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Cover letter 

 

The aim of the study was to obtain superhydrophobic  316L stainless steel using a direct 

method and identifying the mechanism involved. Until now, fabrication techniques of 

hydrophobic stainless steel surfaces have been limited because they require special 

equipment, complex process and long period process as sol-gel process, chemical vapour 

deposition, laser treating or anodic oxidation.  In the present study, superhydrophobicity is 

obtained by chemical reaction between nickel ions and lauric acid on stainless steel surface. 

Additionally, we have performed a complete characterization of this material by different 

techniques in order to identify the molecules responsible for superhydrophobicity, the 

mechanism by which superhydrophobicity is produced, and consequently the influence of 

variables such as reaction time in the proposed processing method.  

We consider that our manuscript fulfils several aspects to which Materials Characterization is 

focussed, such as the elucidation of the mechanism involved in the particular surface 

modification of the stainless steel as well as the characterization of the reaction products at 

the nanoscale. 
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Reviewers' comments: 

 

The authors would like to thank the reviewers for making very valuable comments that have 

improved our research. 

 

 

Reviewer #1: The submitted manuscript presented a new method for superhydrophobic surface 

preparation by direct electrolysis of a non-aqueous solution containing nickel salt and lauric 

acid. Though the growth kinetics was intensively investigated, the detailed mechanism 

concerning which reagents are the key parameters for superhydrophobicity generation is still 

unclear.  

In the revised version we include a more detailed explanation of the involved reagents. 

... Based on our XPS and TOF-SIMS analysis and the obtained results, the proposed reaction mechanism 

for the as-prepared superhydrophobic coatings involves the Ni
2+

 ions around the cathode plate being 

reduced to metallic nickel on the cathodic surface when the voltage is applied across the two 316L 

stainless steel electrodes. The metallic nickel will then act as growth site resulting an essential actor in the 

mechanism. Meanwhile, more Ni
2+

 ions near the cathodic plate will react with the lauric acid and form 

nickel laureate on the activated surface of the 316L stainless steel using metallic nickel as anchorage 

agent or growth site. The reaction processes can be formulated as follows: 

Scheme 1. Redox reaction 

Fe(s) → Fe(aq)
2+

 +2 ē 

Ni(aq) 
2+

 + 2ē → Ni(s) (growth site) 

Scheme 2. Laureate formation 

Ni(aq) 
2+

 + CH3(CH2)10COOH(aq) → Ni[CH3(CH2)10COO]2 + 2H(aq)
+
 

 

Previous studies using cobalt also showed superhydrophobic results
36

 due to the similar reduction 

potential character of this metal confirning that the reduction step of the metal ions present in the 

electrolyte solution as growth sites and anchorage agent is critical for the self-organisation process.   

 

   The manuscript should be improved by providing some neccessary control experiments when 

describing the role of Ni ion. I suggest the authors give additional experimental data including 

the coatings prepared from electrolytes containing dodecanoic acid-alone, and those contianing 

other metallic ions (such as copper) to clearly confirm which reagents are the key parameters 

for the formation of superhydrophobicity.  

-We have included the results of three additional set of samples using different electrolyte 

solutions in order to describe and suggest the role of the reagents. 

We include at the manuscript the following paragraph: 

...Three sets of samples, named A, B and C, respectively, were prepared changing just the electrolyte 

composition in order to evaluate the importance of each reagent in the reaction taking place in the 

process. Samples  A were prepared into an electrolyte solution of ethanol, samples B were prepared into 

an electrolyte solution of nickel chloride (0.05 M) in ethanol and finally, samples C were prepared into an 

Detailed Response to Reviewers



electrolyte solution of lauric acid (0.1 M) in ethanol. The etching time was 900 seconds for all the 

samples.... 

...All the three sets of samples A, B and C, showed completely hydrophilic behaviour. These results 

confirm that lauric acid, metallic nickel and nickel ion are altogether essential actors in the reaction.... 

 

-Chen et al (2013, reference 36) produced superhydrophobic surfaces via electrodeposition with 

cobalt salts. One main reason for the satisfactory results obtained with our method using nickel 

salts is because nickel and cobalt had similar electrolytic potential. As copper electrolytic 

potential is quite different from that of nickel and cobalt when using copper salt as reagent 

instead of nickel salt did not produce superhydrophobic surfaces. 

  

   In addition, some basic information, like film thickness and roughness, and mechanical 

property (e.g. adhesion, anti-abrasive property, etc.)should be given. 

 

-Film thickness has been analized by FE-SEM. Cross sections of the samples were observed and 

the results were incorporated in the manuscript. 

... FESEM micrographs of cross section had allowed to measure the film thickness, sample 1 

shows the highest value with 3.5±0.6 micrometers and the lowest value of superhydrophobic 

samples is 2.2 ±0.5 corresponding to sample 7.... 

-The authors, considering that the knowledge of the mechanism involved in the hydrophobic 

character achieved for stainless steel, want to emphasise that this research is focussed on this 

mechanism and they believe that this is critical in order to enhance and stabilise this significant 

property in particular for AISI 316L.  The properties and behaviour other than hydrophobicity 

will be studied in the near future.   

 



IDENTIFICATION OF THE MECHANISM THAT CONFERS 

SUPERHYDROPHOBICITY ON 316L STAINLESS STEEL 

Ana M. Escobar*
1
, Nuria Llorca-Isern

1
, Oriol Rius-Ayra

1 

*corresponding author 

1
 CPCM Departament de Ciència dels Materials i Enginyeria Metal·lurgica, Facultat de 

Química, Universitat de Barcelona, Marti-Franqués 1, 08028 Barcelona, Spain 

Information Authors: 

Ana Maria Escobar, corresponding autor. CPCM Departament de Ciència dels Materials i 

Enginyeria Metal·lurgica, Facultat de Química, Universitat de Barcelona, Marti-Franqués 1, 

08028 Barcelona, Spain, +34934021111, annaescobarromero@ub.edu. 

Núria Llorca-Isern, CPCM Departament de Ciència dels Materials i Enginyeria Metal·lurgica, 

Facultat de Química, Universitat de Barcelona, Marti-Franqués 1, 08028 Barcelona, Spain, 

+34934021111, nullorca@ub.edu. 

