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Featured Application: This work may help radiologists to diagnose pulmonary embolism.

Abstract: Pulmonary Embolism (PE) is a respiratory disease caused by blood clots lodged in the
pulmonary arteries, blocking perfusion, limiting blood oxygenation, and inducing a higher load on the
right ventricle. Pulmonary embolism is diagnosed using contrast enhanced Computed Tomography
Pulmonary Angiography (CTPA), resulting in a 3D image where the pulmonary arteries appear as
bright structures, and emboli appear as filling defects, with these often being difficult to see, especially
in the subsegmental case. In comparison to an expert panel, the average radiologist has a sensitivity of
between 77% and 94%. Computer Aided Detection (CAD) is regarded as a promising system to detect
emboli, but current algorithms are hindered by a high false positive rate. In this paper, we propose
a novel methodology for emboli detection. Instead of finding candidate points and characterizing
them, we find emboli directly on the whole image slice. Detections across different slices are merged
into a single detection volume that is post-processed to generate emboli detections. The system was
evaluated on a public PE database of 80 scans. On 20 test scans, our system obtained a per-embolus
sensitivity of 68% at a regime of one false positive per scan, improving on state-of-the-art methods.
We therefore conclude that our multi-slice emboli segmentation CAD for PE method is a valuable
alternative to the standard methods of candidate point selection and classification.

Keywords: pulmonary embolism; computed aided detection; computed tomography; segmentation;
convolutional neural networks

1. Introduction

Pulmonary Embolism (PE) is a deadly disease formed when emboli lodge in the pulmonary
arteries. Emboli can be formed in-situ or as a result of deep venous thrombosis, traveling through
the blood stream, and traversing the right heart cavities. Emboli lodged in the pulmonary arteries
impede blood flow, causing poor or no oxygen exchange and increasing right ventricular afterload.
Decreased oxygenation can result in poor oxygen delivery to vital organs that can cease to function
or malfunction. An increased right ventricular afterload results in right heart strain, which can cause
right-sided heart failure, ischemia, and death. Lack or delay in treatment increases morbidity and
mortality [1]. From an epidemiological standpoint, in the United States, PE affects 300,000–600,000
Americans/year, resulting in 12,000–80,000 deaths [2]. There are no global numbers for Europe, but the
incidence of PE in Sweden, for example, is estimated to be 19,000 cases per year and 39,480 France [3].

Pulmonary embolism is clinically presented with a non-specific symptomatology that includes
chest pain, shortness of breath and tachycardia, and may include hemoptysis, hypotension, and loss of
consciousness. The clinical diagnosis of PE can be challenging, with radiological Computed Tomography
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Pulmonary Angiography (CTPA) being the gold standard. This procedure involves injecting a contrast
agent into the patient’s pulmonary arteries, imaging with a computed tomography (CT) scanner and
reading the images to find filling defects. Such filling defects are the result of the emboli blockage of the
contrast agent. Since the clinical symptoms for PE are non-specific and there is no laboratory test for the
diagnosis of PE, many of the CTPA performed in clinical settings are not positive for PE.

Computer Aided Detection (CAD) methods have been used in PE diagnosis to measure the right
ventricle strain [4,5] and to detect PE automatically. In comparison with a panel of expert radiologists,
the sensitivity of an individual radiologist ranges from 77% to 94% [6,7]. Works on using CAD systems
as a second reader have shown increases in reader sensitivity of 92–98% [6–13]. However, current
systems of CAD for PE show moderate sensitivity (65%) at a fairly high false positive rate (three false
positives per study), preventing their general adoption in clinical practice [14].

CAD algorithms for PE follow a two-step process, in which a set of candidate points are selected and
tested to discriminate between emboli and false detections. Older studies extracted hand-crafted features
around candidate points and used classification techniques to evaluate them [9,12]. Modern methods take
advantage of convolutional neural networks for both feature extraction and classification by generating
planar reformatted images centered around candidate points [15,16]. The more recent work [17] also
includes context information around the candidate point to improve detection performance.

