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Abstract

After several years of research, there is now a consensus that America was populated from Asia through Beringia, probably
at the end of the Pleistocene. But many details such as the timing, route(s), and origin of the first settlers remain uncertain.
In the last decade genetic evidence has taken on a major role in elucidating the peopling of the Americas. To study the early
peopling of South America, we sequenced the control region of mitochondrial DNA from 300 individuals belonging to
indigenous populations of Chile and Argentina, and also obtained seven complete mitochondrial DNA sequences. We
identified two novel mtDNA monophyletic clades, preliminarily designated B2l and C1b13, which together with the recently
described D1g sub-haplogroup have locally high frequencies and are basically restricted to populations from the extreme
south of South America. The estimated ages of D1g and B2l, about ,15,000 years BP, together with their similar population
dynamics and the high haplotype diversity shown by the networks, suggests that they probably appeared soon after the
arrival of the first settlers and agrees with the dating of the earliest archaeological sites in South America (Monte Verde,
Chile, 14,500 BP). One further sub-haplogroup, D4h3a5, appears to be restricted to Fuegian-Patagonian populations and
reinforces our hypothesis of the continuity of the current Patagonian populations with the initial founders. Our results
indicate that the extant native populations inhabiting South Chile and Argentina are a group which had a common origin,
and suggest a population break between the extreme south of South America and the more northern part of the continent.
Thus the early colonization process was not just an expansion from north to south, but also included movements across the
Andes.
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Introduction

Reconstruction of the biological history of aboriginal Amerin-

dian populations has been widely debated in the literature for the

last two decades. After several years of research, there is now a

consensus that America was populated from Siberia (Asia) through

the Bering Strait [1], sometime at the end of the Pleistocene. But

many details, such as the timing, route, and origin of the first

humans, remain uncertain [2].

The extreme south of South America, or Patagonia-Tierra del

Fuego (P-TdF), has one of the oldest and most continuous

archeological records of early human occupation in the Americas.

Monte Verde, in Puerto Mont, Chile, dated at 14,500 years BP

[3–4] was for a long period of time the oldest archaeological site in

America, including North America, the gateway of the first

settlers. The Patagonia-Tierra del Fuego region has also many

archeological sites with undeniable proof of ancient human

occupation. Localities like Cueva Fell (10,000–11,000 years BP),

Pali Aike (8,700 BP) [5], Piedra Museo (12,800 BP) [6], and the

Tres Arroyos site (11,800 BP) [7] provide evidence of human

occupation since at least 12,000 years ago.

In the last decade, genetic evidence has taken on a major role in

our knowledge of the peopling of the Americas. One of the

markers most extensively used, mitochondrial DNA (mtDNA), has

allowed the maternal ancestry of Native Americans to be traced to

four major pan-continental haplogroups A-D and one minor

North American haplogroup X [8–12]. The classical allotment of

Native American maternal lineages to haplogroups A-D began to

gain better resolution with acknowledgment of the existence of

different ethnically/geographically structured founder haplotypes

within at least some of the haplogroups [13,14]. Beginning with

the pivotal work of Bandelt et al. (2003) [15], several studies have

increased the amount of high-resolution data available, mostly in

the form of complete mtDNA sequences and/or complete control
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region sequences and selected SNP typing. The present landscape

of extant Native American mtDNA phyletic diversity is composed

of the same major five basal haplogroups A-D plus X, but we are

now able to distinguish one to four founder sequences in each

haplogroup, adding up to ten monophyletic sub-haplogroups; A2,

B2, C1b, C1c, C1d, C4c, D1, D2a, D3 and D4h3a [15–21]

In spite of the importance of the P-TdF region, few studies of

mitochondrial DNA have been performed with current or

historical indigenous populations of the area like the Mapuche,

Pehuenche, Huilliche, Yámana and Kawésqar [9–10,22–27].

These studies show a cline north to south for the B2, C1b and

D1 haplogroups, with B2 decreasing in frequency until it

completely disappears in the extreme South in populations such

as the Yámana and Kawésqar. C1d and D1 increase their

frequencies as we move southward [23–27]. Regarding the D-loop

sequences of mtDNA, these populations have shown a high

frequency of a geographically-linked D1 haplogroup lineage

characterized by the presence of the C16187T polymorphism

(D1g, according to a report by Bodner et al., 2012 [28]), which

was recognized early as specific to the region by Forster et al.