Oriol Rius-Ayra, CPCM Departament de Ciència dels Materials i Enginyeria Metal·lurgica, 

Facultat de Química, Universitat de Barcelona, Marti-Franqués 1, 08028 Barcelona, Spain, 

+34934021111, jriusayr8@alumnes.ub.edu 

 

ABSTRACT This study develops a rapid method to confer superhydrophobicity on 

316L stainless steel surfaces with an amphiphilic reagent such as dodecanoic acid. The 

highest contact angle (approaching 173°) was obtained after forming hierarchical 

structures with a non-aqueous electrolyte by an electrolytic process. Our goal was to 

induce superhydrophobicity directly on 316 stainless steel substrates and to establish 

which molecules cause the effect. The superhydrophobic behaviour is analysed by 

contact angle measurements, scanning electron microscopy (SEM), IR spectroscopy and 

atomic force microscopy (AFM). The growth mechanism is analysed using FE-SEM, 

TOF-SIMS and XPS in order to determine the molecules involved in the reaction and 

the growth. The TOF-SIMS analysis revealed that the Ni
2+

 ions react with lauric acid to 

create an ester on the stainless steel surface. 

*Title Page



Graphical Abstract (for review)



HIGHLIGHTS 

This study develops a rapid and facile approach to impart superhydrophobicity 

properties to 316L stainless steel surfaces with an amphiphilic reagent such as 

dodecanoic acid. This process changes the surface character from superhydrophilicity to 

superhydrophobicity. 

The process based on electrolysis of a nickel salt in lauric acid provides 

superhydrophobic behaviour in 316L stainless steel. 

The growth mechanism is proposed as a mode island (Volmert- Weber mode). 

TOF-SIMS and XPS provided the identification of the molecules involved in the 

surface modification reaction on AISI 316L inducing superhydrophobicity . 

 
 

Highlights (for review)



 1 

IDENTIFICATION OF THE MECHANISM THAT CONFERS 

SUPERHYDROPHOBICITY ON 316L STAINLESS STEEL 

Ana M. Escobar*
1
, Nuria Llorca-Isern

1
, Oriol Rius-Ayra

1 

*corresponding author 

1
 CPCM Departament de Ciència dels Materials i Enginyeria Metal·lurgica, Facultat de 

Química, Universitat de Barcelona, Marti-Franqués 1, 08028 Barcelona, Spain 

ABSTRACT This study develops a rapid method to confer superhydrophobicity on 316L 

stainless steel surfaces with an amphiphilic reagent such as dodecanoic acid. The highest 

contact angle (approaching 173°) was obtained after forming hierarchical structures with a 

non-aqueous electrolyte by an electrolytic process. Our goal was to induce 

superhydrophobicity directly on 316 stainless steel substrates and to establish which 

molecules cause the effect. The superhydrophobic behaviour is analysed by contact angle 

measurements, scanning electron microscopy (SEM), IR spectroscopy and atomic force 

microscopy (AFM). The growth mechanism is analysed using FE-SEM, TOF-SIMS and 

XPS in order to determine the molecules involved in the reaction and the growth. The TOF-

SIMS analysis revealed that the Ni
2+

 ions react with lauric acid to create an ester on the 

stainless steel surface. 

KEYWORDS Superhydrophobicity; stainless steel; coating; electrolytic reaction; self 

assembly; hierarchical structures. 

*Text Only in MS Word (Double-Spaced)
Click here to view linked References

http://ees.elsevier.com/materialschar/viewRCResults.aspx?pdf=1&docID=15904&rev=1&fileID=1076371&msid={E3CE8352-88CE-4B0A-934B-7C5F627BB574}


 2 

1. INTRODUCTION 

Superhydrophobic surfaces, with extremely high water contact angles (CAs) of more than 

150° are of special interest due to their various anti-adhesive and self-cleaning properties 

[1]. A closely related phenomenon in nature is the lotus effect, which refer to surfaces that 

are difficult to wet. Recent studies demonstrate that the superhydrophobicity of lotus leaves 

principally results from the presence of binary structures at both the micrometer and 

nanometer scales together with the low-energy wax-like materials on the surfaces [2]. 

Materials with similar properties, to those of the lotus leaf structure are very useful in 

several areas, such as the aeronautical industry [3, 4] and civil engineering [5], so many 

methods have been developed to mimic the lotus leaf structure. Metals are very important 

and irreplaceable engineered materials in many industrial fields. Stainless steel is one of the 

most common metals or alloys; it is widely used in industry due its good mechanical 

workability and anticorrosion properties. Nevertheless, fabrication of superhydrophobic 

stainless steel has remained relatively unstudied compared to other metals such as zinc, 

copper or aluminium [6-10]. 

The wettability of solid substrates is known to be dependent on both their chemical 

composition and their topographic structure, either lowering the surface energy with 

different molecules [11, 12] or increasing surface roughness (through techniques such as 

sand-blasting [13] chemical etching [14] or grinding processes), reduces the affinity of 

water drops to the surface. Combining the appropriate surface roughness and low surface 

energy material leads to artificial superhydrophobic surfaces inspired by the lotus leaf [15], 

rose petal [16], leg of the water strider [17] and other natural surfaces with self-cleaning 

and water-repellent properties [18]. Until now, techniques to fabricate superhydrophobic 

stainless steel surfaces have been limited because they require special equipment, complex 
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processes or a considerable period of time; this is the case with the sol-gel process, 

chemical vapour deposition, laser treating and anodic oxidation [19-25]. Consequently, 

there is a need to develop a simple and rapid method for conferring superhydrophobicity on 

stainless steel surfaces, as could be envisaged through electrolytic coating at room 

temperature [26]. Here, in order to reduce the reaction time and simplify the procedure, we 

propose a two-step process: the initial step is to grind the 316L stainless steel surface to 

increase surface roughness, and the second, to reduce the surface energy of the substrate by 

electrodeposition of a metal-fatty acid. Superhydrophobicity is produced by the chemical 

reaction between nickel ions and lauric acid on a 316L stainless steel surface. The present 

study has three main objectives: to identify the molecules responsible for 

superhydrophobicity, the mechanism by which superhydrophobicity is produced, and 

consequently the influence of variables such as reaction time on the proposed processing 

method. We use time-of-flight secondary ion mass spectrometry (TOF-SIMS) and X-ray 

photoelectron spectroscopy (XPS) techniques to identify the molecules involved in the 

growth step, by paying close attention to the analysis of the mechanism by which the 

chemical reaction proceeds. 

 

2. EXPERIMENTAL PROCEDURE 

Pieces of commercial 316L stainless steel, 15 x 50 x 2 mm, were used as the substrate for 

this study. All the samples were produced by the same process, the details of which are as 

follows. First, the cleaned samples were ground with SiC abrasive paper ranging from an 

average particle diameter of 63 µm (P220 grade) to 15.3 µm “super fine” (P1200 grade). 

