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Abstract

We theoretically investigate here by means of DFT methods how

the selective substitution in cyclic organic nanorings composed of pyrene

units may promote semiconducting properties, analyzing the energy

needed for a hole- or electron-transfer accommodation as a function of

the substitution pattern and the system size (i.e. number of pyrene

units). We choose to study both [3]Cyclo-2,7-pyrenylene ([3]CPY) and

[4]Cyclo-2,7-pyrenylene ([4]CPY) compounds, the latter already syn-

thesized, with substituents other than hydrogen acting in ipso and

ortho positions, as well as the effect of the per -substitution. As sub-

stituents, we selected a set of electroactive halogen atoms (F, Cl, Br)

and groups (CN) to disclose structure-property relationships allowing

thus to anticipate the use of these systems as organic molecular semi-

conductors.
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Introduction

Organic nanorings and nanobelts are emerging carbon nanoforms1 with

promising individual yet challenging supramolecular properties. Whereas

their forms arise from fusing conjugated molecules, as in other polycylic con-

jugated hydrocarbons, their cyclic topology significantly alters their proper-

ties with respect to the corresponding linear oligomers as has been intensively

reported in recent years.2–4 The use of these systems as molecular templates

to initiate the controlled growth of carbon nanotubes was probably the first

envisioned application of these compounds,5,6 although many more tech-

nological uses are being disclosed thanks to the structural and electronic

ability of these systems to accommodate host molecules (e.g. C70) into their

cavity,7 to serve effectively as seeds for short nanotube segments,8 or to act

as quantum containers,9 to name just a few of them. The number of pos-

sibilities for these molecules seems still endless, since all the achievements

reached for conjugated oligomers could be potentially exploited in this new

field, particularly for semiconducting or excited-state applications for which

theoretical studies have contributed so far too.10–12

In this regard, we have focused in last years on the differences and

similarities between the CycloParaPhenylene (CPP) and CycloPYrenylene

(CPY) compounds of increasing size, or [n]CPY with n representing the

number of monomers, first validating and next applying a set of adequate

theoretical methods for that purpose.13,14 Actually, the standarization of

the rich Chemistry afforded by these cyclic compounds would systematically

need: (i) to explore the differences between the affordable constituent units,

e.g. phenylene,15 naphthylene,16 phenacene,17 or pyrenylene rings,18,19 to

name just a few examples; (ii) to examine the effect of functionalizing the

3

Page 3 of 38

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



structure, with the incorporation of electroactive atoms within the rings20

or substituents at their periphery;21,22 and (iii) to evaluate consequently the

impact of these functionalization on selected target properties with respect

to the pristine compounds. Note also that the solid-state semiconducting

properties (including estimates of hole mobilities of the set of [n]CPPs com-

pounds (with n = 5 − 12) have been very recently studied23 with values

reaching 2 cm2 V−1 cm−1. The corresponding [n]CPY derivatives still have

not been thoroughly investigated with respect to its functionalization at the

periphery or to the system size. Furthermore, and contrarily to [n]CPPs,

the pyrene units offer different positions for substitution, which could thus

impact on their properties significantly.

We thus continue here along this line of research by systematically in-

vestigating, by applying theoretical methods, the effect of size and substi-

tution on the not-yet-fully-explored semiconducting properties (i.e. charge-

transport reorganization energies) of substituted [n]CPY compounds, taking

into account that: (i) [4]Cyclo-2,7-pyrenylene has been already synthesized

and characterized, thus disclosing the effect of cyclization on the properties

of pyrene oligomers;18,19 and (ii) the radical ions of this and related systems

can be generated using radiolysis methods,24 comparing favourably with

stable CPP radical ions of similar size which shows full delocalization of the

charge along the nanoring,25,26 contrarily to their linear parent compounds

due possibly to edge effects. Note also that pyrene-based materials have

been widely employed in Organic Electronics, i.e. tetraphenyl pyrene shows

an ambipolar behaviour, and with some substitutions being more favorable

than other in previous charge-transport studies.27
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It is thus within this context where the role of halogenation has gained

