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Ensuring Stability, Accuracy and Meaningfulness in

Synthetic Control Methods: The Regularized

SHAP-Distance Method

By DANIEL ALBALATE, GERMÀ BEL AND FERRAN A. MAZAIRA-FONT∗

The synthetic control method (SCM) has been increasingly adopted
to evaluate causal effects under quasi-experimental designs. However,
SCM suffers from sound weaknesses that compromise its accuracy, sta-
bility and meaningfulness. The Regularized SHAP-distance synthetic
control method (RSD-SCM) is proposed as solution. We evaluate the
economic effect of the government formation deadlock in Spain, 2016.
The deadlock did not negatively affect economic growth, as the economy
grew 1.58% more without full government; standard SCM method over-
estimates the effect by 0.23 pp. We show that RSD-SCM offers higher
accuracy and stability, while ensuring the economic meaningfulness of
covariates used in building the counterfactual.
JEL: C32, E65, H11
Keywords: Synthetic control; SHAP; Regularization; Quasi-
experiments; Causality; Government.

Since the seminal works of Abadie and Gardeazábal (2003) and Abadie, Diamond and
Hainmueller (2010), the synthetic control method (SCM) has been increasingly adopted
as a technique to evaluate causal effects under quasi-experimental design. The method
provides a practical solution to the evaluation of case studies in which either only a single
– or very few – aggregate units are treated (countries, regions, cities, etc.) and is con-
sidered one of the most influential recent contributions to empirical policy evaluation.
Athey and Imbens (2017, p.9), for instance, describe it as “arguably the most impor-
tant innovation in the policy evaluation literature in the last 15 years”. Thus, it is no
surprise that the SCM has become very popular as a policy evaluation tool, especially
where the use of other methods – randomized trials (RT), propensity score matching
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(PSM), difference-in-differences (DiD), etc. – is not feasible or relies on overly strong
assumptions. Unlike other regression-based quasi-experimental methods, the SCM cre-
ates a hypothetical counterfactual (the synthetic unit) by taking the weighted average of
pre-intervention outcomes from selected donors (control units). The impact of treatment
is quantified by the simple difference between the treated unit and its synthetic cohort
after treatment (post-treatment period).
As discussed in a series of papers by its pioneering authors (see Abadie and Gardeazábal
2003; Abadie, Diamond and Hainmueller 2010 and 2015; and Abadie and L’Hour, 2019),
the SCM has two main advantages over other methods, such as regression-based coun-
terfactuals or nearest neighbor matching. First, by being constrained to non-negative
weights that need to sum one, (unlike nearest neighbor matching) it does not impose
a fixed number of matches and ensures sparsity, while avoiding negative weights or
weights greater than one that otherwise would imply an unchecked extrapolation out-
side the support of the data as well as complicating the interpretation of the estimate.
Second, weights are calculated to minimize the discrepancies between the treated unit
and the synthetic control in the outcome and the values of certain matching variables or
covariates. Thus, the SCM ensures that the synthetic unit reproduces the control unit not
only in terms of the outcome, but also in terms of the drivers that explain the evolution of
the outcome of the treated unit before treatment. These two properties mean the SCM has
become an important framework for the evaluation of the effects of treatment in many
settings (see, for example, Montalvo, 2011; Billmeier and Nannicini, 2013; Cavallo et
al., 2013; Kleven, Landais and Saez, 2013; Bohn, Lofstrom and Raphael, 2014; Per-
coco, 2015; Acemoglu et al., 2016; Grier and Maynard, 2016; Kreif et al., 2016; Goin,
Rudolph and Ahern, 2017; among many others).
In spite of the influential contribution made by the SCM, we argue that the method suffers
from a number of critical weaknesses that erode the reliability and robustness of its causal
estimates and, consequently, of its policy implications. The contribution of this paper is,
therefore, twofold. First, we formally prove these weaknesses and explain their sources
and consequences. Second, we propose a modified version of the SCM, coined as the
regularized SHAP-distance synthetic control method (RSD-SCM), that overcomes these
limitations without increasing complexity. In fact, our approach is simpler and more
operational, since it breaks down the NP-hard problem of nested optimization into two
independent problems of quadratic optimization with linear constraints. We show that
current quasi-experimental methods for estimating covariate importance under the SCM
are extremely unstable and highly dependent on the donor pool, even if we add or remove
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donors with no weight in the optimal synthetic control. Consequently, weight estimation
is also affected. Moreover, we show that the estimation of covariate importance is not
built on sound economic foundations, but rather it is the result of interpolation biases in
order to minimize balance error on covariates. Therefore, it compromises the main spirit
of the SCM: to build a benchmark that behaves as the treated unit not only in terms of
the outcome but also in terms of the underlying drivers that explain this outcome.
The method we propose ensures robustness of the estimation of both covariate impor-
tance and the weights. By decoupling the estimation of covariate importance from that of
weights, the RSD-SCM minimizes interpolation biases and guarantees economic sense.
To estimate covariate importance, we use a new methodology for estimating feature im-
portance suggested by Lundberg and Lee (2017, 2019): SHapley Additive exPlanation
(SHAP) Values. This method allows us to analyze the marginal effects and average con-
tribution of the different features of a model, even in the case of non-parametric models.
Thus, we can obtain sound estimates for each unit of the relation of the different covari-
ates with the outcome, and define a distance between the donor pool and the treated unit
in terms of how covariates influence the outcome. To estimate weights, the procedure
we use minimizes quadratic error in the pre-treatment outcome, introducing a pairwise
distance penalization on the covariates, similar to the penalization parameter suggested
for disaggregated data by Abadie and L’Hour (2019). Roughly speaking, we obtain a
synthetic control that is the benchmark that best reproduces the pre-treatment outcome
and whose behavior is explained by the same factors that explain the treated unit.
To illustrate the main advantages of the proposed RSD-SCM, we apply both methods
to an evaluation of the causal economic effects of the ten-month long government for-
mation impasse in Spain, after the December 2015 elections. In line with the approach
taken by Albalate and Bel (2020) for the 18-month government formation deadlock in
Belgium (the longest such impasse to date), we take the GDP per capita growth rate
as the best indicator of overall economic performance. We use the SCM to build an
appropriate counterfactual to identify and isolate the gap between Spain’s actual GDP
per capita growth rate and the rate at which it would have grown without a government
formation deadlock. Our results indicate that the growth rate was not affected by gov-
ernment deadlock, ruling out any damage to the economy attributable to the institutional
impasse. More importantly, the case study allows us to highlight the main differences
between the SCM and RSD-SCM and the advantages of employing the latter.
The rest of this paper is organized as follows. First, we describe the standard SCM and
we evaluate its stability, consistency and economic meaningfulness. In light of the lim-



4

itations identified, in section II we propose a new regularized SHAP-distance synthetic
control method (RSD-SCM) that overcomes the limitations of the standard SCM. In sec-
tion III we apply both methods to empirically illustrate their differences and to highlight
the advantages of RSD-SCM. The case study involves an estimation of the causal eco-
nomic effects of a long government formation deadlock in Spain between December
2015 and October 2016. We discuss these findings, focusing, first, on the magnitude
of the differences between the two methods (SCM vs. RSD-SCM) and, second, on the
economic implications of the impasse. In section IV, we offer our main conclusions and
considerations about the new method proposed.

