
Electronic Testing: Theory and Applications manuscript No.
(will be inserted by the editor)

Multi-threaded mitigation of radiation-induced soft errors in bare-metal
embedded systems

Alejandro Serrano-Cases · Felipe Restrepo-Calle · Sergio Cuenca-Asensi · Antonio
Martı́nez-Álvarez�

Received: date / Accepted: date

Abstract This article presents a software protection tech-
nique against radiation-induced faults which is based on a
multi-threaded strategy. Data triplication and instructions
flow duplication or triplication techniques are used to im-
prove system reliability and thus, ensure a correct sys-
tem operation. To achieve this objective, a relaxed lock-
step model to synchronize the execution of both, redundant
threads and variables under protection on different process-
ing units is defined. The evaluation was performed by means
of simulated fault injection campaigns in a multi-core ARM
system. Results show that despite being considered tech-
niques that imply an evident overhead in memory and in-
structions (Duplication With Comparison and Re-Execution
– DWC-R and Triple Modular Redundancy – TMR), spread-
ing the replicas in different instruction flows not only pro-
duce similar results than classic techniques, but also im-
proves the computational and recovery time in presence of
soft-errors. In addition, this paper highlights the importance
of protecting memory-allocated data, since the instruction
flow triplication is not enough to improve the overall system
reliability.

Keywords Fault tolerance · reliability · thread replication ·
lock-step · soft errors · bare-metal

Alejandro Serrano-Cases, Sergio Cuenca-Asensi, Antonio Martı́nez-
Álvarez (�)
Dept. of Computer Technology, Ctra. San Vicente del Raspeig s/n,
03690, San Vicente del Raspeig - Alicante, Spain, E-mail: aser-
rano@dtic.ua.es, sergio@dtic.ua.es, amartinez@dtic.ua.es

Felipe Restrepo-Calle
Dept. of Systems and Industrial Engineering, Universidad Nacional de
Colombia, Bogotá, Colombia E-mail: ferestrepoca@unal.edu.co

1 Introduction

The continuous miniaturization of electronic devices makes
them increasingly vulnerable to the effects of radiation, and
therefore, less reliable. Radiation affects the different com-
ponents present in electronic devices. For instance, incident
particles may cause several disruptions to the transistors
nodes. As a result, nodes voltage may alter their proper-
ties and, consequently, the system expected behavior. Also,
heavy ions may degrade the transistor substrate by leaving
an ionization track. These effects known as Single-Event Ef-
fects (SEE) may suppose undesirable effects in any node of
the electronic device [1,2]. For example, in a microproces-
sor, a SEE may cause either unexpected/erroneous results
(Silent Data Corruption - SDC) or may cause a state in
which no further operations can be carried out (HANG) [3].
A special type of SEE called SEU (Single-Event Upsets) is
characterized by being caused by alterations in the memory
bits of a device (whose effect is modeled as a non-transient
bit-flip). Also, SET (Single-Event Transient) are signal al-
terations occurring during a short period of time (which are
modeled as transient bit-flips). Depending on the number of
affected bits in the memory, these errors can be classified
as Single-Bit Upset (SBU) or Multiple-Bit-Upset (MBU).
Finally, the effect of a fault affecting the configuration bits
of an electronic device, sticking it at an unknown state, is
known as Single-Event Functional Interrupt (SEFI).

As a consequence, designers of mission-critical systems,
such as satellites, aviation systems or autonomous driving
vehicles have to modify their designs with redundant com-
ponents, and perform exhaustive verification tests to im-
prove the system reliability and thereby ensure that elec-
tronic devices continue their operation without errors in
presence of the aforementioned events. In this sense, the lit-
erature offers a wide range of techniques to deal with the
problem. Depending on where they are applied, these tech-

This is a previous version of the article published in Journal of Electronic Testing. 2020, 36: 47-57. https://doi.org/10.1007/s10836-019-05846-4

https://doi.org/10.1007/s10836-019-05846-4

2 Alejandro Serrano-Cases et al.

niques can be divided into hardware, software and hybrids.
Most of these techniques are based on components replica-
tion to detect and/or correct radiation-induced faults. The
most widespread mitigation technique is called Triple Mod-
ular Redundancy (TMR). These approaches are also called
hardening techniques.

Hardware techniques are mostly based on replication of
different components of microprocessors, such as registers,
memories or even entire processing units. Although they
have proven to be effective and elicit the highest mitiga-
tion rates, these techniques have a high economic cost, as
well as a long development time aimed at a specific product.
Some examples of these techniques are those based on Dual-
redundant Core Lock-Step (DCLS) and Triple-redundant
Core Lock-Step (TCLS) [4], which replicate each processor
and compare the system status every clock-cycle to detect
discrepancies during the execution of a program. Another
example is defined by those techniques based on Error Cor-
rection Codes (ECC), such as those using Hamming code,
which are known to be highly effective techniques with high
correction rates, due to the fact that they can easily mask
multi-bit errors with low redundancy. However, massive im-
plementations may require large power consumption due to
continuous checks and area overhead, resulting in high cost
devices.

Software replication techniques, also known as SIHFT
(Software-Implemented Hardware Fault Tolerance) tech-
niques [5], are aimed to enable a reliable computing in
general-purpose devices such as micro-controllers and em-
bedded devices. These techniques introduce replication at
different levels of the software components of a computer
program (functions/methods, loops, assembly code, etc.),
or even can replicate the whole program (process replica-
tion). Although their development is faster and less expen-
sive when compared with hardware techniques, their appli-
cation present additional costs in the execution time and the
resource usage that should be taken into consideration. An
example of a hardening software technique called Trikaya
can be found in [6], where the program to be protected is
executed twice in the absence of errors, and a third time if
some discrepancy is found in the outputs of the two preced-
ing replicas.

Finally, hybrid techniques attempt to integrate and im-
prove the results obtained by software and hardware-only
techniques and, at the same time, mitigate some of their
deficiencies. An example of a hybrid technique is found in
[7], where the authors show a co-design methodology and a
hardening infrastructure that permits an easy exploration of
the design space between hardware-only and software-only
mitigation techniques.

