
Received February 19, 2020, accepted April 1, 2020, date of publication April 10, 2020, date of current version April 30, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2987254

Impact of Programming Exposure on the
Development of Computational Thinking
Capabilities: An Empirical Study
CRISTINA CACHERO 1, PILAR BARRA 2, SANTIAGO MELIÁ 1, AND
OTONIEL LÓPEZ 3
1Departamento Lenguajes y Sistemas Informáticos, Universidad de Alicante, 03690 Alicante, Spain
2Departamento de Turismo, Universidad Católica de San Antonio Murcia (UCAM), 30107 Murcia, Spain
3Departamento de Ingeniería de Computadores, Universidad Miguel Hernández, 03202 Alicante, Spain

Corresponding author: Cristina Cachero (ccachero@dlsi.ua.es)

This work was supported in part by the Spanish Ministry of Economy, Industry, and Competitiveness (Access@City) under Contract
TIN2016-78103-C2-2-R, in part by the Spanish Ministry of Science, Innovation, and Universities under Contract RTI2018-098156-B-C54,
in part by the Co-Financed by FEDER funds (MINECO/ FEDER/UE), and in part by the EduTech Project co-funded by the Erasmus+
Programme of the European Union under Grant 609785-EPP-1-2019-1-ES-EPPKA2-CBHE-JP.

ABSTRACT Today’s digital society has turned the development of students’ computational thinking
capabilities into a critical factor for their future success. As higher education institutions, we need to take
responsibility for this development in every degree course we offer, and provide students with the kind
of subjects and activities that best contribute to this aim. In this paper, we study the impact of following
an introductory programming course on the development of the computational thinking capabilities of
university students. In order to achieve this aim, a concurrent cohort observational study was carried out in
which we measured both the subjective and objective computational thinking capabilities of 104 participants
(50 first year students enrolled on a Bachelor’s degree course in Psychology at the Catholic University of
Murcia (UCAM), and 54 first year students enrolled on a Bachelor’s degree course in Health Information
Systems at the University of Alicante (UA)). The statistical procedures applied to test our hypotheses were a
two-way mixed ANOVA, a paired-sample T-test and an independent-sample T-test. The data shows that
the group at UA had an initial higher subjective perception of their computational capabilities than the
group at UCAM. This perception was supported by their objective scores, which were also significantly
higher. However, the subjective assessment of computational capability of the UA group diminished after
exposure to the programming course, contrasting with the fact that their objective computational capabilities
improved significantly. In the UCAM group, both subjective and objective capabilities remained constant
over time. Based on these results, we can conclude that computational thinking capabilities are not developed
naturally, but need to be trained. Providing such training to all our students, and not only to those enrolled
on undergraduate degrees in engineering, is of paramount importance to allow them to face the challenges
of their future professions. This paper empirically demonstrates the extent to which exposing subjects to a
programming course may contribute to this aim.

INDEX TERMS Programming, computational thinking, problem-solving, career development, technology
social factors, observational study.

I. INTRODUCTION
Our society has already become digital: we live surrounded
by programmable objects controlled by software [1]. In this
context, students need to develop a set of computational
competences that can facilitate their full and effective

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

participation in this new digital reality: the choice is between
programming or being programmed [2]. These competences
are commonly referred to as Computational Thinking (CT)
capabilities, and can be formally defined as ‘‘the thought
processes involved in formulating problems and their solu-
tions so that the solutions are represented in a form that
can be effectively carried out by an information-processing
agent’’ [3].

72316 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-6281-8287
https://orcid.org/0000-0002-4415-0110
https://orcid.org/0000-0003-3782-6626
https://orcid.org/0000-0002-6968-061X


C. Cachero et al.: Impact of Programming Exposure on the Development of CT Capabilities: Empirical Study

According to this definition, being CT proficient refers
to managing a set of problem-solving cognitive processes,
as follows [4]:

• Decomposition: Breaking down data, processes,
or problems into smaller, more manageable parts;

• Pattern recognition: Observing patterns, trends, and reg-
ularities in data;

• Abstraction: Identifying the general principles that gen-
erate these patterns;

• Algorithm design: Developing step-by-step instructions
for solving these and similar problems.

These processes support problem solving across a myriad
of disciplines [5], including maths, science, and humani-
ties [6]. For example, decomposition may help a literature
student to break down a poem for analysis, and pattern recog-
nition may help an economist to find cyclic patterns in the
rises and falls of a country’s economy [4].

Additionally, improving the CT capabilities, regardless of
the discipline, has been postulated to be related to noncog-
nitive variables and related soft skills such as tolerance for
ambiguity, self-confidence, persistence, creativity and team-
work, among others [4], [7].

A. CT AND PROGRAMMING
Despite the importance of CT in the resolution of vari-
ous kinds of problems that do not directly involve pro-
gramming tasks [5], the development of CT processes is
often associated with becoming proficient at solving cod-
ing activities [8]. For this reason, we have witnessed
in recent years the proliferation of block-based program-
ming environments (BBPEs) (e.g., Scratch [9], App Inven-
tor [10] or BitBloq [11]) and platforms (e.g. Code.org [12]
or Tynker [13]) whose aim is to facilitate the introduction of
people into the programming world as a way to improve their
CT capabilities [14].

In order to assess the evolution of students’ CT
skills due to their engagement in programming activities,
a programming-related CT framework has been proposed.
This framework has three key dimensions [14]:

• Computational concepts: These are the programming
concepts with which designers engage as they program.
These include sequences, conditionals, loops, paral-
lelism, events, operators, and data. Computational con-
cepts define the ‘‘what’’ of the learning process.

• Computational practices: These are the practices that
designers develop as they engage with the above con-
cepts, such as incremental and iterative approaches,
testing and debugging, reusing and remixing, and
abstracting and modularizing (building something large
by putting together collections of smaller parts). Com-
putational practices represent the ‘‘how’’ of the learning
process.