I. The synthetic control method: An evaluation of its stability, consistency and
meaningfulness.

A. The working of the SCM

The synthetic control method is a powerful approach to assessing causal treatment ef-
fects for aggregate units uniquely, or among very few, treated by a policy. This approach
builds a counterfactual of a specific treated unit as a weighted average of a number of con-
trol units (the so-called donor pool), to reproduce what would have been its performance
if it had not been exposed to the treatment and to identify, by its difference with respect
to reality, the causal effect of the policy. The weights are computed by minimizing a
vector distance between the treated unit and the donors over a series of pre-intervention
covariates. In this section, we first describe the main features of the SCM and then we
evaluate its consistency and stability.
The SCM assumes there are J control units and observations during T periods. Let XTU

be a (K×1) vector of the outcome growth predictors of the treated unit (the covariates).
Let X = (X1, ...,XJ) be a (KJ) matrix which contains the values of the same variables for
the J possible control units. Both XTU and X could include pre-treatment observations
of the dependent variable. Let V be a diagonal matrix with non-negative components
reflecting the relative importance of the different growth predictors. Let YTU be a (T ×1)
vector whose elements are the values of the outcome of the treated unit for the T periods,
and Y = (Y1, ...,YJ) a (T × J) matrix whose elements are the values of the outcome of
the control units. Then, the counterfactual is built as YW ∗, where W ∗ = (w∗1, ...,w

∗
2) is a

(K×1) vector whose elements are the weights of the control units in the counterfactual.
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The vector of weights W ∗ is chosen to minimize the following objective function:

(1) D(W ) = (XTU −XW )′V (XTU −XW )

subject to wi ≥ 0 and ∑
K
i=1 wi = 1.

Matrix V is chosen as

(2) V = argmin
V∈V

(YTU −YW ∗(V ))′(YTU −YW ∗(V ))

where V is the set of all non-negative diagonal (K×K) matrices, whose Euclidean norm
is one.
Several contributions have recently been made aimed at extending the scope of use of the
SCM and improving its accuracy and robustness. As regards the former, Powell (2018)
suggested a way to estimate policy effects when the outcomes of the treated unit lies
outside the convex hull of the outcomes of the other units. Since the treated unit may be
part of a synthetic control for a non-treated unit, the post-treatment outcome differences
for these units are informative of the policy effect. In recent studies, the SCM has been
extended to contexts with disaggregated data, where samples contain large numbers of
treated and untreated units, and interest lies in the average effect of the treatment among
the treated (see Abadie and L’Hour, 2019). Building synthetic controls for each of the
treated units as opposed to a synthetic control for the average treated unit has been pro-
posed in order to minimize interpolation biases.
To increase SCM accuracy and robustness, studies have addressed three issues: the role
of covariates, the estimation of weights and the best way to gauge the uncertainty of the
estimated treatment effect. As regards the first of these, Doudchenko and Imbens (2016),
Gobillon and Magnac (2016) and Kaul et al. (2015) showed that high accuracy can only
be achieved if the outcome is also included as a covariate (for example, by including
some lagged outcomes). However, by so doing, other covariates may become irrelevant.
Studies of the estimation of weights have proposed different strategies to reduce interpo-
lation biases. Abadie et al. (2015) suggested restricting the size of the donor pool and
considering only units similar to the treated unit, while other studies introduced penal-
ization parameters for the weights. Hastie et al. (2009, 2015), combined a Lasso and
Ridge regularization to capture a preference for a small number of non-zero weights, as
well as a preference for smaller weights. Likewise, Abadie et al. (2019) introduced a pe-
nalization parameter that trades off pairwise matching discrepancies with respect to the



6

characteristics of each unit in the synthetic control against matching discrepancies with
respect to the characteristics of the synthetic control unit as a whole. This reduces inter-
polation biases by prioritizing inclusion of units in the synthetic control that are close to
the treated units and it ensures uniqueness, in the context of a large number of units in the
donor pool, when single untreated units or different combinations of them may provide
close matches to the treated units.
Finally, to gauge the uncertainty of the estimated treatment effect, the SCM compares
the estimated treatment effect with the “effects” estimated from placebo tests in which
the treatment is randomly assigned to a control unit (see Abadie and Gardeazábal, 2003).
Building multiple synthetic controls by leaving countries out of the optimal control has
also been proposed (Abadie et al., 2010). In this regard, Xu (2017) proposed a paramet-
ric bootstrap procedure to obtain confidence intervals of the estimates of the treatment
effect.
Despite the interesting advances made by this literature, the works cited do not address
the concerns about the SCM that we highlight and evaluate in the next subsection and
which are critical for the quality of its outcomes. Our main concerns are related to SCM
stability, consistency and meaningfulness.

B. An evaluation of the SCM as a bilevel problem

The SCM is characterized as a bilevel problem. Such problems are optimization
problems (upper-level) that contain another optimization problem as a constraint (lower-
level).
Definition 1. For the upper-level objective function F : IRn× IRm→ IR and lower-level
objective function f : IRn× IRm→ IR the bilevel problem is given by

min
xu∈Xu,xl∈XL

F(xu,xl)

sub ject to

xl ∈ argmin
xl∈XL

{ f (xu,xl) : g j(xu,xl)≤ 0, j = 1, ...,J}

Gk(xu,xl)≤ 0, k = 1, ...,K

where Gk : XU ×XL→ IR, k = 1, ...,K denote the upper level constraints, and g j : XU ×
XL → IR represent the lower level constraints, respectively. Equality constraints may
also exist that have been avoided for brevity.
Figure 1 illustrates a general bilevel problem solving structure involving interlinked op-
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timization at both levels. Given a xu vector, x∗l is the optimal lower level vector for the
lower level optimization. But, as seen in the figure, the solution (x∗l ,xu) is not optimal
for the upper level optimization given x∗l .

Figure 1. : A general sketch of a bilevel problem.

The SCM proposed by Abadie et Gardeazabal is a bilevel optimization problem of the
form:

min
V,W

(YTU −WY )′(YTU −WY )

sub ject to

W ∈ argminW{(XTU −WX)′V (XTU −WX) : 0≤ wi, j = 1, ...,K,
K

∑
i=1

wi = 1}

v j ≤ 0, j = 1, ...,J;
J

∑
i=1

v j = 1

Bilevel programming is known to be strongly NP-hard (Hansen, Jaumar and Savard,
1992), and it has been proven that merely evaluating a solution for optimality is also a
NP-hard task (Vicente, Savard and Judice, 1994). Moreover, the hierarchical structure
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may introduce difficulties such as non-convexity and disconnectedness even for simpler
instances of bilevel optimization, which may cause solutions to be highly unstable to
small perturbations and the algorithm to converge to different local optima.
In the particular case of the SCM method, the flaws of bilevel optimization imply that
the solution V can be completely arbitrary and highly unstable to small perturbations.
As a result, weights are also unstable and V does not offer reliable insights in terms of
economic meaningfulness since it can be driven by interpolation biases.
Let us illustrate the aforementioned flaws with two simple examples.

