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Abstract

We investigate here the lowest-energy (spin-conserving) excitation

energies for the set of He-Ne atoms, with the family of non-empirical

PBE, PBE0, PBE0-1/3, PBE0-DH, PBE-CIDH, PBE-QIDH, and PBE0-

2 functionals, after employing a wide variety of basis sets systematically

approaching the basis set limit: def2-nVP(D), cc-pVnZ, aug-cc-pVnZ,

and d-aug-cc-pVnZ. We find that an accuracy (i.e. Mean Unsigned

Error) of 0.3-0.4 eV for TD-DFT atomic excitation energies can be

robustly achieved with modern double-hybrid methods, which are also

stable with respect to the addition of a double set of diffuse functions,

contrarily to hybrid versions, in agreement with recent findings em-

ploying sophisticated multi-configurational DFT methods.

Key words: double-hybrid density functionals, atomic excitation ener-
gies, diffuse basis functions.
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1 Introduction

Excited-state studies continue to be a topic of the most interest,1–3 not

only because the underlying theory intrinsically presents challenges for its

implementation in common codes, but also due to the interplay and large

number of factors affecting the final results in molecular and real systems.

Whereas ground-state properties still receive much more attention in the

ongoing development of Density-Functional Theory (DFT) (e.g. for built-in

datasets and the associated benchmarking of density functional approxima-

tions4,5) the applications to atoms are recently emerging as an alternative

for the benchmarking of DFT for excited-states too.6–8 This is facilitated by

the reasonable computational cost of atomic calculations compared to more

complex systems, together with the lack of geometry-induced and environ-

mental issues often difficulting the adequate comparison between various

theoretical methods.

We thus apply here a set of recently developed minimally empirical mod-

els, with the Time-Dependent Density-Functional Theory (TD-DFT) for-

malism, to the lowest-energy and spin-conserving (∆S = 0) excited-state

of atoms from He to Ne. This study aims also at complementing historical

studies employing more sophisticated methods,9–13 as well as shedding light

about the performance of some last-generation DFT methods (i.e. double-

hybrid functionals) from the fifth rung of the Jacob’s ladder. However, deal-

ing with atomic excitation energies unfortunately brings non-negligible (and

severe) basis set issues, due to the presence of valence and Rydberg states,

and the challenge they present for an accurate excited-state description in

all cases. For instance, it has been recently shown8 how adding diffuse basis

functions to state-of-the-art hybrid functionals dramatically deteriorates the
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results for standard TD-DFT calculations, with unreasonable errors reach-

ing up to 1.5-2.5 eV with respect to experimental values14 for first- and

second-row atoms. Note that the recently developed Multiconfigurational

Pair-Density Functional Theory15 (MC-PDFT) was instead not affected of

such basis set dependence, which clearly shows some shortcoming of stan-

dard excited-state applications for atoms with basis sets of moderate or even

large size, contrarily to what is often observed in molecular applications.16

These results prompted us to perform here a more systematic TD-DFT

investigation, taking into account that both parameterized and non-empirical

functionals exist in the literature for each step of the Jacob’s ladder, and

that the performance and/or basis set dependence for atoms of the latter

has not been yet investigated in much detail. Note also that we would like

to primarily emphasize the role played by a set of modern double-hybrid

density functionals, since their pioneering applications to excited-states of

representative sets of medium-size organic chromophores already showed a

more accurate qualitative (but even quantitative) behavior17–21 with respect

to hybrid (and universally applied) functionals. These findings were later

generalized for a much larger set of systems in a recent publication,22 and

exploited for the development of low-cost datasets for excited-state bench-

marking, showing that further studies are still needed to establish their

accuracy and robustness. Therefore, the applications of these models to

excited-state of atoms, with large basis sets including one and two sets of

additional diffuse functions in some cases, would help to bracket their accu-

racy and further promote their use and applicability among the excited-state

community.

4



2 Theoretical details

We present in more detail next the set of non-empirical density func-

tionals23,24 employed in this study. The hierarchical approximation to the

construction of modern density functional starts with the typical exchange,

Ex[ρ], and correlation, Ec[ρ], expressions, and can add tailored portions of

orbital-dependent EXact-like eXchange (EXX), EEXX
x [φ], and second-order

Perturbation Theory (PT2), EPT2
c [φ, φ′], to cover semi-local, global-hybrid

(GH) or double-hybrid (DH) forms in a systematic fashion.25 The final ex-

pression thus depends on the corresponding weights given to those explicit

orbital-dependent terms, λx and λc, respectively, and can be casted as:

Exc = λxE
EXX
x [φ] + (1− λx)Ex[ρ] + λcE

PT2
c [φ, φ′] + (1− λc)Ec[ρ]. (1)

Table 1 summarizes the functionals selected, from the semi-local PBEmodel26

through a pair of highly representative hybrid (PBE027 and PBE0-1/328)

models widely employed for TD-DFT applications, while assessing the per-

formance of the few existing non-empirical DH functionals such as PBE0-

DH,29 PBE-CIDH,30 PBE-QIDH,31 and PBE0-2.32 Note also that: (i) the

values of λx and λc of Table 1 were obtained by the developers after imposing

theoretical constraints, without any further parameterization against train-

ing datasets, and are thus dubbed “non-empirical” models consequently;

(ii) the functionals are presented according to their increasing λx and λc

values; and (iii) each ladder (i.e. semi-local, hybrid, and double-hybrid) of

methods will be also compared (vide infra) with representative and accurate

parameterized expressions based on the BLYP functional33,34 for the sake

of completeness.

As regards the basis sets used, we choose the def2-nVP35 (n = S, TZ,

QZ) and cc-pVnZ36 (n = D, T, Q, 5, 6) families, which will be further
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augmented by a standard set of diffuse functions, i.e. the def2-nVPD37 and

the aug-cc-pVnZ38 families respectively, or by an additional one in the case

of the d-aug-cc-pVnZ casei.39 These basis sets are widely employed for TD-

DFT applications and will also allow us to compare with previous results in

the literature for PBE and PBE0. More specific basis sets, e.g. (aug-)pc-

n40,41 or (aug-)cc-pwCVnZ,42 were not considered since previous atomic

applications with hybrid or range-separated functionals did not show great

differences with respect to Dunning- or Ahlrichs-type basis sets.43 Note that

in the case of DH models44 the atomic excitation energies (Ω) presented are

obtained in a two-step fashion,

ΩDH = ΩGH + λc∆
(D), (2)

where the perturbative-like correction45,46 ∆(D) is weighted by the λc value,

and then added to the initial excitation energies (ΩGH) obtained for the

underlying global-hybrid; i.e. if one sets λc = 0 in Eq. (1).

The atomic states and orbital transitions studied are the following:

• He (1S – 1S): 1s2–1s2s • Li (2S – 2P): 2s–2p • Be (1S – 1P): 2s2–2s2p

• B (2P – 2S): 2p–3s • C (3P – 3P): 2p2–2p3s • N (4S – 4P): 2p3–2p23s

• O (3P – 3S): 2p4–2p33s • F (2P – 2P): 2p5–2p43s • Ne (1S – 1P): 2p6–2p53s

Some technical details are: (i) All the calculations were done using the

ORCA 4.0.1.2 quantum-chemical package47 with experimental atomic ener-

gies taken as reference;14 (ii) for atoms with a degenerate ground-state (e.g.

B) the excitation considered does not belong to that sublevel (e.g. 2p–2p);

(iii) we always used an unrestricted solution for open-shell atoms and choose

the lowest energy solution keeping the orbital nature of the desired excited-

state; and (iv) we discard those excitations with a pronounced deviation
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of the expected 〈Ŝ2〉 value for the excited-state, as determined with hybrid

methods using the Gaussian 09 package48 as a sanity check.

As metrics to quantify the performance of all methods, Mean Signed

Error (MSE), Mean Unsigned Error (MUE), and Mean Absolute Percent-

age Error (MAPE) are used hereafter to quantify the deviations between

computational (ai) and reference or forecast (fi) results:

MSE =
1

N

N
∑

i

(ai − fi) ,

MUE =
1

N

N
∑

i

|ai − fi|,

MAPE =
100

N

N
∑

i

∣

∣

∣

∣

ai − fi

ai

∣

∣

∣

∣

.

3 Results and discussion

3.1 The def2-nVP(D) family of basis sets

We first analyze the performance of the def2-nVP family of basis sets,

widely used for TD-DFT applications in molecular systems, for all the con-

sidered functionals. As can be seen from Table 2, very large and inconve-

nient MUE values are obtained for all the functionals, although the errors

are roughly reduced an order of magnitude upon increasing the basis set size

going from the cost-effective def2-SVP to the def2-QZVP one. This situa-

tion drastically changes when adding a set of diffuse functions (D) to any of

the def2-SVP, def2-TZVP, and def2-QZVP basis sets (see also Table 2) to

become def2-SVPD, def2-TZVPD, and def2-QZVPD, respectively. Looking

more specifically at the results obtained at the highest def2-QZVPD level,
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relatively low MUE values between 0.5-1.0 eV are obtained with the set of

PBE-based functionals, with the hybrid functionals PBE0 and PBE0-1/3

slightly outperforming the rest of double-hybrid methods, which prompts

for the use of still larger basis sets, also including more diffuse functions, to

investigate if this trend will remain upon increasing the basis set size.