The latest technological advances in electronic manu-
facturing processes allow multi-core systems to be a ubiq-
uitous reality in embedded computing. The extra process-

ing units of these systems can be used to accelerate soft-
ware computation strategies aimed at mitigating or detecting
soft errors, nevertheless, the majority of the existing soft-
ware protection techniques are not designed to take advan-
tage of these resources. Recent works, such as [8], point to
distribute the replica computation across different process-
ing units as a way to gain efficiency without losing relia-
bility. Simultaneous Muti-Threading (SMT) is a long ago
defined concept that has been used along with the con-
cept of Sphere-of-Replication (SoR) to achieve reliability
[9]. A SoR defines the set of resources of a program that
are replicated. Several proposals have made use of these
two concepts. For instance, Simultaneous and Redundantly
Threaded (SRT) processors [9], Chip-Level Redundant Mul-
tithreading (CRT) [10], and Triple/Dual Core Lock-Step
(TCLS / DCLS) [4] solutions make use of custom hardware
approaches to achieve fault tolerance.

Software approaches, instead, try to replicate the orig-
inal program code into several instruction flows or threads
(Software Redundant Multi-Threading - SRMT) by using
custom compilers which are also based on the SoR con-
cept [11]. Other software approaches try to achieve reliabil-
ity improvements by launching several instances (processes)
inside an operating system that checks the replicas’ out-
puts (PLR) [12]. Other proposals make use of general pur-
pose compilers and Commercial-of-the-Shelf (COTS) de-
vices without any modifications to enable programmatically
a lock-step functionality. For example, a multi-threading
strategy can be found in [13], which makes use of thread-
ing libraries and take advantage of resources present in the
majority of operating systems. Whereas [14,15] use recon-
figurable hardware as FPGAs to achieve a lockstep solution.
These software approaches introduce large size and perfor-
mance overheads that have to be taken into consideration. In
this sense, [13], [16] and [17] use high-level libraries such
as OpenMP and PThreads to generate software redundancy,
or [18], where a modification of PThreads (RedThreads) is
used to generate reliability-oriented redundancy with per-
formance overheads close to 3×. However, all of them em-
phasize a clear performance overhead due to the complexity
introduced by the mentioned libraries. Another variable to
take into account is the effect of using an operating system,
which can be considered as another source of errors because
it is not protected [19] and supposes an additional cost that
may be unaffordable. For instance, authors in [15] proved
that RTOS (Real-Time Operating System) has an impact on
performance and reliability, achieved by their DCLS tech-
nique, which is similar to the bare-metal results. Also, au-
thors in [16] conclude that the usage of parallelization APIs
(Application Programming Interfaces) increases the occur-
rence of unexpected terminations that are caught by the op-
erating system. In this sense, recent works such as [20] and
[21] have presented multi-threaded techniques in environ-

Multi-threaded mitigation of radiation-induced soft errors in bare-metal embedded systems 3

ments without operating systems with promising results. In
[20], authors show a multi-threaded data triplication tech-
nique that improves the fault coverage by 26× while pre-
senting execution overheads less than 8× on average. In
[21], a triplication technique is evaluated showing a positive
influence on the reduction of error rates.

Unlike related works, this proposal tries to reduce the
impact of the unavoidable non-reliable software to achieve
a reliable and performant computation. In fact, no operat-
ing system nor threading libraries are used at all. Also, our
proposal exploits the threads capability of modern micro-
processors by means of spreading the same program execu-
tion to each available processing core. This leads multiple
instances of the same program to be run in parallel without
any communication between them, excluding a little piece
of code for stall and synchronization purposes. Preliminary
work presented in LATS [21] evaluates the threaded TMR
technique, and puts in relevance that the storage data were
not protected because lifetime of several variables goes be-
yond the technique protection. Therefore, the present work
compares the use of TMR and DWC-R techniques and also
introduces the application of TMR at the storage data to
improve the results of previous preliminary work. As a re-
sult, a slightly instrumented version of the original program
by means of synchronization blocks is proposed. This way,
not only the performance overheads of each solution is in-
vestigated, but also a characterization of the impact of the
synchronization routines, which are explored in conjunction
with the storage data triplication.

The rest of this paper is organized as follows: Section
2 presents and describes the proposed strategies; Section 3
shows the tools designed to evaluate the different protec-
tion techniques and their configurations; Section 4 discusses
the results obtained after evaluation of a set of configura-
tions that covers all proposed techniques; finally, Section 5
presents the conclusions.

2 Multi-threaded mitigation in bare-metal

Our improved Multi-threaded mitigation techniques: Dupli-
cation With Comparison and Re-Execution (DWC-R) and
Threaded-Triple Modular Redundancy (Threaded-TMR),
are based on the concept of Sphere-of-Replication (SoR)
first presented in [22]. SoR makes use of redundant items
to make an independent computation. Therefore, the redun-
dant computation is able to mask any fault occurrence if it
occurs when the redundant items are processed. Usually,
faults are masked when replicated items are compared at
the end of the defined replicate block. This proposal dis-
tributes each replica across the different available computa-
tion units (microprocessor cores) to gain performance and
reliability at once. Our proposal extends both techniques by

adding protection (Data-TMR) to data allocated in the per-
sistent storage (memory) during the execution of the pro-
gram. This way, our technique can be considered as a high
level or coarse grain mitigation technique by design. There-
fore, a multi-level mitigation approach taking into consid-
eration low level mitigation techniques, as those based on
TMR with registers from the register file is also possible
[23].

2.1 DWC-R: Duplication With Comparison and
Re-Execution

No error

CPU0 CPU1

SYNC &
Notify

SLEEP

WAKE UP

SLEEP

WAKE UP

SYNC &
Notify

DO { DO {

} While(ERROR) } While(ERROR)

Threaded DWR-R (C2)

Critical
Funtion

Critical
Funtion

S
o
R

-o
u
tp

u
t

CPU0

Threaded DWC-R(C2) Classical DWC-R (C2.1)

Critical
Funtion

Critical
Funtion

Critical
Funtion

Check

SYNC

DWC-R

S
o
R

 E
n
tr

a
n
ce

D
W

C
-R

Figure 1 Threaded (left) and Classical (right) DWC-R protection tech-
niques.