Example 1: V completely arbitrary
Let us note by W (V ) the set of W that are solution of the lower-level problem, given
V . Let us note by Ω = {(W 1,V 1)..,(W s,V s)} the set of weights and feature importance
matrix such that X i

TU = W jX i for at least some covariate i but not all of them, and that
W j is a solution of the lower-level optimization, that is, W j ∈W (V j). Let us consider
that there exists W ∗ such that XTU =W ∗X . Then:
i) For any V , W ∗ ∈W (V )

ii) The optimal solution (or solutions) of the SCM problem is the solution of the problem

min
(W,V )∈Ω∪(W ∗,V ∗)

(YTU −WY )′(YTU −WY )

In particular, if W ∗ adjust better YTU than any W j ∈ Ω, the solution of the SCM admits
any arbitrary V .
Proof
i) Given that XTU =W ∗X, we have that D(W ∗)≡ (XTU −W ∗X)

′
V
′
(XTU −W ∗X) = 0 for

any V . Since the lower level function D is non-negative for any positive semi-definite
matrix V , W ∗ ∈W (V ) for any positive semi-definite V .
ii) Let us consider V /∈ {V 1, ...,V s}. Let us assume that there exists Ŵ 6= W ∗ such that
Ŵ ∈W (V ). Since D(W ∗) = 0 and W ∈W (V ), then D(Ŵ ) = 0. But since V is positive
semi-definite, there has to exists at least one covariate i such that X i

TU = ŴX i, and that
is impossible because V /∈ {V 1, ...,V s}. Thus, for any W ∈W (V ) with V /∈ Ω, W =W ∗.
Therefore, the solution of the bilevel problem has to be pair (W,V ) ∈ Ω∪ (W ∗,V ) that
minimizes the upper level problem.

Example 2: V unstable and driven by interpolation biases
Let us consider a donor pool formed by 15 units with 3 covariates each one: Xi =
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(C1
i ,C

2
i ,C

3
i ), where C j

i is the average value of the covariate j for the unit i during the
time period. Let us consider that the covariates are distributed as:

C1
i ∼Uni f orm(0,1)

C2
i ∼ 0.5C1

i +Uni f orm(0,1)+N(0,0.1)

C3
i ∼ 0.5C1

i +Uni f orm(0,1)+N(0,0.1)

Let us consider that the growth rate of Xi for the period t, γi,t is defined as:

γi,t =
0.2+0.2Ĉ1

i +0.5Ĉ2
i +0.3Ĉ3

i
100

+ εt

where Ĉ j
i =

C j
i −min(C j)

max(C j)−min(C j)
and εt ∼ N(0,0.02).

Thus, we are ensuring that covariates are related with output, since growth rates depend
on covariates. All covariates are given the same output value at t = 0, that for simplicity
we take as 1. Therefore,

Y t
i =

t

∏
r=1

(1+ γi,r), t = 1, ...,T

Let us defined the treated unit as:

Y t
TU =

Y t
i +Y t

j

2
+N(0,0.01)

Ck
TU =

Ck
i +Ck

j

2
+N(0,0.05)

where Xi, X j are two randomly selected donors such that Ci, j
1 < 0.5, Ci, j

2 < 0.5, and the
correlation between Xi and X j is higher than 0.7. Note that the treated unit is related with
donors in terms of output and covariates.
Figure 2 shows 4 examples of simulated results. In each graph it is represented the R2

value of the synthetic unit in the z axis when feature importance is V = (x,y,1− x− y).
As can be seen, the upper-level problem (the sum of squares, which is a linear transfor-
mation of the R2) is highly non-convex and there are multiple local optima. Moreover,
small variations in V can lead to huge changes in R2. For example, in the first figure, the
maximum R2 is 0.948 and corresponds to x = 0 and y = 1. However, a small perturbation
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can lead to the lowest R2, -0.212, at x = 0.05 and y = 0.95.
In section III, we will present an empirical assessment of the numerical instability for

Figure 2. : Four illustrations of goodness of fit in pre-treatment outcomes given V
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the case study of Spain’s government deadlock. As we will see, current implementa-
tion of the SCM method can lead to very unstable results just by removing or adding to
the donor pool units that are given no weights in the synthetic control. Although this is
clearly counter-intuitive and should not be possible, it is due to the fact that the imple-
mentation of the optimization problem is done using an interior point method (Abadie
et al., 2011). That is, weights can be given values close to zero, but not zero. Thus,
although the final result is presented as 0, the real value for the algorithm could be of the
order of 10−7 or 10−8 (depending on the margin parameter given to the function). There-
fore, removing units with zero weight in the solution is equivalent to introduce a very
small perturbation, which, as we have showed, can be devastating in terms of optimal
parameters and goodness of fit.

II. The Regularized SHAP-distance based synthetic control method

The aim of this section is to propose and present a modification of the SCM that can
guarantee economic meaningfulness and the stability of feature importance, at the same
time as it increases the robustness of the estimation of weights and treatment effect. Our
proposal is coined as the regularized SHAP-distance synthetic control method (RSD-
SCM) and is designed as an operational alternative to the use of the SCM that involves
less complexity than the standard approach due to the NP-hard nature of bilevel opti-
mization.
In the previous section we showed that the minimization problem of SCM is defined
over covariates and that feature importance estimation is nested to weights that can lead
to considerable instability and a lack of economic meaningfulness. Therefore, we pro-
pose decoupling feature importance from weight estimation by defining the optimization
problem of the SCM as a minimization of the error in the pre-treatment outcome ad-
justment, conditional to using units that are as similar as possible to the treatment unit.
Moreover, we also present a concrete methodology for feature estimation and ensuring
unit similarity that guarantees economic sense and stability.

A. Modified optimization function

Let us note by d(XTU ,Xi) a distance between the the treated unit and the unit i, de-
pendant on their respective vector of covariates XTU , Xi. The vector of weights in our
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modified method is chosen to minimize

(3) D(W ) =
∑

T
t=1(Y

t
TU −WY t)2

∑
T
t=1(Y

t
TU − ȲTU)2

+λ

J

∑
i=1

I(wi)d(XTU ,Xi)

where I(x) equals 1 if x > 0 and 0 otherwise, and λ > 0 is a regularization parameter that
balances the potential trade-off between a pure minimization of the adjustment error and
ensuring the similarity between units considered for the control group and the treated
unit. The choice of λ is not uniquely determined and depends on several conditionings.
For example, the stronger the relation between the covariates and output evolution, the
more sense it makes to choose a higher value of λ . In the next section (II.B), we present
a method for assessing the importance of λ and for choosing an adequate value.
It is important to note that the distance function is not linked to the weights, which in the
SCM contributed to increasing instability and reducing economic meaningfulness. We
should also stress that we consider the pairwise distance of each unit with respect to the
treated unit and not only with respect to the synthetic unit. In other words, we require all
the units entering the synthetic control to be similar to the treated unit so as to minimize
interpolation biases (as suggested also in Abadie and L’Hour, 2019). Roughly speaking,
this change is equivalent to saying that, for example, what most resembles a medium-size
house is not the average of a small and a big house, but the average of two medium-size
houses. In the next section we present a distance function especially suited for building
the synthetic control.

