a beam and start dragging your fingers across the
display you would rather that the points stay under your fingers. It is
more intuitive to have the points follow the fingers the same way the
fingers are moving. There are individual preferences to this rule
however and not everyone might agree with this behaviour. Some
might prefer a so called inverted behaviour. In a walk mode this could
be so that if finger movements Y-axis move the camera forward on
positive axis, it feels unnatural that this control effectively flips around
when the camera is looking down. The implementation does not
necessarily account for the camera angle change, but now upwards
would in the cameras view angle be backwards instead of forwards.
User might expect the view to move up when your finger moves up but
actually it moves down if this is not accounted for.

In a similar manner actions performed with fingers should be
consistent, to allow the user to predict how a control works and not
learn the new behaviour. It is a well known and documented usability
issue that users should be able to predict how tools behave by having
reference in other similar tools.

80

It could be loosely stated that the “what you see is what you get” -
principle should be followed as much as possible, in the sense that in a
direct input interaction users rely solely upon the direct feedback of the
application. By deduction alone users might think, that if the device
does not immediately reflect a change upon interaction, then they
should maybe try again. This is not always what the designers think is
happening, but the mental exercise should prove useful in many an
occasion.

6.2.4. Tricks in handling the implementation of touch

Mouse and touch devices behave differently. It was observed that the
mouse events were never pushed to the event handler, whereas the
touch device seemed to be pushing events to the handler constantly. It
is important to make certain that the event handler is not being
blocked.

The overlay window was a good solution because it provided a nice
division between the types of content that would be made visible to the
user. It also acted as a division between the caught input, as the overlay
would capture touch events and pass everything else through to the
layer below. This in turn could be used in other applications as well to
implement a more generic approach to implementing touch controls. A
fully generic touch implementation is not likely to exist.

For fluent behaviour with the touch input, it was important that the
events were handled in correct order. Implementing actions with
events that did not fire in predictable order was very difficult. Filtering
was also necessary in this solution while still retaining all the
resolution in the events if necessary. The message pump solution was
very useful for this purpose and it allowed the developers to choose if
the specific action required all the details prior to the action or just the
latest event. The critical choice was the level of filtering and where in
the processing pipeline would the filtering take place.

81

One problem that was observed after implementation had already been
finished, was that the mark-up tool that is used to paint lines over the
3D view produced smooth lines on the target device, whereas the stylus
did not produce so smooth lines. The problem has since been fixed.

Using dot product in gesture recognition worked veiy well for the
needs there were. It yields results quickly and is easy to compute.
There are, however, limitations to where it works properly. Extending
the gesture recognition or switching to another solution may be in
future steps for the development of the software.

One of the future development targets that were not explored at all was
to make all the behaviours so that the geometric points underneath
user’s fingers would be utilised in the behaviours. This could possibly
result in more natural user experience as the fingertips would in a way
be touching the virtual model.

6.2.5. Rendering performance

The rendering performance was eventually fixed by modifying the calls
to the rendering engine so that it would be called only when needed
instead of clogging it with requests to render.

Fixing the rendering pipeline problem may have enabled us to utilize
the standard Manipulation events that the WPF has built-in. We
observed that the RPC implementation had some problems, but maybe
we could have been able to cope with it and possibly save some time in
the later prototypes. All the effort to fix the handling of the touch
events was not in vain but misdirected as a primary focus point. The
expected performance was the same fluent movements that were
experienced with mouse throughout the implementation period.

However resolving this specific problem was difficult and took a lot of
effort altogether to find. We should learn from this that the visible
problems seldom are the only ones.

82

6.2.6. Unknown safe exits in navigation

Users preferred navigating in the model using the orbiting tool. When
the users got lost inside the model they did not use easy exits to return
to their previous position. Users did not use the undo functionality at
all. It remained unknown whether the functionality was known or not,
and this presents an interesting speculation as to why the users want to
have a way of easy exit, when it already is there. Users acknowledged
that there might be times when a safe exit would be useful and that
they might use stored views for that. Another question is that did the
users associate undo action to navigation, since normally it does not
affect it. This should be further studied.

83

7< Conclusions
Research questions for this study were set to be academic in nature
and the intention was to provide a context in which to study the
migration of a specialized user interface to incorporate a new input
device. As a case study Tekla BIMsight was to be the application
context in which to study the research questions. The research goals
were set to assist in scoping the subjective work for the study in order
to have clear goals on the outcome of this work.