Figure 1 shows both, the parallelized and the classical
approach of the DWC-R techniques. The proposed paral-
lelized DWC-R (on the left) is based on two replicas running
simultaneously on two independent shared memory process-
ing units (CPU0 and CPU1). Before performing the hard-
ening of the critical computation, a checkpoint to test each
input variable to be hardened must be performed to create
an execution context restoration point by saving the value of
each variable (See SoR-entrance in Figure 1). Subsequently,
the program executes the protected section which typically
defines a critical calculation which involves the previous
variables. After the execution of the protected section, a sec-
ond checkpoint point (SoR-output) is reached. At this point,
it is decided whether to go back to the first checkpoint and
perform a context restoration (rollback) to re-execute the
protected section due to the presence of a fault, or continue
the normal program execution flow in absence of faults.

In contrast, the classical technique (on the right) exe-
cutes twice the critical function before looking for discrep-

4 Alejandro Serrano-Cases et al.

ancies in results. Only if a fault is detected, the third execu-
tion is performed in order to mask the fault.

2.2 Threaded-TMR (Triple Modular Redundancy)

The functioning of threaded (parallelized) and single-
threaded approaches for TMR mitigation techniques are
showed in Figure 2. The TMR parallelized technique (on the
left) presents a similar structure as the previous DWC-R but
instead two replicas executed simultaneously, now the three
replicas are working simultaneously on different processing
units.

Voter

Classical TMR (C1.3)
CPU0CPU2CPU1CPU0

Threaded TMR (C3)

TMR

T
M

R
S

o
R

-e
n
tr

a
n
ce

S
o
R

-o
u
tp

u
t

SLEEP

WAKE UP

SLEEP

WAKE UP

SLEEP

WAKE UP

SLEEP

WAKE UP

SYNC &
NOTIFY

SYNC &
NOTIFY

Critical
Function

Critical
Function

Critical
Function

Critical
Function

Critical
Function

Critical
Function

Figure 2 Threaded (left) and Classical (right) TMR protection tech-
niques.

Similarly to DWC-R, this technique proposes a first
checkpoint zone (labeled as SoR-entrance in the figure)
which is optional because a desynchronization of input vari-
ables may lead to an erroneous output in a replica, which
will be masked at the end of the protected zone (labeled
SoR-output in the figure). However, even being optional, its
use increase the system consistence and reduce the proba-
bility of faults in those scenarios where multiple bit upsets
(MBU) are a concern.

Subsequently, the protected code is executed by each in-
dependent processing unit until a last synchronization zone
(SoR-output). In contrast to the previous technique, the
correct value is obtained by majority voting, thus, no re-
execution of the protected section is needed before proceed-
ing with the normal flow of the program. On the other hand,
the classical TMR approach (on the right) executes three
times the critical section to be protected to finally obtain the
correct result by majority voting.

2.3 Data triplication: Data-TMR

The aforementioned techniques do not take into account the
data stored in memory (persistence) and their lifetimes, so
they only manage to reduce the exposition time to soft er-
rors and correct faults that affect the current calculation and

thus, prevent them to be spread to the system. A data pro-
tection technique that can be used jointly and selectively on
program variables with independence of the memory sec-
tions they are allocated is presented in this subsection. Data
allocated in read-only sections (rodata), initialized data sec-
tions (data), uninitialized data sections (bss), and automatic
variables (stack) may have different detection or mitigation
policies.

Vectors

.TEXT

Stack

Vectors

.TEXT

Stk0

Stk1

Stk2

RO0 RO2

DT0 DT2

BSS0 BSS2

Vectors

.TEXT

Stk0

Stk1

Stk2

RO1

RO0

RO2

DT1

DT0

DT2

BSS0

BSS2

BSS1

Sha red

.ROData

.Data

.BSS

RO1 ROS

DTSDT1

BSS1 BSSS

Figure 3 Example of different memory maps with and without pro-
gram section replication. The first configuration shows the most widely
used memory section distribution. The second configuration shows
how the section are replicated for 3 processing units. The last configu-
ration shows how the different replicas can be easily isolated in differ-
ent memory sections to perform a parallel computation over them.

In addition to the data triplication, also a replica dissem-
ination over the all available processing units is also pro-
posed. This ensures that faults affecting a component of the
device do not interfere with the computation and further pro-
cessing of other replicas. In this sense, separated memory
areas are requested for each replica to ensure memory isola-
tion. For this purpose, the memory maps used by the com-
piler during the linking phase of the executable have been
modified conveniently in such a way that it can be ensured
that each replica storage is isolated in a different memory
component or section.

To illustrate this, Figure 3 shows an example of data trip-
lication and a possible mapping in a device with two Double
Data Rate DDR chips and three processing units. As shown
in the figure, the first memory map is composed by the text
section, where the code and the reset vectors reside, the data
sections composed by rodata (read-only date), data (initial-
ized data), bss (uninitialized data), and the stack. The sec-
ond one shows how each data section and the stacks have
been triplicated, and also a new area has been added to store
shared variables (e.g. variables used for exclusive access to
avoid data races or perform synchronizations). In addition,
the third configuration shows an example on how the differ-
ent replicas can be isolated in different memory sections to
perform a parallel computation over them.

Multi-threaded mitigation of radiation-induced soft errors in bare-metal embedded systems 5

2.4 Low-intrusive Hardening Using Code Annotations

All the aforementioned techniques have been applied fol-
lowing a strategy based on source code annotation, so that
code instrumentation is reduced to a minimum by design.
This means that code sections and variables to be hard-
ened have to include only essential C/C++ compatible arti-
facts containing the semantics for hardening, and therefore,
a complete rewriting of code is not required. Moreover, this
annotation-based approach is designed to restore the behav-
ior of the original code when no hardening is required by
means of custom C/C++ definition flags that control how the
hardening tasks are implemented. To achieve this objective,
different strategies are followed depending on the element
to be protected (variable or code section): 1) flow replica-
tion techniques, 2) replication of global scope data and 3)
replication of automatic variables.