B. SHAP-based distance

Intuitively, we would like to consider that a unit is similar to the treated unit if their
outcomes evolved in a similar way before the treatment and for similar reasons. For ex-
ample, a 99% correlation in the evolution of GDP per capita between two countries would
tell us nothing about their similarity if one has an economy based on natural resources
that grew because of a hike in petrol prices whereas the other’s growth was attributable
to manufacturing exports. In short, to define a distance between units it is critical we
understand the relationship between their outcome and their covariates. To do so, we
propose the following methodology. First, we build a model of the evolution of the out-
come using covariates as explanatory variables. Second, we use one of the newest and
most popular methods of model interpretation to estimate the average marginal contribu-
tion of each feature to each prediction of the model: the SHapley Additive exPlanation or
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SHAP values. Finally, by estimating the SHAP values, we are able to define a distance
based on feature importance and average contributions to outcome evolution.

OUTCOME EVOLUTION MODEL

Let us note the growth rate of unit i by

gt
i =

Y t
i −Y t−1

i

Y t−1
i

where i ∈ {1, ...,J,TU}. Recall that YTU is the (T × 1) vector containing the values of
the outcome for the treated unit, and Y = (Y1, ...YJ) the (T ×J) matrix with values of the
outcome for the control units.
Let us consider F(X s

i |s ∈ {1, ..., t}) a model for gt , that is

F(X s
i |t ∈ {1, ..., t}) = gt

i + εt

where εt is the error term at time t.
F could be a parametric linear model, such as linear regressions, or a more complex
machine learning model, such as a gradient boosting tree. It may also include past infor-
mation from covariates.

SHAPLEY ADDITIVE EXPLANATION VALUES

SHAP values have been proposed as a unified framework for assigning feature im-
portance to parametric and non-parametric models (Lundberg and Lee, 2017 and 2019).
The main idea underpinning SHAP values – a method developed in coalitional game
theory – is that a prediction can be explained by assuming that each feature value of the
instance is a “player” in a game where the prediction is the payout. Thus, the problem of
feature importance is equivalent to distributing the “payout” fairly among the features.
To calculate SHAP values for a data instance, we need to estimate the average marginal
contribution of a feature value across all possible “coalitions” of the other features, com-
pared to the average prediction for the dataset. In order to do so, a general method for
estimating SHAP values is suggested by Lundberg and Lee (2017, 2019), known as Tree-
SHAP. Roughly speaking, given an instance x, the method calculates the marginal effect
of a feature i estimating how the concrete value of feature i on x modifies the output of
the model with respect other instances that share some of the features with x but not i.

Formally, let us consider the subset S of the set of input variables V and Fx(S) =
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Figure 3. : SHAP values explain the output of a function f as a sum of the effects φi
of each feature being introduced into a conditional expectation.

E[F(x)|xS] the expected value of the model F conditioned on the subset of input fea-
tures S. Then, SHAP values are the combination of these conditional expectations:

φi(x) = ∑
S⊂V\{i}

|S|!(|V |− |S|−1)!
|V |!

[Fx(S∪{i})−Fx(S)]

where the combinations are needed because for non-linear functions the order in which
features are introduced matters. For a linear model F(x) = ∑

k
i=1 αixi, the SHAP value is

straightforward:
φ j(x) = α j(x̂ j−E(x j))

Figure 3 shows how the SHAP values explain the output of a function f as a sum of the
effects ψi of each feature being introduced into a conditional expectation.

FEATURE IMPORTANCE AND SHAP-BASED DISTANCE

Let us note by φm(X t
1) the SHAP value of the covariate m for the treated unit at time t.

Then, we can estimate the relative importance of the covariate m in the outcome evolution
of the treated unit, RIm, as:

RIm =
∑

T
t=1 |φm(X t

1)|
∑

J
j=1 ∑

T
t=1 |φ j(X t

1)|

where J is the total number of covariates and T the total number of observations.
Therefore, we can define V as the diagonal matrix such that Vj j = RI j. This matrix has
economic sense, because it is exactly estimating the importance of each covariate on the
outcome evolution of the treated unit before the treatment. It is also stable, in the sense
that it relies on the stability of parameter estimation or model inclusion of the different
variables. Thus, features whose relation with outcome is less robust will tend to not be
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considered (for example, discarded in a linear model if their p.value is lower than 0.1 or
0.05) or be assigned lower relevance.
Having estimated V , let define ACi

m the average contribution of feature m in outcome
evolution for unit i:

ACi
m =

∑
T
t=1 φm(X t

i )

T
Then, we can define the distance between non-treated unit Ui and the treated unit TU as:

(4) d(Ui,TU) = (ACi−ACTU)′V (ACi−ACTU)

where ACi = (ACi
1, ...,ACi

J) and ACTU = (ACTU
1 , ...,ACTU

J ) are the vectors containing the
average contributions of the covariates for unit Ui and the treated unit TU .

CHOICE OF REGULARIZATION PARAMETER

Let us consider λ0 > 0, ε > 0, and λ1 = λ0 + ε . Let us note by W (λ ) the weights
estimated given . Note that for ε small enough, W (λ0) =W (λ1), since the I function in
Equation 3 is binary.
Let us define a critical value λ , λCV

i , as the minimum value of λ such that the synthetic
control is modified for any λCV

i−1 < λ < λCV
i . We define λCV

0 = 0. Note that W (λCV
i +ε)=

W (λCV
i ) for ε ∈ [0,λCV

i+1−λCV
i ).

Let us consider R2(λ ) as the R2 of the synthetic control Y (λ ) =W (λ )Y , and

d(λ ) =
J

∑
i=1

I(wi(λ ))d(XTU ,Xi)/
J

∑
i=1

I(wi(λ ))

the average distance of the countries with positives weights W (λ ).
It is clear that R2(0)≥ R2(λ ) and d(0)≥ d(λ ) for all λ > 0. Let us define also the error
loss of λ as the ratio

EL(λ ) =
1−R2(λ )

1−R2(0)

and the similarity gain as

SG(λ ) =
d(0)−d(λ )

d(0)

The lower the EL the better, since this means the goodness of fit is near to the maximum
possible. Likewise, the higher the SG the better, since this means that the countries in the
synthetic control are closer to the treated unit. Therefore, we propose finding the optimal
value of the regularization parameter, λ , that minimizes the EL:SG ratio
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That is:
λ
∗ = min

λ∈CVν

EL(λ )
SG(λ )

where CVν is the set of critical values of λ such that R2(λ ) > νR2(0). That is, critical
values that ensure at less a certain level of goodness of fit, to prevent degenerated cases
where the distance is almost no related with outcome. We recommend using ν = 0.9 or
0.95.
For λ = 0, the EL:SG ratio is defined as ∞.

