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 A major trade-off when acquiring CO2 from the atmosphere during 

photosynthesis is the loss of water from plant leaves. Transporting as much water as 

quickly as possible with little carbon investment (often defined as hydraulic efficiency 

and usually measured as xylem-specific hydraulic conductivity) can lead to higher 

potential transpiration and photosynthesis per unit xylem cross‐section area. However, 

critical dysfunctions such as embolisms and cavitation by water stress can form inside the 

xylem and constrain the efficiency of water transport (Tyree & Sperry, 1989; Vilagrosa et 

al., 2003). Plant xylem tissues therefore require a certain degree of safety (usually 

measured as the xylem water potential at which a meaningful percentage of maximum 

efficiency is lost; Gleason et al., 2016).  

 As tissue-level hydraulic safety and efficiency are both determined by structural 

characteristics of the xylem network, plants are thought to confront a fundamental trade-

off between xylem-level efficiency and safety (i.e. negative correlation, Fig. 1) to obtain 

and transport water to their leaves as efficiently as they can, while minimizing the risk of 

drought-induced cavitation. For example, efficient plants with wider conduits tend to 

have more interconduit pits and to possess a large membrane‐pore through which 

embolism and cavitation may occur (Wheeler et al., 2005). Thus, a specific suite of 

xylem traits that confers high efficiency could also reduce its safety. Although a trade-off 

between efficiency and safety may take place at the scale of the xylem (e.g. smaller pit 

membrane pores increase safety but reduce efficiency), this tissue-level trade-off may 

weaken at larger scales like whole membranes or conduits (e.g. through changes in 

conduit features such as a greater number of interconduit pits to compensate for the 

reduction in pit membrane pores), and even the whole plant (Meinzer et al., 2010). 

However, evidence of a safety-efficiency trade-off are not widespread in the literature 

(e.g. Tyree et al., 1994; Maherali et al., 2004), and even at the scale of the xylem global 

studies have revealed that plants often exhibit both low efficiency and safety (e.g. 

Gleason et al., 2016).   

 How efficient vs. how safe a plant is, and thus its position along a hypothetical 

safety-efficiency trade-off (Fig. 1) could depend on genetic adaptation of plants to their 

climate of origin: plants originating from drier climates may tend to have “safer” 
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hydraulic traits compared to plants from more mesic environments that may tend to have 

“efficient” hydraulic traits (e.g. Nardini & Luglio, 2014; Schumann et al., 2019). Genetic 

adaptation (i.e. all genetic changes of a species in response to selective pressure exerted 

by its local environment) is considered a major mechanism that enables plants to 

moderate the negative impacts associated with varying environmental conditions, 

including extreme events like droughts. However, while plants with a short life cycle may 

adapt quickly genetically, slow-growing long-lived organisms like trees may not be able 

to adapt fast enough to a rapidly changing climate (e.g. McLachlan et al., 2005). In this 

context, phenotypic plasticity (i.e. reversible dynamic shifts in phenotype in response to 

environmental pressure) may be more advantageous for trees to persist with more 

frequent and extreme droughts predicted for the future. Moreover, plasticity in hydraulic 

traits could help species by providing them with greater safety during dry periods and 

greater efficiency during more favorable conditions (Fig. 1). The magnitude of 

phenotypic plasticity and genetic adaptation, and the impacts on plant physiology during 

extreme climate events have been analyzed in many studies comparing species in 

different ecosystems or biomes (Sultan, 2000; Pigliucci, 2001; DeWitt & Scheiner, 

2004), but thus far, few have distinguished the genetic vs. plastic controls on the 

hydraulic safety-efficiency trade-off. In this issue of Tree Physiology, Pritzkow et al. 

shed new insight on the genetic and plastic drivers of the hydraulic safety-efficiency 

trade-off. 

 By combining a field and a nursery study, Pritzkow et al., examined the intra-

specific variation in canopy and xylem hydraulic traits of Eucalyptus obliqua, an 

evergreen species that naturally spans a large precipitation gradient in southeastern 

Australia, and thus is likely to show a safety-efficiency trade-off between populations 

from mesic vs. dry environments. In their field study, the authors quantified seasonal 

variability in a large array of aboveground hydraulic traits related to efficiency (e.g. 

maximum hydraulic conductivity) and safety (e.g. P50/P88 corresponding to the water 

potential at 50% and 88% loss of hydraulic conductivity). For the nursery study, the 

authors collected seeds from individuals at each field site and grew individuals in a 

glasshouse. As initially hypothesized by the authors, their findings demonstrate a strong 

genetic control of several hydraulic traits related to hydraulic safety (e.g. leaf size, leaf 
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vulnerability to embolism), which overall suggests that populations from mesic 

environments may be at higher risk of hydraulic failure during drought (i.e. low safety 

but high efficiency) compared to populations from drier environments. However, 

evidence for phenotypic plasticity in physiological and anatomical hydraulic traits related 

to both hydraulic safety and efficiency was found for all trees along the gradient (e.g. 

turgor loss point, Huber value), and thus may allow E. obliqua populations, including the 

most vulnerable populations in mesic environments, to acquire greater safety during 

extreme events. As suggested by the authors, underlying processes driving these changes 

could involve leaf- and branch-level short-term adjustments such as an extension of the 

range of water potentials under which the cells remain functional or a reduction of leaf 

area per unit sapwood area through leaf shedding. 