In this work, we hypothesize that deep convolutional neural networks can be used to directly
detect emboli from images, without the need to detect candidate points. By using the whole image to
detect emboli, we let the network use both local and global image characteristics to discern between
PE and other image structures.

2. Materials and Methods

We treated the problem of CAD for PE as a segmentation problem, where we directly inputted the
image and outputted a segmentation mask of the emboli. We post-processed emboli segmentations to
generate emboli detections and evaluated the performance of the method, following the methodology
of González et al. [14].

2.1. Dataset

We used a total of 80 Computed Tomography Pulmonary Angiograms (CTPA) from the CAD-PE
challenge [14,18,19]. While the dataset was not obtained for this work, we describe it here for the sake
of clarity. The original scans were supplied from six different hospitals and coordinated by the “Central
Diagnostic Radiology Unit” in Madrid (Spain). SIEMENS Somaton Sensation 40 scanners were used
for the data acquisition with a pixel size between 0.58 and 0.85 mm and a slice thickness oscillating
between 0.75 and 1.5 mm.

Each scan was analyzed independently for the presence of PE by three radiologists with more
than 15 years of experience establishing the reference standard. In the case of discrepancy, a majority
voting scheme was employed. Furthermore, each radiologist marked regions of interest (ROI) around
all the visible clots using the sagittal and coronal views. The regions of interest were segmented
by applying an intensity threshold, binary closing operations and connected component analysis.
Each of the individual connected components represented a different embolus clot, the Figure 1 shows
an example of these findings. There was a total of 167 emboli in 60 training cases, with a per-case
total average volume of 5.04 × 103 voxels. The number of emboli per scan ranged between 0 and 21.
A variation in the reference standard was performed by dilating the border of each embolus with an
epsilon value as tolerance margin (ε = 2 mm and ε = 5 mm). This modification affected the number of
emboli and their size in the reference segmentations, but was only used for test purposes, leaving the
original reference standard (ε = 0 mm) to train and validate the system.
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Figure 1. Two samples of the data used. Left side images represent an axial slice of a scan. Right
side images represent the same image with the reference standard overlaid. Different colors represent
unconnected emboli.

2.2. Network Architectures

2.2.1. 2D Network

The 2D network was based on the U-Net structure [20]. The input to the network consisted of
axial slices of the training data, and the output was emboli segmentation. We used the reference
standard segmentations with ε =0 mm tolerance level as ground truth. The U-Net was composed of
four convolution and polling levels in the down-sampling encoder. Each level was composed of the
3 × 3 convolution operations that doubled the number of filters with respect to the previous level.
The first level started with 32 filters and the last encoder block had 256. Each encoder level was
followed by a 2 × 2 Max-Pooling operation. At the end of the encoder, we performed two further 3 × 3
convolutions with 512 filters each. The decoding was performed by four up-sampling blocks consisting
of an up-sampling operation, followed by the concatenation with the output of the corresponding
encoder level data and two 3 × 3 convolution operations, with the same number of filters as its
equivalent encoder level. To finish, a last 1 × 1 convolution was performed to obtain the network
output. All of the convolution outputs were activated with a “ReLU” function except the last 1 × 1
convolution, which used a sigmoid activation to concentrate the output values in the extremes of the
range [0, 1]. In addition, batch normalization was used for the convolution activations, to maintain the
mean close to zero and its standard deviation close to one.

2.2.2. 2.5D Network

This method was a variation of the 2D network where, instead of using a single axial slice as input,
we used a composition of five slices, corresponding to the two above and the two below the target
slice we wished to segment. We still used a single slice reference standard segmentation, comparing
this with the network output as minimization objective.

2.2.3. 3D Network

The 3D method consisted of a three-axis version, where we used the exact same structure as
the 2.5D network but trained it with slices in the three axial direction (transverse, coronal, and
sagittal planes). Since the scans did not have the same z resolution, we resampled them to achieve
a homogeneous size of 512 × 512 × 512. At the prediction stage, we tested each scan three times,
with input slices coming from different planes, obtaining three predictions, which were then merged
using the maximum value on each pixel.