In the background, research methods for evaluating the usability of a
specialized user interface were studied at length but the work was
found to be very academic or very domain specific. It is difficult to say
that there would be common tools for evaluating this and it is the
professional skills of the usability engineers to tell if some solution is
good or not.

At a very late stage when the background research had almost been
completed new information surfaced about the cognitive and motor
load measurements. The idea being, that if these load measures were
easy enough to calculate without user testing, they could be used to
prove or disprove changes in the user interface. Theory for such a
method was not located and therefore not discussed further on in the
background. This will be subject to future study in the course of further
development of the software.

The second research question was intended to drive the study to find
out a generic approach to solving the problem of migrating user
interface from one input device to support other input devices.
Microsoft suggests that the user interfaces should be designed from
ground up to support all the intended input devices [73]. Others [19,
21, 47, 49, 51, 50] discussed the problems that need to be addressed
when implementing touch controls. These problems were presented in
the background research in with collection of otherwise interesting
studies [1, 22, 46, 48, 51]. The conclusion is that with each new context

84

for a user interface the problems need to be resolved again and only
experience from such solutions can help alleviate this task.

Specifically designing a user interface to later support other input
apparatus is also a bit wasteful, as one might end up designing
functionality that will never be used. This also points to the other
conclusion, that if the user interface needs drastic changes to support
other usage scenarios then it should be re-evaluated and designed to
suit the new requirements. Resolving the scope of the work is part of
this and it will depend on the available resources.

The third research question was a variation on the first one geared
towards the study of touch-based user interfaces. In background
research a methods derived from Fitts law [53] was encountered
[1, 50], which enabled measuring user performance in selection based
tasks and trajectory based tasks i.e. dragging an item on screen. The
method was to be used in evaluation of the measurement tool in the
software to compare the touch input performance with the same tool
used with a mouse. This study was abandoned after the usability
evaluation, because critical usability problems were found in the
measurement tool. They already displayed that the design of that
feature was flawed and it would not bring any valuable insight to test
it.

In addition to the research questions, there were a few research goals
to refine the scope of this study. The research goals were subjective in
nature and intended to provide targeting of the outcomes of the study
for the case study.

During the course of this work several problems have been highlighted
that were impeding the “efficient and effective use on a range of
devices including desktop and laptop”. Not all the problems were
critical, but many of them were identified as very cumbersome for the
user that would affect the positive user experience of the software.

The implementation work done for the specification and
implementation of the touch input mechanism were documented as

85

the case study in this work. This documentation reflects on the
problems encountered in the design and implementation of the most
relevant problems and did not cover all the possible problems
encountered during that period. The implemented touch support is
also documented in this book.

The feedback gathered from the usability evaluation with the SUS
forms pointed out that the users were not pleased overall with the end
results, even when they repeatedly commended some of the solutions.
The end results of SUS questionnaire (in Appendix A) were 46,7 points
which sets it according to Bangor et al. [59] to be in the lowest quarter.
This means that the result was not much better than the worst results
in that study. In future other results from a SUS questionnaire may be
reflected against this result. Usability evaluation results and all the
material has been made available to the development team.

86

8 Future Steps
The development team spent time on evaluating the user interface and
designing improvement to it, but the lack of resources limited the
effort that was possible to invest into this work. According to the
conclusions presented before the user interface design should
incorporate the requirements that come with the input devices. Future
works for the user interface will continue and the findings from this
book have already been taken into consideration for future steps.

The rendering pipeline solution found for the 5th prototype earlier in
the book is a solution that should be investigated further on. The
assumption is that further performance gains could be possible, if the
solution is applicable to other scenarios as well, or if the solution may
be further improved.

The study of the cognitive and motor load measurement will be
continued in order to find a tool for the usability experts working close
to the development to proving or disproving changes in the design of
the user interface. This would be very beneficial if such drastic changes
will be done in future of the development work. The efficient use with
touch input should still be studied and how the effective use of the user
interface could better be supported on small screen devices. Some of
this work was started as part of this study and a presentation for an
improved design was presented.

Different ways of preventing user errors should prove useful in many
of the navigation tools available in the application. Along the same
lines more study on the existing UI would be needed. In this study it
was found that users did not know there was an undo button available
or they did not use it. As mentioned earlier, it might prove that they
did not know of the undo feature or that they knew but it had not
fulfilled their expectations. Further study on the utilization of the
implemented features would be useful in order to make the unused
features more visible or redesign them to support user assumptions.