III. Illustration: The economic effects of the government formation deadlock in Spain,
2016.

Although hardly new, lengthy government formation processes in parliamentary regimes
after a general election are becoming more usual in Europe. In the last two decades,
there have been seven cases of government formation deadlocks lasting more than three
months (see Table 1 for chronological list and specific details of each impasse).
Contrary to widespread claims that government deadlocks and the associated political

Table 1—: Government formation deadlocks longer than three months in Europe.

Country General Elections Deadlock’s duration
Belgium June, 2007 6 months
Belgium June, 2010 18 months
Spain December, 2015 10 months
Netherlands March, 2017 7 months
Germany September, 2017 6 months
Italy March, 2017 3 months
Spain April, 2019 10 months
Belgium May, 2019 ongoing

instability harm a country’s growth by disrupting economic policies that might otherwise
promote better performance (Alesina et al., 1996; Angelopoulos and Economides, 2008;
Aisen and Veiga, 2013), studies of recent impasses provide evidence that this might not
always be the case. Using the SCM to build an appropriate counterfactual to repro-
duce Belgium’s economic growth if it had had a full-powered government, Albalate and
Bel (2020) reported a non-negative effect on economic growth during the 18 months
of government deadlock in that country following the June 2010 election. The study
suggests that certain characteristics peculiar to Belgium could be behind this (perhaps)
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counter-intuitive result: First, the country’s highly decentralized multi-level governance,
which assigns a considerable number of functions and powers to the communities and
regions, at the same time as the European Union’s institutions have absorbed some of the
core functions performed by conventional Member States (Bouckaert and Brans, 2012;
Hooghe, 2012); second, the existence of robust, efficient institutions, outside govern-
ment, that played a positive role in protecting the economy from the difficulties of the
impasse; and, third, the delay in fiscal consolidation that could have caused higher short-
term economic growth than might otherwise have been expected.

A. Spain’s political deadlock.

The general election held in Spain on December 20th, 2015 resulted in a fragmented
political landscape following the emergence of two new political parties: Podemos (left-
wing) and Ciudadanos (Cs) (right-wing). Table 2 records the names of the parties elected
and the percentage of votes received by each.
In spite of winning the election, the Partido Popular (PP) (right-wing), who ruled Spain

Table 2—: General elections results, Spain 2016

Nov.
2011

Dec. 2015 June 2016

Political Party Seats % vote Seats % vote Seats
Partido Popular (PP) 186 28.7 123 33.0 137
Partido Socialista (PSOE) 120 22.0 90 22.7 85
Podemos - 20.7 69 21.1 71
Ciudadanos (Cs) - 13.9 40 13.1 32
Izquierda Unida (IU) 9 3.7 2 - -
Esquerra Republicana (ERC) 3 2.4 9 2.6 9
Democràcia Llibertat (DiL)/(CDC) 16 2.3 8 2.0 8
Partido Nacionalista Vasco (PNV) 5 1.2 6 1.2 5
Amaiur/ Euskal Herria (EHBildu) 7 0.9 2 0.8 2
Coalición Canaria (CC) 2 0.3 1 0.3 1

Note: Podemos was the main party of a left-wing coalition including regional parties En Comú Podem (Catalonia),
Compromı́s (Valencia) and En Marea (Galicia)] in 2015. In the election 2016 included as well Izquierda Unida.

with an absolute majority between 2011 and 2015, lost 63 seats and with them its ma-
jority. Due to the numerous corruption cases in which leading members of the PP were
then embroiled, the other main right-wing party, Cs, refused to facilitate a right-wing
government and offered their votes to the Partido Socialista Obrero Española (PSOE).
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Together the two parties controlled 130 of the chamber’s 350 seats and needed either the
support of Podemos or the abstention of the PP to achieve a sufficient majority to form
a government. Neither of the two requirements was met and fresh elections were held
in June 2016. For the first time since the restitution of Democracy in 1978, the failure
of the legislature to form a government had resulted in a new call to the polls. As can
be seen in Table 2, the 2016 election results reinforced the position of the PP, but these
14 additional seats were still not enough to form a government. After two months of
negotiations clouded by huge uncertainty, Cs (along with the Coalición Canaria, a right-
wing regional party in the Canary Islands) announced their support for Mariano Rajoy,
PP’s candidate for the Presidency. With 170 votes and the controversial, and what would
prove decisive, abstention of the PSOE, Rajoy was re-elected President of Spain on Oc-
tober 29th, 2016, ending a ten-month long deadlock.
Despite this period of impasse and the limited powers of a caretaker government, Spain’s
economic performance did not appear to suffer greatly, despite claims from politicians
and the media to the contrary as they pressed for a political deal. Indeed, even the Span-
ish Central Bank (Banco de España) published an article in 2017 estimating the negative
effect of the political uncertainty of the previous year at just 0.1% of GDP, although this
result was not statistically significant (see Gil, Pérez and Urtasun, 2017). If we observe
the GDP growth rate (Figure 4), Spain’s performance during 2016 was slightly higher
than the EU average, and better than the euro area average, as it had been in 2015. How-
ever, as Albalate and Bel (2020) discuss in their evaluation of the 18-month government
deadlock in Belgium, this comparison tells us only how Spain’s performance compared
to that of the other countries of Europe, but it offers no causal insights as to how it might
have performed had it had a full-powered government. Thus, what we need is to build a
counterfactual to reproduce how Spain would have performed in the absence of its gov-
ernment formation deadlock.