• Computational perspectives: These are the evolving
understandings that designers form of themselves, their
relationships to others, and the technological world

around them. These involve expressing (changes of role
from consumer to creator), connecting (creating with
others and for others) and questioning (empowering peo-
ple to ask questions about and with technology).

We agree with the authors of [8], [14], [15] that engaging
in programming is valuable for developing CT capabilities.
However, to the best of our knowledge, the research com-
munity suffers from a scarcity of empirical data that would
allow us to ascertain the real effects of such exposure to pro-
gramming. Thismeans that important research questions such
as ‘‘to what extent does acquiring programming skills help
in developing CT capabilities’’, ‘‘how much programming
exposure must students get in order to increase their CT to
a certain level’’, or ‘‘to what extent are the CT capabilities
improved by the mere exposure to a technology-rich environ-
ment, as opposed to specifically engaging in some specific
programming training’’ remain open.

The aim of this paper is to provide empirical evidence that
can help to answer these questions by presenting an observa-
tional study of the relationship between improvements in CT
capabilities and programming training.

The paper is structured as follows: in Section II, we present
the state of the art regarding CT. In Section III, we describe
the design of our study, including the research questions,
variables and hypotheses. Section IV explains the execution
of the study. The data gathered is analyzed in Section V, and
the main threats to the validity of the study are examined.
Lastly, a discussion of the results and some further lines of
research are outlined in Section VI.

II. RELATED WORK
Since the first definition of CT by Papert in 1993 [16], and
particularly after the influential paper byWing [17], there has
been a lively discussion about what CT is and how to develop
and assess it at all educational levels.

A recent systematic mapping study [18], which focused on
the definition, scope and theoretical basis of CT, revealed that,
during the period 2006-2014, most research centred on the
design of activities to promote CT in the curriculum. Accord-
ing to this study, two of the main strategies for developing CT
are game-based learning and constructivism. IN terms of the
targeted population, 37.6% of the papers focused on the K-
12 level, 24.8% on higher education levels and the remaining
37.6% on both populations. The mapping concluded that
the discipline needs to mature and provide (a) agreed-upon
theoretical frameworks to sustain the different proposals, and
(b) valid assessment instruments that serve to systematically
measure the effect of treatments on CT skills.

Similar conclusions appear in [19], in which a review of the
state of the art in the K-12 CT field in the years up to 2012
concluded that the research community has already provided
broadly agreed-upon CT definitions, and that extensive work
has been carried out on the design of activities to develop CT.
However, according to the authors, the issue of how to mea-
sure CT remains underdeveloped and under-researched.

VOLUME 8, 2020 72317



C. Cachero et al.: Impact of Programming Exposure on the Development of CT Capabilities: Empirical Study

The issue of CT assessment was specifically addressed
in another systematic literature review presented in [20],
which concluded that such CT assessment is in its infancy.
It also presented an updated picture of the importance of CT
for educational institutions, the wayis in which it is being
incorporated into already existing subjects/courses in differ-
ent disciplines, how it is being taught, and a list of available
tools. In [21] the authors presented a review of the main CT
assessment instruments for middle-school and/or high-school
students, together with a classification depending on the eval-
uative approach used. They proposed the use of a combination
of assessment methods or ‘‘system of assessment’’ in order to
provide a comprehensive evaluation of CT interventions.

It is important to note that CT assessment is viewed
as the main weakness of the field in all of the papers
reviewed. Although a myriad of proposals have been put for
ward [22]–[25], and the interest in the promotion and assess-
ment of CT is high among the research community, there is
still a lack of standardised measurement instruments that are
open for general use. These instruments also need to be based
on agreed-upon theoretical models; otherwise, it is difficult
to provide the research community with sound, reliable data
that can allow them to provide an objective picture of the
true impacts of activities aimed at training the CT capabilities
proposed by the educational community in different contexts
and at different educational levels.

III. EXPERIMENTAL DESIGN
We conducted an observational study during the period
February to June 2018. Observational studies are a kind
of empirical study in which, unlike experiments or quasy-
experiments, the independent variables are not manipulated
but are instead observed, and based on these observations,
the researcher tries to draw some conclusions [26]. Hence,
in observational studies, the decision regarding who receives
an intervention is determined by individual preferences,
practice patterns, or policy decisions, rather than being
randomised [27].

Our observational study falls under the concurrent/
prospective cohort category, in which subjects are followed
over time [27]. Cohort studies begin with individuals with
and without exposure to a given factor (in our case, to a
programming course) who are then evaluated on the subse-
quent development of an outcome (in our case, their objec-
tive and subjective CT scores). The appropriateness of this
study design is supported by the fact that (i) there is good
evidence to suggest an association between exposure to
programming and improvement in CT capabilities; (ii) the
interval between exposure to programming training and CT
improvement is relatively short, which can minimise loss to
follow-up; and (iii) a CT improvement is expected for most
subjects, meaning that we can measure CT improvement with
a reasonable cohort size- [27].

The main disadvantage of observational studies is that
they do not permit us to establish cause-effect relation-
ships, since there is a lack of control over the confounding

factors (that is, alternative explanations for the results of the
study) [27].

A. OBJECTIVES AND CONTEXT DEFINITION
Following the structure of the Goal-Question-Metric (GQM)
template [28], the purpose of this study was to assess the
effect of exposure to programming training on both subjective
CT auto-perception (SCT) and the objective CT score (OCT)
of students enrolled on undergraduate degrees. The SCT
score captures what students think about their proficiency
with CT, and can be regarded as a measure of self-efficacy,
while the OCT score reflects the actual ability of the subjects
when carrying out computational tasks.

The population for the study was made up of students who
were enrolled on (a) a Bachelor’s Degree course in Health
Information Systems at the University of Alicante (UA); and
(b) a Bachelor’s Degree course in Psychology at the Catholic
University of Murcia (UCAM), during the second semester
of the 2017/18 academic year.

Python was chosen as the programming medium for the
treatment group due to its interactive environment, its ability
to let novice programmers quicklywrite non-trivial programs,
its adoption by many scientific communities, and its support
for numerous specialist libraries [29], [30]. Python can also
be executed efficiently, making it a good vehicle not only for
small-scale experimentation, but also for larger datasets and
longer computational problems [29].