87

References
[1] Forlines, C. et al., Direct-touch vs. mouse input for tabletop displays.

In CHI ’ll Proceedings of the 2011 annual conference on Human
factors in computing systems. ACM New York, NY, USA.

[2] Microsoft, 2011. Windows User Experience Interaction Guidelines -
Touch. [Online]
http://msdn.microsoft.com/en-us/librarv/windows/desktop/cc872774.aspx
[Accessed January 21, 2012]

[3] Lunden I. 2012. Apple of our eye: Gartner predicts 665 million
tablets in use by 2016, over 45% of them iPad devices. In
TechCrunch news on April 10th, 2012. [Online]
http://techcrunch.com/2012/04/10/gartner-tablets-apple-ipad-dominate/
[Accessed April 27th, 2012]

[4] Guglielmo C. 2012. Tablet Sales to Skyrocket in 2012, Apple To Keep
Lead. In Forbes magazine online article on April 10th, 2012. [Online]
http://www.forbes.com/sites/conniegugliehno/2012/04/10/tablet-
sales-to-skvrocket-in-20i2-apple-to-keep-lead/
[Accessed April 27th, 2012]

[5] Tekla Corporation, 2011. Tekla BIM software. [Online]
http: //www. tekla.com/international/products/tekla-
structures/Pages/Default.aspx
[Accessed: September 12 2011.]

[6] Microsoft. 2002. Pointer Ballistics for Windows XP. Whitepaper.
[Online]
http: / / msdn.microsoft.com/en-us/windows /hardware/gg4633iQ
[Accessed May 5th, 2012]

[7] Kelly, A. J., Salcudean, S. E. 1993. Magicmouse: Tactile and
kinesthetic feedback in the human-computer interface using an
electromagnetically nactuated input/output device. Technical Paper.

[8] Chapweske, A. 2003. The PS/2 Mouse Interface. [Online]
http://www.computer-engineering.org/ps2mouse/
[Accessed May 2nd, 2012]

[9] Logitech. 2012. Product overview: Logitech Gaming Mouse G500.
[Online]
http://wivw.logitech.com/en-us/mice-pointers/mice/devices/^7TO
[Accessed May 3rd, 2012]

[10] Immersion Corporation. 2012. Haptics In Use — Mobile Devices.
[Online]
http://www.immersion.com/markets/mobile/products/index.html
[Accessed May 5th, 2012]

88

[11] Senseg. 2012. Webpage. Senseg - Feel the difference. [Online]
http://senseg.com/ [Accessed May 14th, 2012]

[12] Wacom. 2010. Product features: Bamboo Pen tablet. [Online]
http://www.wacom.com.hk/product/bamboo-pen [Accessed May
4th, 2012]

[13] N-Trig, 2011. About N-Trig. [Online]
http: //www.n-trig.com/Content.aspx?Page=AboutUs
[Accessed January 26, 2012]

[14] N-Trig corporation. 2011. Press Release: N-trig Multi-touch and Pen
Solution Currently Shipping on Leading Enterprise Tablet. [Online]
http://www.n-trig.com/Content.aspx?Page=PressReleases&PressReleaseId=7c;.':i
[Accessed May 2nd, 2012]

[15] N-Trig corporation. 2009. Press Release: N-trig Introduces Enhanced
Multi-Touch Functionality to Enterprise Market. [Online]
http://www.n-trig.com/Content.asnx?Page=PressReleases&PressReleaseId=4ic;
[Accessed May 3rd, 2012]

[16] Synaptics corporation. 2012. TouchPadproduct description. [Online]
http: //www.svnaptics.com/solutions/products/touchpad
[Accessed May 2nd, 2012]

[17] Synaptics Ltd. Synaptics Gesture Suite™ for TouchPads.
[Online] http://www.svnaptics.com/solutions/technology/touchpad
[Accessed November 17, 2011].

[18] Apple corporation. 2012. Apple Magic Trackpad — Product
description. [Online]
http://www.apple.com/magictrackpad/ [Accessed May 2nd, 2012]

[19] Ryail, K., Morris M., Everitt K., Forlines C., Shen C. 2006.
Experiences with and observations of direct-touch tabletops.
Horizontal Interactive Human-Computer Systems. Cambridge, MA,
USA: Mitsubishi Electric Research Laboratories.