2.3. Training

To train the three different networks, we split the 60 scans into two groups: 55 scans for training
and 5 for validation. As pre-processing, the data were clipped in the range [−200, 500] Hounsfield
Units (HU) and normalized to the range [0, 1]. Each model was trained for 200 epochs, keeping the
models with the best validation performance, which were then used to obtain the final coordinates over
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the test subset. As objective loss function, all methods minimized the binary cross-entropy between
reference standard segmentations and the predicted ones. We used the Adam optimizer with a learning
rate of 0.0005.

2.4. Post-Processing

After the training process, the model with the best validation performance was used to obtain
the probabilistic segmentations on the test subset. These results were then transformed into emboli
coordinates using the method shown in Figure 2. First, from the network predictions, a threshold of
0.5 was used to obtain a binarized mask. A binary closing operation with a kernel size of 5 × 3 × 3 was
used to eliminate small noise on the mask. Then, connected components analysis was used to generate
the different individual emboli.

In a second stage, the coordinates of each individual embolus were extracted. We applied an
inner distance transform for each connected component, and found the pixels that were furthest from
the perimeter. Then, we obtained the closest coordinates of such pixels to the center of mass of the
embolus. We applied this method to all connected components, generating a per-detected embolus
list of coordinates. Finally, each coordinate was associated with a score representing its probability of
being a clot. This score was the network output value at the coordinate position generating a list of
values composed by the coordinate in the “x”, “y”, and “z” axes and the “score” of probability.

Network

Input Slices
Output 

Predictions
Threshold 

Binarization
Closing 

Operation
Connected 

Components

Figure 2. Post-processing pipeline illustration: (top) the operations performed on the segmentation
network output; and (bottom) the method to extract coordinates from emboli segmentations. It should
be noted that the process is done in three Dimensions. The coordinate associated with the blue embolus
is in another axial plane.

2.5. Evaluation Metric

To compare the performance of the three different methods, we used the Free-response Receiver
Operating Characteristic (FROC) curve. This tool uses sensitivity in the detection of emboli, defined as
the total number of findings divided by the total number of emboli, together with the average false
positive per scan obtained by adding the false positive detections divided by the total number of test
scans. An embolus was correctly detected if any coordinate obtained by the tested network fell inside
its reference standard segmentation. FROC analysis is standard for the evaluation of methods that
locate several lesions in images, but unfortunately no clear figure of merit is widely accepted for such
curves [21], and we resort to visual inspection of the curves for the comparison of the methods.
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3. Results

First, we evaluated the segmentation performance of the proposed method. Qualitative segmentation
results are shown in Figure 3, where green labels represent true positives, red labels false negatives, and
yellow labels false positives. The average per-scan segmentation Dice score was 0.485 (standard deviation
of 0.297) for the 2D network, 0.367 (standard deviation of 0.214) for the 2.5D network, and 0.296 (standard
deviation of 0.160) for the 3D network. In all the cases, the standard deviation showed large discrepancies
across scans. Figure A1 shows the relationships between the total size of the emboli in the scan, measured
in voxels, and the Dice coefficient. There was a clear trend where the larger was the emboli in the scan,
the better was the segmentation.

Figure 3. Network outputs after thresholding and closing operations compared to the reference
standard segmentation with ε = 0 mm. True positives are shown in green, false positives in yellow, and
false negative in red. A predicted clot coordinate for that slice level is represented as a red cross.

Table 1 shows the per embolus sensitivity of each of the three methods and the number of false
positives per scan for the three tolerance margins ε = 0 mm, ε = 2 mm, and ε = 5 mm. The threshold
to set the operating point of the method was set at 0.75. There was a clear improvement of the 2.5D
method over the 2D method. For ε = 0 mm and ε = 2 mm, the sensitivity was similar, but the number of
False Positives per Scan (FPS) was more than halved. For ε = 5 mm, there was an increase in sensitivity
paired with a decrease in the number of FPS. The data in the table show no clear improvement between
the 2.5D and 3D methods. The 3D method had higher sensitivity, but also a higher number of FPS.