much attention as a successful strategy to alter, and thus engineer, the

key properties of organic molecular semiconductors such as e.g. linear

acenes.28–31 For instance, perfluorination of (state-of-the-art) tetracene or

pentacene molecules is experimentally known to dramatically influence single-

molecule magnitudes32 as well as the corresponding crystal packing,33 whose

effects on molecules with cyclic topology remains still unknown. Up to now,

monochlorinated or monobrominated CPP compounds have been achieved34,35

with the size-selective synthesis of mono- to tetrabrominated CPPs also re-

cently afforded too,36 in addition to polyfluorinated CPP examples.37

These achievements clearly open new possibilities for (symmetrically)

multifunctionalized nanorings. Figure 1 thus presents the functionalization

strategies tackled here for [n]CPY systems. Note that the crystalline order

is known time ago to also be of a key importance for the semiconducting

behaviour of organic materials,38,39 and that the porous and highly ordered

packing of nanorings constitutes an interesting three-dimensional framework

allowing possibly high charge-carrier mobilities and/or further crystal engi-

neering promoted by this kind of substitution. Therefore, together with the

specific partial or full substitution of H by F, Cl, or Br atoms in [n]CPY

compounds, we will also investigate the effect of selectively adding a CN

group, studying how the fine-tuning of (single-molecule) charge-transport

parameters of these nanorings could guide synthetic efforts and/or elucidate

structure-property relationships overall.
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Theoretical framework

We model the process of molecular charge-transfer as a self-exchange

hole (·+) or electron (· −) transfer between two neighbouring CPY (pristine

or substituted) molecules, one acting as the donor and the nearest neigh-

bour one as the acceptor, supposing an effective (and ideal) charge-injection

process from the corresponding reservoirs:

CPY·+ +CPY −→ CPY + CPY·+, (1)

CPY· − +CPY −→ CPY + CPY· −. (2)

for which the corresponding charge-transfer (or kinetic) rate (KCT ) is ex-

pressed as:

KCT =
4π2

h
|Vif |2

1√
4πΛskBT

∞
∑

v=0

[

Sv
eff

v!
exp (−Seff ) exp

(

− (Λs + v~ωeff +∆G⊖)
2

4ΛskBT

)]

,

(3)

where ~ and kB are fundamental constants, and T is the temperature, cho-

sen here to be 298.15 K. Note that this equation includes a quantum-like

correction with respect to the semi-classical Marcus expression,40,41 through

considering a single effective vibrational mode ωeff with associated Huang-

Rhys factor Seff = Λ/~ωeff . Λs is assumed to be here 0.1 eV, according to

recent studies42 and ∆G⊖ is set to zero in absence of an applied electric field.

The intramolecular reorganization energy (Λ) for each of these processes,

hole- or electron-transfer, is calculated from the adiabatic potential energy

surfaces of the reactants as:43–45

Λ·+ =
[

ECPY·+//CPY − ECPY·+

]

+
[

ECPY//CPY·+ − ECPY

]

, (4)

Λ·− =
[

ECPY·−//CPY − ECPY·−

]

+
[

ECPY//CPY·− − ECPY

]

, (5)

where ECPY or ECPY·+(−) indicates the total energy of the neutral or ion-
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ized molecule at its optimum geometry, respectively, with ECPY//CPY·+(−)

and ECPY·+(−)//CPY being the energy of the neutral or ionized molecule at

the fully optimized geometry of the other state, respectively. This model

assumes a full relaxation of the molecule supporting the positive or negative

charge, p- (hole) or n-type (electron) transfer respectively, before any jump

to the closest neighbouring molecule occurs across the solvated or crystalline

sample of molecules, but neglecting polarization effects at this stage. From

this set of individual energies for the involved states, we can also calculate

the corresponding Adiabatic Ionization Potentials (AIP) or Electron Affini-

ties (AEA), that is AIP = ECPY·+ −ECPY and AEA = ECPY −ECPY·− , as

well as the Quasiparticle Energy Gap given by QEG = AIP−AEA.

