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Comment on “Quantum Kaniadakis entropy under projective measurement”
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We comment on the main result given by Ourabah et al. [Phys. Rev. E 92, 032114 (2015)], noting that it
can be derived as a special case of the more general study that we have provided in [Quantum Inf Process 15,
3393 (2016)]. Our proof of the nondecreasing character under projective measurements of so-called generalized
(h,φ) entropies (that comprise the Kaniadakis family as a particular case) has been based on majorization and
Schur-concavity arguments. As a consequence, we have obtained that this property is obviously satisfied by
Kaniadakis entropy but at the same time is fulfilled by all entropies preserving majorization. In addition, we have
seen that our result holds for any bistochastic map, being a projective measurement a particular case. We argue
here that looking at these facts from the point of view given in [Quantum Inf Process 15, 3393 (2016)] not only
simplifies the demonstrations but allows for a deeper understanding of the entropic properties involved.
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Let a quantum system be described by a density operator
ρ, that is, a positive-semidefinite operator acting on an N -
dimensional Hilbert space, with trace 1. A quantum version
of the Kaniadakis entropy [1,2] has been recently introduced
in [3] as follows:

Sκ (ρ) = 1

2κ
Tr(ρ1−κ − ρ1+κ ), (1)

where the entropic index κ is a real number with |κ| < 1.
Originally, the classical version of the Kaniadakis entropy has
been formulated as a deformation of the Boltzmann-Shannon
entropy to deal with classical relativistic systems [2]. It is
straightforward to see that Sκ (ρ) reduces to the von Neumann
entropy S(ρ) = − Tr ρ ln ρ in the limiting case κ → 0. Thus,
it is to be expected that some of the properties of the von
Neumann entropy remain valid for the Kaniadakis entropy. In-
deed, in [4] it was proven that the quantum Kaniadakis entropy
cannot decrease under the action of projective measurements.
Specifically, let 5 = {Pk} be a projective measurement, that
is, the Pk are orthogonal projectors that sum up to the identity
operator. The state of the system after the measurement without
postselection is given by (see, e.g., [5])

5(ρ) =
X

k

PkρPk. (2)

The main result in [4] showed that the quantum Kaniadakis
entropy of the final state is greater than or equal to that of the
initial state,

Sκ [5(ρ)] > Sκ (ρ). (3)

In this Comment we rely on our work [6], where we
provided an alternative proof of inequality (3) to the proof
given in Ref. [4]. Due to the fact that our proof is based on
majorization and the Schur-concavity property, our findings
revealed that this result holds for a more general family of
entropies, with the Kaniadakis entropy being a particular case.
In this way, we put the property represented by (3) in a wider

and simpler context, which allows us to better understand
the properties of a huge family of entropic functions. Our
derivation shows that this is not an isolated or coincidental
property of one particular entropic functional, but rather a
structural feature of many of them.

Our general proof runs as follows. Let us consider the
quantum version of (h,φ) entropies [7], which we have
recently introduced [6],

H(h,φ) = h[Tr φ(ρ)], (4)

where the entropic functionals h : R 7→ R and φ : [0,1] 7→ R
are continuous and such that either of the following holds true:

(i) φ is strictly concave and h is strictly increasing.
(ii) φ is strictly convex and h is strictly decreasing.

In both cases, and without loss of generality, φ(0) = 0 and
h[φ(1)] = 0. Choosing h(x) = x and φ(x) = x1−κ−x1+κ

2κ
, one

recovers the Kaniadakis entropy (1) as a particular case.
Moreover, it is easy to see that the latter, one-parameter
entropic functional can be recast under a more familiar form;
indeed, using the well-known expression for the κ-logarithms
(see [8] for a detailed study of these functions), given by

lnκ (x) = xκ − x−κ

2κ
, (5)

one has

φ(x) = −x lnκ (x). (6)

This shows that it is indeed included in that wider family as a
particular case (see Table I in [6]). In a similar way, different
choices lead to other important entropies, such as, for instance,
the von Neumann [9], Rényi [10], or Tsallis [11] entropies, as
exhibited in Table I in [6].

An important property of the quantum (h,φ) entropies
related to the purpose of this Comment is the Schur-concavity
or majorization preservation (Proposition 1 in [6]). It is said
that ρ 0 is majorized by ρ, denoted as ρ 0 ≺ ρ, if the eigenvalues
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λ0 and λ of ρ 0 and ρ, respectively, sorted in decreasing order,
satisfy the conditions (see, e.g., [12])

nX

i=1

λ0
i 6

nX

i=1

λi ∀ n = 1, . . . ,N − 1 and

NX

i=1

λ0
i =

NX

i=1

λi. (7)

If ρ 0 and ρ act on Hilbert spaces of different sizes, i.e., if λ0
and λ have different lengths, one can add extra zero-valued
components to the shorter one to equal the lengths; N in (7)
is to be understood as the maximal Hilbert space size. It is
easy to check that this has no impact on the value of the
(h,φ) entropies because of their expansibility property [6].
The Schur-concavity property goes as follows:

if ρ 0 ≺ ρ then H(h,φ)(ρ
0) > H(h,φ)(ρ). (8)

As is well known, it can be shown that under the
action of any quantum bistochastic operation E , i.e., E(ρ) =P

k EkρE
†
k , where the superscript dagger stands for the adjoint

operation and the EkE
†
k as well as the E

†
kEk sum up to the

identity operator, the final state is majorized by the initial one
(see, e.g., [13]), that is,

E(ρ) ≺ ρ, (9)

with equality [in the sense of (7)] if and only if E(ρ) = UρU †,
where U is a unitary operator. Note that E leaves the maximally
mixed state invariant, i.e., E( I

N
) = I

N
, where I is the identity

operator. As a consequence of (8) and (9), for any bistochastic

operation E the (h,φ) entropy cannot decrease after the action
of the map, that is,

H(h,φ)[E(ρ)] > H(h,φ)(ρ). (10)

It is straightforward to see that the projective measure-
ment (2) is a very particular bistochastic operation. Thus, as
an immediate corollary of (10), we have

H(h,φ)[5(ρ)] > H(h,φ)(ρ). (11)

Notice that the equality in (11) is attained if and only if 5(ρ) =
ρ (the projective measurement does not disturb the state).
Now, choosing in particular h(x) = x and φ(x) = x1−κ−x1+κ

2κ
=

−x lnκ (x) with |κ| < 1 in (11), we derive the result of Ourabah
et al., Eq. (3); even more, we obtain the condition for equality.
In addition, a quantum version of the three-parameter entropy
given in [14], which is mentioned in the last sentence of [4], can
be expressed as a particular case of Eq. (4), choosing h(x) = x

and φ(x) = −x lnκτς (x), where the three-parameter deformed
logarithm is defined as lnκτς (x) = ςκxτ+κ−ς−κ xτ−κ−ςκ+ς−κ

(κ+τ )ςκ+(κ−τ )ς−κ , with
adequate ranges of values for κ , τ , and ς . Therefore, these
entropies also satisfy inequality (11).

To conclude, we stress that our results are far more
general than the results given in [4]: they are valid for any
entropic measure preserving the majorization relation and any
bistochastic map.
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