[20] Asus Corporation. 2012. Eee Pad, Transformer Prime, Technical
Specification. [Online]
http://eee.asus.com/en/eeepad/transformer-prime/specification/
[Accessed May 3rd, 2012]

[21] Ghanam, ¥., Wang, X., Maurer, F. 2008. Utilizing Digital Tabletops
in Collocated Agile Planning Meetings. Agile 2007 Conference.

[22] Ghanam, Y., Wang, X., Park, S., Maurer, F. 2009. Using Digital
Tabletops to Support Distributed Agile Planning Meetings. Lecture
Notes in Business Information Processing, 2009, volume 31, part 6.

[23] SMART Technologies. 2012. Products page. [Online]
http://smarttech.com/us/SoIutions/Visual+coIlaboration+solutions/Products
[Accessed May 3rd, 2012]

89

[24] Blindmann, G. 2011. Multi-touch Solution Group. Multitouch
technologies. [Online]
http://www.multi-touch-solution.com/en/knowledpe-base-en/
[Accessed May 3rd, 2012]

[25] Weindorf, P., Anderson, D. & Milne, G., 2004. Cross-point matrix for
infrared touchscreen. US Patent Application 10/353,645. July 29th, 2004.

[26] Hewlett-Packard Development Company, L.P. 2012. HPAll-in-One and
TouchSmart PCs — HP TouchSmart 520 PC. [Online]
http://www.hp.com/united-states/campaigns/touchsmart/touchsmart520.html
[Accessed May 3rd, 2012]

[27] Dell Corporation. 2012. Dell SX2210TFlat Panel Monitor User's Guide.
[Online]
htto://support.deU.com/support/edocs/MONrrORS/SX22ioT/en/ug/about.htm
[Accessed May 3rd, 2012]

[28] Natural User Interfaces Group. 2011. Touchlib: A Multi-Touch
Development Kit. [Online]
http://nuigroup.com/touchlib/ [Accessed January 21, 2012]

[29] Microsoft TechNet. 2007. Physical Features of a Microsoft Surface
Unit. [Online]
http://technet.microsoft.com/en-us/librarv/ee6Q2ii4.aspx
[Accessed May 7, 2012]

[30] Multitouch Ltd. 2012. Company webpage — Multitouch. [Online]
http://multitouch.fi/ [Accessed May 7, 2012]

[31] Microsoft. 2011. The Power of PixelSense™. [Online]
http: / /www.microsoft.com / surface /en /us /pixelsense.aspx
[Accessed May 5th, 2012]

[32] Wacom Company, Ltd. 2011. Software Developer Support,
Frequently Asked Questions. [Online]
http: / Ayww,wacomeng.com/touch/faq.htm
[Accessed November 15, 2011]

[33] Samsung. 2012. Product description: Samsung SUR40for
Microsoft® Surface®. [Online]
http://www.samsunglfd.com/solution/feature.do?modelCd=Surface
[Accessed May 5th, 2012]

90

[34] Microsoft Developer Network. 2012. Microsoft Surface Design and
Development. [Online]
http://msdn.microsoft.com/fi-fi/windows/desktop/l1h24rt26.aspx
[Accessed May 5th, 2012]

[35] Microsoft Corporation. 2010. Visual Studio 2010 Products. [Online]
http://www.microsoft.com/visualstudio/en-us/products/2010-editions
[Accessed January 21, 2012]

[36] Internet Archive, Apple Corporation. 2008. Apple - MacBookAir -
Features. [Online] http://web.archive.org/web/20080
httD://www.apple.com/macbookair/features.html
[Accessed January 28, 2012]

[37] Apple Computing Ltd., 2011. OSX Lion, Multi-Touch Gestures.
[Online] http://www.apple.com/macosx/whats-new/gestures.html
[Accessed January 2, 2011].

