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Linear stability of optimal streaks in the log-layer
of turbulent channel flows

Frédéric Alizarda)

Laboratoire DynFluid, Arts et Métiers ParisTech and CNAM, 151 Boulevard de l’Hopital, 
75013 Paris, France

The importance of secondary instability of streaks for the generation of vortical struc-
tures attached to the wall in the logarithmic region of turbulent channels is studied. 
The streaks and their linear instability are computed by solving equations associated 
with the organized motion that include an eddy-viscosity modeling the effect of 
incoherent fluctuations. Three friction Reynolds numbers, Reτ = 2000, 3000, and 
5000, are investigated. For all flow cases, optimal streamwise vortices (i.e., having 
the highest potential for linear transient energy amplification) are used as initial 
conditions. Due to the lift-up mechanism, these optimal perturbations lead to the 
nonlinear growth of streaks. Based on a Floquet theory along the spanwise direction, 
we observe the onset of streak secondary instability for a wide range of spanwise 
wavelengths when the streak amplitude exceeds a critical value. Under neutral 
conditions, it is shown that streak instability modes have their energy mainly 
concentrated in the overlap layer and propagate with a phase velocity equal to the 
mean streamwise velocity of the log-layer. These neutral log-layer modes exhibit a 
sinuous pattern and have characteristic sizes that are proportional to the wall distance 
in both streamwise and spanwise directions, in agreement with the Townsend’s 
attached eddy hypothesis (A. Townsend, the structure of turbulent shear flow, 
Cambridge university press, 1976 2nd edition). In particular, for a distance from the 
wall varying from y+ ≈ 100 (in wall units) to y ≈ 0.3h, where h is half the height of 
the channel, the neutral log-layer modes are self-similar with a spanwise width of λz 
≈ y/0.3 and a streamwise length of λx ≈ 3λz, independently of the Reynolds number. 
Based on this observation, it is suggested that compact vortical structures attached to 
the wall can be ascribed to streak secondary instabilities. In addition, spatial 
distributions of fluctuating vorticity components show that the onset of secondary 
instability is associated with the roll-up of the shear layer at the edge of the low-speed 
streak, similarly to a three-dimensional mixing layer  

I. INTRODUCTION

Since the pioneer work of Theodorsen1 on horseshoes vortices, significant progress towards
the understanding of wall-turbulence has come to light with the analysis of organized motions
also called eddies or coherent structures.2,3 These motions can be seen as elementary bricks of
wall-turbulence and they exhibit a remarkable degree of persistence and regularity, i.e., they possess
temporal and spatial coherence. Due to their large contribution to momentum transport, produc-
tion of kinetic energy, and time-averaged statistics,4,5 the kinematic properties of such motions
(for instance the spatial scales and the rotational aspect) and dynamic properties (for instance, the
temporal scale and the stability properties) are all of fundamental interest.

Consistent with the logarithmic dependence of the mean velocity profile on wall distance,
Townsend6 proposes that characteristic lengths of coherent structures that populate the logarithmic
region scale with their distance from the wall. In that sense, he defined these structures as “attached
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to the wall.” Townsend6 suggests that these structures are geometrically self-similar and contribute
strongly to the Reynolds stress in the overlap region. The same author also argues that streamwise
and spanwise turbulence intensities are logarithmic functions when they are expressed in terms of the
wall-normal coordinate. A self-similar hierarchical model for attached coherent structures is further
emphasized by Perry and Chong7 by means of flow visualization techniques. According to the spectral
attached-eddy model of Perry et al.,8 in the intermediate region, the streamwise energy spectrum is
supposed to have an α−1 dependence where α is the wavenumber in the streamwise direction.

As underlined by Marusic et al.,9 the major difficulty when studying the logarithmic zone is that
the mean velocity profile deviates slightly from a logarithmic behavior, especially at low Reynolds
numbers. To unravel the Reynolds number effect, Marusic et al.9 carry out statistical analyses
on experimental database of turbulent boundary layers and pipe flows at high Reynolds numbers.
Marusic et al.9 give, thus, strong evidence that turbulence intensities (streamwise and spanwise)
exhibit a universal logarithmic behavior consistently with the Townsend-Perry attached-eddy model.
Regarding the scaling proposed by Perry et al.,8 Nickels et al.10 give experimental evidence for the
α−1 law associated with the overlap region of turbulent boundary layers at high Reynolds numbers.

With the increase of computational power, numerical simulations are now feasible at Reynolds
numbers comparable to those of experiments. For instance, Sillero et al.11 and Lee and Moser12 pres-
ent results of direct numerical simulations (DNS) of turbulent boundary layers and turbulent channel
flows, respectively, in the range of Reτ = 2000–5000 where Reτ denotes the friction Reynolds number.
The authors show that the variance of the spanwise velocity component is seen to be a logarithmically
decreasing function with the distance from the wall although the streamwise component behaves
differently. At intermediate distances from the wall, a region where the streamwise energy spectrum
exhibits an α−1 dependence is also recently observed in DNS by Lee and Moser.12

Despite the convincing agreement between the Townsend-Perry attached-eddy model and the
turbulent statistics, the relationship between statistics and the dynamics of coherent structures remains
to be unraveled. In that respect, the understanding of the organization and space-time dynamics of
coherent motions has made much progress during the last decades using the “minimal flow unit”
approach, which allows individual flow features to evolve in relative isolation from one another.13

For instance, numerical simulations in periodic domains of “minimal” dimensions show that wavy
low-velocity streaks with a characteristic spanwise spacing of approximately 100 wall units and
quasi-streamwise vortices in the buffer region of wall-bounded flow are related to each other and are
self-sustaining (Jiménez and Moin,14 Hamilton et al.,15 Waleffe,16 and Panton17 for a review). How-
ever, minimal flow simulations fail to properly describe the nature of those relations and the physical
process at the origin of the amplification of coherent motions.

The mean profiles of wall-bounded turbulent flows are known to be linearly stable (asymptot-
ically) but there have been several attempts to relate their coherent structures to a linear transient
growth mechanism. In this context, although turbulence requires the nonlinearity of the Navier-Stokes
equations, the essential role of the linear transient growth in maintaining near-wall turbulence is
clearly enlightened by Kim and Lim.18 Using numerical simulations, they show that without the
linear coupling term representing the transfer from wall-normal velocity to wall-normal vorticity (the
so-called lift-up effect19), near-wall turbulence cannot be sustained.