Second, the samples were ultrasonically cleaned with ethanol followed by deionized water 

and then, they were dried with forced air. Third, two cleaned samples were immersed 
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vertically into a uniform electrolyte solution of nickel chloride (0.05 M) and lauric acid (0.1 

M) in ethanol, 3 cm apart: they were used as the cathode and the anode of an electrolyte 

cell, and a direct current (DC) voltage of 30 V was applied across the two electrodes. The 

etching time were modified from 900 to 10 seconds in order to evaluate the growth 

mechanism of the coating, until hydrophilic surfaces were obtained. After the selected 

electrolysis time, the working electrodes were immediately rinsed with ethanol and 

deionized water and dried in air, giving the as-prepared cathodic surface. Consecutive 

numbers were assigned to the samples in order to identify each electrolysis condition with 

its corresponding sample; the surface produced after 900 seconds of electrolysis was 

numbered 1 and the rest of the specimens were numbered following the descending order of 

electrolysis times as shown in Table 1. 

Table 1. Electrolysis time for the different set of samples.  

Sample 1 2 3 4 5 6 7 8 

Electrolysis 

time/ s 

900 600 300 60 30 20 15 10 

 

Three sets of samples, named A, B and C, respectively, were prepared changing just the 

electrolyte composition in order to identify the importance of each reagent in the reaction 

taking place in the process. Samples A were prepared into an electrolyte solution of 

ethanol, samples B were prepared into an electrolyte solution of nickel chloride (0.05 M) in 

ethanol and finally, samples C were prepared into an electrolyte solution of lauric acid (0.1 

M) in ethanol. The etching time was 900 seconds for all the samples. 
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The specimen surface was characterized using a Hitachi S-4100 field emission scanning 

electron microscope (FE-SEM) in order to study their morphological features. Atomic force 

microscopy (AFM) measurements were taken using a Dimension 3100 microscope attached 

to Nanoscope IV electronics (Bruker) using Si probes with a nominal spring constant of 40 

nN/nm (T300R-W, Vistaprobes). All the topographic measurements were performed in 

tapping mode at a scan rate of 0.3Hz and 512x512 pixels resolution. The samples were 

imaged in air and at 55% RH. The AFM measurements were carried out in Peak Force Scan 

Asyst mode (QNM) in order to quantify the Young’s modulus of the surfaces. The initial 

roughness was measured by confocal microscopy using LeicaScan DCM 3D on a surface of 

1.21x 0.91 mm. The reported roughness values are the average of three measurements at 

different places on the surface. The chemical groups of the superhydrophobic coatings were 

determined by infrared absorption spectroscopy (Thermo Scientific Nicolet IN10MX). The 

chemical composition of the surface was analysed by X-ray photoelectron spectroscopy in a 

PHI 5500 Multitechnique System (Physical Electronics) with a monochromatic X-ray 

source (Aluminium Kα line of 1486.6 eV and 350 W) on 0.8 mm diameter discs. All 

measurements were made in an ultra-high vacuum (UHV) chamber pressure between 5x10
-

9
 and 2x10

-8
 torr. The carbon 1s line was used to calibrate the binding-energy scale for XPS 

measurements, for which a binding energy of 284.8 eV was assumed. High-resolution mass 

spectra of positive and negative secondary ions were obtained using TOF-SIMS IV (ION-

TOF, Munster, Germany) equipment operating at a pressure of 5 x 10
-9

 mbar with a 25 keV 

pulsed bismuth liquid metal ion source (Bi3
++

). Secondary ions were detected with a 

reflector TOF analyser, multichannel plates (MCPs), and a time-to-digital converter (TDC). 

Measurements were performed with a typical acquisition time of 10 s, at a TDC time 

resolution of 200 ps and a 100 µs cycle time. Secondary ion spectra were acquired from 
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randomly rastered sample surface areas of 100 x 100 μm. Mass spectral acquisition was 

performed using the ION-TOF Ion Spec software (version 4.1). Finally, CA were measured 

with a Contact Angle Measuring System DSA 100 from KRÜSS with 10 µL of deionized 

water at room temperature. The reported CA values are the average of three measurements 

of CA of droplets at different places on the surface. Sliding angles were measured by 

dropping a water droplet on a superhydrophobic sample positioned on a tilting stage. The 

tilting angle of the stage was adjusted using a micrometer with a resolution of 0.5°. Sliding 

angles values are the average of three measurements of droplets at different places on the 

surface, the standard deviation were calculated and it is minor than 1° in all the measured 

samples. 

 

3. RESULTS AND DISCUSSION 

Samples were prepared using the procedure outlined above. In order to produce 

superhydrophobic surfaces on 316L stainless steel, we reduced the electrolysis time from 

900 seconds down to the minimum necessary to produce a hydrophilic surface, using the 

same materials and coating method. An electrolysis time of 10 seconds was enough to 

generate hydrophilic stainless steel. The growth mechanism of the coating was thus studied.  

Surface wettability was evaluated by static CA measurements of hydrophobic samples 

and the 316L stainless steel substrate. As shown in Figure 1, there is no obvious correlation 

between electrolysis time and hydrophobic effect in this experiment. The highest CA was 

175° at 30 seconds (sample 5) with a sliding angle of 3.5° and the lowest CA was 160° at 

both 20 s (sample 6) and 600 seconds (sample 2) with sliding angles of 5° and 4.5°, 

respectively. The 316L stainless steel substrate had hydrophilic properties with a CA of 

40°. In summary, the procedure to make a superhydrophobic surface does not need much 
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time: 30 seconds of electrolysis time was sufficient to achieve maximum 

superhydrophobicity. 

Figure 2 shows the typical morphology of the surface after 30 seconds of electrolysis 

(sample 5); top right, top left and bottom left are the SEM micrographs with low and high 

magnification, respectively. It can clearly be seen that the surface of 316L stainless steel is 

textured with 2 µm pillars along the grinding direction. In greater detail, we can also 

observe that the surfaces of the pillars are covered by nanoscale granular protrusions. These 

hierarchical micro-nano structures have grooves that trap a fraction of the air, thereby 

favouring the hydrophobicity of the material. The EDS spectrum (Fig. 2d), suggests that the 

composition of the coating is mostly Ni and O. 

Figure 3 (a-h) shows the surface morphology of the samples 1 to 8 after different 

electrolysis times. The microstructure of all the surfaces is formed mainly of pillars and 

islands. Surfaces 1, 2 and 3 (900, 600 and 300 seconds of electrolysis, respectively) are 

completely coated and mainly formed of islands; whereas surfaces with shorter electrolysis 

times (samples 4, 5, 6 and 7) are only partially covered, showing that the coating initially 

generates pillars, which suggests a process related to the Volmert-Weber growth mode, as 

can be observed in some areas of the substrate. The surface of sample 8 has widely 

dispersed pillars (Fig. 3h), this sample is not superhydrophobic. Bubble-like protuberances 

with different diameters between 2 and 5 µm are observed on all the samples. 

From the mechanism point of view, the building block is the pillar, followed by the island 

formation which is a connected group of pillars. It is not necessary that both cover the 

entire surface for producing superhydrophobicity. 
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FESEM micrographs of cross section had allowed to measure the film thickness, sample 

1 shows the highest value with 3.5±0.6 micrometers and the lowest value of 

superhydrophobic samples is 2.2 ±0.5 corresponding to sample 7. 