B. Results with the standard synthetic control method

To evaluate the robustness and meaningfulness of the SCM and the advantages of im-
plementing our proposed RSD-SCM alternative, we compare the estimates provided by
the two methods of the causal effects of this political deadlock. First, we apply the stan-
dard SCM, with and without outcome lags in the covariates, to show that in both cases
covariate importance is highly unstable, highly dependent on the donor pool and lack-
ing in economic meaningfulness. Second, we implement our proposed SHAP-distance
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Figure 4. : Real Gross Domestic Product per capita growth rate (2008-2016)

based synthetic control method to show how this approach addresses and avoids the main
weaknesses of SCM, providing more stable, accurate and meaningful estimates.
The donor pool used in the comparison includes a sample of the EU-28 countries. Malta
and Luxembourg had to be excluded given the amount of missing data for some of the
key predictors used in the analysis. Belgium was excluded since it was also affected
by a lengthy government deadlock between 2010 and 2011, and Ireland because of the
marked change in GDP pc in 2014 (26.3% growth rate) due to the reallocation of the
intellectual property of large multinational firms.
Tables 3 and 4 report the pretreatment values of several variables typically associated
with a country’s growth potential and used as covariates, as well as their relative im-
portance, for the case without and with lagged outcomes. Table 5 presents the weight
matrix for the donor pool, where the synthetic weight is the country weight assigned to
each country. When the lagged outcomes are not included, the synthetic Spain is made
up of the four main contributors: Portugal (33.5%), France (30.7%), Greece (23.3%),
and Italy (12.0%). Finland also plays a role, but only a minor one (0.4%). The rest of
the countries do not contribute to the synthetic unit. When using this control to predict
Spain’s GDP per capita from 2001 to 2015, R2 is 92.60% and the mean absolute percent-
age error (MAPE) is 0.64%. When initial and final outcomes are included, the results are
quite similar. The main contributors remain the same, although their relative importance
changes. The minor role played by Finland disappears, and, instead, Denmark (3.7%)
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and Sweden (2.6%) enter the synthetic control. The goodness of fit improves slightly (R2

= 93.44%) and the MAPE remains unchanged at 0.64 Figures 5 and 6 show the GDP

Table 3—: Covariate means and importance without including lagged outcome

Predictor Spain Synthetic Pool Importance
Openness 57.03 60.13 98.00 54.1%
Low education 50.12 48.12 28.04 26.0%
Trade surplus -1.37 -3.74 -0.51 12.8%
Unemployment 15.90 10.78 9.21 4.2%
High education 27.28 18.46 21.44 1.9%
Investment 24.02 20.81 22.31 1.1%
Debt 61.41 98.88 56.68 0.0%

Note: Average 2001-2015

Table 4—: Covariate means and importance including initial and final outcome

Predictor Spain Synthetic Pool Importance
GDP per capita2001 22190.00 22120.28 19306.36 57.2%
GDP per capita2015 23080.00 22523.79 22645.00 30.1%
Low education 50.12 48.83 28.04 7.5%
Openness 57.03 62.88 98.00 3.7%
Unemployment 15.90 10.81 9.21 0.8%
Trade surplus -1.37 -3.79 -0.51 0.4%
Investment 24.02 20.75 22.31 0.1%
Debt 61.41 97.39 56.68 0.1%
High education 27.28 18.41 21.44 0.0%

Note: Average 2001-2015

per capita evolution of the real and synthetic Spain, as well as their difference in GDP
growth. In both cases, the growth rate during the 2016 deadlock was around 1.8 percent-
age points (p.p.) higher than expected, while in 2017 and 2018 the gap was reduced to
0.4 and 0.1 p.p. respectively.
To evaluate the robustness of the SCM, two placebo tests have been widely used: in-time

and in-space. In the former, the SCM is applied considering that the treatment occurred
in an earlier timeframe (i.e. the treatment is reassigned to occur during the pretreatment
period) and so the control is built using observations up to this new moment in time.
Thus, this test examines the uncertainty associated with making a prediction after the
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Table 5—: Percentage weight vector with and without including lagged outcome

Country Weight
without
lagged
outcome

Weight
with
lagged
outcome

Country Weight
without
lagged
outcome

Weight
with
lagged
outcome

Austria 0 0 Hungary 0 0
Bulgaria 0 0 Italy 12.0 8.8
Croatia 0 0 Latvia 0 0
Cyprus 0 0 Lithuania 0 0
Czechia 0 0 Netherlands 0 0
Denmark 0 3.7 Poland 0 0
Estonia 0 0 Portugal 33.5 37.5
Finland 0.4 0 Slovakia 0 0
France 30.7 21.8 Slovenia 0 0
Germany 0 0 Sweden 0 2.6
Greece 23.3 25.4 UK 0 0

Figure 5. : GDP per capita evolution: real vs synthetic Spain

last observation considered for the estimation. In the second placebo test, the SCM is
applied to the control units as if they too had been treated at the same moment of time as
the treated unit. Hence, it tests the uncertainty associated with the volatility of outcomes
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Figure 6. : Difference in GDP per capita growth rate: real minus synthetic Spain

of the control units during the treatment.
However, neither of these two tests evaluates the stability of covariate importance and
weights, and their economic foundations, which are the main ideas on which the SCM is
based. Even if the methodology passes the in-time and in-space placebo tests, it would
be difficult to rely on its results if, for example, V had no relation with economic theory.
Moreover, if a placebo test fails to confirm robustness, it is unable to tell us whether it
is because the treatment had no significant effect or because the methodology was not
properly applied and its accuracy could be improved (for example, by adding new co-
variates).
Here, therefore, we analyze the stability and economic meaningfulness of covariate im-
portance and weights and show that SCM does not guarantee any of them, even in those
cases when the methodology passes the placebo tests.
As Figures 5 and 6 show, in this particular case, including lagged outcomes has almost
no impact in terms of the goodness of fit and the estimation of the treatment effect. All it
achieves is to slightly modify the relative weights of the donor pool, especially as regards
France, whose contribution falls from 30.7 to 21.8%, and Sweden and Denmark, which
enter the synthetic Spain with weights of around 3% (Table 5). However, as recognized
elsewhere, including Doudchenko and Imbens (2016), Gobillon and Magnac (2016) and
Kaul et al. (2015), variable importance is greatly affected, and the covariates become
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almost irrelevant (Tables 3 and 4).
This might not, however, be important in terms of the consistency and robustness of V.
If the covariates reflect the economy drivers, they could also be influencing lagged out-
comes in the sense that countries with more similar values for these covariates would
also have similar outcomes. This means that the importance of the covariates could be
hidden behind the lagged outcomes; the only problem being that the inclusion of lagged
outcomes makes it almost impossible to gain any economic insights from V and to judge
whether the estimations are the result of an interpolation bias.
However, here, an analysis of V shows that its estimation is neither consistent with the
economic foundations nor is it stable. First, if we turn our attention to the SCM without
lagged outcomes, the most important variables are openness (54.1%) and low educa-
tion (26.0%), while unemployment, investment and debt have almost no influence (4.2,
1.1 and 0%, respectively). The Spanish economy’s cumulative growth per capita in real
terms from 2000 to 2007 was 2.8 p.p. higher than that of the euro area, driven mainly
by exceptionally high levels of investment due to the housing bubble (Akin et al., 2014).
Total investment in Spain averaged 27.7% of GDP from 2000 to 2007, 5.2 p.p. higher
than in the euro area. Once the crisis began, investment dropped significantly, reaching
a minimum of 17.4% in 2013, almost 13 p.p. lower than its maximum in 2006. In the
euro area the fall in investment was much lower: from a maximum of 23.4% in 2007 to
a minimum of 19.7% in 2013. Unemployment more than tripled, from 8.2% in 2007 to
a maximum of 27% in the first quarter of 2013, the highest level in the euro area. As a
result, Spain’s public debt almost tripled, growing from 35.8% of GDP in 2007 to 99.3%
in 2015. In the euro area, however, the increase was much lower, from 65.9 to 90.8%.
Thus, quite simply it is meaningless to devise a similarity measure with respect to Spain
that assigns no importance to debt, unemployment and investment, while at the same
time assigning almost 70% of the importance to the degree of openness and the percent-
age of the population with a low education. Openness, for example, remained largely
stable before and during the crisis. In the period 2000–2007, imports and exports ac-
counted for 56.2% of GDP, while in 2008–2015 they represented 58.2%. In conclusion,
openness and low education levels are not assigned a high level of importance because
they are the main drivers of Spain’s economy, but rather because a number of countries
whose real GDP per capita evolution correlated highly with Spain’s presented similar
levels of openness and low education (see Appendix I).
Secondly, because of the interpolation bias, covariate importance, weights and goodness
of fit are highly unstable and dependent on the donor pool. Table 6 shows the average im-
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portance and standard deviation for 100 simulations after removing three countries from
the donor pool that were assigned no weights in the synthetic Spain. The standard devi-
ation is higher than 50% of the average importance estimation for almost all covariates,
both with and without lagged outcomes. As a result, the distance between the synthetic
and real Spain is modified and, so, the weights are adjusted accordingly. As can be seen
in Table 7, the weights are also highly unstable, except for Greece and Portugal (though,
in the case of the latter, only when the lagged outcomes are included). Yet, weight insta-
bility may not necessarily compromise the SCM. Indeed, it might just be the result of the
fact that the donors are so similar to each other that a small perturbation in V modifies
the selection of one of them into the control. However, as Table 8 shows, the goodness
of fit is significantly affected for the SCM without lagged outcomes and slightly affected
for SCM with lagged outcomes. Given the high instability of the goodness of fit for