The research questions (RQ) addressed in this study were
designed to be answered using quantitative data. The ques-
tions were as follows:

• RQ1: Do the students’ OCT scores vary depending on
their exposure to four months of programming training?

• RQ2: Do the students’ SCT scores vary depending on
their exposure to four months of programming training?

• RQ3: Do the students’ SCT/OCT scores differ between
the UA and the UCAM groups?

B. EMPIRICAL STUDY DESIGN
In this study, we planned to gather data from 178 students,
88 of whom were second-semester students on a Health
Information Systems degree course at the UA (the treatment
group), and 90 of whom were second-semester students on a
Psychology degree course at the UCAM (the control group).

1) VARIABLES
To conduct the study, two independent variables (IVs) were
defined:

• Time (T): Categorical value, intra-subject, with two pos-
sible values: T1 (Feb18) or T2 (May18).

• Group (G): Categorical value, inter-subject, with two
possible values: UA or UCAM.

At this point it is important to note that both groups con-
tained subjects who were roughly the same age (the median
year of birth was 1999 for both groups), and we could
therefore assume that both groups had similar environmental

72318 VOLUME 8, 2020



C. Cachero et al.: Impact of Programming Exposure on the Development of CT Capabilities: Empirical Study

technological influences. The level of previous programming
experience in both groups was also roughly similar, despite
the dissimilarity of the degree courses; only three subjects
out of 88 in the UA group had a previous programming
experience, while two of 90 in the UCAMgroup had previous
programming experience.

The set of dependent, or measurable, variables (DVs) was
defined as follows:
• OCT: This was scored as the number of CT questions
answered correctly [0..28] at the beginning (pre-OCT)
and end (post-OCT) of the study.

• SCT: This was a self-reported score of the students’
general CT capability [1..10] at the beginning (pre-SCT)
and end (post-SCT) of the study.

At the beginning of the study, all subjects also filled in
a background questionnaire, giving their age, gender and
previous programming experience.

2) HYPOTHESES
Based on the literature review presented in Section II, and
the research questions and variables described above, a set of
null and alternative hypotheses were defined. For the sake of
clarity, next we are only listing the alternative version here,
as it is easier to understand:
• H1A: The OCT score changes differently over time
depending on whether or not students are exposed to a
programming training course.

• H2A: The mean OCT score differs between the UA and
the UCAM groups.

• H3A: The SCT score changes differently over time
depending on whether or not students are exposed to a
programming training course.

• H4A: The mean SCT score differs between the UA and
the UCAM groups.

The corresponding null hypotheses (which we aimed to
refute via the hypothesis refutation method) simply state that
there are no significant OCT/SCT differences between the
conditions being compared in each case.

3) OCT AND SCT MEASURING INSTRUMENTS
Given the lack of standardised CT assessment instruments
(see Section II) and our need for an instrument that could be
administered to 18-year-old students with no previous pro-
gramming knowledge, we chose the Computational Thinking
Test (CTT) [31], as this does not require any programming
experience. It has also been thoroughly validated in the Span-
ish context, and has demonstrated high levels of concurrent
(with respect to the PMA, RP30, and FI-R instruments [32]),
discriminant, convergent (with respect to Dr. Scratch [33] and
Bebras [34]) and factorial validity [35].1

This test includes two scales:
• An OCT scale: 28 items, each containing four options,
where each item contributes equally to the final score.

1The study questionnaire can be found (in Spanish) at https://ua.eu.
qualtrics.com/jfe/form/SV_2f6sdYBk6TwHlNH

TABLE 1. Final distribution of subjects by group.

• An SCT scale: A single 10-point item.

IV. EXECUTION OF THE STUDY
The observational study was conducted in two sessions. Each
session was held in parallel for the UA and UCAM groups.

The first test session took place during the second week
of February 2018. In this session, students were asked to fill
in both a background questionnaire and a CT questionnaire.
Subjects were not aware in advance that they would be asked
to complete these questionnaires, nor did they receive any
kind of feedback on their CT performance until the end of
the session. Two lecturers supervised each session in order
to avoid interactions between subjects. Of the 178 possible
students, 135 were present on the day of the study. Since they
did not know that they were going to participate in the study,
we can assume that the absence of these students had nothing
to do with the study, and we therefore consider that their
absence did not pose a risk to the validity of the results. For
ethical reasons, at the beginning of the session we explicitly
asked each subject for permission to treat their data in an
anonymised and aggregated way. 133 students (out of 135)
accepted.

Between February and May, the treatment group received
60 hours of training in Python. The training was divided into
30 sessions, in which the students received short explanations
introducing the main Python concepts, followed by guided
practical sessions in which they were asked to solve, on an
individual basis, a series of increasingly complex program-
ming problems, many of which were related to their area
of expertise. The control group did not receive any kind of
programming training.

The second test session took place during the third week
of May 2018. Again, subjects did not receive feedback and
were supervised by two lecturers at each university. This time,
122 subjects were present. Since these students were not all
the same ones that had participated the first time, the final
number of subjects included in our study was 104: 54 in the
UA group, and 50 in the UCAM group. Table 1 shows the
final distribution of subjects by group.

All of the measures were automatically calculated based
on the results of the CT questionnaire.

V. DATA ANALYSIS
To analyse the data, we used the SPSS Statistics v.23 software
package. Table 2 shows the descriptive statistics correspond-
ing to the measures included in our study.

In Table 2, the colums marked ‘‘UA/UCAM Pre’’ refer to
the OCT/SCT scores at the beginning of the term, while those
marked ‘‘UA/UCAMPost’’ refer to the same students’ scores

VOLUME 8, 2020 72319



C. Cachero et al.: Impact of Programming Exposure on the Development of CT Capabilities: Empirical Study

TABLE 2. CT measures: Descriptive Statistics.