Table 1. Per embolus sensitivity and false positives per scan of the three proposed methods at the three
tolerance levels. The cutoff threshold was set at 0.75.

ε = 0 mm ε = 2 mm ε = 5 mm

Method Sens FPS Sens FPS Sens FPS

2D 0.49 1.5 0.56 1.45 0.59 1.35
2.5D 0.48 0.65 0.54 0.55 0.63 0.50
3D 0.55 1.00 0.61 1.00 0.68 0.95

Figure 4 displays the FROC curves. We included the results of the CAD-PE challenge in these
images challenge to enable comparison [14,18]. We refer the reader to these references for a description
and thorough evaluation of the other methods. The ASU-Mayo method is best described in [15] and
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the FUM-Mvlab method in [22]. The x-axis scale changes between the left and the right columns.
Please note that most methods do not detect all emboli, since they are not part of their candidate
selection mechanism or the segmentations did not reach the 0.5 threshold. The three proposed methods
outperformed the other participants of the CAD-PE challenge for all the regimes of FPS. The 2.5D and
3D methods outperformed the 2D method for all the regimes of FPS in which they have data. There
was a small increase in sensitivity of the 2.5D method over the 3D method in the range [0.25–4] FPS.
The 3D method clearly outperformed the 2.5D method on the range [0–0.25] FPS.
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Figure 4. Free-response Receiver Operating Characteristic (FROC) curves of the different methods proposed
in this work, together with the results of other methods submitted to the Computer Aided Detection of
Pulmonary Embolism (CAD-PE) challenge [14], using ε of 0, 2, and 5 mm. The x-axis represents the
false positive rate per scan and the y-axis is the per embolus sensitivity. (Left) The complete range of
false positives per scan. (Right) Zoomed in the range 0–4 false positives per scan.

The performance of the three proposed methods with respect to embolus volume is shown in
Figure 5. Each sub-image displays the histogram of embolus volume in green and the amount of
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emboli detected in blue. The x-axis is in logarithmic scale. All methods had problems finding emboli
with less than 0.5 mL volume. For emboli above 0.5 mL volume, the more complex is the network, the
better it performed, with the 3D network being the best-performing method. The cutoff value used to
generate these histograms was the same as that used for Table 1.

The 2D network processed one case in 51.5 ± 20.5 s. The 2.5D network in 47.0 ± 14.2 s. The 2.5D
method was faster than the 2D method because it produced a lower amount of connected components,
and therefore the post processing was faster ( 2.5D took 14.5 ± 8.5 s vs. 2D took 34.8 ± 17.9 s). The 3D
method processed one case in 100.8 ± 7.1 s, with post processing time of 10.4 ± 7.1 s. All methods were
fast enough to be used in an emergency setting. Timing was measured in an Intel i7-6850k CPU with
an Nvidia 1080-Ti graphics card.

Figure 5. Histograms of emboli volumes shown in green with detected emboli shown in blue for
the three proposed methods: (Left) the 2D network; (Middle) the 2.5D network; and (Right) the 3D
network. The more complex is the network, the more consistently it detected emboli. All methods
found it difficult to detect small emboli (less than 0.5 mL).

4. Discussion

CAD methods for pulmonary embolism have long suffered from a moderate sensitivity at high
regimes of false positives per scan, hindering their clinical use. Recent neural network methods have
improved the results of CAD for PE, using the same classic machine learning methodology consisting of
finding candidate points and then evaluating whether each candidate belongs to an embolus. We present
a method that avoids the use of candidate points by treating CAD for PE as a segmentation problem,
turning the segmentation into detection points as a post-processing step. We evaluated three methods
with this underlying idea: a method using axial slices as input data, a method using a slab of the CT
scan, and a method that combines information from axial, sagittal, and coronal planes.