The first one of the mentioned techniques (flow replica-
tion) requires starting the program in each available process-
ing unit simultaneously. Thus, depending on the number of
available processing units, one of the replication strategies
mentioned above is applied (i.e., DWC-R, threaded-TMR or
classical single-threaded techniques when only one is avail-
able). The second approach (replication of global variables)
has been carried out with the substitution of the declaration
of each variable by hardening macros. This way, depending
on the hardening level of the selected variable, the imple-
mentation of the variables are protected or left unchanged.
Finally, the third approach (replication of automatic vari-
ables) is carried out transparently for the user due to the
separation of stacks in multi-threaded based techniques.

An example of the application of each strategy can be
seen in the C++ code showed in Figure 4. Note the ‘C/C++
defines’ designed to trigger each hardening behavior: let-
ters D and C stands for data and code respectively. The next
digit is the number of threads, so C3 means using 3 threads.
The remaining characters, if any, represent the detection or
mitigation technique (see C1.2 and C1.3). In the exam-
ple, a simple C/C++ program containing 3 global variables
that are used by a simple function (void foo) is shown.
Note how the three variables to be hardened are redefined to
add the appropriate hardening technique semantics (Data-
TMR). Macros RODATA HARD, DATA HARD and BSS HARD are
in charge of triplicate variables in the read-only, .data or
.bss program sections, respectively. The macro (PTR) gives
each processing unit the ability to automatically access its
own replica using its original variable name. Finally, note
that variable autoVar is allocated in the stack section of
each thread and thus, it is independent of the other replicas
and synchronization is needed. In the case of having only
a single processing units, this variable is forced to have a
read-only behavior since successive executions must have
the same input value in order to perform the same calcula-

d e f i n e D3 / / Data−TMR
/ / # d e f i n e C2 / / Thread I n s t r u c t i o n DWC−R
d e f i n e C3 / / Thread I n s t r u c t i o n TMR
/ / # d e f i n e C1 . 2 / / C l a s s i c DWC−R
/ / # d e f i n e C1 . 3 / / C l a s s i c TMR

i n c l u d e ”MTH. h ” / / Macro d e f i n i t i o n s

/∗ ∗ O r i g i n a l d e f i n i t i o n s o f v a r i a b l e s : ∗∗
∗∗ cons tVar , i n i t V a r and n o I n i t V a r . ∗ ∗ /

/ / c o n s t i n t c o n s t V a r = 3;
/ / f l o a t i n i t V a r = 5 . 0 ;
/ / char n o I n i t V a r ;

/∗ ∗ A n o t a t e d v e r s i o n s o f v a r i a b l e s : ∗∗
∗∗ cons tVar , i n i t V a r and n o I n i t V a r . ∗ ∗ /

RODATA HARD(i n t , cons tVar , 3)
d e f i n e c o n s t V a r PTR(c o n s t V a r)
/ / c o n s t i n t c o n s t V a r 0 = 3; / / S t o r e d i n RO 0
/ / c o n s t i n t c o n s t V a r 1 = 3; / / S t o r e d i n RO 1
/ / c o n s t i n t c o n s t V a r 2 = 3; / / S t o r e d i n RO 2
/ / # d e f i n e s c o n s t V a r ∗ c o n s t V a r p t r

DATA HARD(f l o a t , i n i t V a r , 5 .)
d e f i n e i n i t V a r PTR(i n i t V a r)
/ / f l o a t i n i t V a r 0 = 5 . ; / / S t o r e d i n DT 0
/ / f l o a t i n i t V a r 1 = 5 . ; / / S t o r e d i n DT 1
/ / f l o a t i n i t V a r 2 = 5 . ; / / S t o r e d i n DT 2
/ / # d e f i n e s i n i t V a r ∗ i n i t V a r p t r

BSS HARD (char , n o I n i t V a r)
d e f i n e n o I n i t V a r PTR(n o I n i t V a r)
/ / char n o I n i t V a r 0 ; / / S t o r e d i n BSS 0
/ / char n o I n i t V a r 1 ; / / S t o r e d i n BSS 1
/ / char n o I n i t V a r 2 ; / / S t o r e d i n BSS 2
/ / # d e f i n e s n o I n i t V a r ∗ n o I n i t V a r p t r

void foo (i n t au toVar){
i n t e n t r y V a r ;
i n t ou tVar ;
. . .

SYNC(en t ryVar , au toVar , . . .)
THREAD REPLICA CONST(i n t , c o n s t V a r)

/ / c o n s t i n t ∗ c o n s t V a r p t r = &constVar COREID ;
THREAD REPLICA VAR(f l o a t , i n i t V a r)

/ / f l o a t ∗ i n i t V a r p t r = &ini tVar COREID ;
THREAD REPLICA VAR(char , n o I n i t V a r)

/ / char∗ n o I n i t V a r p t r = &noIni tVar COREID ;
. . .
/ / /
/ / / SoR s e c t i o n
/ / /
i n t fooVar = 4 ;
n o I n i t V a r = 3 ∗ c o n s t V a r << fooVar ;
ou tVar = n o I n i t V a r ∗ DataVar ;
. . .

SYNC(ou tVar)
. . .

}

Figure 4 Example of a C/C++ code instrumentation for hardening
three variables and a code section using TMR and three threads. C-
line comments show the internal functioning of the techniques. Also, it
is shown how each core access to its own private replica.

6 Alejandro Serrano-Cases et al.

tion on the replicated data. Also, a code section contained
by the mentioned foo function is annotated to be hardened.
Variables which control the input and output to the Sphere
of Replication are indicated with FC HARD and SYNC respec-
tively; in this case entryVar, autoVar and outVar. Vari-
ables entryVar and autoVar are synchronized (protected)
using the first call to the SYNC macro, whereas protection of
outVar is indicated in the second SYNC. Therefore, compu-
tation diverges in these points and changes its normal behav-
ior depending on the protection technique and the number of
available processing units.

The annotation proposal has the limitation of dealing
with variables allocated in the HEAP section. In fact, the
HEAP memory section may present a random allocation
behavior during a normal program execution (e.g., using
malloc). Therefore, it is difficult to track changes on this
section and replicate them on the remaining replicas. This
behavior makes it difficult to plan a static checking due to
the unknown replicas allocation.

3 Experimental Setup

To assess and validate different combinations of the afore-
mentioned multi-threaded fault mitigation techniques, we
have selected the matrix multiplication from the project
BEEBS [24] to harden the multiplication of two 20× 20
square matrices. As a result, a reference and eight hardened
versions of the program have been generated to test the suit-
ability of the strategies, as well as to study the impact of data
triplication strategies on program performance.