Within the framework of the optimal linear transient growth theory,20 del Alamo and Jiménez,21

Cossu et al.,22 and Pujals et al.23 investigate the temporal linear stability of the organized part of
the motion (i.e., decorrelated of the incoherent background turbulence24) in channels and turbulent
boundary layers with turbulent mean velocity profiles and turbulent eddy viscosities. They show that
the most amplified structures in the inner-region correspond to wall-layer streaks with characteristic
spanwise length scales that are consistent with numerical and experimental observations: λ+z ≈ 100
wall units (see Jiménez and Moin14 and Kline et al.,4 for instance). The above analyses confirm pre-
vious results of Butler and Farrel25 that highlight the important role of linear transient growth in
describing the streaks near the wall. In addition, they give further support to the use of linearized
equations about the mean flow for describing organized motions in wall bounded turbulent flows. The
condition for linearization about the mean flow is recently discussed by Jiménez.26

Concerning the regeneration of near-wall streamwise vortices, Schoppa and Hussain27 investigate
scenarios that involve streaks secondary instability. In particular, those authors highlight the signifi-



cant limitation of vortex regeneration scenarios based on normal-mode streaks instability and suggest
a mechanism that involves a secondary transient growth. Furthermore, structural approaches that rely
upon minimal flow simulations and stability theories have also led to the observation that bursting
events in the buffer region are strongly associated with the destabilization of streamwise streaks.

More recently, Flores and Jiménez13 extend the minimal simulation boxes to the logarithmic
region. They show that the energy-containing motion in the intermediate layer exhibits a behavior
similar to the one observed in the buffer layer. For a given distance from the wall, the minimal box
contains a segment of velocity streak and a vortex cluster. In particular, the flow in the minimal box
undergoes quasi-periodic bursts during which the streak experiences a wavy oscillation and a subse-
quent break-up of its structure. They also show that the bursting period scales with the distance from
the wall and the height of the minimal box increases linearly with its spanwise size, in agreement
with the attached-eddy concept developed by Townsend.6 The recent study of Jiménez28 provides a
review on coherent motions in minimal simulation boxes associated with the logarithmic region.

Hwang and Cossu29 further confirm that the process by which wall-attached eddies are self-
sustained exhibit similarities with near-wall dynamics. In particular, they illustrate that coherent struc-
tures mainly located in the logarithmic layer survive when motions at smaller scales are artificially
removed. They also observed that these motions have geometrically similar characteristics in agree-
ment with the attached-eddy model. More recently, Hwang30 shows that attached-eddies are grouped
into two distinct elements: a long streaky structure that is dominated by streamwise velocity fluctua-
tions and more compact vortical structures carrying all the velocity components (referenced as vortex
clusters by del Alamo et al.31). These compact vortical structures are also observed experimentally
by Tomkins and Adrian32 and Marusic and Hutchins.33

For the origin of streaks, there is now strong evidence that a linear transient growth mecha-
nism plays also an important role in the logarithmic layer. Using a similar approach, del Alamo and
Jiménez,21 Hwang and Cossu,34 Moarref et al.35 for a turbulent channel flow, and Alizard et al.36

for supersonic turbulent boundary layers show that linear optimal modes in the logarithmic region
exhibit a geometrically self-similar behavior since their wall-parallel length scales are proportional to
their height. Furthermore, optimal modes display strong similarities with wall-layer streaks indicating
that they also grow under the action of a lift-up mechanism. In addition, Moarref et al.35 show that a
necessary condition for the existence of geometrically self-similar optimal modes is the presence of
a logarithmic turbulent mean velocity.

While all these results seem to clearly establish the link between the first element of an attached
eddy (i.e., the streak) and the linear optimal transient growth, less is known about the second element
(i.e., vortex clusters). Experimental studies of turbulent boundary layers conducted by Tomkins and
Adrian32 show that the spanwise size of vortices varies linearly with distance from the wall in the log-
arithmic region. The authors suggest that the growth of vortices is consistent with the vortex packets
model where these packets are groups of hairpin vortices. Recently, Sharma and McKeon37 proposed
a model for the emergence of hairpin packets in the log-layer using a suitable combination of optimal
modes.

Apart from this hypothesis, del Alamo et al.,31 Hwang and Cossu,29 and Hwang30 suggest that
a streamwise low-speed streak and vortex clusters aligned to this structure can be interpreted as two
dynamically mutually dependent motions of a single attached eddy. It is recently suggested by Park
et al.38 that large-scale motions (LSMs) in the outer region (having λz ≈ O (δ) with δ the outer length
scale) can be caused by an instability of very large scale motions, (VLSMs, i.e., long streaky struc-
tures having λz ≈ O (10δ)). By considering idealized streaks of turbulent channel flows, they show
the existence of an unstable sinuous mode if the streak amplitude exceeds a certain threshold. In
particular, both the shape of the unstable mode and its streamwise extent exhibit some agreement
with large-scale motions in the outer region. Similarly, it has been recently conjectured that, in the
logarithmic region, vortex clusters could also be related to an instability of streamwise streaks.30 From
the above discussion, it seems clear that the origin of compact vortical structures attached to the wall
is currently a matter of debate.

The main goal of this work is to investigate whether streaks associated with the log-layer of turbu-
lent channels may experience a modal instability and to highlight its connection with the emergence
of compact vortical structures that populate the logarithmic region. In particular, the success of Park



et al.38 to predict the origin of large scale motions in the outer region has led us to develop a similar
strategy in the intermediate layer. Then, we will also address some fundamental issues: Is the unstable
mode associated with the streak instability attached to the wall? Does the streak become unstable
to a sinuous mode rather than a varicose one consistently with its meandering observed in numer-
ical experiments of Hwang and Cossu?29 What is the physical mechanism driving the instability: a
wake-type or a mixing layer type? Are the characteristic sizes of the unstable mode consistent with
vortex clusters observed in the log-layer? With the aim of giving answers to these issues, we organize
the paper as follows: in Sec. II, the stability theory for the organized motion and the numerical strategy
will be shown. In Sec. III, after having briefly presented the idealized streaks associated with the
log-layer, we will study their linear stability for three friction Reynolds numbers: Reτ = 2000, 3000,
and 5000. After having discussed the relevance of a scenario that links vortex clusters to a streak
instability in Sec. IV, Sec. V will be devoted to draw conclusions and perspectives.