[38] Apple Inc. 2012. Xcode 4 User Guide: About Xcode. [Online]
https://developer.apple.eom/librarv/ios/#documentation/ToolsLanguages
/Conceptual/Xcode4UserGuide/Introduction/Introduction.html
[Accessed January 21, 2012]

[39] iOS App Library Developer Center
https://developer.apple.com/librarv/ios/navigation/
[Accessed January 21, 2012]

[40] T-Mobile UK. 2008. T-Mobile Gl Hits the UK. Press release. [Online]
http://web.archive.org/web/2QOQ02i6ic;i437/http://www.opt-
development.co.uk/press-office/release.php?id=242
[Accessed January 28, 2012]

[41] Carr G. October 14, 2010. Unity and uTouch in Canonical Blog.
[Online]
http://blog.canonical.com/2010/10/ [Accessed January 28, 2012]

[42] Ubuntu Wiki. 2011. Multitouch/Ginn in Ubuntu Wild. [Online]
https://wiki.ubuntu.com/Multitouch/Ginn [Accessed January 28,
2012]

[43] Ubuntu Documentation Team, 2011. Multitouch. [Online]
https: //wiki,ubuntu.com /Multitouch [Accessed January 2, 2012]

[44] Buxton B., 2010. A Touching Story: A Personal Perspective on the
History of Touch Interfaces Past and Future. Society for Information
Display (SID) Symposium Digest of Technical Papers.

[45] Buxton B., 2011. Multitouch Overview. [Online]
http: //www.billbuxton.com/multitouchOverview.html
[Accessed January 21, 2012]

91

[46] Wu, M. & Balakrishnan, R., 2003. Multi-finger and whole hand
gestural interaction techniques for multi-user tabletop displays. In
Proceedings of the 16th annual ACM symposium on User interface
software and technology. UIST ’03. New York, NY, USA.

[47] Bi, X. et al., 2011. Magic desk: bringing multi-touch surfaces into
desktop work. In CHI ’11 Proceedings of the 2011 annual conference
on Human factors in computing systems. ACM New York, NY, USA.

[48] Morris, M. et al., 2006. Cooperative gestures: Multi-user gestural
interactions for co-located groupware, CHI ’06 Proceedings of the
SIGCHI conference on Human Factors in computing systems, ACM.

[49] Casiez G., Vogel D., Pan Q. and Chaillou C. 2007. RubberEdge:
Reducing Clutching by Combining Position and Rate Control with
Elastic Feedback. In Proceedings of the 20th annual ACM symposium
on User interface software and technology (UIST '07). ACM, New
York, NY, USA.

[50] Accot, J., Zhai, S. 1997. Beyond Fitts'law: models for trajectory-
based HCI tasks. In Proceedings of the SIGCHI conference on
Human factors in computing systems (CHI '97). ACM, New York, NY,
USA, 295-302.

[51] McCallum, D.C. & Irani, P., 2009. ARC-Pad: absolute+relative
cursor positioning for large displays with a mobile touchscreen. In
Proceedings of the 22nd annual ACM symposium on User interface
software and technology. UIST ’09. New York, NY, USA.

[52] Isaac, S., Melmon, B. 2011. Kickstarter project description: TouchFire: The
Screen-Top Keyboard for iPad. [Online]
http://www.kickstarter.com/proiects/74078c;oi2/touchfire-the-screen-
top-kevboard-for-ipad
[Accessed December 31, 2011]

[53] Fitts, P., 1954. The information capacity of the human motor system
in controlling the amplitude of movement. Journal of experimental
psychology, vol. 47 (issue 6), p.381.

[54] Nielsen, J. 2005. Ten Usability Heuristics. [Online]
http://www.useit.com/papers/heuristic/heuristic Iist.html
[Accessed March 1, 2012]

[55] Nielsen J. 1994. Usability Inspection Methods. In Conference
companion on Human factors in computing systems (CHI '94). ACM,
New York, NY, USA.

[56] Nielsen, J. Usability Engineering. Morgan Kauffman, 1993.

[57] Beyer H, Holtzblatt K. Contextual Design: Defining customer
centered systems. Morgan Kaufmann, 1998.

92

[58] Brooke J .SUS-A Quick and Dirty Usability Scale. In the book:
Jordan P, Thomas B, Weerdmeester B & McClelland I. Usability
Evaluation in Industry. Taylor & Francis, 1996.

[59] Bangor A, Kortum P & Miller J. 2008. An Empirical Evaluation of
the System Usability Scale. International Journal of Human-
Computer Interaction, 24:6, 574-594.

[60] Eastman C, Teicholz P, Sacks R, and Liston K. BIM Handbook: A
Guide to Building Information Modeling for Owners, Managers,
Designers, Engineers, and Contractors. John Wiley & Sons, Inc.,
2008.

[61] buildingSMART, 2011. The official website. [Online]
http://buildingsmart-tech.org
[Accessed: September 12 2011.]

[61] buildingSMART International, 2011. All Applications. [Online]
http://buildingsmart-tech.org/implementation/imDlementations
[Accessed: September 12 2011.]