This classical matrix multiplication algorithm is defined
by means of three nested loops. The two outermost ones se-
lect an index for each element and the innermost loop com-
putes the multiplication for this index. Each hardened ver-
sion corresponds to harden the computation of one of these
loops with one of the flow replication techniques, so we have
8 possibilities. Therefore, protecting the outermost loop has
the effect of applying the protections to the whole function,
while protecting the innermost loop (AccLoop) is equivalent
to protect each cell from the resultant matrix.

Figure 5 represents how the hardening instrumentation
was done. Data protection is applied to each matrix defined
by the algorithm (ArrayA, ArrayB, and ResultArray). By
doing this, it is ensured that each replica is computed inside
an exclusive memory area.

Hardened versions are denoted by C2 and C3, which
refers to DWC-R and TMR flow protections, respectively;
and a suffix to denote the protection level applied (Outer,
Inner or Acc). The version used as reference is denoted
by C0-NH (NH for non-hardened) and has no data or flow
replication technique was applied. To complete the study,
two versions with the classical single-threaded hardening

BSS HARD (matrix , ArrayA) / / m a t r i x ArrayA ;
d e f i n e ArrayA PTR(ArrayA)
BSS HARD (matrix , ArrayB) / / m a t r i x ArrayB ;
d e f i n e ArrayB PTR(ArrayB)
BSS HARD (matrix , R e s u l t) / / m a t r i x R e s u l t ;
d e f i n e R e s u l t PTR(R e s u l t)
/ / m a t r i x e x p e c t e d = { . . . } ;

DATA HARD(matrix , expec t ed , { . . . })
d e f i n e e x p e c t e d PTR(e x p e c t e d)

void i n i t M a t r i c e s (i n t s eed) ;
i n t v e r i f y () ;
/∗
∗ M u l t i p l i e s a r r a y s A and B
∗ and s t o r e s t h e o u t p u t i n R e s u l t .
∗ /

void M u l t i p l y (matrix A, matrix B , matrix Res)
{
r e g i s t e r i n t Outer , I n n e r , Index ;
i f d e f OuterLoopProtect ion
SYNC ()
e n d i f
f o r (Ou te r = 0 ; Oute r < UPPERLIMIT ; Oute r ++)
{
i f d e f InnerLoopProtec t ion
SYNC(Ou te r)
e n d i f
f o r (I n n e r = 0 ; I n n e r < UPPERLIMIT ; I n n e r ++)
{
i f d e f AccLoopProtect ion
SYNC(Outer , I n n e r)
e n d i f
R e s u l t [Ou te r] [I n n e r] = ZERO;
f o r (Index = 0 ; Index < UPPERLIMIT ; Index ++)
{
R e s u l t [Ou te r] [I n n e r] +=
A[Oute r] [Index] ∗ B[Index] [I n n e r] ;
}
i f d e f AccLoopProtect ion
SYNC(R e s u l t [Ou te r] [I n n e r])
e n d i f
}
i f d e f InnerLoopProtec t ion
SYNC(R e s u l t [Ou te r])
e n d i f
}
i f d e f OuterLoopProtect ion
SYNC(R e s u l t)
e n d i f
}

Figure 5 Matrix multiplication program selected from the project
BEEBS. The code shows the different points where the multi-threading
and classical strategies may introduce redundancy to gain reliability.
Also, it is shown how to protect uninitialized variables (.bss section)
using TMR, except for the expected variable, which is saved in the
.data section.

flow and data triplication were used (C1.2 and C1.3, re-
spectively).

Simics simulator has been used to evaluate all the above
program versions. This tool has been configured to simu-
late the board Versatile Express, characterized by offering

Multi-threaded mitigation of radiation-induced soft errors in bare-metal embedded systems 7

C0-NH
C1.2-
Outer

C1.3-
Outer

C2-Outer C2-Inner C2-Acc C3-Outer C3-Inner C3-Acc

HANG 16 14 13 15 15 16 13 10 10

SDC 21 1 1 15 13 7 1 3 1

unACE 63 85 86 71 72 77 87 87 89

60%

65%

70%

75%

80%

85%

90%

95%

100%

Register campaign results

C0-NH
C1.2-
Outer

C1.3-
Outer

C2-
Outer

C2-
Inner

C2-Acc
C3-

Outer
C3-

Inner
C3-Acc

HANG 0 0 0 0 0 0 0 0 0

SDC 95 2 1 1 1 1 2 2 2

unACE 5 98 99 99 99 99 98 98 98

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Data campaign results

C0-NH
C1.2-
Outer

C1.3-
Outer

C2-
Outer

C2-
Inner

C2-Acc
C3-

Outer
C3-

Inner
C3-Acc

HANG 0 0 0 0 0 0 0 0 0

SDC 59 2 0 30 17 28 3 2 2

unACE 41 98 100 70 83 72 97 98 98

40%

50%

60%

70%

80%

90%

100%

BSS campaign results

C0-NH
C1.2-
Outer

C1.3-
Outer

C2-
Outer

C2-
Inner

C2-Acc
C3-

Outer
C3-

Inner
C3-Acc

HANG 5 6 2 6 6 5 5 4 5

SDC 10 3 2 3 4 3 1 2 1

unACE 85 92 97 91 90 92 94 94 94

84%

86%

88%

90%

92%

94%

96%

98%

100%

TEXT campaign results

Figure 6 Results from the fault injection campaigns. Each sub-figure corresponds to a different resource being tested, such as the register file
(top left), initialized data .data (top right), the non-initialized .bss (bottom left) and the .text section (bottom right) where the program resides.
Tables show the resulting unACE, SDC and HANG rates (%) obtained from the simulation-based fault injection campaigns performed against
each resource separately.

the possibility of using different multi-core processors of the
family Cortex-A9 from ARM.

To provide the simulator with reliability assessment ca-
pabilities, a non-intrusive fault injection ad hoc plugin has
been developed. This means that during each simulation, a
bit-flip is introduced in a random bit of a random resource
under evaluation (mainly a register from the register file or
memory location) without using any interruption or instru-
mentation routine.