The intermolecular electronic coupling Vif is defined as:

Vif =
〈

Ψi|Ĥ|Ψf

〉

, (6)

where Ψj are the many-electron wavefunctions describing an excess charge

localized on a different molecule; i.e., the initial and final states. Assum-

ing that both states only differ by the occupancy of the frontier molecular

orbitals, that is the Highest (Lowest) Occupied (Unoccupied) Molecular Or-

bital or HOMO (LUMO), one can rewrite the equation in an one-electron

picture as:

Vif =
〈

φ
HOMO(LUMO)
i |Ĥ|φHOMO(LUMO)

f

〉

, (7)

for hole or electron transport, respectively. Then, due to the non-orthonormality

of the monomers HOMO or LUMO orbitals, a final projection (i.e., a Lödwin

transformation) is done to obtain the corresponding values:46

Vif =
Ṽif − 1

2 (ei + ef )Sif

1− S2
if

, (8)
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with Sif the overlap and ei/ef the site energies defined as 〈φi|Ĥ|φi〉 or

〈φf |Ĥ|φf 〉. For a fast estimate of values, we will also use the “Energy Split-

ting in Dimers” (ESD) approach, where Vif is taken directly as half the

splitting of the LUMO (HOMO) energies in a neutral dimer for electron

(hole) transfer.

Computational details

All closed- (i.e. neutral) or open-shell (i.e. charged) energies of pris-

tine and substituted [3]CPY and [4]CPY are calculated here, to obtain the

associated Λ values, at the sufficiently accurate B3LYP-D3(BJ)/6-31+G*

level47,48 of Density Functional Theory (DFT), and with the Gaussian09

package.49 Note (vide infra) that a dispersion-correction, dubbed as D3(BJ)50,51

and extensively used, is also added to the underlying density functional for

the optimization of all structures, due to the strong (intramolecular) steric

interactions expected after substitution of H atoms with more bulky halo-

gens and cyano groups. Due to severe convergence problems in some cases,

specially for bulky charged species, we also invoked the Newton-Raphson

converger, and thus switch off the DIIS algorithm consequently. The choice

of the hybrid B3LYP method is complemented by the double-hybrid B2-

PLYP-D3(BJ) model,52 in which not only the exact-like and exchange den-

sity functional terms are hybridized, but also a perturbative correlation cor-

rection and the correlation functional, thus allowing to infer the effect of

going upwards across the hierarchy of modern DFT methods.53,54 The elec-

tronic coupling given by eq. (8) is calculated at the B3LYP/6-31G* level,

which is known to provide sufficiently accurate results,55,56 and with the

“J-from-g03” code.57,58

8
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Results and discussion

Influence of density functionals and/or dispersion correction
on reorganization energies

We first qualitatively assess the influence of the correction used [i.e.

D3(BJ)] for including the dispersion interactions by comparing the B3LYP-

D3(BJ)/6-31+G* and B3LYP/6-31+G* results for Λ values after fully opti-

mizing the neutral and charged structures of [3]CPY at both levels. While its

use is negligible for the pristine [3]CPY compound, with differences of only 1

meV for both Λ·+ or Λ·−, its impact for substituted molecules increases with

the size of the halogen atom and the substitution pattern. The use of this

correction neither significantly affects the results for the ipso-substitution

(see again Figure 1 for the different substitution pattern selected) but it

does up to 10 − 20 % for the cases of ortho- and per-substitution with Cl

or Br atoms, and tends to decrease the values upon release of the steric

hindrance. Note that the same behavior was also found when the geome-

tries were optimized with the smaller 6-31G* basis set, i.e. without diffuse

functions. This prompts us to recommend the B3LYP-D3(BJ)/6-31G* as

the minimum level that should be adopted for this type of calculations.