FIGURE 1. Comparison of pre-OCT and post-OCT mean scores of the UA
and the UCAM groups.

at the end of the term. The table shows both the students’
mean score (M) and the standard deviation (SD).

The statistical procedure initially chosen to test both DVs
(OCT and SCT) was a two-way mixed design ANOVA
(α = 0.5) with an inter-subject factor and an intra-subject
factor. This test has eight assumptions that need to be checked
before being applied. The first three relate to the study design:
we need a continuous DV (in our case we have two: the OCT
and SCT), one between-subjects factor (which in our case is
the group) and one within-subjects factor (which in our case
is time). The other five assumptions relate to how our data fits
the two-way mixed ANOVA model, as discussed below.

A. ANALYSIS OF THE OBJECTIVE COMPUTATIONAL
THINKING CAPABILITIES: OCT
In order to investigate the effects of a programming course
on the development of the students’ OCT capabilities (H1A)
and the influence of the Group variable on the development
of these OCT capabilities (H2A), the first step is to check
the assumptions of the two-way mixed ANOVA regarding the
pre-OCT and post-OCTDV. These are the absence of outliers,
normal distribution of residuals, equal variances between
categories, similar covariances, and sphericity, if applicable.

An analysis of both the pre-OCT and post-OCT DVs
showed that there were no outliers in the data, as assessed
by examination of studentised residuals for values greater
than ±3. A visual inspection of their boxplots also showed
that there were no values greater than 1.5 box-lengths from
the edge of the box (see Fig. 1).

A two-way mixed ANOVA also assumes that the residuals
are normally distributed in each cell of the design. This
assumption holds for the OCT scores, which were normally

FIGURE 2. Evolution of OCT mean scores (pre-OCT vs post-OCT) along
time for both the UA and the UCAM groups.

distributed for all the groups (z-values for skewness and
kurtosis fell in the range ±2.58 for all the cells).

The third assumption is that there are equal variances
between the categories of the between-subjects factor,
(Group), and in each category of the within-subjects factor
(Time), for the DV (OCT). Homogeneity of variance was
shown, as assessed by Levene’s test (p > 0.05 both for
pre-OCT and post-OCT).

A further assumption of the two-way mixed ANOVA is
that there are similar covariances. This assumption also holds,
as assessed by Box’s test of equality of covariance matrices
(p = 0.434).
Lastly, the assumption of sphericity was not tested, as our

within-subjects factor had only two categories.
Since our data fitted the two-way mixed ANOVA model,

we applied this test in order to determine whether there was a
Group*Time interaction. From Table 2, we can observe how
the OCT measure remains practically constant over time for
the UCAM group, while there is an improvement of roughly
two points for the UA group. This is also shown in Fig. 2,
where we can observe that the two lines are not parallel. The
results of applying a two-way mixed ANOVA corroborate
this perception, and show that the Group*Time interaction is
statistically significant: F(1, 102)=4.123, p < 0.05, partial
η2 = 0.039.
This result implies that the OCT score changes differently

in the UA and UCAM groups, and we can therefore reject
hypothesis H10 which assumes that OCT changes the same
way in both groups. The Group*Time interaction qualifies
the results of the analysis of each IV and prevents us from
analysing the main effects with this test. What we can do,
however, is to analyse the simple main effects of the Group
and Time variables on OCT independently.

In order to test the simple main effect of the Group variable
on the pre-OCT score (taken February 2018), we need to
apply an independent-samples T-test. The statistical analysis
shows that we can assume equality of variances (Levene’s
p=0.424). This test also shows that the effect of the Group

72320 VOLUME 8, 2020



C. Cachero et al.: Impact of Programming Exposure on the Development of CT Capabilities: Empirical Study

TABLE 3. Summary of OCT and SCT testing results.

variable is significant: t(102) = 6.649 p = 0.011. This
means that students in the UCAM group (enrolled on a Psy-
chology degree course) scored significantly lower on OCT
than students at the UA group (enrolled on a Health Infor-
mation Systems degree course) when they were measured
in February. When they were measured again in May (post-
OCT, i.e. after the UA group had enrolled on a programming
course), this difference had become even larger (Levene’s
p=0.088, t(102) = 4.098, p < 0.0005).

In order to analyse the simple main effects for the Time
variable, since we also have two possible values (Febru-
ary and May), we need to run two separate paired-samples
T-tests (one for the UA group and one for the UCAM
group). For the UA group, who took a programming course
during the semester, the differences were highly significant
(t(53) = −3.702, p = 0.001). In constrast, for the UCAM
group, which was not exposed to any specific CT training,

the differences between the February and May scores were
not significant (t(49) = −0.441, p = 0.661).
A summary of these results can be seen in Table 3.

B. ANALYSIS OF THE SUBJECTIVE AUTO-PERCEPTION ON
COMPUTATIONAL THINKING: SCT
In a similar way, in order to test the influence of fol-
lowing a programming course on the students’ CT subjec-
tive auto-perception (H3A) and the influence of the Group
variable on the development of this auto-perception (H4A),
the first step is to check whether the pre-SCT and the
post-SCT data fit the two-way mixed ANOVAmodel. Again,
there were no outliers in the data, as assessed by examination
of studentised residuals for values greater than±3. However,
a visual inspection of the corresponding boxplot showed that
three values were greater than 1.5 box-lengths from the edge
of the box for the pre-SCT score (see Fig. 3). An examination

VOLUME 8, 2020 72321



C. Cachero et al.: Impact of Programming Exposure on the Development of CT Capabilities: Empirical Study

FIGURE 3. Comparison of pre-SCT and post-SCT scores of the UA and the
UCAM groups.

of these three points revealed that they were not errors in the
data gathering process, but genuinely unusual values, so they
were kept in the analysis.

A two-way mixed ANOVA also assumes that the residuals
are normally distributed in each cell of the design. In the same
way as for the OCT scores, this assumption also holds for
the SCT scores, which were normally distributed for all the
groups (their z-values for skewness and kurtosis falling into
the range ±2.58 for all the cells).