The three methods presented outperformed the other participants on the CAD-PE challenge.
This may be because there was information about the location of the embolus that was relevant to its
shape and image characteristics. A distal embolus might not look similar if it is in the upper lobes or
the lower lung lobes. By using global segmentation strategies, the network can learn such differences.
When compared with the work of Lin et al. [17], the proposed methods showed lower performance at
the regime of two false positives per scan. It should be noted that the performance of their method at
lower FPS regimes, which are required for clinical practice, was unclear.

The methods improved when more data were added as input to the network. As such, the 2.5D
network outperformed the 2D network on all regimes of FPS. This is logical. Emboli are 3D structures,
and image variations on the z-axis contain valuable information. The authors were surprised to see that
the 3D method did not clearly outperform the 2.5D method on all FPS regimes. However, there was a
clear improvement in performance at very low FPS regimes ([0–0.25]), which indicates that the 3D
method successfully increases the score of certain emboli. This effect makes sense, since some emboli
that might not be clear in axial slices may be very clear in coronal or sagittal slices, and the context on
such planes might be more relevant than the few slices that the 2.5D method uses. Surprisingly, the
performance in terms of segmentation decreased with complexity, with the 2D method achieving a
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better Dice coefficient than the 2.5D or 3D method. This might indicate that the 3D network is more
restrictive in its findings, producing fewer false positives while keeping the embolus located.

There are several limitations to this study. First, we used only 60 CT scans for training. While
they account for more than 7000 slices, this number is small for training modern neural networks and
could be considered a small dataset. A larger number of scans would likely improve the performance
of the network. A thorough study on the improvement of performance with respect to the number of
training scans might shed more light on the optimal number of scans required for training. Second,
the scans on which we trained the dataset and the scans on which we tested them come from the same
institution and had been obtained with the same acquisition machines, which might bias the results
positively. The evaluation on external datasets, such as the one in [22], was left for future work. Third,
there is room to improve the segmentation performance of the network, since the baseline network
structure is very simple. More complex networks, using squeeze and excite blocks, for instance, may
greatly improve segmentation results that could lead to better emboli detection. Fourth, the proposed
method, as all other CAD for PE methods referenced in this paper, only detects emboli, and it is not
capable of classifying them as obstructive or non-obstructive. Such clinical information is important,
but impossible to obtain with the current dataset, since we do not have these labels for the emboli,
nor do we have a method to segment the pulmonary artery and test for obstruction. Fifth, it would
be of further interest to improve the method to compute clot burden scores, such as those in [23,24].
However, such scores require information on the anatomical location of the embolus, which is not
available with the method in the present study.

We do not know whether the proposed network would have an impact on clinical practice. Other
methods have been evaluated by radiologists and the sensitivity of radiologists, especially those without
extensive experience, has been shown to improve without reducing specificity. The proposed method
outperforms other CAD for PE algorithms and would likely have the same effect on radiologist’s
performance while being easier to use due to its lower rate of false positives per scan.

5. Conclusions

This article shows that the standard paradigm for CAD for PE algorithms of finding candidate
points and then evaluating their belonging to an embolus is inferior to the proposed paradigm of
directly locating emboli by treating the problem as a segmentation method. We achieved state-of-the
art performance with this paradigm using a simple segmentation network as backbone.
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Abbreviations

The following abbreviations are used in this manuscript:
CAD Computer Aided Detection
CAD-PE Computer Aided Detection of Pulmonary Embolism
CTPA Computed Tomography Pulmonary Angiography
FPS False positives per scan
FROC Free-Response Receiver Operating Characteristic
HU Hounsfield Units
PE Pulmonary Embolism
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Appendix A

The Dice coefficient measures the similarity between the reference and the predicted embolus
masks. The results represented in this appendix show the high correlation between the embolus size
and its correct segmentation predicted by the networks.

Figure A1. Comparison plot between per scan Dice coefficient and the total reference emboli volume
in logarithmic scale using 2D, 2.5D, and 3D network versions.
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