Despite the fact that the B3LYP method has provided before accurate

values of Λ for a wide variety of organic semiconductors at a reasonable

computational cost,59,60 we also apply here the double-hybrid B2-PLYP-

D3(BJ) model to bracket the accuracy of the Λ·+ and Λ·− calculations for

the case of unsubstituted [3]CPY. Note that: (i) this family of models (i.e.

double-hybrid density functionals) has shown a remarkable performance for

geometries of small-/medium-sized organic molecules and other energy mag-

nitudes;61 (ii) the formal scaling of the computational cost with the system

9
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size is however an order of magnitude higher with respect to hybrid func-

tionals, O(N5) vs. O(N4), which thus precludes its application to all the

systems tackled along this study, specially the heaviest ones; and (iii) the

corresponding extension to deal with (intramolecular) non-covalent interac-

tions is also available, which allows also to truly compare both theoretical

methods. The corresponding results at the B2-PLYP-D3(BJ)/6-31G* level

are now 252 and 186 meV, respectively, for Λ·+ and Λ·−, compared with

values of 196 and 177 meV obtained before with B3LYP-D3(BJ). This in-

crease of values is rationalized by the higher eXact-like EXchange (EXX)

introduced into the former (i.e. 53%) vs. the latter B3LYP-D3(BJ) (20%)

model, which is known to drive the performance of the method increasing

the values concomitantly.60 Thus, while the B2-PLYP-D3(BJ) values can

be considered as a higher limit, they also serve to bracket the accuracy of

B3LYP-D3(BJ) results.

Influence of the substitution pattern on ionization potentials
and electron affinities

Table 1 presents the AIP, AEA, QEG, Λ·+, and Λ·− results for the whole

set of [3]CPY compounds at the hereby fixed B3LYP-D3(BJ)/6-31+G* level,

underlining how the different substitution patterns largely affect the proper-

ties selected. Note that adiabatic values were found to differ in all cases by

0.1−0.2 eV from vertical ones, indicating minor structural relaxation effects,

and only the former values are thus presented. The AIP values of all sub-

stituted compounds are higher than those values for [3]CPY, considerably

for the case of per-substitution with halogen atoms roughly increasing the

values by 0.9− 1.3 eV. The introduction of the CN group into the structure

leads to a more marked increase of AIP values by around 2 eV. The AEA

10
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values change more markedly than AIP ones, although the QEG remains

comprised between 4.3 − 5.0 eV for all substituted compounds, indicating

that AIP and AEA values are symmetrically shifted in most cases. These

overall trends have also been observed before for other partially or fully sub-

stituted polyciclic aromatic hydrocarbons.62

However, we also remark here that any intended process of charge-

transport across an organic-based active materials relies on the injection

first of charge-carriers. The injection of holes relies on a close match be-

tween the ionization potential of the material and the work function (Φm)

of the (often inorganic) anode used as reservoir, φh·+ = AIP − Φm; ideally

searching a barrierless process in the absence of interfacial and/or polariza-

tion effect.63 Taking the example of Indium tin oxide (ITO, In2O3-SnO2),

whose Φm ≃ 4.7 eV, we found a mismatch of around 2 eV between AIP and

Φm values, although recent strategies for the surface modification of ITO

samples with organotin compounds64 or phosphonic acids,65 to name a pair

of examples, can increase its value by more than 1 eV. On the other hand,

for the injection of electrons, low-workfunction metals (Φm around 2.4− 2.9

eV) like Ca, Na, or Ba, were initially used, although are known to be sensi-

tive to moisture and oxygen, and can also be replaced by metals with higher

(Φm > 4.0 eV) workfunctions like Al, Ag, or Au. The versatility found for

this set of substituted [3]CPY compounds shows that substitution might

improve the electron injection with respect to [3]CPY, upon the selection

of the appropriate cathode, with the hole injection being however slightly

disfavoured at this stage.
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Influence of the substitution pattern on reorganization ener-
gies

We continue the analysis of the theoretical results by examining next the

evolution of the Λ·+ and Λ·− of [3]CPY upon changes in ipso positions, in

principle the less affected by large structural relaxation upon substitution,

see Figure 2, with values roughly decreasing with the size of the halogen

atoms as found before for other partially substituted oligoacenes.66 The in-

troduction of the CN group decreases both reorganization energies, but af-

fects more markedly the value of Λ·−, as it was also expected from previous

studies on anthracene67 and tetracene derivatives,68 switching from an am-

bipolar charge conduction mechanism towards an electron-favoured one, as

it can be inferred (see also Table 1) in first approximation from the ratio Λ·+

Λ·−
.