The next assumption is that there are equal variances
between the categories of the between-subjects factor
(Group), and each category of the within-subjects factor
(Time) for the DV, which is the SCT score. This assumption
is violated for the post-SCT variable, as assessed by Levene’s
test of homogeneity of variances (p < 0.005). The problem
here is that while the skewness for the UA group is slightly
negative, it is positive for the UCAM group. We tried both a
reflect and square root transformation (good for moderately,
negatively skewed data) and a square root transformation
(good for moderately, positively skewed data). Neither of
these transformations solved the problem; in addition, neither
the original values nor any transformations were able to meet
the covariance assumption. For this reason, we decided to
discard our analysis of the interaction effect and instead
to analyze the simple main effects by running two paired
samples T-tests for the differences in SCT for each group, and
two independent samples T-tests for a comparison of both the
pre-SCT and post-SCT measures between the groups.

In order to test the differences between the SCT scores at
different points in time with a paired samples T-test for the
UA and the UCAM groups, we need one DV measured at
the continuous level and one IV that consists of two matched
pairs (pre-SCT, measured in February (T1) and post-SCT,
measured in May (T2)). There should also be no significant
outliers in the differences between the two related groups, and
the distribution of the differences in the DV between the two
related groups should be approximately normally distributed.

For the UCAM group, no outliers were detected in the
data. The differences were normally distributed for both the

FIGURE 4. Evolution of SCT mean scores (pre-SCT vs post-SCT) along time
for both the UA and the UCAM groups.

UA and the UCAM group, with z-values for skewness and
kurtosis falling into the range ±2.58 for both groups.
Lastly, in order to examine the differences in SCT scores

between the two groups at both time points (February (T1)
and May (T2)) we need to check for outliers and normality.
Again, we found nine outliers in the UA group. Inspection
of these values showed that there were no errors in the data
gathering process, but genuinely unusual values, so they were
kept in the analyses.

For the UCAM group, no outliers were detected, with
z-values for skewness and kurtosis falling into the range
±2.58 for both groups.
Levene’s test for homogeneity of variances showed that

although the pre-SCTmeasure did not violate the assumption,
the post-SCT did. A Log10 transformation was applied, and
although this reduced the problem, it did not prevent the vari-
able from violating the assumption. For this reason, we have
not assumed equality of variances for this test.

From Table 2 we can observe how the SCT measure
remains practically constant for the UCAM group, while
there is a decline for the UA group. This is illustrated in Fig. 4,
where we can observe that the two lines show different slopes.

The paired samples T-test for the UA group showed that
the SCT scores in February and May differed significantly
(t(53) = 2, 23 p = 0.03). In contrast, this difference is
clearly not significant for the UCAM group(t(49) = 0.629,
p = 0.53).
Finally, regarding the Group variable, the pre-SCT mea-

surement shows significant differences between the UA and
the UCAM groups (t(102) = 2.555, p = 0.012), with the UA
group showing a higher perception of ability. The test for the
post-SCT measurement (Log10 transformation), which does
not assume equal variances, also shows significant differ-
ences between both groups (t(70.301) = 2.946, p = 0.004),
again indicating a higher perception of ability among the UA
group.

A summary of these results can be seen in Table 3.

C. THREATS TO THE VALIDITY OF THE STUDY
In our analysis of the main threats to the validity of this
study, we use the classification proposed by Cook and

72322 VOLUME 8, 2020



C. Cachero et al.: Impact of Programming Exposure on the Development of CT Capabilities: Empirical Study

Campbell [36], which is divided into internal, external, con-
struct and conclusion threats.
Threats to internal validity are concerned with the assess-

ment of causality,i.e. with the possibility of hidden fac-
tors that may provide alternative explanations for the result.
By definition, observational studies have, lower internal
validity than experiments, due to the selection bias. This
notwithstanding, a cohort longitudinal study is, due to its
temporal nature, a design that has higher internal validity
than other observational studies. More concretely, our design
controls for the effect of the simple passing of time on the
objective CT and subjective scores. Students in both groups
were unaware that they were being compared with another
group, in order to avoid bias in the assessment of the out-
come [27]. The initial level of programming experience was
also checked, and proved to be similar for both groups. How-
ever, we cannot dismiss the possibility that, since they were
enrolled on more technical courses, the UA group had been
exposed during the period of the study to additional CT stim-
uli beyond those associated with the programming training,
which may account for part of the improvement. The UA and
the UCAM group also started from different self-perception
levels. A higher initial level of CT self-perception may mean
that the subjects are inclined towards a higher level of engage-
ment in CT-related activities, which may also account for part
of the improvement. In order to manage this type of threat,
replica studies are needed.

Other potential threats to the internal validity are the loss
to follow-up and differential loss to follow-up (experimental
mortality). Loss to follow-up occurs when individuals drop
out during the study period. In our case, 21.8% of the subjects
(29 out of 133) dropped out of the study. It is important to
note that none of the students that had participated in the
first part of the study declined to participate the second time.
In addition, students did not know in advance that they were
going to be measured twice, nor when these measures would
take place, so we can assume that this drop out was not related
to the study, and did not affect the results. This risk was unfor-
tunately unavoidable, since for ethical reasons completion of
the questionnaires needed to be voluntary, and the workload
at the end of the term tends to be high, causing some students
to stop attending classes. Differential loss to follow-up is seen
when the drop-out rate differs between the exposed group
and the group that was not exposed. The drop-out rate for
the UA group was 17%, while for the UCAM group (control)
it was 27%. Since the higher drop out occurred in the control
group (the group that was not receiving any treatment) we can
assume that the treatment was not responsible for the drop out
rate. The final groups also remained balanced (54 subjects
in the treatment group and 50 in the control group), which
increases the precision of the study [27].
Threats to external validity are concerned with generalisa-

tion of the results. The main threat to external validity here
is that the subjects were students of two specific degrees,
and the sample was therefore unrepresentative of the overall

population of first-year university students. Again, new
replica studies are needed in order to mitigate this risk.
Threats to construct validity refer to the relationship

between theory and observation. In our study we clearly spec-
ified research questions leading to the definition of the study
aim and objectives, which in turn led to the CT construct and
the way in which it was measured. Our OCT measurement
instrument was also thoroughly validated. However, the SCT
measure consisted of a single item, and this may have limited
its reliability. Unfortunately, to the best of our knowledge
there are no other measures for SCT against which we can
draw comparisons.