AFM images (1 x 1 µm
2
 area) were produced to compare the final roughness of the 

superhydrophobic specimens using RMS roughness as a comparison parameter; and also to 

calculate their Young’s modulus. Both results are summarized in Table 2. 

Table 2. RMS and E from AFM analysis of coated samples. 

Sample 

Prepared 

substrate 

1 2 3 4 5 6 7 

RMS/nm 210 55 20 12 45 39 124 189 

E/GPa 200 0.20 0.5 0.25 0.58 0.41 0.29 0.04 

 

The AFM images are shown in Figure 4. The surface roughness resulting from the AFM 

analysis of the coated samples indicates that the highest RMS value corresponds to the 

sample that underwent the least electrolysis time. This can be explained by the treatment 

only generating pillars without connections between them. In contrast, samples that 

underwent longer electrolysis times have neighbouring pillars connected, forming a more 

homogeneous surface with less roughness. These results are consistent with our FE-SEM 

analysis. The Young’s modulus values are very low due to the organic nature of the 

coating, compared to the substrate AISI 316L modulus (200 GPa). 

AFM analysis allowed us to measure the width of the pillars in the initial step of the growth 

mechanism on the samples that underwent the shortest electrolysis time. Figure 5 shows the 

surface of sample 6 with vertical distance values between 104 and 146 nm; whereas the 
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surface of sample 7 has vertical distance of 70 to 212 nm. In accordance with these results, 

it can be concluded that 70-100 nm is the minimum height of pillars necessary to obtain 

superhydrophobic 316L stainless steel using a lauric acid-nickel chloride-ethanol medium. 

 

The SEM and AFM analysis confirmed that the coating starts with the formation of 

pillars, then, the islands morphology results when several pillars grow together. Finally the 

surface of the sample is completely covered (as shown after 300 seconds of electrolysis).  

In order to confirm the chemical composition of the as-prepared coatings, IR, TOF-SIMS 

and XPS techniques were used. Figure 6 shows IR spectra of the as-prepared coatings (the 

samples with the shortest electrolysis times (samples 6 and 7) were not observed by this 

technique). The IR spectra indicate that the free acidic group band from the lauric acid at 

1702 cm
-1

 is no longer present, compared to the MICC-73396-421X spectrum (CAS 

registry number 143-07-7, CAS index name dodecanoic acid) [27], whereas the peak at 

1590 cm
-1

 corresponding to coordinated ester groups appears as in the NIDA71076 

spectrum (CAS registry number 13282-11-6, CAS index name dodecanoic acid, nickel
2+

 

salt (2:1)) [28]. Therefore, it can be concluded that (CH3(CH2)10COOH changed into 

(CH3(CH2)10COO
-
. The two peaks at 2850 and 2922 cm

-1
 belong to the symmetric and 

asymmetric C-H stretching modes of the CH2 groups of laureate, respectively. This 

supports the previous finding. 

TOF-SIMS was used to study the chemical reactions and lateral distributions of fatty acids 

enhanced to react on 316L stainless steel surfaces. On these alloy surfaces, a direct 

interaction between the acid and nickel ions is observed via detection of a molecular ion 

that corresponds to the mass of the laureate anion, nickel cation and Ni[laureate]2. Since 

TOF-SIMS can detect and discriminate specific chemical reaction products, it was used to 
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identify reaction products formed between the fatty acid molecules, nickel ions and metallic 

surface. The positive secondary ion mass spectra for sample 6 (20 s of electrolysis is shown 

at Fig. 7. The assignments are based upon classical mass spectroscopic fragmentation 

patterns [29]. Wandass et all, [30] studied different fatty acids on silver surfaces using 

TOF-SIMS, including lauric acid and they obtained similar signals to those obtained in our 

study. The peaks represent masses of: 100 units, which corresponds to (CH2CONi)
+
; 133 

units, for (CH3CH2COONi); 266 units, for Na(CH3(CH2)9COONi)
+
, (Na is considered a 

contaminant that is easily detected by SIMS); and 411 units, for (CH3(CH2)10COO-Ni-

OOC(CH2)10CH3 + H-HCOOH)
+
. The presence of these species on the stainless steel 

surface was also confirmed by the XPS Ni 2p and O 2s signals. 

 

XPS was used to characterize the coating on the 316L stainless steel and to determine its 

composition. We analysed all seven samples from 15 to 900 s of electrolysis, considering 

oxygen, carbon and nickel peaks. In all the samples, the peaks were repeated at the same 

value of the binding energy. Figure 8 shows the superhydrophobic sample spectra. The 

peak at 852 eV is attributed to Ni metal; its intensity decreases as the process time increases 

because after less than 30 seconds of electrolysis the coating is thicker after more than 60 

seconds of electrolysis. After less than 30 seconds, XPS detected Ni metal from the 

substrate and also Ni metal in the coating; in contrast to the results after more than 60 

seconds of electrolysis, when XPS mostly detected Ni metal formed by the reaction. 

Figure 9 shows two examples of C (top) and O (bottom) deconvolution corresponding to 

sample 5 and sample 1. The peak located at 284.6 eV is attributed to C-1s and its 

deconvolution gives three peaks: the first is located at 288 eV and it is attributed to the 
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carbonyl of lauric acid [31, 32]; the second is at 286 eV corresponding to the ester group 

[32]; while the third is at 284 eV and it is attributed to adventitious carbon [32] (Fig. 9top). 

The peak located at 531.7 eV is attributed to O-2s and its deconvolution also gives three 

peaks; the binding energy of the first is 529 eV and it is attributed to NiO; the second is 

located at 531 eV and it is attributed to Ni(OH)2; and the last located at 532 eV is attributed 

to the C-O bond [33] (Fig 9bottom). The peak located at 856.5 eV is attributed to Ni-2p3/2. 

Its deconvolution again gives three new peaks; the first located at 852 eV is attributed to Ni 

metal; the second at 856 eV is attributed to Ni(OH)2; and the last at 861 eV is attributed to a 

satellite of the previous compound and so it also corresponds to Ni(OH)2 [34]. Finally, the 

peak located at 711 eV corresponds to the Fe-2p3/2 from the stainless steel substrate. [35]  

The XPS results reveal the presence of metallic nickel and also oxidized nickel 

corresponding to the Ni[CH3(CH2)10COO)]2 molecule. A similar product was also observed 

by Chen et al [36] in their research on cobalt-based coatings using X ray diffraction 

techniques. In the present study, the TOF-SIMS results confirm the bonding between lauric 

acid and Ni, as well as the existence of metallic nickel. 