3.2 The (aug-)cc-pVnZ family of basis sets

The use now of the cc-pVnZ family (Table 3) does not change too much

the situation with respect to the def2-nVP former results, with all the func-

tionals selected still affected by large errors. Once more, these errors are

roughly reduced an order of magnitude upon increasing the basis set size

going from the modest cc-pVDZ to the cc-pV5Z one. Note also that the

cc-pV6Z basis set is not available for Li and Be, and thus we prefer in the

following to exclude it from any quantitative discussion. Remarkably, aug-

menting the cc-pVnZ basis sets with one set of diffuse functions, i.e. the

aug-cc-pVnZ family, brings the results again much closer to the experimen-

tal ones (Table 4). Looking carefully to the results obtained with the very

large aug-cc-pV5Z basis set (the aug-cc-pV6Z is neither available for Li and

Be) the MUE values are comprised between 0.4-1.1 eV for the PBE-based

family of expressions. Interestingly, there is now a qualitative improve-

ment upon going through the hierarchy of density functionals: the best DH

methods (PBE0-DH and PBE-CIDH give very close values) behave better

than the hybrid methods (PBE0 and PBE0-1/3) and these better than the

semi-local PBE expression. For comparison purposes with previous works

on molecules,49 we also run calculations with the modest but cost-effective

6-31+G(d,p) basis set, leading to an almost constant (and large) MUE of

4.0-4.2 eV for all the functionals considered in this work, thus pointing out
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the role of core functions in atoms.

3.3 The d-aug-cc-pVnZ extension

We finally explore the effect of adding an additional set of diffuse func-

tions to the aug-cc-pVnZ basis sets, except for the Li and Be atoms due

to its unavailability, which helps to better reconcile theory and experiment

(see Table 5) allowing to interpret the results according to the hierarchy

of functionals, i.e. the Jacob’s ladder is now more consistently preserved.

Note first that semi-local and hybrid methods have a not stable behavior

upon adding this second set of diffuse functions, which was also observed

before in Ref. 8, since the MUE values are now considerably higher than

those obtained with the simpler aug-cc-pVnZ family. However, the results

for double-hybrid methods do not deteriorate upon the addition of this sec-

ond set of diffuse functions, and show a more robust accuracy: we found

MUE values between 0.3-0.6 eV for all the functionals considered together

with any member of the d-aug-cc-pVnZ (n =D–5) basis sets. Particularly

remarkable is the performance of the PBE-QIDH model with these d-aug-cc-

pVnZ basis sets, with MUE values as low as 0.3-0.4 eV in all cases. Figure

1 shows how the MUE evolves along the sequence of employed functionals,

ordered according to the increasing value of λx, for both aug-cc-pV5Z and

d-aug-cc-pV5Z basis sets. Note that for the proper comparison of values,

the Li and Be atoms are excluded from the former since the d-aug-cc-pV5Z

is not available for these atoms.
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3.4 Dependence of the results on the λx and λc values

Upon inspecting closely the individual values for the atomic excitation

energies, we observed an increase of values upon increasing the λx weight,

see Eq. (1). This can be clearly seen in Figure 2, which presents the MSE

along the sequence of employed functionals, and with high quality basis sets

without excluding (cc-pV5Z and def2-QZVP) and including (def2-QZVPD,

aug-cc-pV5Z, and d-aug-cc-pV5Z) diffuse basis functions. The key role

played by diffuse functions is easily seen. Improving the basis set always

yields to lower excitation energies on average, irrespectively of the funcional

used. This leads to their severe underestimation by the semi-local PBE func-

tional, which is partly remedied using hybrid expressions (i.e. PBE0 and

PBE0-1/3). Double-hybrid methods also follow that trend, with a delicate

compromise between the basis sets size and the composition (i.e. λx and

λc values) of the functional. Concerning the dependence of the results only

with respect to λc values for double-hybrid methods, although its specific

impact is state- and basis-dependent, some trends also emerge. Therefore,

looking at the variation of the λc∆
(D) energy correction, we can state that:

(i) we always observe a larger impact on atomic excitation energies following

the order PBE0-2 > PBE-QIDH > PBE-CIDH > PBE0-DH, that is, upon

increase of λc values (see Table 1); and (ii) for the (d-)aug-cc-pV5Z basis

set taken as example, that impact oscillates between the lowest for the B

atom (–0.02 to –0.06 eV for the sequence PBE0-2, PBE-QIDH, PBE-CIDH,

and PBE0-DH) to the highest for the Ne atom (–0.49 to –1.43 eV for the

sequence PBE0-2, PBE-QIDH, PBE-CIDH, and PBE0-DH) as it was also

expected according to the own magnitude of the atomic excitation energies

inspected.
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3.5 Comparison with BLYP-based models

We compare next (see Table 6) the results between the PBE- and BLYP-

based families of density functionals for each comparable category (i.e. semi-

local, hybrid, and double-hybrid methods) to disclose if there are any tangi-

ble difference between parameterized (i.e. BLYP-based) and non-empirical

(i.e. PBE-based) models. We choose for this purpose the highly repre-

sentative BLYP (λx = λc = 0), B3LYP (λx = 0.2, λc = 0), B2-PLYP

(λx = 0.53, λc = 0.27), and B2GP-PLYP (λx = 0.55, λc = 0.36) functionals,

and fixed the aug-cc-pV5Z for the proper comparison between both families

of methods. Note that B2GP-PLYP has emerged in previous studies20 as

one of the most accurate DH model for TD-DFT, reaching an accuracy close

to 0.2 eV for singlet-singlet excitation energies of large organic molecular

systems. Interestingly, the MUE (eV) for these parameterized functionals is

1.20, 0.67, 0.34, and 0.37, respectively, with the corresponding MAPE (%)

being 13.5, 7.4, 3.5, and 2.9, clearly showing the gain in accuracy with the

increasing level of complexity of the functional form (i.e. from semi-local to

hybrid to double-hybrid methods). Compared with the corresponding non-

empirical expression, we note that: (i) slightly lower MUE and MAPE values

for PBE (1.11 eV / 12.3%) and PBE0 (0.52 eV / 5.5%) are obtained with

respect to BLYP and B3LYP, respectively; (ii) similar MUE and MAPE

values for PBE0-DH (0.39 eV / 3.1%) and PBE-CIDH (0.37 eV / 2.8%)

are obtained with respect to B2-PLYP and B2GP-PLYP; and (iii) slightly

higher but still competitive MUE and MAPE values are obtained in the case

of PBE-QIDH (0.61 eV / 4.8%) and PBE0-2 (0.82 eV / 8.0%) double-hybrid

models.
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3.6 Comparison with ab initio and MC-PDFT results

It is also interesting to compare these TD-DFT results with the avail-

able CASSCF and CASPT2 calculations using the aug-cc-pVQZ basis set

(values taken directly from the literature8). These costly multiconfigura-

tional methods gave MUE (MAPE) values of 0.55 and 0.31 eV (6.0 and

2.4%) respectively. Whereas the CASSCF errors compare favourably with

the best hybrid method from the BLYP- or the PBE-based family (see Ta-

ble 4 again), reaching the accuracy of CASPT2 would possibly need the use

of double-hybrid methods. Actually, expanding the set of systems tested

including first- and second-row atoms, literature results showed a MUE be-

tween 0.4-0.6 eV (0.2-0.4 eV) for CASSCF (CASPT2) with the sequence

of aug-cc-pVTZ, aug-cc-pVQZ, and aug-cc-pV5Z basis sets.8 The double-

hybrid functionals seem also competitive with the MC-PDFT method (with

the translated tPBE functional incorporating a dependence on the density

and the on-top pair density50) also tested for challenging optical excitations

in molecules with great success.51 For the set of He-Ne atoms, discarding Li

and Be, MC-PDFT gives a MUE of 0.35 eV (0.41 eV) with the aug-cc-pVQZ

(d-aug-cc-pVQZ) basis set, close to the values found here (see Tables 4 and

5).

4 Conclusions

We have assessed in this work a set of non-empirical hybrid and double-

hybrid functionals, the latter increasingly applied within the TD-DFT frame-

work, to spin-conserving atomic excitation energies. Generally speaking,

reasonable good results are obtained with those models with large basis sets

including diffuse functions, with the same or slightly higher quality than
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other parameterized functionals also tested. Interestingly, the double-hybrid

functionals behave consistenly better and sufficiently accurate when the ba-

sis set is further expanded with additional diffuse functions, contrarily to

the hybrid versions, which could be of interest to calculate Rydberg states

on molecular systems too.
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[28] Guido, C. A.; Brémond, E.; Adamo, C.; Cortona, P. Communication:

One third: A new recipe for the PBE0 paradigm. The Journal of Chem-

ical Physics 2013, 138, 021104–021104.
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Table 1: Summary of the
λx and λc values entering
into the PBE-based family
of non-empirical function-
als considered.