The ortho-substitution seems to significantly alter the results with re-

spect to [3]CPY, for both Λ·+ and Λ·−, decreasing and increasing their

values, respectively. Figure 3 shows the large geometrical changes induced

by this substitution, which also critically depend on the size of the halogen

atom introduced. Particularly remarkable are the cases of Λ·+ (Λ·−) for

Cl-ortho (Br-ortho) for which the value is halved (a 4-fold increase) with

halogen substitution. This marked geometrical deformation agrees to that

experimentally found upon site-selective bromination of short CPPs,36 since

the Br atoms could only by partially incorporated at ortho positions into

the CPP structures (i.e. at alternating and thus separated rings) to avoid

steric pronounced interactions between ipso and ipso ′ sites.

The case of per -substitution is also found to mostly promote a hole-

transport mechanism after the corresponding charge injection, contrarily to

what happened for coronene molecules69 for which an ambipolar behaviour
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could be predicted in per -fluorinated or chlorinated compounds. Note that

the Λ·+ values are found particularly low for the per -cyanated case, showing

how the nature and position of the CN groups alter significantly the hole or

electron migration.

Furthermore, comparing these results with those found before for the

[n]CPP systems,21 with n = 6− 20, in which the diameter and the shape of

the nanoring was shown to be independent of the per-substitution performed

with F, Cl, or Br atoms, the rigidity of the pyrene units seems to play a

key role here. Actually, for [n]CPPs, the dihedral angles between adjacent

rings were shown to increase with the halogen size, and even close to 90◦ for

fully chlorinated or brominated compounds, compared with dihedral angles

(standard values) of 23 − 27◦ for pristine [n]CPPs and 45 − 49◦ for fully

fluorinated compounds. This clearly explains how the inter-ring flexibility

of [n]CPPs would help to release the steric hindrance caused by the equiv-

alent interactions to the ipso-ipso ′ existing for [n]CPYs, which is this case

is largely impeded due to the stabilization of the pyrene units by conjugation.

Finally, according to the ratio defined above for Λ values, we have

adopted a criteria allowing for qualitatively classifying the systems accord-

ing to that ratio: 0.9 < Λ·+

Λ·−
< 1.1 ≡ Ambipolar, Λ·+

Λ·−
>> 1 ≡ e− favoured,

and Λ·+

Λ·−
<< 1 ≡ h+ favoured, with the results also gathered in Table 1.

The ipso-substitution does not change the initial nature of the mechanism

disclosed for pristine [3]CPY, while the case of ortho-substitution clearly

switches remarkably the behaviour of the systems from an ambipolar to a

hole-transport favoured mechanism.
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Influence of the size of the nanoring on reorganization energies

We tackle next how the size of the nanoring (i.e. [4]CPY vs. [3]CPY)

might impact on the calculated reorganization energies for substituted com-

pounds, which should normally decrease the values according to various pre-

vious studies on carbon-based compounds70,71 in absence of other dominant

effects. We will focus on the reorganization energy difference ∆Λ·+(−) =

Λ·+(−)[4]CPY − Λ·+(−)[3]CPY, that is, the variation of values going from

[3]CPY to [4]CPY, to emphasize the changes upon the system size. Actu-

ally, ∆Λ·+ (∆Λ·−) value is –71 (–25) meV, which corroborates this general

finding. Note also that we focus in the following only on ortho and ipso

substituted systems, since geometrical changes after per -substitutions are

expected to be mostly driven by the ipso-ipso ′ interactions.