II. GOVERNING EQUATIONS AND COMPUTATIONAL APPROACH

A. Equations of coherent motion and turbulent mean flow

Following Reynolds and Hussain,24 the equations of organized waves are derived by introduc-
ing a so-called triple decomposition into the Navier-Stokes equations. A Newtonian eddy model is
used to relate the Reynolds stress oscillation to the strain-rate of the fluctuations via an isotropic
eddy viscosity. This crude modeling for the Reynolds stress can be questionable. Indeed, our study
focuses on coherent motions that populate the intermediate region of a channel flow. In this log-law
region, the Reynolds stresses are anisotropic (see the work of Pope39 for a review). However, in
the case of previous stability analyses devoted to the amplification of streaks in the logarithmic
region of turbulent channel flows,21,34 the influence of anisotropy is also neglected. In order to be
consistent with the previous studies21,34 devoted to the primary growth mechanism responsible for
the formation of streaks in the log-layer, we use the same assumption. In the remainder of the paper,
the instability of streaks will be analyzed.

Next, Ui and ui represent the ith component of the turbulent mean flow (U = (U,V,W )t) and
the coherent part of the velocity field (u = (u, v,w)t), respectively (i.e., i = 1,2,3 refer to the stream-
wise, wall-normal, and spanwise components, referenced hereafter as x, y, z). In a dimensionless
form, ui satisfy the following system:
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where νT (y) = ν (1 + νt (y) /ν) with ν the kinematic viscosity and νt (y) the turbulent eddy vis-
cosity. Equations (1) are made dimensionless by using the friction velocity (uτ) and the viscous
length scale (δv = ν/uτ). For the total eddy viscosity, we use the semi-empirical expression initially
proposed by Cess40 for pipe flow. The total eddy viscosity is expressed in (2) and is built from a
combination of van Driest’s wall region law and Reichardt’s middle law as reported by Reynolds
and Tiederman41 for channel flow,
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with Reτ = h/δv the ratio between the half-width of the channel h and the viscous length scale δv.
The constant k is the von Kármán constant and A is a constant characterizing the thickness of the wall
region. The mean velocity profile is obtained by integrating (1 − η)u2

τ/νT (η) along the wall normal
direction. The authors del Alamo and Jiménez21 fixed the two parameters A and k by least-square
fitting the mean velocity profile recovered from DNS statistics of Hoyas and Jiménez.42 The resulting
values given by del Alamo and Jiménez,21 A = 25.4 and k = 0.424, are used in this study. Next, data
given in wall units (i.e., associated with δv and uτ) are denoted with a + superscript (for instance,



FIG. 1. (a) Cess eddy viscosity and (b) streamwise turbulent velocity profile plotted as a function of the distance normal to
the wall scaled in wall units for Reτ = 2000 (——), 3000 (– - – - –), and 5000 (- - - - - - - -).

y+ = y/δv and U+ = U/uτ). The eddy viscosity and turbulent streamwise velocity profiles are shown
in Figures 1(a) and 1(b) for turbulent channel flows at Reτ = 2000, 3000, and 5000.

B. Nonlinear idealized saturated streaks

1. Optimal streamwise vortices

The nonlinear streaky base flow is computed from temporal evolution of the linear optimal
initial condition in turbulent channels as proposed by Park et al.38 for the outer region. For that pur-
pose, system (1) is linearized about the turbulent mean velocity profile U (y). Assuming wave-like
organized motions, u = û (t) ei(αx+βz), system (1) can be recast as

∂û
∂t
= Lû, (3)

with α and β the streamwise and spanwise wavenumbers, respectively. Introducing the ratio of the
kinetic energy associated with u to its kinetic energy at the initial time (t = 0), the optimal transient
energy growth over all possible initial conditions is given by

G (α, β, t) = max
u(t=0)

∥u∥
∥u(t=0)∥ . (4)

For shear flows, G reaches a maximum for α = 0 (Ref. 20) at a given time t = tmax. The correspond-
ing initial condition takes the form of streamwise vortices that lead to infinitely elongated streaks at
tmax. In the analysis that follows, this initial condition is referred to as optimal streamwise vortices.
The numerical method based on singular-value-decomposition of eLt is detailed in the work of
Alizard et al.43

2. Numerical simulation: Nonlinear development of streaks

Nonlinear system (1) is considered and the numerical solution is initialized by the optimal
streamwise vortices. Fourier expansion is employed in the homogeneous direction z and Cheby-
shev polynomials are used in the wall-normal direction y . For time-stepping, a second order
Adams-Bashforth is applied to the advective terms and a backward-differentiation scheme is used
to advance the viscous terms. The Uzawa method is used for each Fourier mode to ensure that it
is divergence-free (for more details, see Ref. 44). The truncated Fourier series are performed with
the DFFTPACK library and a pseudospectral technique is used to evaluate the nonlinear terms.
The “3/2” rule is implemented to remove the alias term. Once the nonlinear streak has reached a
saturated amplitude, the linear stability of the secondary base flow is considered. One may also
remark that the contribution of streamwise vortices is weak compared to a nonlinearly saturated
streak when the latter reaches its maximum amplitude. For that purpose, we consider an equilibrium
state Ub (y, z) which satisfies



Ub (y, z) = U (y) + us (y, z) (5)

with us (y, z), the nonlinear saturated streak.

C. Secondary instability: Some theory

In accordance with Floquet theory for z-periodic equilibrium state, we consider the following
normal solution associated with system (1) linearized about Ub (y, z):

ui (x, y, z, t) = eiαx−Ωt
∞

n=−∞
ûi (y) ei(n+γ)βz + c.c, (6)

where β is the spanwise wavenumber (i.e., associated with the streak spacing), α the streamwise
wavenumber (i.e., associated with the streak instability), Ω the complex circular frequency, γ the
detuning parameter, and c.c the complex conjugate. Hereafter, we restrict our analysis to the funda-
mental mode, i.e., γ = 0. Introducing such a decomposition into system (1) and linearizing around
Ub, one obtains the eigenproblem

(A − iΩB)q = 0, (7)

with q (y, z) = (u,v,w)t (y, z) = N
n=−N (û, v̂ , ŵ)t (y) einβz, where 2N + 1 refers to the number of

Fourier modes. For a given mode, the real and imaginary parts of the eigenvalueΩ (referenced asΩr

and Ωi hereafter) represent the circular frequency and the temporal amplification rate, respectively.
In particular, the corresponding mode is temporally amplified when Ωi is positive and its phase
speed is given by Ωr/α. Eigenvalue problem (7) is discretized with the same spatial discretization
as the one used for the numerical simulation. The implicitly restarted Arnoldi algorithm from the
ARPACK library45 is then used to solve (7). Note that the most amplified mode may also be studied
through integration in time of (1) by replacing ∂/∂x with iα.