One factor that promotes superhydrophobicity can be attributed to the chemical 

composition of the surface on which superhydrophobicity will appear. A chemical reaction 

will be associated with each part of the process that produces the change to 

superhydrophobicity of the 316L stainless steel surface.  

Samples A, B and C, have completely hydrophilic behaviour, these results confirms that 

lauric acid, metallic nickel and nickel ion are together essential reagents. 

Based on our XPS and TOF-SIMS analysis and the obtained results, the proposed 

reaction mechanism for the as-prepared superhydrophobic coatings involves the Ni
2+

 ions 

around the cathode plate being reduced to metallic nickel on the cathodic surface when the 
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voltage is applied across the two 316L stainless steel electrodes. The metallic nickel will 

then act as growth site resulting an essential actor in the mechanism.. Meanwhile, more 

Ni
2+

 ions near the cathodic plate will react with the lauric acid and form nickel laureate on 

the activated surface of the 316L stainless steel using metallic nickel as anchorage agent or 

growth site. The reaction processes can be formulated as follows: 

Scheme 1. Redox reaction 

Fe(s) → Fe(aq)
2+

 +2 ē 

Ni(aq) 
2+

 + 2ē → Ni(s) (growth site) 

Scheme 2. Laureate formation 

Ni(aq) 
2+

 + CH3(CH2)10COOH(aq) → Ni[CH3(CH2)10COO]2 + 2H(aq)
+
 

 

Previous studies using cobalt also showed superhydrophobic results
36

 due to the similar 

reduction potential character of this metal confirning that the reduction step of the metal 

ions present in the electrolyte solution as growth sites and anchorage agent is critical for the 

self-organisation process.   

4. CONCLUSIONS 

Superhydrophobic surfaces on 316L stainless steel were developed via a short procedure 

consisting of the electrolysis of stainless steel in the lauric/nickelchloride/ethanol 

electrolyte. 30 seconds of reaction was enough to obtain an optimum superhydrophobic 

316L stainless steel surface (CA 175°).  

Reducing the electrolysis time allowed us to identify the growth mechanism as three-

dimensional islands (Volmert-Weber mode) thus leading to the superhydrophobicity via 
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simultaneous pillar growth. Consequently, from the mechanism point of view, the building 

block is the pillar, followed by the island formation which is a connected group of pillars. 

Experimentally it is found that it is not necessary that both cover the entire surface for 

producing superhydrophobic character. 

From the property point of view, the characteristic magnitude seems to be the vertical 

height of the pillars and the islands for producing superhydrophobicity. We used AFM to 

stablish the minimum range of vertical height of the pillars necessary to obtain 

superhydrophobic 316L stainless steel. 

TOF-SIMS and XPS analysis allowed us to identify the species responsible for the 

superhydrophobicity on the 316L stainless steel substrate as CH3(CH2)10COONiOH and 

(CH3(CH2)10COO)2Ni.  

Superhydrophobicity is associated to the redox reaction of Fe/Ni
2+

 to Fe
2+

/Ni, with Ni as 

the growth site, and also with the laureate formation reaction. 
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LIST OF FIGURE CAPTIONS 

Figure 1. Contact angle at different electrolysis time. The standard deviation bars were 

included. 

Figure 2. (a-c) SEM micrographs of 316L stainless steel superhydrophobic surface 

coatings for 30 sec (5). (d) The EDS spectrum of stainless steel superhydrophobic surface 

coatings for 30 s. Semi-quantitative composition of substrate and sample 5 in %wt are 

included. 

Figure 3. SEM images of 316L stainless steel substrate and seven different conditions 

coated samples (1-7), a) sample 1 (900 s), b) sample 2 (600 s), c) sample 3 (300 s), d) 

sample 4 (60 s), e) sample 5 (30 s), f) sample 6 (20 s), g) sample 7 (15 s) and h) sample 8 

(10 s). 

Figure 4. AFM images of 316L stainless steel coated samples, 1- sample 1 (900 s), 2- 

sample 2 (600 s), 3- sample 3 (300 s), 4- sample 4 (60 s), 5- sample 5 (30 s), 6- sample 6 

(20 s), 7- sample 7 (15 s). (1µm x 1µm study area) 

Figure 5. AFM images of pillars in the superhydrophobic samples 6 (a) and 7 (b). 

Figure 6. IR spectra of sample 1 (900 s), sample 2 (600 s), sample 3 (300 s), sample 4 (60 

s), and sample 5 (30 s). 

Figure 7. Secondary ion mass spectra of positive ions from sample 6 (20 s). 

Figure 8. XPS spectra of 316L stainless steel coated samples, sample 1 (900 s), sample 2 

(600 s), sample 3 (300 s), sample 4 (60 s), sample 5 (30 s), sample 6 (20 s), and sample 7 

(15 s). 
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Figure 9. XPS spectra of deconvolution peaks of C (top) and O (bottom) of sample 1 and 5. 
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ABSTRACT This study develops a rapid method to confer superhydrophobicity on 316L 

stainless steel surfaces with an amphiphilic reagent such as dodecanoic acid. The highest 

contact angle (approaching 173°) was obtained after forming hierarchical structures with a 

non-aqueous electrolyte by an electrolytic process. Our goal was to induce 

superhydrophobicity directly on 316 stainless steel substrates and to establish which 

molecules cause the effect. The superhydrophobic behaviour is analysed by contact angle 

measurements, scanning electron microscopy (SEM), IR spectroscopy and atomic force 

microscopy (AFM). The growth mechanism is analysed using FE-SEM, TOF-SIMS and 

XPS in order to determine the molecules involved in the reaction and the growth. The TOF-

SIMS analysis revealed that the Ni
2+

 ions react with lauric acid to create an ester on the 

stainless steel surface. 
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1. INTRODUCTION 

Superhydrophobic surfaces, with extremely high water contact angles (CAs) of more than 

150° are of special interest due to their various anti-adhesive and self-cleaning properties 

[1]. A closely related phenomenon in nature is the lotus effect, which refer to surfaces that 

are difficult to wet. Recent studies demonstrate that the superhydrophobicity of lotus leaves 

principally results from the presence of binary structures at both the micrometer and 

nanometer scales together with the low-energy wax-like materials on the surfaces [2]. 

Materials with similar properties, to those of the lotus leaf structure are very useful in 

several areas, such as the aeronautical industry [3, 4] and civil engineering [5], so many 

methods have been developed to mimic the lotus leaf structure. Metals are very important 

and irreplaceable engineered materials in many industrial fields. Stainless steel is one of the 

most common metals or alloys; it is widely used in industry due its good mechanical 

workability and anticorrosion properties. Nevertheless, fabrication of superhydrophobic 

stainless steel has remained relatively unstudied compared to other metals such as zinc, 

copper or aluminium [6-10]. 