[62] International Alliance for Interoperability, 2007. Industry
Foundation Classes IFC2X Edition 3 Technical Corrigendum 1.
[Online]
http://buiIdingsmart-tech.org/ifc/IFC2x3/TC1/html/index.htm
[Accessed: September 12 2011.]

[63] Tekla Corporation, 2011. Tekla BIMsight help documentation.
[Online]
http://www.teklabimsight.com/helpcenter/help.isp
[Accessed: September 12 2011.]

[64] Motion Computing Inc. 2011. Product Specification: Motion J3500.
[Online]
http:/Avww.motioncomputing.com/reso11rces/J3400AFitoo specs US.pdf
[Accessed: September 12 2011.]

[65] Tolvanen O., 2011. Tekla BIMsight Touch Navigation - Software
Specification. Internal document.

[66] Hewlett-Packard Development Company, L.P. 2012. HPAll-in-One and
TouchSmart PCs — HP TouchSmart 520 PC. [Online]
http://h20000.www2.hp.com/bizsupport/TechSupport/Document.isp
?obiectID=co286i73Q
[Accessed May 3rd, 2012]

[67] Motion Computing Inc. 2011. Product Specification: Motion F5V.
[Online]
http.VAvivw.motioncomputing.com/resources/FR/Fc; Product Specs en.pdf
[Accessed May 3rd, 2012]

[68] Acer Inc. 2012. Product specification: Acer Iconia Tab W500.
[Online]

93

http://us.acer.com/ac/en/US/content/model/LE.Lo8o3.Q47
[Accessed May 3rd, 2012]

[69] Samsung. 2012. Product specification: Samsung Slate 7. [Online]
http://www.samsung.com/us/computer/tablet-pcs/XE700T1A-A03US-specs
[Accessed May 3rd, 2012]

[70] Tekla Corporation, 2011. Tekla BIM software. [Online]
http://www.teklabimsight.com/helpcenter/helpTopic.isp?topic=bim RN 1 3
[Accessed March 1, 2012]

[71] Tuomiaro V., 2011. Software specification Tekla BIM Platform.
Internal document.

[72] Microsoft Developer Network, 2011. Technology Regions Overview.
[Online] http://msdn.microsoft.com/en-us/librarv/aaQ70688.aspx
[Accessed March 1, 2012]

[73] Microsoft Developer Network, 2009. Touch Input Architecture
Overview. [Online]
http://msdn.microsoft.com/en-us/librarv/dd371413%28v-vs.83%2Q.aspx
[Accessed March 1, 2012]

[74] Tekla Corporation. 2012. Tekla BIMsight 1.4 Release Notes. [Online]
http://www.teklabimsight.com/helpcenter/helpTopic.isp?topic=bim RN 1 4
[Accessed May 4th, 2012]

[75] Tekla Corporation. 2012. Press Release. Tekla BIMsight 1.4 takes
BIM to the field with Windows tablets. [Online]
http: //www.tekla.com/us/about-us/news/pages/teklabimsighti.4.aspx
[Accessed May 4th, 2012]

[76] Microsoft Developer Network, 2011. Windows Touch Gestures
Overview. [Online]
http://rn.sdn.microsoft.com/en-us/librarv/ddQ40343%28VS.8[:;%2q.aspx
[Accessed January 2, 2012].

[77] Microsoft Developer Network, 2011. WPF and Win32 Interoperation.
[Online] http://msdn.microsoft.com/en-us/librarv/ms742722.aspx
[Accessed March 1, 2012]

[78] Otavin A., 2011. Why touch support failed. Internal document.

94

List of Appendices
A System Usability Scale Questionnaire, in Finnish

B Equipment Checklist, in Finnish

C Material Usage Consent Form, in Finnish

D Affinity Diagram

95

Appendix A

System Usability Scale
© Digital Equipment Corporation, 1986.

Testaamani tuote: Tekla BIMsight 1.4.!