Figure 4 presents the calculated ∆Λ values for these substituted com-

pounds, for which the following trends are observed when the values for both

[4]CPY and [3]CPY are compared: (i) the ortho substitution of [4]CPY al-

ways helps to significantly reduce the Λ values for both holes and electrons,

specially for the latter, providing values (in meV) for Λ·+ (Λ·−) of 67, 64,

58, and 43 (172, 120, 219, and 161), and thus substantially lower than those

found for the corresponding ortho-substituted [3]CPY (see Table 1) upon

release of the steric hindrance; (ii) the ipso substitution of [4]CPY does not

affect too much (by less than 10 %) the Λ·− values with respect to the cor-

responding ones found for the [3]CPY case; (iii) on the other hand, the Λ·+

results for ipso substitution of [4]CPY with F and Cl atoms are markedly

reduced, with bromination showing the opposite behaviour; (iv) according

to the ratio Λ·+

Λ·−
employed to classify the nature of the charge-transport,

and focusing only on Λ values so far, the ortho substitution would promote
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a hole-transport mechanism in all cases, with 0.3 < Λ·+

Λ·−
< 0.5, possibly

because negatively charged halogen atoms promote larger steric hindrance;

and (v) finally, the ipso substitution would also promote a hole-transport

(Λ
·+

Λ·−
≃ 0.4) for F or Cl, nearly ambipolar (Λ

·+

Λ·−
≃ 1.2) for Br, and an

electron-transport mechanism (Λ
·+

Λ·−
≃ 2.0) for CN substituted compounds.

The trends disclosed aims at speculating about the possibility of still de-

creasing the values going to larger nanorings (e.g. [5]CPY) if experimentally

available.

Electronic couplings and charge-transfer rates

The values of Vif strongly depend on the solid-state electronic interac-

tions between neighboring molecules, which are still unknown for the [3]CPY

case. We have thus estimated its evolution as a function of the relative dis-

placement of a pair of molecules.72 We have chosen two idealized configu-

rations, called cofacial and tubular, and thus representing the two limiting

situations expected in a dense crystalline packing of cyclic organic nanor-

ings,73,74 to elaborate the impact on charge-transport when intermolecular

contact is maximized compared to unit cells. As starting point, we manually

situate two molecules one in front (on top) of the other with their centers of

mass separated by 10.0 Å (7.5 Å) corresponding to these cofacial (tubular)

configurations, and systematically scan the other two dimensions by reg-

ular intervals of 0.5 Å keeping fixed this initial distance. Figure 5 shows

the corresponding electronic coupling maps, for both cofacial and tubu-

lar configurations, initially estimated with the cost-effective ESD method.

Briefly, the Vif values for the tubular configuration are an order of magni-

tude lower, roughly speaking, than those for the cofacial configuration, as it

was expected, showing significant differences depending on the relative ori-
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entation of the two weakly interacting monomers. This is attributed to the

marked oscillations of the Vif values on relative orientations, as previously

illustrated for oligoacenes75 and cycloparaphenylenes.76

The optimal arrangement, in the sense of providing the highest Vif val-

ues, is found at relative 2D-displacements of 1.5 Å/5.5 Å for both hole and

electron transport in the tubular configuration. On the other hand, for

the cofacial configuration, the highest Vif values are obtained at relative

2D-displacements of 0.0 Å/2.0 Å (holes) and 1.5 Å/1.5 Å (electrons), thus

resembling a slipped cofacial solid-state arrangment. At this intermolecu-

lar orientation, further refinements of the Vif values by applying Eq. (8)

give very low values of 1 meV for both holes and electrons in the tubu-

lar configuration, which translates into charge-transfer rates, see Eq. (3)

and neglecting disorder effects, of 9.4 · 109 s−1, low but similar for both

charge-carriers. On the other hand, further exploring the cofacial configura-

tion situating both molecules at an intermolecular distance of 3.5 Å, around

2RC
vdW , while keeping those lateral displacements found before, leads now

to Vif values of 18 and 25 meV, again calculated with Eq. (8), for holes and

electrons, respectively. The charge-transfer rates are now 2.5 · 1012 s−1 and

5.2·1012 s−1 for holes and electrons, respectively. The large differences found

for the KCT values of both tubular and cofacial configuration preliminarily

indicate a pronounced bulk charge-transport anisotropy. Given these values,

since
2Vif

Λ < 1, we expect a hopping-like regime transport77 with hole and

electron mobilities of 0.66 and 1.38 cm2 V−1 cm−1, and thus comparable to

those estimated before for CPPs.23
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Conclusions