After a grid sensitivity analysis, we only present the results obtained with the finest grid having
200 collocation points in the wall-normal direction and 48 Fourier modes for the spanwise direction.
For instance, computations using 150 collocations points and 32 Fourier modes exhibit a difference
of less than 0.5% for the characteristic temporal and spatial scales shown in this study.

Finally, for the stability analysis, problem (7) can be decoupled into even and odd modes with
respect to the low speed streak symmetry plane, corresponding to z = 0 here (also called sinuous
and varicose modes, respectively). In the case of even-symmetry (sinuous type),

u (x, y, z, t) = −u (x, y,−z, t) , v (x, y, z, t) = −v (x, y,−z, t)
and w (x, y, z, t) = w (x, y,−z, t) , (8)

while for the case of odd-symmetry (varicose type),

u (x, y, z, t) = u (x, y,−z, t) , v (x, y, z, t) = v (x, y,−z, t)
and w (x, y, z, t) = −w (x, y,−z, t) . (9)

Setting the odd- or even-symmetry results in reducing the storage requirement. The validation of the
numerical methods is discussed in the Appendix.

III. SECONDARY INSTABILITY IN THE LOG-LAYER

A. Neutral log-layer modes

To quantify a possible secondary instability that may occur in the log-layer, we first discuss
normal mode solutions of system (7) over a range of streak amplitudes. Following Park et al.,38 the
nonlinear evolution of streaks is computed by integrating in time the optimal streamwise vortices
with an initial amplitude defined as

Av =

(
2

hλz

 h

0

 λz/2

−λz/2
u2 + v2 + w2dydz

)1/2

. (10)



The streak amplitude is expressed as

As =
maxy,z us (y, z) −miny,z us (y, z)

2Uc
, (11)

where Uc represents the maximum mean streamwise velocity. For a given Reynolds number, the
threshold values for a neutral growth rate are denoted with a cr subscript. The corresponding modes
are hereafter referred to as neutral modes.

In the following, characteristic length scales of the organized motion associated with secondary
instability are supposed to be fixed by the neutral mode. It means that we assume that threshold
amplitudes for streak breakdown are close to (As)cr and that the time required to trigger the
streak breakdown is short compared to its decay. Hence, the streamwise size of coherent motion is
estimated by λx = 2π/αcr for a given spanwise extent λz = 2π/β.

Finally, to characterize the vertical size of neutral modes, we also define a typical length scale
(Λy) as the wall distance at which the cumulative modal kinetic energy is 80% of the total, i.e., λz/2

−λz/2

 Λy

0
(u2 + v2 + w2)dεdη = 0.8

 λz/2

−λz/2

 h

0
(u2 + v2 + w2)dεdη. (12)

The procedure is here briefly outlined. For a given β, we compute the optimal streamwise vortices
that lead to infinitely elongated streaks reaching a maximum transient energy growth in time. Then,
the nonlinear evolution of streamwise streaks is generated by integrating (1) initialized with initial
vortices of amplitude Av. The neutral amplitude (As)cr is thus the lowest streak amplitude for which
the maximum growth rate of the streak instability mode over α is zero.

For instance, effects of nonlinearity on the time evolution of streaks for different initial vortex
amplitudes are displayed in Figure 2(a) for λ+z = 2244 and Reτ = 5000. In Figure 2(b), a typical
nonlinear saturated streak is illustrated by its streamwise velocity in the cross-stream (y+, z+) plane
extracted at the time at which the corresponding amplitude As is maximum (referenced as (As)max).
As observed in the laminar case by Anderson et al.,46 the low-speed streak is displaced further away
from the wall due to nonlinearities. It leads to the formation of regions of strong spanwise shear on
both sides of the low-speed streak. For this case, we find that the mode associated with the highest
temporal growth rate is sinuous. In particular, Figure 3(a) shows that the saturated low-speed streak
becomes unstable when its amplitude exceeds 18% of the maximum mean velocity. The critical
parameters (α+cr , (As)cr) associated with a neutral growth rate are shown in Figure 3(b).

Neutral modes are then computed for several λ+z = (2π/β)/δv wider than 100δv (i.e., corre-
sponding to larger structures than those of the buffer layer). The neutral modes are sinuous for all
λ+z considered (i.e., varicose modes are found to be temporally damped) consistent with Hwang
and Cossu.29 Phase speeds of neutral modes (c+ = (Ωr/αcr)/uτ) are shown as a function of the

FIG. 2. Base flow simulations at Reτ = 5000 and λ+z = 2244. (a) Streak amplitudes vs time scaled in wall units for three initial
amplitudes of optimal streamwise vortices Av = 0.05, 0.055, and 0.06. The maximum amplitude, (As)max, is denoted by •.
(b) Streamwise velocity contours in wall units of the nonlinear saturated low-speed streak for the time indicated by • in (a)
and Av = 0.05.



FIG. 3. Secondary instability analysis performed at Reτ = 5000 and λ+z = 2244. (a) The temporal growth rate of the most
amplified mode vs. the streamwise wavelength λ+x = (2π/α)/δv is shown for (As)max= 0.185, 0.186, and 0.188. The
maximum value of the temporal growth rate, (Ω+i )max, is denoted by •. (b) The distribution of (Ω+i )max with the streamwise
wavelength λ+x. The critical parameters (i.e., associated with a neutral temporal growth rate) are also indicated with the
subscript cr .

vertical length scale Λ+y in Figure 4 for Reτ = 5000 and for λ+z ranging from 1420 to 3500. The
mean streamwise velocity profile is also represented. Figure 4 shows that flow structures asso-
ciated with neutral modes propagate downstream with a speed close to the local mean velocity
associated with the logarithmic region. As a consequence, we may classify these modes as neutral
log-layer modes. In particular, the latter behavior is consistent with the Taylor’s frozen-turbulence
hypothesis.47 One may remark that this feature has also been observed by Moarref et al.35 for
optimal modes corresponding to streaks localized in the logarithmic region. Figure 5 shows stream-
wise, wall-normal, and spanwise velocity components of the neutral log-layer mode for λ+z = 2244,
(As)cr ≈ 18%, λ+x = 2π/α+cr ≈ 6000, and Reτ = 5000. The critical layer, i.e., the line where the
mean velocity is equal to the phase speed c+, is also reported. It shows that regions associated with
maximum amplitudes of velocity components are concentrated near the critical layer. This observa-
tion further provides strong evidence for the importance of the critical layer in triggering secondary
instability.