(1996) [13]. Genetic studies of populations from the rest of South

America appear to confirm this observation, since up until now

this lineage has not been found in other Native populations from

South America [29–51].

In this study, we sequenced the control region of mitochondrial

DNA from 300 individuals belonging to indigenous populations of

Chile and Argentina and obtained seven complete mitochondrial

sequences, to allow a better understanding of the peopling of

South America’s Southern Cone. Our analyses confirm that sub-

haplogroup D1g is a major lineage of the native Patagonians and

Fuegians of Chile and Argentina, which would have appeared

soon after the colonization of this area. We also found a high

frequency of two other mitochondrial lineages characteristic of the

region for the B2 and C1b haplogroups, identified by the

transitions A470G and C258T, respectively, and preliminarily

designated as B2l and C1b13. The haplotype networks of D1g and

B2l indicate a high diversity, concordant with the calculation of

the Time of Most Recent Common Ancestor (TMRCA) for the

two lineages, and suggesting that the current inhabitants are

probably descendants of the first colonizers. One further sub-

haplogroup, D4h3a5, also appears to be restricted to P-TdF

populations. The fact that these lineages are restricted to a specific

geographical area has allowed us to elaborate in greater detail the

dynamics of the populations that carry them, and thus reconstruct

the micro-evolutionary history of southern South America.

Results

Mitochondrial lineages
We analyzed the sequences of the mtDNA control region (rCRS

(revised Cambridge Reference Sequence) positions 16032–16544

and 051–555) of 301 individuals belonging to indigenous groups

from Chile and Argentina: Aymara, Atacameño, Pehuenche,

Mapuche of Chile and Argentina, Huilliche, Tehuelche, Kawés-

qar and Yámana (see Figure 1 and Table S1). All individuals

analyzed were assigned to the American haplogroups A2, B2,

C1b, C1c, C1d, D1 and D4h3a, except for one Huilliche assigned

to L2a, who was excluded from the analyses (more information on

Amerindian haplotypes in Table S5.). Overall, haplogroups B2,

C1b and D1 were the most represented; meanwhile low

frequencies of A2, C1c and C1d were found in most of the

populations analyzed, except for 25% A2 in the Atacameño. B2

peaked in the Atacameño and Aymara, with frequencies .57%, in

agreement with values reported for other southern Central

Andean populations [22,29–30,32,35,38–39,48]. Consistent with

previous reports of both extant and ancient DNA studies in

southern South America [9–10,24,25–26], B2 showed a latitudinal

clinal variation with higher frequencies in northern Patagonia,

intermediate values in Tehuelche and complete absence in the

southernmost Yámana and Kawésqar [26]. Frequencies of C1b

and D1 also showed a clinal variation, with minor values for the

Aymara and Atacameño in the north with respect to southern

populations. One Huilliche carried the single C1c lineage reported

in this study, while one Kawésqar and one Argentinean Mapuche

shared an almost identical C1d sequence attributable to the

Patagonian-specific C1d1e branch [52]. The distribution of

haplogroup D4h3a was also skewed, being present in only four

out of 237 individuals in southern Central Andean and northern

Patagonian populations, but accounting for 25% of the 63

southern Fuegian-Patagonian individuals, with values ranging

between 10% and 46% in the Tehuelche, Yámana and Kawésqar.

All P-TdF individuals belonged to haplogroup D4h3a5 as

redefined by us (see nomenclature).

Haplogroup D1. D1 lineages accounted for 87 out of the 300

sequences in this study (29%), with 70 of them (80%) carrying

C16187T, a diagnostic marker of D1g. Clade D1g had a

structured pattern of geographic distribution, being found almost

exclusively in the central-southern part of Chile and Argentina

(Figure 1). In northern Chile only one Aymara had C16187T,

sharing a haplotype with one Huilliche and two Argentinean

Mapuche (Figure 2), a finding that may be explained by rather

recent migratory events. The most southerly record of D1g is at

57uS, where six Yámana shared a haplotype absent in all other

individuals analyzed here. Complete mitochondrial sequences

were obtained for three D1g individuals (two Tehuelche and one

Yámana); we constructed a revisited phylogeny adding our tree

sequences to 23 already published by Bodner et al. (2012) [28] (see

Figure S1). We confirm the Yámana is the single representative of

a new sub-haplogroup called D1g2, not represented in Bodner’s

phylogeny; the other two samples belong to another sub-

haplogroup, D1g1, defined by the coding polymorphism 8116.