The wettability of solid substrates is known to be dependent on both their chemical 

composition and their topographic structure, either lowering the surface energy with 

different molecules [11, 12] or increasing surface roughness (through techniques such as 

sand-blasting [13] chemical etching [14] or grinding processes), reduces the affinity of 

water drops to the surface. Combining the appropriate surface roughness and low surface 

energy material leads to artificial superhydrophobic surfaces inspired by the lotus leaf [15], 

rose petal [16], leg of the water strider [17] and other natural surfaces with self-cleaning 

and water-repellent properties [18]. Until now, techniques to fabricate superhydrophobic 

stainless steel surfaces have been limited because they require special equipment, complex 
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processes or a considerable period of time; this is the case with the sol-gel process, 

chemical vapour deposition, laser treating and anodic oxidation [19-25]. Consequently, 

there is a need to develop a simple and rapid method for conferring superhydrophobicity on 

stainless steel surfaces, as could be envisaged through electrolytic coating at room 

temperature [26]. Here, in order to reduce the reaction time and simplify the procedure, we 

propose a two-step process: the initial step is to grind the 316L stainless steel surface to 

increase surface roughness, and the second, to reduce the surface energy of the substrate by 

electrodeposition of a metal-fatty acid. Superhydrophobicity is produced by the chemical 

reaction between nickel ions and lauric acid on a 316L stainless steel surface. The present 

study has three main objectives: to identify the molecules responsible for 

superhydrophobicity, the mechanism by which superhydrophobicity is produced, and 

consequently the influence of variables such as reaction time on the proposed processing 

method. We use time-of-flight secondary ion mass spectrometry (TOF-SIMS) and X-ray 

photoelectron spectroscopy (XPS) techniques to identify the molecules involved in the 

growth step, by paying close attention to the analysis of the mechanism by which the 

chemical reaction proceeds. 

 

2. EXPERIMENTAL PROCEDURE 

Pieces of commercial 316L stainless steel, 15 x 50 x 2 mm, were used as the substrate for 

this study. All the samples were produced by the same process, the details of which are as 

follows. First, the cleaned samples were ground with SiC abrasive paper ranging from an 

average particle diameter of 63 µm (P220 grade) to 15.3 µm “super fine” (P1200 grade). 

Second, the samples were ultrasonically cleaned with ethanol followed by deionized water 

and then, they were dried with forced air. Third, two cleaned samples were immersed 
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vertically into a uniform electrolyte solution of nickel chloride (0.05 M) and lauric acid (0.1 

M) in ethanol, 3 cm apart: they were used as the cathode and the anode of an electrolyte 

cell, and a direct current (DC) voltage of 30 V was applied across the two electrodes. The 

etching time were modified from 900 to 10 seconds in order to evaluate the growth 

mechanism of the coating, until hydrophilic surfaces were obtained. After the selected 

electrolysis time, the working electrodes were immediately rinsed with ethanol and 

deionized water and dried in air, giving the as-prepared cathodic surface. Consecutive 

numbers were assigned to the samples in order to identify each electrolysis condition with 

its corresponding sample; the surface produced after 900 seconds of electrolysis was 

numbered 1 and the rest of the specimens were numbered following the descending order of 

electrolysis times as shown in Table 1. 

Table 1. Electrolysis time for the different set of samples.  

Sample 1 2 3 4 5 6 7 8 

Electrolysis 

time/ s 

900 600 300 60 30 20 15 10 

 

The specimen surface was characterized using a Hitachi S-4100 field emission scanning 

electron microscope (FE-SEM) in order to study their morphological features. Atomic force 

microscopy (AFM) measurements were taken using a Dimension 3100 microscope attached 

to Nanoscope IV electronics (Bruker) using Si probes with a nominal spring constant of 40 

nN/nm (T300R-W, Vistaprobes). All the topographic measurements were performed in 

tapping mode at a scan rate of 0.3Hz and 512x512 pixels resolution. The samples were 

imaged in air and at 55% RH. The AFM measurements were carried out in Peak Force Scan 
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Asyst mode (QNM) in order to quantify the Young’s modulus of the surfaces. The initial 

roughness was measured by confocal microscopy using LeicaScan DCM 3D on a surface of 

1.21x 0.91 mm. The reported roughness values are the average of three measurements at 

different places on the surface. The chemical groups of the superhydrophobic coatings were 

determined by infrared absorption spectroscopy (Thermo Scientific Nicolet IN10MX). The 

chemical composition of the surface was analysed by X-ray photoelectron spectroscopy in a 

PHI 5500 Multitechnique System (Physical Electronics) with a monochromatic X-ray 

source (Aluminium Kα line of 1486.6 eV and 350 W) on 0.8 mm diameter discs. All 

measurements were made in an ultra-high vacuum (UHV) chamber pressure between 5x10
-

9
 and 2x10

-8
 torr. The carbon 1s line was used to calibrate the binding-energy scale for XPS 

measurements, for which a binding energy of 284.8 eV was assumed. High-resolution mass 

spectra of positive and negative secondary ions were obtained using TOF-SIMS IV (ION-

TOF, Munster, Germany) equipment operating at a pressure of 5 x 10
-9

 mbar with a 25 keV 

pulsed bismuth liquid metal ion source (Bi3
++

). Secondary ions were detected with a 

reflector TOF analyser, multichannel plates (MCPs), and a time-to-digital converter (TDC). 

Measurements were performed with a typical acquisition time of 10 s, at a TDC time 

resolution of 200 ps and a 100 µs cycle time. Secondary ion spectra were acquired from 

randomly rastered sample surface areas of 100 x 100 μm. Mass spectral acquisition was 

performed using the ION-TOF Ion Spec software (version 4.1). Finally, CA were measured 

with a Contact Angle Measuring System DSA 100 from KRÜSS with 10 µL of deionized 

water at room temperature. The reported CA values are the average of three measurements 

of CA of droplets at different places on the surface. Sliding angles were measured by 

dropping a water droplet on a superhydrophobic sample positioned on a tilting stage. The 

tilting angle of the stage was adjusted using a micrometer with a resolution of 0.5°. Sliding 



 6 

angles values are the average of three measurements of droplets at different places on the 

surface, the standard deviation were calculated and it is minor than 1° in all the measured 

samples. 

 

3. RESULTS AND DISCUSSION 

Samples were prepared using the procedure outlined above. In order to produce 

superhydrophobic surfaces on 316L stainless steel, we reduced the electrolysis time from 

900 seconds down to the minimum necessary to produce a hydrophilic surface, using the 

same materials and coating method. An electrolysis time of 10 seconds was enough to 

generate hydrophilic stainless steel. The growth mechanism of the coating was thus studied.  