The injection is directed by the tool Fault Injection Man-
ager (FIM) [25], which is in charge of calling the platform
that inserts the bit-flips, restarting it after each injection and
labeling the result. Thus, faults are labeled as unACE (un-
necessary for Architectural Correct Execution) when an in-
jection is made, and they do not affect the result of the pro-
gram’s output, SDC (Silent Data Corruption) when the result
is not correct but the program ends, and HANG if it does not
end or exceeds a time limit. The programs have been evalu-
ated having as a reference a faultless (ground truth) execu-
tion of themselves and adding a recovery time equal to the
faultless execution duration. If this restriction is exceeded,
the program is considered that does not meet the valid re-
quirements and is labeled as HANG.

4 Experimental Results and Discussion

The fault injector has been configured to perform 1800 in-
jections per core at the register file (100 · 18 registers), 800
injections per memory section and core (200 · {copy 0,
copy 1, copy 2, shared} at .rodata, .data, .bss and
.stack) and 200 injection at .text section per core. Thus,
5200 injections of faults have been injected at the single-
core versions, 10400 at multi-threaded DWC-R versions and
15600 at multi-threaded TMR versions.

Raw event rates (unACE, SDC and HANG) from simu-
lated fault injection campaign are shown in Figure 6, where
each plot shows the results obtained after performing a fault
injection campaign within a single resource over the differ-
ent program versions. For sake of simplicity, only most rele-
vant sections are shown (registers, .data, .bss and

.text).
The fault injection campaign for registers (Figure 6 first

plot - top left) shows the reference version (C0-NH), which
shows an elevated rate of SDC and HANG (21% and 16%
respectively). The HANG rate is mostly constant at around
10-15% across the different versions because the majority of
the faults are caused by the stack pointer, the frame pointer,
and the program counter. These registers present a partic-

8 Alejandro Serrano-Cases et al.

ularity, they are more prone to get a HANG state when a
bit-flip is produced. It is worth to mention that hardened ver-
sions also achieve the same HANG rate due to the fact that
no timeouts nor reconfiguration methods have been provided
in case of one of the replicas hangs. As a result, hangs faults
affect the whole system by freezing it in a dead-lock due to
the fact that synchronization routines are expecting that all
cores enter the routine before resuming the computation. In
contrast, the SDC rates show a general reduction with rates
around 1-5%, except for the threaded DWC-R version de-
noted with C2, which is only able to reduce to rates around
7-14%.

The second plot from Figure 6 (top right) shows the in-
jection results performed over the .data section, in which
is stored the expected results used to compare with the pro-
gram computed results. As can be seen, reference point
shows a higher error rate of SDC (95%) due to the fact that
the variable exp has the highest lifetime, whereas, hardened
versions barely present errors (1%). As expected, data trip-
lication could mask mostly all the errors presented in this
memory section and, as a result, they present the highest
correction rates. Also, the presence of erroneous output in-
dicates that data triplication technique has a reduced time
when it still remains vulnerable.

The third plot (bottom left) from Figure 6 shows that
.bss sections follows the same trend as .data section: SDC
fault rates around 60% in the reference version while hard-
ened versions are around 1%, except for the threaded DWC-
R, which are only able to reduce the rate to 20-30%.

Finally, the .text section (fourth plot from Figure 6
- bottom right) presents similar trends when hardened ver-
sions are compared against the reference version. All hard-
ened versions present improvements in SDC rate, and they
manage to reduce rates from 10% to 3%, while HANG rate
remains constant across all hardened builds (5%), except
C1.3 that achieves the best results (2%).

To evaluate the hardening performance and estimate the
inherent trade-offs between speed, memory footprint and
fault coverage, a compact mathematical model presented
in [26] has been used. This model evaluates the effects of
high-level C++ code hardening. With this model a quick
and effective radiation tolerance optimization of different
hardening techniques is possible. Moreover, it is proven
with real radiation experiments over the same hardware than
ours. Two different assessment concepts are defined in this
model, the equivalent size measured in Bytes (βψ = Sizeψ ·

#SDCψ

#In jectionsψ
and γψ = Sizeψ ·

#HANGψ

#In jectionsψ
), which takes into

account the size (in Bytes) of each section (ψ) among the
raw error event rates obtained from the simulated injection
campaigns; and the size-time figure (χSDC = TE ·∑Kψ ·βψ

and χHANG = TE ·∑Kψ · γψ), which are used to estimate the
overheads and predict the measures from real accelerated
radiation test of the application under evaluation. Also, the

model offers a way to approximate the obtained size-time
figure to the well-known Mean-Work-To-Failure (MWTF)
metric presented in [27] as MWT F = 1

Φ ·α·χ , which offers a
value of the amount of work that the application is able to
do before a fault occurs.

Table 1 Equivalent size metric in Bytes for each section evaluated.
Lower values are better (bold).

REGISTER DATA BSS Text
β γ β γ β γ β γ

(B) (B) (B) (B) (B) (B) (B) (B)
C0-NH 531 403 1520 0 2834 0 869 435
C1.2-O 25 342 88 0 288 0 1040 1906
C1.3-O 18 326 48 0 0 0 494 494
C2-O 749 736 56 0 4300 0 1080 2250
C2-I 657 731 36 0 2462 0 1349 2410
C2-A 343 799 32 0 4071 0 1330 1841
C3-O 56 962 85 0 440 8 465 1627
C3-I 227 752 88 0 352 0 746 1493
C3-A 99 752 109 0 256 0 528 1979

Table 1 shows the equivalent size (β and γ) of each ver-
sion (nine in total). As can be seen, the register file shows
that classical TMR versions (C1.2-O, C1.3-O) offer better
results than multi-threading ones due to the resource tripli-
cation. This effect, which produces a worsening of 3× in the
HANG rates can be also appreciated. .data section reveals
a significant fault probability reduction, which states that
data triplication offers good protections to long-lifetimes
variables; also the associated HANG rate is negligible. The
.bss section exposes that classical approaches achieve bet-
ter corrections rates which is correlated with the register sec-
tion data. Again, it can be seen the DWC-R routine weak-
nesses, which doubles the reference program (C0-NH). Also,
table shows that multi-threading techniques with bigger syn-
chronization blocks are more prone to faults. Finally, the
.text section data exposes that TMR involves less com-
plex synchronization code, and as a consequence, it is less
prone to SDC; on the contrary, the HANG rate is higher than
expected, because no recovery routine, in case of one thread
hangs, is provided.