FIG. 4. Neutral log-layer modes for Reτ = 5000 and λ+z ranging from 1420 to 3500 (•): the phase speed in the streamwise
direction c+ is shown as a function of the vertical length scale Λ+y. The dashed line represents the mean streamwise velocity
as a function of the wall-normal direction y+.



FIG. 5. Cross-stream (y+− z+ plane) view of the eigenfunctions associated with the neutral log-layer mode for Reτ = 5000,
λ+z = 2244, and λ+x = 6000. (a) |u |, (b) |v |, and (c) |w |. The position of the critical layer is also shown in dashed lines.

B. Geometrical self-similarity of neutral log-layer modes

Based on numerical experiments, del Alamo et al.31 and Hwang and Cossu29 show that orga-
nized structures populating the logarithmic layer exhibit a geometric self-similarity, namely, their
wall-parallel length scales vary linearly with the distance from the wall. In particular, the previous
authors show that coherent motions are self-sustained and the process involves the streak break-
down and regeneration of streamwise vortices. Assuming that there is a correspondence between
the streak breakdown and modal secondary instability, the self-similar growth of neutral log-layer
modes is investigated for Reτ = 2000, 3000, and 5000. From Sec. III A, we consider hereafter a
characteristic length for the wall-normal direction based on the critical layer position such as

y+c = max
z+

�
y+ | Ub

�
y+, z+

�
= c+

�
. (13)

In Figure 6(a), we report the distribution of both the streamwise and spanwise sizes (i.e., λ+x
= (2π/αcr)/δv and λ+z = (2π/β)/δv, respectively) as a function of the wall distance y+c . It is
observed that both characteristic spanwise and streamwise lengths associated with neutral log-layer
modes depend linearly on y+c . Figure 6(a) also shows that λ+z (y+c ) and λ+x (y+c ) fall on a nearly
universal curve. These results are in agreement with simulations of Hwang and Cossu29 who have
verified that organized sinuous streaky motions exhibit a universal behavior in the logarithmic re-
gion independently of the Reynolds number. In particular, in our analysis, we found that λ+z ≈ 3.3y+c
and λ+x ≈ 10y+c .

Attached coherent structures are observed to grow self-similarly with time by del Alamo et al.31

As noted by Moarref et al.,35 a representative time scale can be defined as t+ = λ+x/c+ where t+

FIG. 6. Neutral log-layer modes: (a) spanwise and streamwise wavelengths and (b) convective time scale t+= λ+x/c
+

reported as a function of the distance from the wall y+c for flow cases Reτ = 2000, 3000, and 5000 (N, ⋆, and •, respectively).



FIG. 7. Neutral log-layer modes for Reτ = 5000: cross-stream (y+/λ+z − z+/λ+z plane) view of the eigenfunctions for
λ+z = 3490 ((a), (d), (g)), λ+z = 2244 ((b), (e), (h)), and λ+z = 1745 ((c), (f), (i)). The normalized amplitudes of the streamwise,
wall-normal, and spanwise components of the modes are shown in ((a), (b), (c)), ((d), (e), (f)), and ((g), (h), (i)), respectively.
Same contour levels as in Figure 5. The contours are plotted in coordinates scaled by λ+z to account for geometrical similarity.

represents the time over which the wave associated with the neutral log-layer mode convects down-
stream for one wavelength. In Figure 6(b), the distribution of t+ as a function of the distance from
the wall y+c is reported. The figure shows that the size of such a mode will increase linearly with
time, in agreement with the numerical experiments of del Alamo et al.31 In addition, this behavior
is independent of Reτ when using an inner scaling. The observed time self-similar evolution also
agrees with a universal behavior for secondary modes in the logarithmic region.

Figure 6(a) suggests that neutral log-layer modes are geometrically self-similar. To confirm
this behavior, we plot in Figure 7 the eigenfunctions associated with neutral log-layer modes in
similarity variables: y+/λ+z and z+/λ+z , for three representative spanwise wavelengths: λ+z = 1745,
2244, and 3490, and Reτ = 5000. The rescaled shapes are seen to be nearly independent of λ+z . It
further supports that neutral log-layer modes are geometrically self-similar and are thus compatible
with the concept of attached eddies proposed by Townsend.6

C. Streak instability mechanism

1. Kinetic energy budget

For having a physical understanding of the stabilizing effect of streaks on the Tollmien-
Schlichting instability in the laminar boundary layer, Cossu and Brandt48 used the equation associated
with the perturbation kinetic energy. Here, we extend this framework to turbulent flows. The basic
idea is to derive the evolution equation for the kinetic energy associated with the organized motion
from the linearized version of system (1). We denote E the spatial integration of the kinetic energy
density: e = (uu⋆ + vv⋆ + ww⋆) where ⋆ stands for the complex conjugate,

E =
 λz/2

−λz/2

 h

0
uu⋆ + vv⋆ + ww⋆dzdy. (14)



Therefore, the temporal evolution of E is rewritten as

∂E
∂t
= Tuy + Tuz − Dm − Dt, (15)

where the terms on the right hand side are defined as

Tuy = −
 λz/2

−λz/2

 h

0

�
u⋆v + uv⋆

� ∂Ub

∂ y
dzdy, (16)

Tuz = −
 λz/2

−λz/2

 h

0

�
u⋆w + uw⋆

� ∂Ub

∂z
dzdy, (17)

Dm =
1

Reτ

 λz/2

−λz/2

 h

0

(
∂2u
∂ y2 +

∂2u
∂z2 − α2u

)
u⋆ +

(
∂2u⋆

∂ y2 +
∂2u⋆

∂z2 − α2u⋆

)
u+(

∂2v

∂ y2 +
∂2v

∂z2 − α2v

)
v⋆ +

(
∂2v⋆

∂ y2 +
∂2v⋆

∂z2 − α2v⋆
)
v+(

∂2w

∂y2 +
∂2w

∂z2 − α2w

)
w⋆ +

(
∂2w⋆

∂ y2 +
∂2w⋆

∂z2 − α2w⋆

)
wdzdy,

(18)

and

Dt =
1

Reτ

 λz/2

−λz/2

 h

0
νt

(
∂2u
∂ y2 +

∂2u
∂z2 − α2u

)
u⋆ + νt

(
∂2u⋆

∂ y2 +
∂2u⋆

∂z2 − α2u⋆

)
u+

νt

(
∂2v

∂ y2 +
∂2v

∂z2 − α2v

)
v⋆ + νt

(
∂2v⋆

∂ y2 +
∂2v⋆

∂z2 − α2v⋆
)
v+

νt

(
∂2w

∂y2 +
∂2w

∂z2 − α2w

)
w⋆ + νt

(
∂2w⋆

∂ y2 +
∂2w⋆

∂z2 − α2w⋆

)
w+

dνt
dy

(
∂u
∂ y
+ iαv

)
u⋆ +

dνt
dy

(
∂u⋆

∂ y
+ iαv⋆

)
u+

2
dνt
dy

v⋆
∂v

∂ y
+ 2

dνt
dy

v
∂v⋆

∂ y
+

dνt
dy

(
∂w⋆

∂ y
+
∂v⋆

∂z

)
w +

dνt
dy

(
∂w

∂ y
+
∂v

∂z

)
w⋆dzdy.