In order to explore the distribution of these two sub-haplogroups

in our sample, we sequenced some additional samples for coding

polymorphisms in D1g2 (10202, 10724 and 13020) and D1g1

(8116) (see Table S5). We didn’t find any D1g2 polymorphism in

any individual analyzed; all belonged to D1g1. We typed the 8116

mutation by PCR-RFLP for the samples not sequenced. Our

results indicate that 8116 was absent in the rest of the Yámana, but

was present in all remaining D1g samples analyzed.

None of the 13 Kawésqar analyzed here was assignable to D1g.

However, the ancient DNA study of Garcı́a-Bour et al. (2004) [26]

described four Patagonia-Tierra del Fuego individuals as D1g, so

the presence of this lineage in Kawésqar cannot be ruled out.

Since the populations which inhabited the southern extreme of

Patagonia have nearly or completely disappeared, it will be hard to

determine the real extent of this lineage in southern Patagonia.

These can explain the extreme differences in the two clades for

D1g; D1g2 was found only in the Yámana and is probably a

specific haplotype for the extreme south Patagonian populations,

versus the highly diverse D1g1, with six different clusters and

present in the remainder populations. Recently, a haplotype D1g1

defined by transitions at 16189, 16209, 55 and 56, and present in

the Pehuenche, Argentine Mapuche and Tehuelche, was recov-

ered in five out of seven D1g individuals from the Salitroso Basin

(47u 259S, 71u 299W), a low-altitude lacustrine basin situated

between 100 and 300 m.a.s.l. in central Patagonia, in samples

dated between 418640 and 1,142642 yr BP (Moraga, personal

communication).

New Model for the Early Peopling of Patagonia

PLOS ONE | www.plosone.org 2 September 2012 | Volume 7 | Issue 9 | e43486



Haplogroup B2. B2 sequences were found in 34% of the 300

individuals studied. Network analysis showed the presence of three

major sub-haplogroups with disjointed geographic distribution.

Two of them, defined by mutations T146C-A215G-455+T and

C16188T, accounted for two thirds of the B2 lineages in the

Aymara and Atacameño. Sequences attributable to these groups

have already been reported in both ancient and extant southern

Central Andean populations [29–30,32–33,35,39–40,44,48]. The

third cluster, defined by the presence of A470G, which is

completely absent in northern Chile, grouped together 57 of the

61 B2 lineages from Patagonia. We provisionally designated this

branch as B2l, but further complete mtDNA sequences are needed

in order to describe the lineage properly.

Close inspection of the network encompassing the B2l lineages

(Figure 3) shows high variability, which is confirmed by the values

of nucleotide diversity (Table S2). There is not a clear geographic

structure within clade B2l, to which all individuals from southern

Chile belong with the exception of two Mapuche and two

Tehuelche. All the evidence suggests that lineage B2l arose early

from the B2 haplogroups brought by the early colonizers in the

Pleistocene-Holocene limit, and that they evolved independently

of the B2 lineages highly represented in northern Chile and

Argentina.

Haplogroup C1. Sixty-four out of 67 C1 individuals analyzed

in this paper were assignable to C1b. Among these, 67% have the

polymorphism C258T not previously recognized as a clade in

native South Americans, which prompts us to provisionally define

this branch as C1b13. Similarly for B2l, complete sequences will

be required to confirm this assignment. This clade has greater

haplotype but lesser nucleotide diversity than C1 (Table S2), which

may be explained by a later appearance of C1b13. The haplotype

networks (see Figure 4) of both C1b and C1b13 are star-like, a

clear indication of population expansion in recent times, in

contrast to the complexity of the networks of D1g and B2l. Branch

C1b13 is found mainly between 38u and 42uS (Figure 1), with only

a small representation in the Yámana and Kawésqar. The

Tehuelche showed a haplotype distribution similar to that found

in the Pehuenche, Mapuche and Huilliche. Outside Patagonia,

C1b13 lineages were also present in one Atacameño and one Coya

from NW Argentina [30].