Time-Size and MWTF metrics are showed in Table 2,
where better applications are considered those with higher
reliability and lower execution time (lower χ and higher
MWTF). As in the cited paper [26], the proposed model was
evaluated against real radiation measurements with protons
and neutrons during two radiation campaigns described in
it. As can be seen, the reference version presents a MWTF
of 1.21 in protons and 0.35 in neutrons, which is only im-
proved by TMR versions. Focusing at DWC-R, all of them
show a worsening in their results compared to the reference
version due to an elevated execution time overhead (around
1.5× and 2×) and the aforementioned synchronization vul-
nerabilities (around 1.5× and 2× χTOT). Focusing at TMR,

Multi-threaded mitigation of radiation-induced soft errors in bare-metal embedded systems 9

Table 2 Execution time in microseconds (TE), Time-Size metric mea-
sured in Bytes · milliseconds (χ) and MWTF in number of pro-
grams executions until a failure is produced. MWTF columns has
been calculated to an estimated proton/neutron irradiation campaign
with radiation flux of 1× 109 particles/cm2/s for protons and 7.5×
105 particles/cm2/s for neutrons. Best values are in bold.

TE χSDC χHANG χTOT p+ MWTF n0 MWTF
(µs) (B*ms) (B*ms) (B*ms) RUN (101) RUN(103)

C0-NH 886 5145 816 5961 1.21 4.61
C1.2-O 2090 3096 4786 7883 0.91 3.49
C1.3-O 3115 1869 2666 4535 1.59 6.06
C2-O 1221 7612 3732 11344 0.63 2.42
C2-I 1259 5744 3997 9741 0.74 2.82
C2-A 1730 10079 4661 14741 0.49 1.86
C3-O 1200 1315 3173 4488 1.60 6.13
C3-I 1233 1812 2838 4650 1.55 5.91
C3-A 1591 1652 4419 6071 1.19 4.53

all versions improve the reference version except C3-Acc,
which presents the highest number of synchronizations (one
per each calculated element) and thus it slows-down the
system performance by a factor of 2×. Also, C1.3-Outer
shows one of the highest MWTF rates, even having the high-
est overhead in time (3.5× TE), due to the higher reliability
gain (2.5× χHANG). On the other side, if C1.3-Outer is
compared with multi-threaded versions (3.8× χHANG over
the reference), the best TE is determinant to obtain the higher
MWTF.

5 Conclusion

A software protection technique based on a multi-threaded
strategy with memory protection based on triplication
against radiation-induced faults is presented in this paper.
Also, this work shows the behavior of the protection with
different program and microprocessor resources (memory
sections and processor registers) and identifies the vulnera-
bilities of multi-threading protection techniques. Results of-
fer an overview of the overheads introduced when applying
different techniques using several configurations, and pro-
tection levels.

Experimental results show that raw fault rates are not
enough to evaluate the system reliability, because the re-
source usage and exposure time are factors that need to be
taken into account jointly to test the suitability of a solution.
For instance, non-threaded DWC-R offers good fault cov-
erage rates, however its associated resource usage and high
latencies make it worse than the reference version. In case of
TMR (both, threaded and non-threaded), it can be seen that
application achieves higher improvements (33% MWTF in
average).

Also, it has been demonstrated that significant reliability
improvements are achieved when replicas are spread on each
processing unit. In addition, performance improvements can

be obtained when large software resources are eliminated,
such as complex threading libraries or the operating system
itself. Without this software, the application resources and
the overall system complexity is reduced to a minimum.

Acknowledgements This work was funded by the Spanish Ministry
of Economy and Competitiveness and the European Regional Devel-
opment Fund through the following projects: ‘Evaluación temprana de
los efectos de radiación mediante simulación y virtualización. Estrate-
gias de mitigación en arquitecturas de microprocesadores avanzados’,
(Ref: ESP2015-68245-C4-3-P, MINECO/FEDER, UE).

References

1. J. M. Benedetto, P. H. Eaton, D. G. Mavis, M. Gadlage, and
T. Turflinger, “Digital single event transient trends with technol-
ogy node scaling,” IEEE Transactions on Nuclear Science, vol. 53,
pp. 3462–3465, dec 2006.

2. R. Gaillard, “Single Event Effects: Mechanisms and Classifica-
tion,” in Soft Errors in Modern Electronic Systems (M. Nico-
laidis, ed.), vol. 41 of Frontiers in Electronic Testing, pp. 27–
54, PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS:
SPRINGER, 2011.

3. R. Baumann, “Radiation-induced soft errors in advanced semicon-
ductor technologies,” IEEE Transactions on Device and Materials
Reliability, vol. 5, pp. 305–316, Sept. 2005.

4. X. Iturbe, B. Venu, E. Ozer, and S. Das, “A Triple Core Lock-Step
(TCLS) ARM R© Cortex R©-R5 Processor for Safety-Critical and
Ultra-Reliable Applications,” in Proc. 2016 46th Annual IEEE/I-
FIP International Conference on Dependable Systems and Net-
works Workshop (DSN-W), pp. 246–249, IEEE, June 2016.

5. O. Goloubeva, M. Rebaudengo, M. S. Reorda, and M. Vi-
olante, Software-implemented hardware fault tolerance, vol. XIV.
Springer, 2006.

6. H. Quinn, Z. Baker, T. Fairbanks, J. L. Tripp, and G. Duran,
“Software Resilience and the Effectiveness of Software Mitiga-
tion in Microcontrollers,” IEEE Transactions on Nuclear Science,
vol. 62, pp. 2532–2538, Dec. 2015.

7. S. Cuenca-Asensi, A. Martinez-Alvarez, F. Restrepo-Calle, F. R.
Palomo, H. Guzman-Miranda, and M. A. Aguirre, “A Novel Co-
Design Approach for Soft Errors Mitigation in Embedded Sys-
tems,” IEEE Transactions on Nuclear Science, vol. 58, pp. 1059–
1065, June 2011.