(19)

The quantity E is the total perturbation kinetic energy, Dm is the viscous dissipation term, and Tuy and
Tuz are the production terms associated with the work of the Reynolds stresses against the wall-normal
shear and spanwise shear of the mean flow, ∂Ub/∂ y and ∂Ub/∂z, respectively. Equation (15) incor-
porates also the contribution of disorganized smaller scales through the dissipation term Dt. Under a
normal mode hypothesis, the terms in the energy balance equation can be recast into

�
E,Dm,Dt,Tuy,Tuz

�
=
�
Ê, D̂m, D̂t, ˆTuy, ˆTuz

�
e2Ωit . (20)

The temporal amplification rate of a given mode is then derived from

Ωi =
ˆTuy

2Ê
+

ˆTuz

2Ê
− D̂m

2Ê
− D̂t

2Ê
. (21)

When focusing on neutral modes, the total dissipation and the work of the Reynolds stresses against
the wall-normal shear and spanwise shear are balanced. Equation (21) reduces to

Tuy + Tuz = Dm + Dt . (22)

In Figure 8, we report the different terms entering Equation (22) for the neutral log-layer mode asso-
ciated with λ+z = 2244 and Reτ = 5000, for illustration purposes. The figure shows that the secondary
instability is ascribed to the excess of kinetic energy production term associated with the Reynolds
stress against the mean spanwise shear (Tuz) over the dissipation. A dominating contribution of the
dissipation due to smaller scales over the molecular one is observed as expected in the log-layer.
Similar results are obtained for all neutral log-layer modes shown in Figure 6. From the above discus-
sion, we may approximate Equation (22) with Tuz ≈ Dt, in the logarithmic region. This suggests that
the dominant sinuous log-layer mode can occur mainly through the spanwise shear. In Figure 9, Tuz is



FIG. 8. Neutral log-layer modes: Production and dissipation terms of disturbance kinetic energy for λ+z = 2244 and Reτ =
5000.

displayed as a function of the distance from the wall y+c for Reτ = 2000, 3000, and 5000. This shows
that the kinetic energy production term is inversely proportional to y+c such as

log (Tuz) �y+c
�
= A − log

�
y+c
�
, (23)

with A a constant that depends of Reτ. This, thus, gives strong evidence that a universal mechanism
is at the origin of the triggering of streak instability for modes populating the logarithmic region,
consistent with Townsend.6 Figure 9 also shows that production term Tuz increases with the Reynolds
number. Using the energy balance equation Tuz ≈ Dt, Figure 9 shows that the amount of dissipation
due to the disorganized smaller scales increases with the Reynolds number in order to prevent an
unlimited growth of turbulence. Finally, one may observe in Figure 9 that, as the distance from the
wall increases, less energy extracted from the mean flow is necessary to overcome the dissipation due
to smaller scales.

2. Vorticity perturbation components

Schoppa and Hussain27 address an analogy between the dominant sinuous mode of the buffer-
layer (hereafter referred to as buffer-layer mode) and a three-dimensional instability of a planar mixing
layer. To further examine if the instability mechanism associated with neutral log-layer modes bears
close resemblance to the one identified by Schoppa and Hussain,27 a projection of the perturbation
vorticity components onto a local coordinate system associated with iso-contours of Ub is considered

FIG. 9. Neutral log-layer modes: distribution of the production term Tuz associated with the work of the Reynolds stress
against the spanwise shear as a function of the distance from the wall y+c for Reτ = 2000, 3000, and 5000 (N, ⋆, and •,
respectively).



FIG. 10. The streamwise vorticity component associated with the neutral log-layer mode for Reτ = 5000 and λ+z = 2244 at
(a) αx = 0, (b) αx = π/2, (c) αx = π, and (d) αx = 3π/2. Solid (dashed) lines represent positive (negative) contours. The
critical layer position is shown in red thick dashed lines.

hereafter. The wall-normal (ωy) and spanwise (ωz) vorticity components are thus transformed as




ωs = ωy
∂Ub

∂z
1
N
− ωz

∂Ub

∂ y

1
N

ωn = ωy
∂Ub

∂ y

1
N
+ ωz

∂Ub

∂z
1
N

with N =


�����
∂Ub

∂ y

�����

2

+
�����
∂Ub

∂z

�����

2

, (24)

where tangential and normal coordinates with respect to base flow vortex lines are denoted as s and
n, respectively. The streamwise vorticity component (ωx) is not modified. As observed by Schoppa
and Hussain27 for the buffer-layer mode, Figures 10–12 show that the streak instability mechanism
is fully three-dimensional. As the Ub contour bends up, the streamwise vorticity is tilted along the
crest of the low-speed streak and forms a dipole-like structure. The critical layer separates curved
sheets of ωx of opposite signs that induce positive and negative spanwise velocities near the crest
of the low-speed streak. Hence, similarly to the buffer layer mode, the sinuous motion driven by
the streak instability is mainly caused by the ωx distribution. As shown in Figure 11, the tangential
vorticity component is mainly located on the flanks of the low-speed streak (i.e., regions of strongest
spanwise shear), where the critical layer separates positive and negative values of ωs. This vorticity
component will force the curved-sheets to roll-up along the critical layer into a spiral form. The latter
mechanism closely resembles the shear-layer instability of a z-periodic mixing-layer associated with
the buffer-layer mode as described by Schoppa and Hussain.27

Finally, in Figure 12, we show that opposite-signed ωn contours overlap on both sides of the low
speed streak near the critical layer. As underlined by Schoppa and Hussain,27 these overlap regions
are also observed for the buffer-layer mode but not for three-dimensional instability modes associated
with a mixing layer. This minor normal vorticity difference excepted, the streak instability associated
with neutral log-layer mode is seen to involve the same instability mechanism as mixing layer oblique
modes. It also exhibits strong similarities with the streak instability mechanism described by Schoppa
and Hussain27 for the buffer-layer mode.