We have computationally studied the ability of large hoop-shaped molecules

(i.e. [3]CPY and [4]CPY) to host and then release a charge-carrier (hole or

electron) upon external charge injection. Furthermore, the introduction of

electroactive substituents is a molecular design strategy to tune the elec-

tronic properties in organic electronics, which is done here by investigating

the variations of reorganization energies for pristine and substituted (with

F, Cl, Br, and CN) compounds. The larger size of the [4]CPY system allows

to delocalize the charge over more conjugated units, and thus to decrease in

almost all cases the values of reorganization energies with respect to [3]CPY,

as expected. For all the substituents studied, it seems doable to get an am-

bipolar charge-transfer, in absence of other conditioning factors, for some

atoms (i.e. F) and substitution patterns (i.e. ipso for [3]CPY and ortho for

[4]CPY). For an idealized packing of [3]CPY, we also estimated the electronic

coupling values, highly anisotropic depending on the relative orientation of

the two weakly interacting molecules, and actually indicating competitive

charge-tranport rates and associated mobilities. These results clearly reveal

how molecular design can guide further (theoretical or experimental) studies

on semiconducting properties of nanorings with diverse functional units.
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• Table 1. Theoretical estimates of Adiabatic Ionization Potentials

(AIP, in eV), Electron Affinities (AEA, in eV), Quasiparticle Energy

Gaps (QEG, in eV), and hole (Λ·+, in meV) and electron Λ·−, in

meV) reorganization energies for the studied molecules, at the B3LYP-

D3(BJ)/6-31+G* level.
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Table 1:

AIP AEA QEG Λ·+ Λ·− Λ·+

Λ·−
Nature

[3]CPY 6.24 1.27 4.97 195 176 1.11 Ambipolar

F-ipso 7.12 2.19 4.93 218 208 1.05 Ambipolar

Cl-ipso 6.94 2.20 4.74 195 199 0.98 Ambipolar

Br-ipso 6.83 2.15 4.68 188 194 0.97 Ambipolar

CN-ipso 8.20 3.60 4.60 177 98 1.81 e·−-favoured

F-ortho 6.99 1.97 5.02 146 276 0.53 h·+-favoured

Cl-ortho 6.82 2.03 4.79 91 216 0.42 h·+-favoured

Br-ortho 6.74 2.42 4.32 104 684 0.15 h·+-favoured

CN-ortho 8.30 3.65 4.65 65 206 0.32 h·+-favoured

per-F 7.57 2.85 4.72 186 276 0.67 h·+-favoured

per-Cl 7.27 2.64 4.63 110 247 0.44 h·+-favoured

per-Br 6.70 3.46 3.24 970 1479 0.66 h·+-favoured

per-CN 9.53 5.10 4.43 64 126 0.51 h·+-favoured
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• Figure 1. Chemical structure of the investigated [3]CPY compounds,

with the different substitutions patterns sketched.

• Figure 2. Structural differences between F-ipso and Br-ipso sub-

stituted compounds for all the three (cationic, neutral, and anionic)

optimized geometries, at the B3LYP-D3(BJ)/6-31+G* level.

• Figure 3. Structural differences between F-ortho and Br-ortho sub-

stituted compounds for all the three (cationic, neutral, and anionic)

optimized geometries, at the B3LYP-D3(BJ)/6-31+G* level.

• Figure 4. Reorganization energy differences (∆Λ) between ortho and

ipso substituted [4]CPY and [3]CPY compounds, at the B3LYP/6-

31+G* level.

• Figure 5. Evolution of the Vif values (in eV) as a function of the

relative displacement between both interacting molecules of [3]CPY,

keeping fixed the distance between their centers of mass: (a) hole

values for the tubular configuration; (b) electron values for the tubular

configuration; (c) hole values for the cofacial configuration; and (d)

electron values for the cofacial configuration.
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(a) (b)

(c) (d)

Figure 5.
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