Surface wettability was evaluated by static CA measurements of hydrophobic samples 

and the 316L stainless steel substrate. As shown in Figure 1, there is no obvious correlation 

between electrolysis time and hydrophobic effect in this experiment. The highest CA was 

175° at 30 seconds (sample 5) with a sliding angle of 3.5° and the lowest CA was 160° at 

both 20 s (sample 6) and 600 seconds (sample 2) with sliding angles of 5° and 4.5°, 

respectively. The 316L stainless steel substrate had hydrophilic properties with a CA of 

40°. In summary, the procedure to make a superhydrophobic surface does not need much 

time: 30 seconds of electrolysis time was sufficient to achieve maximum 

superhydrophobicity. 

Figure 2 shows the typical morphology of the surface after 30 seconds of electrolysis 

(sample 5); top right, top left and bottom left are the SEM micrographs with low and high 

magnification, respectively. It can clearly be seen that the surface of 316L stainless steel is 

textured with 2 µm pillars along the grinding direction. In greater detail, we can also 

observe that the surfaces of the pillars are covered by nanoscale granular protrusions. These 
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hierarchical micro-nano structures have grooves that trap a fraction of the air, thereby 

favouring the hydrophobicity of the material. The EDS spectrum (Fig. 2d), suggests that the 

composition of the coating is mostly Ni and O. 

Figure 3 (a-h) shows the surface morphology of the samples 1 to 8 after different 

electrolysis times. The microstructure of all the surfaces is formed mainly of pillars and 

islands. Surfaces 1, 2 and 3 (900, 600 and 300 seconds of electrolysis, respectively) are 

completely coated and mainly formed of islands; whereas surfaces with shorter electrolysis 

times (samples 4, 5, 6 and 7) are only partially covered, showing that the coating initially 

generates pillars, which suggests a process related to the Volmert-Weber growth mode, as 

can be observed in some areas of the substrate. The surface of sample 8 has widely 

dispersed pillars (Fig. 3h), this sample is not superhydrophobic. Bubble-like protuberances 

with different diameters between 2 and 5 µm are observed on all the samples. 

From the mechanism point of view, the building block is the pillar, followed by the island 

formation which is a connected group of pillars. It is not necessary that both cover the 

entire surface for producing superhydrophobicity. 

AFM images (1 x 1 µm
2
 area) were produced to compare the final roughness of the 

superhydrophobic specimens using RMS roughness as a comparison parameter; and also to 

calculate their Young’s modulus. Both results are summarized in Table 2. 

Table 2. RMS and E from AFM analysis of coated samples. 

Sample 

Prepared 

substrate 

1 2 3 4 5 6 7 

RMS/nm 210 55 20 12 45 39 124 189 

E/GPa 200 0.20 0.5 0.25 0.58 0.41 0.29 0.04 
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The AFM images are shown in Figure 4. The surface roughness resulting from the AFM 

analysis of the coated samples indicates that the highest RMS value corresponds to the 

sample that underwent the least electrolysis time. This can be explained by the treatment 

only generating pillars without connections between them. In contrast, samples that 

underwent longer electrolysis times have neighbouring pillars connected, forming a more 

homogeneous surface with less roughness. These results are consistent with our FE-SEM 

analysis. The Young’s modulus values are very low due to the organic nature of the 

coating, compared to the substrate AISI 316L modulus (200 GPa). 

AFM analysis allowed us to measure the width of the pillars in the initial step of the growth 

mechanism on the samples that underwent the shortest electrolysis time. Figure 5 shows the 

surface of sample 6 with vertical distance values between 104 and 146 nm; whereas the 

surface of sample 7 has vertical distance of 70 to 212 nm. In accordance with these results, 

it can be concluded that 70-100 nm is the minimum height of pillars necessary to obtain 

superhydrophobic 316L stainless steel using a lauric acid-nickel chloride-ethanol medium. 

 

The SEM and AFM analysis confirmed that the coating starts with the formation of 

pillars, then, the islands morphology results when several pillars grow together. Finally the 

surface of the sample is completely covered (as shown after 300 seconds of electrolysis).  

In order to confirm the chemical composition of the as-prepared coatings, IR, TOF-SIMS 

and XPS techniques were used. Figure 6 shows IR spectra of the as-prepared coatings (the 

samples with the shortest electrolysis times (samples 6 and 7) were not observed by this 

technique). The IR spectra indicate that the free acidic group band from the lauric acid at 

1702 cm
-1

 is no longer present, compared to the MICC-73396-421X spectrum (CAS 
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registry number 143-07-7, CAS index name dodecanoic acid) [27], whereas the peak at 

1590 cm
-1

 corresponding to coordinated ester groups appears as in the NIDA71076 

spectrum (CAS registry number 13282-11-6, CAS index name dodecanoic acid, nickel
2+

 

salt (2:1)) [28]. Therefore, it can be concluded that (CH3(CH2)10COOH changed into 

(CH3(CH2)10COO
-
. The two peaks at 2850 and 2922 cm

-1
 belong to the symmetric and 

asymmetric C-H stretching modes of the CH2 groups of laureate, respectively. This 

supports the previous finding. 

TOF-SIMS was used to study the chemical reactions and lateral distributions of fatty acids 

enhanced to react on 316L stainless steel surfaces. On these alloy surfaces, a direct 

interaction between the acid and nickel ions is observed via detection of a molecular ion 

that corresponds to the mass of the laureate anion, nickel cation and Ni[laureate]2. Since 

TOF-SIMS can detect and discriminate specific chemical reaction products, it was used to 

identify reaction products formed between the fatty acid molecules, nickel ions and metallic 

surface. The positive secondary ion mass spectra for sample 6 (20 s of electrolysis is shown 

at Fig. 7. The assignments are based upon classical mass spectroscopic fragmentation 

patterns [29]. Wandass et all, [30] studied different fatty acids on silver surfaces using 

TOF-SIMS, including lauric acid and they obtained similar signals to those obtained in our 

study. The peaks represent masses of: 100 units, which corresponds to (CH2CONi)
+
; 133 

units, for (CH3CH2COONi); 266 units, for Na(CH3(CH2)9COONi)
+
, (Na is considered a 

contaminant that is easily detected by SIMS); and 411 units, for (CH3(CH2)10COO-Ni-

OOC(CH2)10CH3 + H-HCOOH)
+
. The presence of these species on the stainless steel 

surface was also confirmed by the XPS Ni 2p and O 2s signals. 
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XPS was used to characterize the coating on the 316L stainless steel and to determine its 

composition. We analysed all seven samples from 15 to 900 s of electrolysis, considering 

oxygen, carbon and nickel peaks. In all the samples, the peaks were repeated at the same 

value of the binding energy. Figure 8 shows the superhydrophobic sample spectra. The 

peak at 852 eV is attributed to Ni metal; its intensity decreases as the process time increases 

because after less than 30 seconds of electrolysis the coating is thicker after more than 60 

seconds of electrolysis. After less than 30 seconds, XPS detected Ni metal from the 

substrate and also Ni metal in the coating; in contrast to the results after more than 60 

seconds of electrolysis, when XPS mostly detected Ni metal formed by the reaction. 