FIG. 11. The tangential vorticity component associated with the neutral log-layer mode for Reτ = 5000 and λ+z = 2244 at
(a) αx = 0, (b) αx = π/2, (c) αx = π, and (d) αx = 3π/2. Solid (dashed) lines represent positive (negative) contours. The
critical layer position is shown in red thick dashed lines.

IV. DISCUSSION

As recently pointed out by Hwang,30 self-sustaining attached eddies are composed of two
distinct elements: a long streaky motion and a more compact vortical structure which is strongly
three-dimensional. This second element may be associated with vortex clusters described by del

FIG. 12. The normal vorticity component associated with the critical log-layer mode for Reτ = 5000 and λ+z = 2244 at (a)
αx = 0, (b) αx = π/2, (c) αx = π, and (d) αx = 3π/2. Solid (dashed) lines represent positive (negative) contours. The critical
layer position is shown in red thick dashed lines.



Alamo and Jiménez21 that populate the log-layer. One-dimensional spectra extracted by Hwang30

of isolated attached coherent motions associated with a given spanwise length scale exhibit
also a bimodal behavior. In particular, Hwang30 found that vortex clusters are self-similar along
y ≈ 0.5λz ∼ 0.7λz and λx ≈ 2λz ∼ 3λz. Using minimal flow simulations, del Alamo and Jiménez21

have found that attached clusters are organized along y ≈ 0.3λz and λx ≈ 2λz, where λz and λx

represent the dimension of the boxes along the spanwise and streamwise directions, respectively,
and y the distance from their centers to the wall. In our analysis, we have found that the size and
the geometry of neutral log-layer modes roughly scale as

y ≈ 0.3λz and λx ≈ 3λz. (25)

Scaling (25) appears consistent with those obtained from numerical experiments. Scaling (25) sug-
gests that the vortex clusters identified by Hwang30 and del Alamo and Jiménez21 through numerical
experiments could arise from an instability mechanism of the low-speed streak. The three-dimensional
nature of the neutral log-layer mode also supports the increasing amount of energy associated with
the spanwise velocity spectra observed by Hwang30 for the vortex clusters.

A bimodal behavior is also observed in the outer-motion of turbulent boundary layers, channel
flows, and pipe flows by Monty et al.49 and Balakumar and Adrian,50 for instance. In particular, for
channel flows and pipe flows, the two-dominant modes of the energy spectra are classically identi-
fied as the LSM and the VLSM.3 For channel flows, an energy peak emerges at λx ≈ 2h ∼ 3h for
y > 0.3h in the spectra of all velocity components. This primary peak is associated with the LSM (see
Monty et al.49). When focusing on the neutral log-layer mode with λx = 3h, we found y ≈ 0.3h and
λz = 1h. This scaling is in agreement with characteristic sizes of LSMs. Hence, as expected, neutral
log-layer modes populating the log-layer have characteristic sizes smaller than LSMs localized above
the edge of the logarithmic region. Our analysis also supports the scenario conjecturing that LSMs
are associated with quasi-streamwise vortices aligned to low-speed streaks (i.e., the VLSMs) and are
caused by a streak instability (see Park et al.38).

However, as underlined by Schoppa and Hussain27 for the buffer-layer mode, the linear growth of
sinuous streak instability may itself not be sufficient to explain the regeneration of streaks. It may be
supposed that disturbances associated with neutral log-layer modes will produce more representative
streamwise vortices as they evolve into the nonlinear regime. Such a scenario could give further ev-
idence about a wide range of autonomous self-sustained processes at intermediate scales associated
with the logarithmic layer as recently suggested by Hwang and Cossu.29

Nevertheless, one might ask whether the modal instability of idealized streaks computed by us-
ing system (1) is able to predict the breakdown of streaks which are observed in direct numerical
simulations. Trying to give a preliminary answer, we first introduce the parameter θ that characterizes
the base-flow vortex line inclination angle for a given position in the plane (y+, z+),

θ = tan−1
(
∂Ub

∂z
/
∂Ub

∂ y

)
. (26)

We recall that base-flow vortex lines are defined as iso-contours of Ub; for more details, see Schoppa
and Hussain.27 The parameter θ is further illustrated in Figure 13. The “strength” of lifted streaks is
thus described by the quantity θc such as

θc = max
y+,z+

(θ) . (27)

For neutral conditions (i.e., for (As)cr and αcr), θc is plotted in Figure 14 as a function of the spanwise
wavelength for Reτ = 2000, 3000, and 5000. When using a criterion based on θc, Figure 14 shows that
the onset of a modal streak instability in the logarithmic region is nearly independent of the Reynolds
number. In particular, θc is approximatively equal to 78◦ for all flow cases. Therefore, the sinuous
mode associated with low-speed streaks becomes linearly unstable for relatively strong lifted angles.
Schoppa and Hussain27 found a streak lift angle θc ≈ 50◦ for the onset of an instability mode for
the streaks closest to the wall. One may remark that the value given by Schoppa and Hussain27 has
been estimated without adding an eddy viscosity in the stability equations. We have also performed a
computation of secondary instability for streaks in the buffer region by using an eddy viscosity model
(not shown here for the sake of conciseness). The “strength” of lifted streaks for neutral conditions



FIG. 13. Illustration of the base-flow vortex line inclination angle θ for a given position
�
y+1 , z

+
1

�
localized on an isoline of

Ub.

FIG. 14. Neutral log-layer mode: distribution of the maximum streak lift angle as a function of the spanwise wavelength
scaled in inner units for Reτ = 2000, 3000, and 5000 (N, ⋆, and •, respectively).

is found to be θc ≈ 78◦ which is consistent with the threshold obtained for neutral log-layer modes.
Addressing streak instability in the buffer region and considering the large value obtained for θc,
Schoppa and Hussain27 give further argument for a secondary transient growth scenario for streaks
closest to the wall. As a consequence, one may ask if perturbations of linearly stable low-speed streaks
in the log-layer may also experience a transient energy growth and then trigger nonlinear mechanism
that will lead to the breakdown of streaks. Recently, Jiménez26 proposes such a scenario by analyz-
ing the burst of coherent structures of the logarithmic layer in turbulent channel flows in “minimal”
computational boxes. In particular, Jiménez26 argues that an Orr mechanism51 is the way in which
instabilities of streaks grow.