 The strength of the approach used by Pritzkow et al. relies on the combination of 

field and controlled conditions to identify phenotypically plastic traits in the field and 

also to detect traits under genetic control. The field study allowed the authors to 

determine the amplitude of phenotypic plasticity in response to drought stress in diverse 

populations of E. obliqua along a precipitation gradient. Pritzkow et al.’s nursery study, 

like common gardens or provenance trials, is specifically designed to separate the effects 

of genetic control and phenotypic plasticity on functional trait expression. As shown in 

previous works (e.g. Mencuccini & Comstock, 1999; Sparks & Black, 1999; Choat et al., 

2007; Aranda et al., 2014, Kerr et al., 2015), the findings of Pritzkow et al. confirm that a 

large array of hydraulic traits are genetically controlled. Pritzkow et al. also confirm that 

populations originating from wetter environments may be at higher risk of hydraulic 

failure during drought because when grown in the nursery, they expressed functional 

traits that make them more efficient than safe. Furthermore, the amplitudes of phenotypic 

plasticity in single traits along the precipitation gradient were minor, suggesting that 

subtle changes in a suite of traits (e.g. leaf area, P50/P88) can be effective in adapting to 

specific habitats (e.g. Rosas et al., 2019). This result highlights the value of evaluating 

multiple traits in field and common garden studies. 

With the projected exacerbation of drought with global warming, mesic 

populations may thus be more likely to experience drought-induced mortality and to be 

subjected to reduced primary productivity if they are not able to shift their functional 
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traits towards greater safety faster than the projected onset of warmer and drier 

conditions. This begs several questions about populations from more mesic climates: how 

will mesic populations fare under the predicted warmer, drier conditions, and are 

hydraulic traits from mesic populations more plastic relative to dry populations to 

compensate for the greater risk of being highly efficient? Although these important 

questions come to mind while reading this work, they remain unanswered given this 

study’s experimental design. Indeed, population-specific differences in the amplitude of 

plasticity cannot be inferred from the work of Pritzkow et al., as trees in natural field sites 

were not exposed to the same soil moisture stress during the measurements. The literature 

does not provide a clear answer to this question either. Some studies have found that 

species originating from wetter environments can exhibit greater plasticity than drier 

populations (e.g. Corcuera et al., 2011) while others have observed higher plasticity at 

the very dry limit of the species distribution range (e.g. González-Muñoz et al., 2018), 

but a lack of clear information is the general rule. The discrepancy in the patterns of 

responses, including the results of Pritzkow et al., may relate to the strong focus on only 

aboveground traits, which could be leading to an over-simplification of plant plastic 

responses to drought stress so far.  

 Although measuring belowground traits is more challenging than aboveground 

ones, it is obvious that to provide strong relevance, traits should be determined in all 

levels, from the roots to the canopy (Fortunel et al., 2012). In particular, dynamic 

physiological belowground traits related to safety and efficiency such as deep-water 

uptake (i.e. safety) and high root hydraulic conductivity (i.e. efficiency) deserve 

increased attention in the context of drought impacts (Grossiord et al., 2017), compared 

to the more common morphological traits that are usually studied (e.g. leaf size and area, 

xylem anatomy, Huber value). While plasticity in aboveground physiological functions 

has been the focus of numerous studies (Grams et al., 2007), the degree of plasticity 

occurring belowground (e.g. seasonal variability in water sources or root hydraulic 

conductivity) could reveal new strategies that would alter our understanding of plant 

responses to drought. Further, legacy effects (e.g. embolism that carries over between 

droughts) and specific components of plasticity, such as ecological memory (i.e. the 

capability of past experience of an individual to influence future plastic responses, Ogle 
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et al., 2015), must be investigated to fully unravel the significance of phenotypic 

plasticity in the context of plant survival under drought. Such stress memory that plants 

maintain after an initial stress could lead to greater plasticity in subsequent extreme 

events (Walter et al., 2011), while legacy effects might make trees more vulnerable to 

future droughts events because of reduced hydraulic capacity (Wu et al., 2017). However, 

as most studies focus on short-term plastic responses, it is still unclear on which time 

scales such plant ecological memory acts with the few studies available indicating 

adjustments varying over periods of days (Resco de Dios et al., 2016) to a growing 

season (Walter et al., 2011).  

 Overall, the results of Pritzkow et al. provide an intriguing new perspective on the 

safety-efficiency trade-off, and the role of short-term plastic responses on this conceptual 

framework. However, untangling the full significance of the safety-efficiency trade-off to 

provide modelers with reliable predictive frameworks on forest responses to changing 

climate will require future work to investigate all components of the genetic and plastic 

controls of hydraulic safety vs. efficiency, including looking at what takes place 

belowground, over multiple years, and more than one generation.  
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Figure legend 

Figure 1: Theoretical representation of the hydraulic efficiency-safety trade-off. A 

theoretical trade-off between hydraulic efficiency and safety is expected (highlighted in 

light orange, but see Gleason et al. 2016): populations more frequently exposed to warm 

and dry conditions (population B) tend to have safer xylem hydraulic traits (e.g. smaller 

xylem vessel diameters, lower xylem vulnerability to embolism) relative to populations 

from wetter and more moist environments (population A) that tend to be more efficient in 

their resource use (e.g. higher maximum hydraulic conductivity, higher turgor loss point). 

The position along the efficiency-safety trade-off should depend on genetic controls (i.e. 

adaptation, population A vs. B) but phenotypic plasticity (highlighted by dashed lines) 

allows populations to expand strategies, including gaining a safer one during drought 

(movement towards higher hydraulic safety) and a more efficient one during wetter 

periods. The magnitude of plasticity (i.e. difference between dotted lines and red circles) 

is unknown but highly efficient populations may require a greater trait plasticity and 

ability to adapt to persist with projected drought exacerbation as they are genetically at 

higher risk of drought-induced mortality (i.e. low safety). 
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