Table 6—: Variable importance stability

No lagged outcomes With lagged outcomes
Predictor Mean St. Dev Mean St.Dev
Debt 2.40 % 4.14% 0.28 % 0.53%
Unemployment 5.57% 2.83% 1.86% 1.85%
Openness 41.3% 22.54% 11.40% 12.16%
Investment 3.38% 2.85% 0.73% 1.18%
Trade 14.36% 15.52% 3.51% 4.91%
Low education 29.12% 18.06% 12.30% 13.57%
High education 3.85% 3.13% 0.87% 2.02%
GDP per capita 2001 40.99% 22.11%
GDP per capita 2015 28.03% 10.50%

Note: Results over 100 simulations removing 3 countries with no weight in the synthetic Spain built with all the donor
pool

the SCM without lagged outcomes, an in-time placebo test using 2012 as the treatment
year should identify this lack of consistency and robustness. However, the same does not
hold true for the SCM with lagged outcomes (Figure 7). Yet, in both cases, the placebo
test fails to provide any information as to why the methodology works properly or not,
or whether it can be improved.
In conclusion, we have shown, first, that covariate importance may not be consistent with
economic theory and provide no meaningful insights; second, that this lack of meaning is
due to interpolation biases that make estimations highly unstable and dependent on irrel-
evant countries (i.e. countries with no weight) in the donor pool; and, third, that although
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Table 7—: Unit weights stability

No lagged outcomes With lagged outcomes
Country Mean St. Dev Mean St.Dev
Austria 0 0 0 0
Bulgaria 0 0 0 0
Croatia 1.17 4.04 1.44 3.27
Cyprus 0 0 0 0
Czechia 0 0 0 0
Denmark 0 0 1.11 3.47
Estonia 0.47 1.95 0 0
Finland 12.14 14.15 0.35 1.36
France 22.49 16.97 24.16 14.27
Germany 0 0.01 0.09 0.69
Greece 23.38 5.38 22.65 5.68
Hungary 0 0 0 0
Italy 3.90 7.27 11.89 11.84
Latvia 0 0.02 0 0
Lithuania 0 0 0 0
Netherlands 0.05 0.41 0 0
Poland 0.05 0.41 0.03 0.24
Portugal 36.33 10.04 34.07 4.64
Slovakia 0.02 0.13 0.47 2.11
Slovenia 0 0 0 0
Sweden 0 0.02 3.13 4.86
United Kingdom 0 0 0.60 3.45

Note: Results over 100 simulations removing 3 countries with no weight in the synthetic Spain built with all the donor
pool.

Table 8—: Goodness of fit stability

No lagged outcomes With lagged outcomes
Measure Mean St. Dev Mean St.Dev
R2 81.42% 14.03% 91.17% 2.84%
MAPE 1.16% 0.43% 0.77% 0.17%

Note: Results over 100 simulations removing 3 countries with no weight in the synthetic Spain built with all the donor
pool.

including lagged outcomes may make the results more robust in terms of goodness of fit,
it does not solve the problem of meaning and stability of covariate importance; moreover,
it also tends to make the other covariates irrelevant, thus compromising the main idea be-
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hind the SCM. Finally, we have also shown that standard robustness checks, such as the
in-time placebo test, may be unable to identify these flaws and to suggest any strategy to
improve the results.

Figure 7. : Placebo test for Spain

C. Results with the regularized SHAP-distance synthetic control

In this subsection we build the synthetic Spain adhering to the strategy described in
Section III; that is, we build a model of GDP per capita growth, define a distance using
SHAP values, select a regularization parameter and estimate optimal weights. We con-
sidered a linear model of the GDP per capita growth rate from 2001 to 2015, using as our
explanatory variables the covariates used in the previous subsection and all the countries
in the donor pool including Spain. The results are presented in Table 9 (variables with
gr indicate growth rates of the covariate). Note that while the covariates are able to ex-
plain 73.33% of the variation in economic growth, around 25% of the variation remains
unexplained. Thus, a synthetic control that relies solely on the covariates would not be
sufficiently accurate or robust. Table 14 shows the feature importance of the different
covariates of economic growth in Spain and the donor pool. According to the RSD-SCM
results, Spain’s economic evolution has been characterized primarily by high levels of
unemployment and debt growth. Conditional convergence has had a much lower impact
on Spain than it has had on the donor pool, mainly because Spain’s GDP was already
very close to the average of the selected countries (a 6% difference, on average, during
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Table 9—: Real GDP per capita growth model (OLS)

Variable name Estimate Std. Error t value Pr(> |t|)
Intercept 3.722e-02 (4.128e-03) 9.016 < 2e-16
invest gr 3.569e-03 (1.052e-03) 3.391 0.00078
openness gr 1.692e-03 (1.704e-04) 9.930 < 2e-16
gdp pc lag1 -9.058e-07 (9.574e-08) -9.461 < 2e-16
debt gr -1.705e-03 (2.070e-04) -8.236 4.24e-15
unemp gr -6.046e-03 (8.767e-04) -6.897 2.73e-11
educlow -1.945e-04 (6.552e-05) -2.969 0.00321
educhigh 2.786e-04 (1.331e-04) 2.093 0.03709
Residual standard error: 62.56 on 329 degrees of freedom
Multiple R-squared: 0.7333, Adjusted R-squared: 0.7277
F-statistic: 129.2 on 7 and 329 DF, p-value: < 2.2e-16

Note: Error weighted by population

the period).
Using covariate importance, we define the distance between countries in the donor pool

Table 10—: Covariate importance

Predictor Importance
Spain

Importance
pool

Unemployment 30.03 17.43
Debt 27.78 15.74
Openness 11.94 21.48
Investment 11.48 11.09
Low education 11.13 4.50
High education 4.19 4.39
Conditional convergence (GDP lag1) 3.44 25.37

Note: SHAP feature importance during 2001-2015

and Spain as in Equation 4, but normalizing to be between 0 and 1. The corresponding
results are presented in Table 13.