V. CONCLUSION AND OUTLOOKS

The secondary instability of turbulent channel flow streaks that populate the log-layer has been
investigated for three Reynolds numbers. By using the system of equations developed by Park et al.,38

we showed that nonlinear low-speed streaks localized in the logarithmic region may experience a
modal instability. In particular, a sinuous mode is seen to be unstable for a low-speed streak strength
θc ≈ 78◦, independently of the Reynolds number. For the modal instability threshold, the speed of
the neutral log-layer mode equals the local turbulent mean velocity, giving some evidence about the



influence of the critical layer onto the onset of the instability. In addition, neutral log-layer modes
exhibit a geometrically self-similar behavior. Moreover, both the spanwise and streamwise sizes of
neutral log-layer modes appear to be proportional to their distance from the wall, which is in agree-
ment with the concept of attached eddies developed by Townsend.6 Furthermore, these modes are
found to be self-similar along y ≈ 0.3λz and λx ≈ 3λz in agreement with the numerical experiments
of del Alamo et al.31 and Hwang.30

Finally, an analysis of the vorticity components of neutral log-layer modes suggests that the
vortex clusters can be triggered by the roll-up of vorticity at the edge of a low-speed streak,
similarly to a three-dimensional mixing layer. In particular, this mechanism has many similarities
to the one associated with the buffer-layer as described by Schoppa and Hussain.27 The latter
remark is also consistent with the observation of Pirozzoli and Bernardini52 who suggest a similar
mechanism for the creation of vortex tubes from streaks, near the wall of turbulent boundary
layers.

Based on these results, one may propose that the second element of an attached eddy (i.e., the
quasi-streamwise vortices) originates from a secondary instability. While the present study sup-
ports the self-sustaining nature of attached eddies in the logarithmic region, it also gives some
further insight about the underlying instability mechanism. In addition, the streamwise vorticity
distribution of the log-layer instability mode also suggests a streaks regeneration mechanism.

Despite these encouraging results, the onset of a modal instability is only observed for strongly
lifted streaks. This behaviour may thus give some arguments for a scenario based on secondary
transient growth. For a laminar boundary layer flow, Hoepffner et al.53 show that perturbations of
streaks can grow in a short-time scale due to the tilting of initial disturbances into the direction of
the mean shear, similarly to what it is observed for the Orr-mechanism. For subcritical conditions,
Hoepffner et al.53 also show that such a perturbation could transiently reach a high level of en-
ergy. Cossu and Henningson54 computed the optimal growth of perturbations to transiently growing
streaks in a laminar Poiseuille flow. They observed that a secondary transient energy growth exhibits
a similar mechanism of the primary growth of streaks. In particular, for subcritical conditions, the
linear analysis fails to ascribe the streaks breakdown to a secondary transient growth mechanism.
However, Cossu et al.55 performed nonlinear stability of laminar sinuous lifted streaks for the
plane Couette flow. The amplitude for the breakdown of nonlinear saturated streaks is observed
to decrease when considering the scenario of secondary transient energy growth. This analysis
gives some argument about a bypass scenario for the streak breakdown well below the onset of
an unstable mode when considering the influence on nonlinearities. Such theories are currently
under investigation. Finally, to evaluate the relevance of the linear theory for streak instability, Hack
and Zaki56 carried out statistical evaluations of the magnitude of streaks that populate a laminar
boundary layer and compared these results with the threshold given by the modal stability analysis.
Hence, the extension of this analysis to a turbulent channel flow could be an interesting perspective.

Furthermore, we may also draw some criticism concerning the considered base flow. In partic-
ular, as noticed by Vaughan and Zaki57 in a laminar regime, the secondary instability threshold is
altered by the choice of the streaky base flow. This could be also suggested for turbulent flows. Nev-
ertheless, a robust numerical procedure to extract relevant streaks in turbulent flows remains an open
question. Addressing wall-layer streak instability in a turbulent channel flow with a lower curved
wall, Marquillie et al.58 use a streak extraction procedure based on a detection function expressed
by Lin et al.59 and an averaging process. Marquillie et al.58 provide thus some evidence on the
relationship between the turbulent kinetic energy production and the onset of secondary streak insta-
bility. The investigation of such a procedure for the logarithmic region could be also an interesting
perspective.
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FIG. 15. Streak instability analysis for Reτ = 300 and βh = π/2. (a) Streak amplitudes vs time, scaled in outer units (h and
Uc) for Av = 0.06, 0.078, 0.09, and 0.1. The maximum amplitudes are denoted by •. (b) Temporal amplification rates
vs the streamwise wavenumber, scaled in outer units for As = 0.175, 0.2, 0.22, and 0.23. (c) The phase velocity vs the
streamwise wavenumber, scaled in outer units for As = 0.2. (d) Cross-stream view of the absolute value of the spanwise
velocity component of the most amplified mode associated with As = 0.23 (i.e., αh = 1.3). The contours levels are similar
to those displayed in Figure 5(c).

APPENDIX: VALIDATION OF THE NUMERICAL APPROACH

In order to validate the present numerical approach, the instability of large scale optimal streaks
(i.e., associated with the outer region) in turbulent channel flow is analyzed for the same flow
conditions used by Park et al.,38 namely, Reτ = 300 and βh = π/2. The computations are carried out
with Ny × Nz = 151 × 48. Results are summarized in Figure 15. In panel (a), we show the temporal
evolution of the streak amplitudes As for various amplitudes of the optimal initial vortices. The
maximum amplitude for Av = 0.06, 0.078, 0.09, and 0.1 are As = 0.175, 0.2, 0.22, and 0.23 which
are very close to values given by Park et al.38 (0.18, 0.21, 0.23, and 0.25, respectively). In panels
(b) and (c), the distribution of the temporal amplification rate and the phase velocity are shown
as a function of the streamwise wavenumber αh for As = 0.175, 0.2, 0.22, and 0.23. We obtain
αh = 1.1 for neutral conditions and a phase velocity c/Uc ≈ 0.87 and 0.88. Despite a slight shift in
temporal amplification rates, our results are consistent with those given by Park et al.38 (αh = 1.2
and c/Uc = 0.87). Finally, the cross-stream view of the absolute value of the spanwise velocity
eigenfunction corresponding to As = 0.23 and αh = 1.3 is shown in panel (d). The position of the
critical layer is also reported. Once again, the mode shape is in close agreement with the one shown
by Park et al.38
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