Functional λx λc

PBE 0 0

PBE0 1
4 0

PBE0-1/3 1
3 0

PBE0-DH 1
2

1
8

PBE-CIDH 6−
1

3
1
3

PBE-QIDH 3−
1

3
1
3

PBE0-2
(

1
2

)
1

3 1
2
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Table 2: MUE (in eV) for atomic excitation energies with the family of def2-nVP(D) basis sets.

def2-SVP def2-SVPD def2-TZVP def2-TZVPD def2-QZVP def2-QZVPD

PBE 14.33 1.08 6.25 1.15 3.26 0.96

PBE0 14.08 1.12 6.11 0.72 3.33 0.46

PBE0-1/3 14.14 1.29 6.21 0.78 3.50 0.55

PBE0-DH 13.97 1.46 6.15 0.91 3.61 0.61

PBE-CIDH 14.00 1.51 6.18 0.87 3.67 0.76

PBE-QIDH 14.08 1.64 6.24 1.15 3.78 0.98

PBE0-2 14.14 1.65 6.26 1.20 3.88 1.05

22



Table 3: MUE (in eV) for atomic excitation energies with the family
of cc-pVnZ basis sets.

cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z cc-pV6Za

PBE 14.47 8.15 5.30 2.91 1.92

PBE0 15.06 8.41 5.63 3.38 2.65

PBE0-1/3 15.19 8.50 5.74 3.55 2.46

PBE0-DH 15.31 8.62 5.84 3.74 3.20

PBE-CIDH 15.36 8.66 5.89 3.80 3.29

PBE-QIDH 15.41 8.70 5.97 3.91 3.45

PBE0-2 15.53 8.82 6.03 3.98 3.57

a Not available for Li and Be atoms.
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Table 4: MUE (in eV) for atomic excitation energies with the family of aug-cc-pVnZ basis
sets.

aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ aug-cc-pV5Z aug-cc-pV6Za

PBE 0.99 1.09 1.16 1.52 1.63

PBE0 0.57 0.60 0.54 0.52 0.72

PBE0-1/3 0.60 0.60 0.52 0.46 0.63

PBE0-DH 0.69 0.52 0.45 0.39 0.41

PBE-CIDH 0.75 0.55 0.44 0.37 0.51

PBE-QIDH 0.85 0.60 0.54 0.61 0.80

PBE0-2 1.03 0.77 0.65 0.82 1.22

a Not available for Li and Be atoms.
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Table 5: MUE (in eV) for atomic excitation energies with the family of d-aug-cc-pVnZa basis sets.

d-aug-cc-pVDZ d-aug-cc-pVTZ d-aug-cc-pVQZ d-aug-cc-pV5Z d-aug-cc-pV6Zb

PBE 2.21 2.16 2.16 2.26 1.76

PBE0 1.32 1.31 1.31 1.42 0.97

PBE0-1/3 0.97 0.96 0.96 0.96 0.71

PBE0-DH 0.64 0.59 0.59 0.59 0.38

PBE-CIDH 0.53 0.51 0.50 0.50 0.38

PBE-QIDH 0.35 0.31 0.30 0.43 0.52

PBE0-2 0.35 0.47 0.46 0.46 0.70

a Not available for Li and Be atoms.
b Only available for B to O atoms.
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Table 6: MSE (in eV), MUE (in eV), and MAPE (%)
for atomic excitation energies with the family of BLYP-
and PBE-based functionals and the aug-cc-pV5Z basis
set.

MSE (eV) MUE (eV) MAPE (%)

BLYP –1.16 1.20 13.5

B3LYP –0.60 0.67 7.4

B2LYP –0.17 0.34 3.5

B2GP-PLYP 0.21 0.37 2.9

PBE –1.07 1.11 12.3

PBE0 –0.40 0.52 5.5

PBE0-1/3 –0.18 0.46 4.5

PBE0-DH 0.07 0.39 3.1

PBE-CIDH 0.14 0.37 2.8

PBE-QIDH 0.52 0.61 4.8

PBE0-2 0.80 0.82 8.0
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• Figure 1. Evolution of the MUE (eV) for PBE-based functionals

and the (d-)aug-cc-pV5Z basis sets, as a function of the λx values. A

threshold of 0.4 eV is also indicated (in red) as a guide to the eye.

• Figure 2. Evolution of the MSE (eV) for PBE-based functionals and

different basis sets, as a function of the λx values. A threshold of 0.0

eV is also indicated (in red) as a guide to the eye.
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