We applied the EL:SG ratio to select the optimal λ (as described in Section II.B).
Results are presented in Table 12. It is worth pointing out that even in the case of no
regularization and using a distance that was independent from Spain’s pre-treatment ad-
justment, the average distance of countries in the synthetic control is much lower than
the average distance of those in the donor pool (0.21 vs. 0.33). This means that the more
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Table 11—: Donor pool ordered by distance (normalized to 100)

Country Distance Country Distance
Cyprus 3.22 Hungary 26.22
Greece 8.53 Germany 31.71
Italy 9.78 Sweden 39.03
France 11.98 Latvia 40.05
Portugal 14.52 Czechia 40.15
United Kingdom 16.76 Denmark 51.24
Slovenia 18.61 Estonia 52.98
Croatia 22.15 Lithuania 54.20
Austria 22.76 Poland 54.82
Finland 24.18 Slovakia 64.58
Netherlands 25.25 Bulgaria 100.00

similar countries are to Spain, the more likely they are to be selected. Furthermore, we
can see that normalizing by distance with the optimal λ , λ ∗ = 0.1, reduces the number
of countries from six to four (parsimony) and almost halves the distance, with a loss of
only 0.45 p.p. in R2.

When using the modified synthetic method with λ = 0.1, we obtain a counterfactual

Table 12—: Choice of regularization parameter

Critical values R2 Distance EL:SG Countries
3.14 92.63 0.11 4.95 4
0.10 96.39 0.12 2.75 4
0 96.84 0.21 ∞ 6

with four countries, R2 = 96.39% and MAPE = 0.42%. Table 13 presents the estimated
weights. Note that this counterfactual uses fewer countries than the standard method and
obtains between 3 and 4 additional percentage points in R2.
Figures 8 and 9 show that the different counterfactuals we have built estimate similar

government deadlock impacts. In all cases, growth in 2016 was higher than expected,
lying in a range between 1.58 p.p. (RSD-SCM) and 1.81 p.p. (SCM without lagged
outcomes), a gap between the two estimates of 0.23 p.p. Thus, SCM overestimates the
positive effect of the Spanish deadlock by a significant magnitude. As can be seen, the
RSD-SCM ensures greater economic meaningfulness of feature importance, achieving
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Table 13—: Percentage weight vector using the SHAP distance SCM (only positive
weights)

Country Weight Country Weight
Greece 18.2 Portugal 34.5
Italy 19.4 UK 27.9

Figure 8. : GDP per capita evolution: real vs synthetic Spain

better results while reducing the number of parameters. However, our primary goal was
to provide a more robust method. As Table 14 shows, the covariate importance esti-
mates are highly stable, with standard deviations of 2 p.p., while thanks to the stability
of the feature importance, distance is also stable. Moreover, in all simulations, the same
countries are selected and assigned the same weights. Therefore, goodness of fit has no
variation
Finally, Figure 10 shows the results of the in-time placebo test. In the case of the in-

space placebo test, we excluded countries whose MAPE for 2001–2015 was three times
higher than Spain’s. Thus, countries with an MAPE greater than 1.2% were excluded
when we compared the base model to the best placebos (with eight countries surviving).
The comparison showed a difference in the average treatment effect in 2016 for placebo
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Figure 9. : Difference in GDP per capita growth rate: real minus synthetic Spain

countries of -0.006 p.p. in the growth rate and of 0.92 p.p. in the standard deviation.
The treatment effect for Spain is estimated at 1.58, which is higher than 0 at a 7.8%
confidence level, assuming a normal distribution of the placebo estimates.

Figure 10. : Placebo test in time for SHAP distance synthetic Spain

IV. Conclusion

The synthetic control method has been an influential innovation in quasi-experimental
design, combining as it does elements of matching and difference-in-differences, and
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Table 14—: Feature importance stability

Predictor Mean St. Dev
Unemployment 29.81% (2.42%)
Debt 28.29% (1.43%)
Openness 11.59% (1.49%)
Investment 11.30% (1.86%)
Low education 10.90% (1.38%)
High education 4.61% (0.47%)
Conditional convergence (GDP lag1) 3.49% (2.11%)

Note: Results over 100 simulations removing 3 countries with no weight in the synthetic Spain built with all the donor
pool

providing a systematic approach to building a counterfactual. Similarly, it offers new op-
portunities for evaluating causal treatment effects in single – or in very few – aggregate
units of interest. The method’s impact on the empirical policy evaluation literature has
been far-reaching and continues to grow, with its application in an increasing number of
disciplines, including Economics, Political Science, Epidemiology, Transportation, En-
gineering, etc.
The SCM is credited with many advantages, including its transparency, sparsity, and the
safeguard it provides against specification searches. Nevertheless, we have shown in this
paper that the SCM also suffers from a number of critical drawbacks and limitations,
some of them directly derived from its being characterized as a bilevel problem. In short,
we have shown that (1) the covariate importance may not be consistent with economic
theory, thus eroding the model’s meaningfulness; (2) estimates are unstable – due to the
interpolation bias and the nested nature of the optimization problem – and overly depen-
dent on irrelevant countries in the donor pool; and, (3) including lagged outcomes does
not solve the problem of meaning and the stability of covariate importance – even if the
goodness of fit improves – but rather it makes other covariates irrelevant, compromising
the main idea underpinning the SCM.
As an alternative to the SCM, we have proposed the Regularized SHAP-distance syn-
thetic control method (RSD-SCM), which overcomes the main limitations of the stan-
dard method by decoupling feature importance from weight estimation and by providing
a new methodology for feature estimation and unit similarity that ensure meaningfulness
and stability.
Here, both methods were used to evaluate the effects on GDP growth of a ten-month
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government formation deadlock in Spain and their results compared. We provide evi-
dence, consistent with Albalate and Bel (2020), refuting the negative economic effects
of lengthy impasses in government formation. Thus, not only did Spain’s economy not
suffer any damage, it actually benefited by 1.58 p.p.; however, and more importantly in
the context of this paper, the SCM overestimates these causal effects by 0.23 p.p. with
respect to the results obtained using the RSD-SCM. Moreover, we have demonstrated
that the RSD-SCM is a more stable, accurate and meaningful method than the standard
SCM.
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