Lastly, threats to conclusion validity (also referred to as
statistical validity) refer to the relationship between the treat-
ment and the outcome. All the statistical analyses were pre-
ceded by tests in order to ensure that the assumptions of
the statistical procedure were not being violated. When such
assumptions were not met, we applied alternative statisti-
cal analyses that were robust to the type of data violation
encountered.

VI. CONCLUSION AND FURTHER LINES OF RESEARCH
In this paper we have presented a concurrent cohort observa-
tional study that empirically demonstrates the impact that a
programming course can have on both OCT and SCT.

Our results suggest that CT capabilities are not devel-
oped naturally, but need to be trained. Our data also sup-
ports the widespread idea that enrolling on programming
courses increases the CT capabilities. In our study, the CT
scores for the UA group, who were enrolled on a four-month
Python course, increased by 1.66 points (that is, 8.50%)
on average. In contrast, the simple passing of time caused
an increase of only 1.39% in the CT scores of the UCAM
group. Interestingly, despite the increase in their proficiency,
the UA group reported a decrease in their technology pro-
ficiency self-perception after being exposed to program-
ming challenges, while the self-perception of the UCAM
group was maintained. These results may be explained by
two widely accepted facts: (i) people tend to over-estimate
their skills, and (ii) young people have digital skills gaps
that are as wide as in the rest of society [37]. The pro-
gramming course probably made the UA group aware of
their initial over-estimation in February, which may have
caused a downward adjustment of their self-perception
in May.

These results are in line with the conclusions of the second
cycle of the International Computer and Information Literacy
Study (ICILS 2018) [38]. This international study, which pro-
vides countries with comparable data on students’ develop-
ment of computer and information literacy skills, empirically
demonstrated that the development of sophisticated digital
skills does not automatically result from growing up with
digital devices nor simply from providing students with infor-
mation and communications technology equipment. Refer-
ence [39]. Instead, students need to be taught how to use

VOLUME 8, 2020 72323



C. Cachero et al.: Impact of Programming Exposure on the Development of CT Capabilities: Empirical Study

computers effectively, and teachers need support in their use
of CT in teaching. Additionally, the study produced clear
evidence of the impact of computer and information liter-
acy (CIL) on student’s learning experience, and how CIL and
CT skills are required in order to be able to study, work and
live in a digital world.

Another important issue arising from the results of the
ICILS study establishes the impact of socioeconomic status
on digital literacy, with students from higher socioeconomic
status backgrounds having significantly higher computer
information literacy scores. From our point of view, the exis-
tence of this difference supports our claim that university
undergraduate degrees should include specific CT training
activities in their curricula, so that it is possible to contribute
to bridging this gap. However, the issue of how should this be
done remains. One possibility might be to design a specific
CT course, with or without adaptations, that would bemanda-
tory for all the students, regardless of their degree. One exam-
ple of such a course is the ‘‘Introduction to Computational
Thinking’’ proposal from Hambrusch et al. [29]. However,
there are other possibilities, such as introducing CT-related
tasks in a transversal way.

Last but not least, the research community has not yet
been able to provide guidance for the process of deciding
which course or activity approach would be more effec-
tive, both in terms of CT improvement and increasing the
student’s motivation in different contexts. In view of this,
the authors of [29] advocate for the use of a problem-driven
approach focused on scientific discovery and computational
principles, which includes problems that are directly related
to the student’s area of interest, although not necessarily
within their specialist domain. Although this sounds sensible,
we believe that only the provision of standardised measure-
ment instruments and the execution of sufficient empirical
studies can shed light on the best approaches for developing
CT capabilities with different subject profiles and in different
contexts.

Regardless of the option chosen, it seems clear is that
we need empirical data to assess which is the best teaching
pedagogy for CT.We also need tomake sure that the introduc-
tion of CT does indeed contribute to improving the student’s
learning experience.

In order to contribute to filling this research gap, we plan to
develop and validate an instrument to measure SCT. We also
intend to assess whether the OCT and SCT scores for stu-
dents enrolled on non-technical courses are affected to the
same extent by the exposure to programming as those of sub-
jects enrolled on technical courses. Finally, we areworking on
a replica study in which students enrolled on other technical
courses are measured, in order to check whether the observed
behaviour remains consistent. This replica also introduces the
execution of two focus groups, one containing CT teachers
and another containing a subset of the students enrolled on
the study, in order to be able to perform a more in-depth
interpretation of the data.

ACKNOWLEDGEMENTS
The authors would like to thank the subjects of the experiment
and the local facilitators who kindly agreed to participate in
our study.

REFERENCES
[1] L. Manovich, Software Takes Command, vol. 5. London, U.K.:

A. & C. Black, 2013.
[2] D. Rushkoff, Program Or Be Programmed: Ten Commands for a Digital

Age. New York, NY, USA: OR Books, 2010.
[3] J. M. Wing. (2010). Computational Thinking: What and Why? Accessed:

Jan. 20, 2020. [Online]. Available: http://www.cs.cmu.edu/~CompThink/
resources/TheLinkWing.pdf

[4] Google. Computational Thinking for Educators. Accessed:
Jan. 20, 2020. [Online]. Available: https://computationalthinkingcourse.
withgoogle.com/unit?lesson=8&unit=1

[5] J. M. Wing, ‘‘Computational thinking and thinking about computing,’’
Phil. Trans. Roy. Soc. London A, Math., Phys. Eng. Sci., vol. 366, no. 1881,
pp. 3717–3725, 2008.