Figure 9 shows two examples of C (top) and O (bottom) deconvolution corresponding to 

sample 5 and sample 1. The peak located at 284.6 eV is attributed to C-1s and its 

deconvolution gives three peaks: the first is located at 288 eV and it is attributed to the 

carbonyl of lauric acid [31, 32]; the second is at 286 eV corresponding to the ester group 

[32]; while the third is at 284 eV and it is attributed to adventitious carbon [32] (Fig. 9top). 

The peak located at 531.7 eV is attributed to O-2s and its deconvolution also gives three 

peaks; the binding energy of the first is 529 eV and it is attributed to NiO; the second is 

located at 531 eV and it is attributed to Ni(OH)2; and the last located at 532 eV is attributed 

to the C-O bond [33] (Fig 9bottom). The peak located at 856.5 eV is attributed to Ni-2p3/2. 

Its deconvolution again gives three new peaks; the first located at 852 eV is attributed to Ni 

metal; the second at 856 eV is attributed to Ni(OH)2; and the last at 861 eV is attributed to a 

satellite of the previous compound and so it also corresponds to Ni(OH)2 [34]. Finally, the 

peak located at 711 eV corresponds to the Fe-2p3/2 from the stainless steel substrate. [35]  

The XPS results reveal the presence of metallic nickel and also oxidized nickel 

corresponding to the Ni[CH3(CH2)10COO)]2 molecule. A similar product was also observed 
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by Chen et al [36] in their research on cobalt-based coatings using X ray diffraction 

techniques. In the present study, the TOF-SIMS results confirm the bonding between lauric 

acid and Ni, as well as the existence of metallic nickel. 

One factor that promotes superhydrophobicity can be attributed to the chemical 

composition of the surface on which superhydrophobicity will appear. A chemical reaction 

will be associated with each part of the process that produces the change to 

superhydrophobicity of the 316L stainless steel surface. Based on our XPS and TOF-SIMS 

analysis, the proposed reaction mechanism for the as-prepared superhydrophobic coatings 

involves the Ni
2+

 ions around the cathode plate being reduced to metallic nickel on the 

cathodic surface when the voltage is applied across the two 316L stainless steel electrodes. 

The metallic nickel will then act as growth sites. Meanwhile, more Ni
2+

 ions near the 

cathodic plate will react with the lauric acid and form nickel laureate on the activated 

surface of the 316L stainless steel. The reaction processes can be formulated as follows: 

Scheme 1. Redox reaction 

Fe(s) → Fe(aq)
2+

 +2 ē 

Ni(aq) 
2+

 + 2ē → Ni(s) (growth site) 

Scheme 2. Laureate formation 

Ni(aq) 
2+

 + CH3(CH2)10COOH(aq) → Ni[CH3(CH2)10COO]2 + 2H(aq)
+
 

 

4. CONCLUSIONS 

Superhydrophobic surfaces on 316L stainless steel were developed via a short procedure 

consisting of the electrolysis of stainless steel in the lauric/nickelchloride/ethanol 
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electrolyte. 30 seconds of reaction was enough to obtain an optimum superhydrophobic 

316L stainless steel surface (CA 175°).  

Reducing the electrolysis time allowed us to identify the growth mechanism as three-

dimensional islands (Volmert-Weber mode) thus leading to the superhydrophobicity via 

simultaneous pillar growth. Consequently, from the mechanism point of view, the building 

block is the pillar, followed by the island formation which is a connected group of pillars. 

Experimentally it is found that it is not necessary that both cover the entire surface for 

producing superhydrophobic character. 

From the property point of view, the characteristic magnitude seems to be the vertical 

height of the pillars and the islands for producing superhydrophobicity. We used AFM to 

stablish the minimum range of vertical height of the pillars necessary to obtain 

superhydrophobic 316L stainless steel. 

TOF-SIMS and XPS analysis allowed us to identify the species responsible for the 

superhydrophobicity on the 316L stainless steel substrate as CH3(CH2)10COONiOH and 

(CH3(CH2)10COO)2Ni.  

Superhydrophobicity is associated to the redox reaction of Fe/Ni
2+

 to Fe
2+

/Ni, with Ni as 

the growth site, and also with the laureate formation reaction. 
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LIST OF FIGURE CAPTIONS 

Figure 1. Contact angle at different electrolysis time. The standard deviation bars were 

included. 

Figure 2. (a-c) SEM micrographs of 316L stainless steel superhydrophobic surface 

coatings for 30 sec (5). (d) The EDS spectrum of stainless steel superhydrophobic surface 

coatings for 30 s. Semi-quantitative composition of substrate and sample 5 in %wt are 

included. 

Figure 3. SEM images of 316L stainless steel substrate and seven different conditions 

coated samples (1-7), a) sample 1 (900 s), b) sample 2 (600 s), c) sample 3 (300 s), d) 

sample 4 (60 s), e) sample 5 (30 s), f) sample 6 (20 s), g) sample 7 (15 s) and h) sample 8 

(10 s). 

Figure 4. AFM images of 316L stainless steel coated samples, 1- sample 1 (900 s), 2- 

sample 2 (600 s), 3- sample 3 (300 s), 4- sample 4 (60 s), 5- sample 5 (30 s), 6- sample 6 

(20 s), 7- sample 7 (15 s). (1µm x 1µm study area) 

Figure 5. AFM images of pillars in the superhydrophobic samples 6 (a) and 7 (b). 

Figure 6. IR spectra of sample 1 (900 s), sample 2 (600 s), sample 3 (300 s), sample 4 (60 

s), and sample 5 (30 s). 

Figure 7. Secondary ion mass spectra of positive ions from sample 6 (20 s). 

Figure 8. XPS spectra of 316L stainless steel coated samples, sample 1 (900 s), sample 2 

(600 s), sample 3 (300 s), sample 4 (60 s), sample 5 (30 s), sample 6 (20 s), and sample 7 

(15 s). 
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Figure 9. XPS spectra of deconvolution peaks of C (top) and O (bottom) of sample 1 and 5. 

 



Table 1. Electrolysis time for the different set of samples.  

Sample 1 2 3 4 5 6 7 8 

Electrolysis 

time/ s 
900 600 300 60 30 20 15 10 

 

  

Table(s)



Table 2. RMS and E from AFM analysis of coated samples. 

Sample 
Prepared 

substrate 
1 2 3 4 5 6 7 

RMS/nm 210 55 20 12 45 39 124 189 

E/GPa 200 0.20 0.5 0.25 0.58 0.41 0.29 0.04 
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