Täysin
eri mieltä samaa

Täysin
. mieltä

1. Olen sitä mieltä, että voisin käyttää tätä
tuotetta säännöllisesti.

1 2 3 4 5

2. Tuote on mielestäni liian monimutkainen. 1 2 3 4 5

3. Tuotetta on mielestäni helppo käyttää. 1 2 3 4 5

4. Mielestäni tuotteen käytön oppiminen
vaatii kokeneen käyttäjän opastusta.

1 2 3 4 5

5. Mielestäni tuotteen eri toiminnot ovat
liitetty toisiinsa onnistuneesti.

1 2 3 4 5

6. Mielestäni tuotteessa on liikaa
epäjohdonmukaisuuksia.

1 2 3 4 5

7. Uskon, että useimmat oppivat käyttämään
tuotetta hyvin nopeasti.

1 2 3 4 5

8. Mielestäni tuote on hyvin kömpelö käyttää. 1 2 3 4 5

9. Tunsin oloni hyvin luottavaiseksi tuotetta
käyttäessäni.

1 2 3 4 5

10. Mielestäni ennen tuotteen käyttöä pitää
opetella paljon uusia asioita.

1 2 3 4 5

96

Appendix B
T arviketarkistuslista

EH Checklist

EH Motion J3500

EH Motion telakka

EH Hiiri (langaton tai lyhyt johto)

EH Motion laturi

D Tekla BIMsight viimeisin versio muistitikulla

D Käytettävyys videokamera

EH Videokameran laturi ja jatkojohto PSg-pinkasta

D Kolmijalka

EH Jatkojohto

D SUS-lomakkeita, noin 6 kpl

EH Materiaalikäyttöoikeuksien luovutuspaperit, noin 6 kpl

EH NDA-sopimukset, noin 6 kpl

EH Tekla BIMsight Help printattuna

EH Muistiinpanovälineet kaikille (lehtiö ja LYIJYkynät)

EH Äänitallennin

EH VGA-johto

97

Appendix C

Permission for recording and use of the usability test data

Product/System: Tekla BIMsight 1.4

Company: Tekla oyj

This usability test is part of a course (T-121.5450 Interaction Design and Evaluation)
held at Aalto University School of Science and Technology. The test results will be
reported on the course and to the company. The recorded material (video/audio/etc)
will be handled anonymously if not otherwise agreed with the test user.

The recordings from the test sessions are useful when the results are communicated
to the product development team. Possible problem areas in the product/system are
easier to demonstrate to the designers with actual test material.

I give my permission to use the material from the test session for the following
purposes:

□
□
D

□

n

on the aforementioned thesis work

to the product development team

to managers responsible for product development and design

in company presentations where the tested product/system is
demonstrated

in academic conferences and seminars on usability outside the company

Limitations:

Date:

Signature:

Name:

98

CDCD

iPad
competition

Users found that using the iPad
before feel that BIMsight is sets the standard ol expectations

3t so responsive to the» touch for tablet devices

Does not match up to an iPad

Helps to
learn

Users found that using the iP;
had helped them to pick up kx

controls in BIMsight

es mouse scroll for zoom

User
behavior

I tried to,
but...

■We would Ike to get to the 3D User found that the interactivity is
a strong benefit of BIMsight when

compared to drawings

Used for
navigation

Example given of usual
way to view the model

User felt the he shodd prepare
a difficult looking spot beforehand

Snapshots are almost required
when navigating inside the model

Difficult to know what spots
to go check on site

Linking
documents Documents should be easy

to connect to objects

Users were wishing to have
1 »ikngs to documents on the

"We use snapshots on site taken

BIM
on site

Zoom joystick found but

between the buttons (arrows)

Expectations
Zooming joystick does not behave

as user expects it to behave

User does not realise mat the
zooming joystick may be used

outside of the bar behind it Finding context menu was
extremely difficult for touch

(took too much lime)

Tried two finger gestures
Discovery

Difficulties
in discovery

Measuring pipelines
a very Important

Measunng of pipelines is not
working as good as they should

Finding
measuresfield from pipeline to floor

Qipptanes broke the graphics

to have less parts vit

Area selection an

tn Tekla Structures
double clicking on a part It Is vital to be able to reach the

details on the parts

Identifier to be shown on

Part
details

Properties window needed

In Tekla Structures picking
details from objects is better

User does not close the detail
tabs of parts at any point

Hitting some
controls is

difficult

Users had significant trouble
hitting the any of the scrollbars

Object selection should be precise
Clipptane handle (scissors;

are very difficult to catch
using touch or stylus

Did not
want to

ig tools to hide the objects

Did not use undo

User(s) dd not use any

Did not
know that

User wants to
see relevant

objects
User actively hides all objects

ts parts through the context

ry narrow view angle wf

Easy fixes

Technology
defects

architecture model not displayed

A
ppendix D