[6] Google. Exploring Computational Thinking. Accessed: Jan. 20, 2020.
[Online]. Available: https://edu.google.com/resources/programs/
exploring-computational-thinking/

[7] M. Román-González, J.-C. Pérez-González, J. Moreno-León, and
G. Robles, ‘‘Extending the nomological network of computational
thinking with non-cognitive factors,’’ Comput. Hum. Behav., vol. 80,
pp. 441–459, Mar. 2018.

[8] F. J. García-Pe nalvo, ‘‘What computational thinking is,’’ J. Inf. Technol.
Res., vol. 9, no. 3, pp. 5–8, 2016.

[9] Scratch. Accessed: Jan. 20, 2020. [Online]. Available: https://
scratch.mit.edu/

[10] Scratch. Mit App Inventor: Anyone Can Build Apps That
Impact the World. Accessed: Jan. 20, 2020. [Online]. Available:
http://appinventor.mit.edu/explore/

[11] BQ. Bitbloq: Una Nueva Forma De Programar Facil, Sencilla E Intuitiva.
Accessed: Jan. 20, 2020. [Online]. Available: http://bitbloq.bq.com/

[12] Code.org. Code.Org. Accessed: Jan. 20, 2020. [Online]. Available:
https://code.org/, last accessed: 20/01/2020.

[13] Tynker. Tynker: Coding for Kids. Accessed: Jan. 20, 2020. [Online]. Avail-
able: https://www.tynker.com/

[14] K. Brennan and M. Resnick, ‘‘New frameworks for studying and assessing
the development of computational thinking,’’ inProc. Annu.Meeting Amer.
Educ. Res. Assoc., Vancouver, BC, Canada, 2012, pp. 1–25.

[15] S. Y. Lye and J. H. L. Koh, ‘‘Review on teaching and learning of compu-
tational thinking through programming: What is next for K-12?’’ Comput.
Hum. Behav., vol. 41, pp. 51–61, Dec. 2014.

[16] S. Papert, Mindstorms: Children, Computers, and Powerful Ideas.
New York, NY, USA: Basic Books, 1980.

[17] J. M. Wing, ‘‘Computational thinking,’’ Commun. ACM, vol. 49, no. 3,
pp. 33–35, 2006.

[18] F. Kalelioglu, Y. Gülbahar, and V. Kukul, ‘‘A framework for computational
thinking based on a systematic research review,’’ Baltic J. Modern Com-
put., vol. 4, no. 3, p. 583, 2016.

[19] S. Grover and R. Pea, ‘‘Computational thinking in K–12: A review of the
state of the field,’’ Educ. Researcher, vol. 42, no. 1, pp. 38–43, Jan. 2013.

[20] J. Lockwood and A. Mooney, ‘‘Computational thinking in education:
Where does it fit? A systematic literary review,’’ 2017, arXiv:1703.07659.
[Online]. Available: http://arxiv.org/abs/1703.07659

[21] M. Román-González, J.Moreno-León, andG. Robles, ‘‘Combining assess-
ment tools for a comprehensive evaluation of computational thinking inter-
ventions,’’ in Computational Thinking Education. Singapore: Springer,
2019, pp. 79–98.

[22] J. Robertson, ‘‘How to measure computational thinking,’’ Heriot-
Watt Univ., Edinburgh, U.K., Tech. Rep., 2010. [Online]. Available:
https://judyrobertson.typepad.com/judy_robertson/research.html

[23] K. Howland, J. Good, and K. Nicholson, ‘‘Language-based support for
computational thinking,’’ in Proc. IEEE Symp. Vis. Lang. Human-Centric
Comput. (VL/HCC), Sep. 2009, pp. 147–150.

[24] S. Brasiel, K. Close, S. Jeong, K. Lawanto, P. Janisiewicz, and T. Martin,
‘‘Measuring computational thinking development with the FUN! Tool,’’
in Emerging Research, Practice, and Policy on Computational Thinking.
Cham, Switzerland: Springer, 2017, pp. 327–347.

72324 VOLUME 8, 2020



C. Cachero et al.: Impact of Programming Exposure on the Development of CT Capabilities: Empirical Study

[25] L. Werner, J. Denner, S. Campe, and D. C. Kawamoto, ‘‘The fairy perfor-
mance assessment: Measuring computational thinking in middle school,’’
in Proc. 43rd ACM Tech. Symp. Comput. Sci. Edu. SIGCSE. New York,
NY, USA: ACM, 2012, pp. 215–220.

[26] A. G. Bluman, Elementary Statistics: A Step by Step Approach. New York,
NY, USA: McGraw-Hill, 2012.

[27] M. D. A. Carlson and R. S. Morrison, ‘‘Study design, precision, and valid-
ity in observational studies,’’ J. Palliative Med., vol. 12, no. 1, pp. 77–82,
Jan. 2009.

[28] D. E. Perry, A. A. Porter, and L. G. Votta, ‘‘Empirical studies of software
engineering: A roadmap,’’ in Proc. Conf. Future Softw. Eng. New York,
NY, USA: ACM, 2000, pp. 345–355.

[29] S. Hambrusch, C. Hoffmann, J. T. Korb, M. Haugan, and A. L. Hosking,
‘‘A multidisciplinary approach towards computational thinking for science
majors,’’ ACM SIGCSE Bull., vol. 41, no. 1, pp. 183–187, Mar. 2009.

[30] E. Freeman, Head First Learn to Code: A Learner’s Guide to Coding and
Computational Thinking. Newton, MA, USA: O’Reilly Media, Inc., 2018.

[31] M. Román-González, ‘‘Computational thinking test: Design guidelines and
content validation,’’ in Proc. EDULEARN Conf., 2015, pp. 2436–2444.

[32] T. Ediciones. Tests En línea Tea Ediciones. Accessed: Jan. 20, 2020.
[Online]. Available: http://www.e-teaediciones.com/

[33] G. I. I. del Software Libre, Universidad Rey Juan Carlos. Dr. Scratch
Website. Accessed: Jan. 20, 2020. [Online]. Available: http://
www.drscratch.org/

[34] Bebras. Bebras: International Challenge on Informatics and Com-
putational Thinking. Accessed: Jan. 20, 2020. [Online]. Available:
https://www.bebras.org/?q=about

[35] M. R. González, ‘‘Codigoalfabetización y pensamiento computacional en
educación primaria y secundaria: Validación de un instrumento y evalu-
ación de programas,’’ Ph.D. dissertation, UNED, Madrid, Spain, 2016.