8. I. Oz and S. Arslan, “A Survey on Multithreading Alternatives
for Soft Error Fault Tolerance,” ACM Computing Surveys, vol. 52,
pp. 27:1–27:38, Mar. 2019.

9. S. K. Reinhardt and S. S. Mukherjee, “Transient fault detection
via simultaneous multithreading,” ACM SIGARCH Computer Ar-
chitecture News, vol. 28, pp. 25–36, May 2000.

10. S. S. Mukherjee, M. Kontz, and S. K. Reinhardt, “Detailed design
and evaluation of redundant multithreading alternatives,” ACM
SIGARCH Computer Architecture News, vol. 30, pp. 99–110, May
2002.

11. C. Wang, H. seop Kim, Y. Wu, and V. Ying, “Compiler-Managed
Software-based Redundant Multi-Threading for Transient Fault
Detection,” in Proc. International Symposium on Code Generation
and Optimization (CGO2007), pp. 244–258, IEEE, Mar. 2007.

12. A. Shye, J. Blomstedt, T. Moseley, V. Reddi, and D. Connors,
“PLR: A software approach to transient fault tolerance for multi-
core architectures,” IEEE Transactions on Dependable and Secure
Computing, vol. 6, pp. 135–148, Apr. 2009.

13. G. S. Rodrigues, F. Rosa, F. L. Kastensmidt, R. Reis, and L. Ost,
“Investigating parallel TMR approaches and thread disposability

10 Alejandro Serrano-Cases et al.

in Linux,” in Proc. 2017 24th IEEE International Conference on
Electronics, Circuits and Systems (ICECS), pp. 393–396, IEEE,
Dec. 2017.

14. A. B. de Oliveira, L. A. Tambara, and F. L. Kastensmidt, “Ap-
plying lockstep in dual-core ARM cortex-a9 to mitigate radiation-
induced soft errors,” in 2017 IEEE 8th Latin American Symposium
on Circuits & Systems (LASCAS), pp. 1–4, IEEE, Feb. 2017.

15. Á. B. de Oliveira, G. S. Rodrigues, and F. L. Kastensmidt, “An-
alyzing lockstep dual-core ARM cortex-a9 soft error mitigation
in freeRTOS applications,” in Proceedings of the 30th Symposium
on Integrated Circuits and Systems Design Chip on the Sands -
SBCCI 2017, SBCCI ’17, (New York, NY, USA), pp. 84–89, ACM
Press, 2017.

16. G. Rodrigues, F. ROSA, A. de Oliveira, F. L. Kastensmidt, L. Ost,
and R. Reis, “Analyzing the Impact of Fault Tolerance Methods in
ARM Processors under Soft Errors running Linux and Paralleliza-
tion APIs,” IEEE Transactions on Nuclear Science, vol. 64, no. 8,
pp. 2196–2203, 2017.

17. G. S. Rodrigues, F. L. Kastensmidt, R. Reis, F. Rosa, and L. Ost,
“Analyzing the impact of using pthreads versus OpenMP under
fault injection in ARM cortex-a9 dual-core,” in 2016 16th Euro-
pean Conference on Radiation and Its Effects on Components and
Systems (RADECS), pp. 1–6, IEEE, Sept. 2016.

18. S. Hukerikar, K. Teranishi, P. C. Diniz, and R. F. Lucas,
“RedThreads: An Interface for Application-Level Fault Detec-
tion/Correction Through Adaptive Redundant Multithreading,” In-
ternational Journal of Parallel Programming, vol. 46, pp. 225–
251, Feb. 2017.

19. J. S. Monson, M. Wirthlin, and B. Hutchings, “Fault Injection Re-
sults of Linux Operating on an FPGA Embedded Platform,” in
Proc. 2010 International Conference on Reconfigurable Comput-
ing and FPGAs, pp. 37–42, IEEE, Dec. 2010.

20. H. So, M. Didehban, A. Shrivastava, and K. Lee, “A software-level
Redundant MultiThreading for Soft/Hard Error Detection and Re-
covery,” in Proc. 2019 Design, Automation & Test in Europe Con-
ference & Exhibition (DATE), pp. 1559–1562, IEEE, Mar. 2019.

21. A. Serrano-Cases, F. Restrepo-Calle, S. Cuenca-Asensi, and
A. Martinez-Alvarez, “Softerror mitigation for multi-core proces-
sors based on thread replication,” in Proc. 2019 IEEE Latin Amer-
ican Test Symposium (LATS), pp. 1–5, IEEE, Mar. 2019.

22. S. K. Reinhardt and S. S. Mukherjee, “Transient fault detection
via simultaneous multithreading,” ACM SIGARCH Computer Ar-
chitecture News, vol. 28, pp. 25–36, May 2000.

23. A. Martinez-Alvarez, S. Cuenca-Asensi, F. Restrepo-Calle,
F. R. Palomo Pinto, H. Guzman-Miranda, and M. A. Aguirre,
“Compiler-directed soft error mitigation for embedded systems,”
IEEE Transactions on Dependable and Secure Computing, vol. 9,
pp. 159–172, march 2012.

24. J. Pallister, S. J. Hollis, and J. Bennett, “BEEBS: Open Bench-
marks for Energy Measurements on Embedded Platforms,” CoRR,
vol. abs/1308.5174, 2013.

25. J. Isaza-Gonzalez, A. Serrano-Cases, F. Restrepo-Calle,
S. Cuenca-Asensi, and A. Martinez-Alvarez, “Dependability
evaluation of COTS microprocessors via on-chip debugging
facilities,” in Proc. 2016 17th Latin-American Test Symposium
(LATS), pp. 27–32, IEEE, Apr. 2016.

26. L. M. Reyneri, A. Serrano-Cases, Y. Morilla, S. Cuenca-Asensi,
and A. Martı́nez-Álvarez, “A Compact Model to Evaluate the Ef-
fects of High Level C++ Code Hardening in Radiation Environ-
ments,” Electronics, vol. 8, p. 653, June 2019.

27. G. Reis, J. Chang, N. Vachharajani, R. Rangan, D. August, and
S. Mukherjee, “Design and Evaluation of Hybrid Fault-Detection
Systems,” in Proc. 32nd International Symposium on Computer
Architecture (ISCA2005), pp. 148–159, IEEE, 2005.