[36] T. D. Cook, D. T. Campbell, and A. Day, Quasi-Experimentation: Design
and Analysis Issues for Field Settings, vol. 351. Boston, MA, USA:
Houghton Mifflin, 1979.

[37] Perception & Reality: Measuring Digital Skills Gaps in Europe, India and
Singapore, ECDL Foundation, Dublin, Republic of Ireland, 2018.

[38] B. Eickelmann, ‘‘Measuring secondary school students’ competence in
computational thinking in ICILS 2018—Challenges, concepts, and poten-
tial implications for school systems around the world,’’ in Computational
Thinking Education. Singapore: Springer, 2019, pp. 53–64.

[39] V. Jacobson. (2019). ICILS 2018 Results Press Release. [Online]. Avail-
able: https://www.iea.nl/publications/press-release/icils-2018-results-
press-release

CRISTINA CACHERO is currently an Associate
Professor with the University of Alicante, where
she also teaches different courses in the areas
of programming and software engineering. Her
research topics revolve around the areas of soft-
ware modeling and empirical software engineer-
ing, where she has carried out several evaluations
of software engineering techniques, methods, and
notations in the context of requirements engineer-
ing, model-driven engineering, and user-centered

development. She has been awarded several fellowships to support her
research work. She has been a Visiting Researcher with the Politecnico
de Milano, Italy, with the Gent University, Belgium, with the Université
de Montréal, Canada, and with the Universidad de la Frontera, Chile. She
is a coauthor of several articles in well-known journals, such as the IEEE
Multimedia, the Journal of Systems and Software (JSS), the Journal of Web
Engineering (JWE), Empirical Software Engineering (ESE), Information
and Software Technology (IST), and the International Journal of Intelligent
Systems (IJIS), and conferences of impact in her research area DEXA,
WISE, ER, EC-Web, ICWE, and CAISE. She regularly serves in the PC of
conferences and workshops in her area of expertise, and she has also acted as
an invited Reviewer in several international journals. She has been a Guest
Editor of some special issues in well-known journals, such as JSS or JWE.
She has co-organized several workshops in international conferences, such
as WTA (SAC 2005), IWWUA (WISE 2008 and WISE 2009), and QWE
(ICWE 2010 and ICWE 2011).

PILAR BARRA received the Ph.D. degree in eco-
nomics from the Catholic University of Murcia,
Spain. She is currently working as an Assistant
Professor with the Catholic University of Murcia,
where she also leads as an Academic Coordinator
and the master’s degree in innovation and tourism
marketing. Her research interests include cultural
and educational tourism, economic impact analy-
sis, educational gender differences, and technolo-
gies applied to Education. She has published in

prestigious journals and has participated as coauthor in book chapters and
special reports. She has also participated in several research projects, some
of them supported by the European Union.

SANTIAGO MELIÁ received the Ph.D. received
from the University of Alicante, in 2007.

He is currently an Associate Professor with
the Department of Languages and Information
Systems, University of Alicante. His research
interests include model-driven development, web
engineering methodologies, automatic code gen-
eration techniques, and web software architecture.
In the last years, he has focused on the empirical
software engineering applied to the area of the

model-driven for refuting his promises of improvement in productivity, main-
tainability, and satisfaction in the software development. He has published
in prestigious journals, such as the IEEE INTERNET COMPUTING, the Journal of
Systems and Software, Information Systems Frontiers, the European Journal
of Information Systems, Information and Software Technology, and the Jour-
nal of Web Engineering, and conferences are OOPSLA,WISE, ER, EC-Web,
ICWE, and CADUI. He regularly serves in the PC of several international
conferences (WWW, ICWE, and JISBD) and he has co-organized during
three years the international workshop MDWE, in 2011, 2012, and 2013.
Finally, It is important to highlight that he has coordinated and participated in
several industrial research projects inwhich it has been able to apply the latest
techniques of software engineering to develop applications for companies,
such as Ambulancias Ayuda S. L. U, INASE, Patronato de Turismo de la
diputación de Alicante, Smartloto S. L, and SUMA Gestión Tributaria.

OTONIEL LÓPEZ received the M.S. degree in
computer science from the University of Alicante,
Spain, in 1996, and the Ph.D. degree in computer
science, in 2010.

From 1997 to 2003, he worked as a Program-
mer Analyst in an important industrial informat-
ics firm. In 2003, he joined to the Computer
Engineering Department, Miguel Hernandez Uni-
versity (UMH), Spain, as an Assistant Professor.
In 2012, he was promoted to an Associate Profes-

sor. He currently leads the GATCOM Research Group (atc.umh.es), Miguel
Hernandez University. His research and teaching activities are related to
multimedia networking (audio/video coding and network delivery).

VOLUME 8, 2020 72325


	INTRODUCTION
	CT AND PROGRAMMING

	RELATED WORK
	EXPERIMENTAL DESIGN
	OBJECTIVES AND CONTEXT DEFINITION
	EMPIRICAL STUDY DESIGN
	VARIABLES
	HYPOTHESES
	OCT AND SCT MEASURING INSTRUMENTS


	EXECUTION OF THE STUDY
	DATA ANALYSIS
	ANALYSIS OF THE OBJECTIVE COMPUTATIONAL THINKING CAPABILITIES: OCT
	ANALYSIS OF THE SUBJECTIVE AUTO-PERCEPTION ON COMPUTATIONAL THINKING: SCT
	THREATS TO THE VALIDITY OF THE STUDY

	CONCLUSION AND FURTHER LINES OF RESEARCH
	REFERENCES
	Biographies
	CRISTINA CACHERO
	PILAR BARRA
	SANTIAGO MELIÁ
	OTONIEL LÓPEZ