Figure 1. Haplogroup linage map for each population studied. Haplogroup A2 is not included, due to its low representation in these
populations. Note the large differences in frequency for D1g, B2l and C1b13 between northern and southern populations.
doi:10.1371/journal.pone.0043486.g001
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Bayesian Analysis
In order to understand the peopling of the extreme south of

South America and to date the appearance of the specific lineages

mentioned above, we performed analyses with Bayesian statistics

using the program BEAST v1.53v. The sequences were grouped

using two different criteria, by ethnic affiliation and by phyloge-

netic affiliation (haplogroups D1g, B2l and C1b13, see Materials

and Methods for additional information). For both the construc-

tion of Bayesian Skyline Plots and for calculating TMRCA, we

used a mutation rate of 30.2% per site per million years from

Endicott & Ho, (2008) [53] (see supplementary discussion for the

mutational rate choice, Supplemental Discussion S1).

Time of the Most Recent Common Ancestor

(TMRCA). To date the appearance of the Patagonian lineages,

we combined our sequences with published data of 106 A2, D1,

C1 and B2 sequences from South America [30,54–59], generating

a data matrix of 406 sequences. The objective was to produce a

more complete map of the diversity in South America for the

process of dating the specific haplotypes, and thus avoid a possible

overestimation of the TMRCA. In Table 1 we show the age of

divergence of the lineages D1g, B2l, C1b13 and D4h3a5. Because

the discussion about the use of a particular rate is far from

resolved, for the TMRCA we decided to compare the ages

obtained with different mutation rates, from one considered fast

(45%, Howell et al. 2003 [60]) to a slower one (24%, Santos et al.

2005 [61]) and two rates in the mid-range [19–53]. We also

calculated the rho statistic from the networks for each clade, and

used the Soares mutation rate to convert the rho into ages [62].

Besides differences between the ages obtained due to the mutation

rates, we found major differences between C1b13 vs. D1g and B2l.

Taking the mutation rate from Endicott & Ho, (2008) [53] (see

Supplemental Discussion S1 and Table S3) we obtained older ages

for D1g and B2l (15,1756233 and 14,1726179 years, respective-

ly) than for C1b13; C1b13 was ,2.5–3 Kyr younger. These ages

suggest that at least D1g and B2l originated at the time that the

first populations reached the zone, which was at least 14,500 years

ago according to the archeological record [3–4]. The Howell

mutation rate, considered too fast for some authors for settlement

studies, gave us a minimum age of ,10 Kyr for D1g. The C1b13

clade, on the other hand, would have originated somewhat later.

The D4h3a5 sub-haplogroup, also mentioned by Perego et al.

(2009) [21] but redefined here, has an age of 10,232 yr BP, later

than the ages obtained for D1g and B2l, and similar to the one

obtained for C1b13. However, because D4h3a5 is found in

southern Patagonian populations, principally in the Tehuelche

and Kawésqar (Figure 2), it is probable that the rise of D4h3a5 was

a local and later event produced in some of the early populations

that settled Patagonia.

Bayesian Skyline Plots (BSP). Figure 5a shows the growth

curves (Bayesian Skyline Plots, or BSPs) for the specific lineages

D1g, B2l and C1b13. The main difference in growth over time is

the explosive lineage expansion of C1b13, of an order of

magnitude, beginning about 5,000 years BP. For D1g there was

constant growth beginning 9,000 years BP, at a slower rate; in

contrast the B2l population size remained constant over time, with

a slight growth about 3,500 years BP. The great difference in the

Figure 2. Network for the D haplogroup. The arrow shows the D1 nodal, characterized by rCRS differences at 16223-16325-16362-073-263-
315+C-489. Besides the D1 haplotypes, the new lineage D1g is represented here, characterized by the mutation 16187T plus D1 core, and the D4h3a
lineages, characterized by 16342 and 16241 polymorphisms.
doi:10.1371/journal.pone.0043486.g002
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Figure 3. Network for the B2 haplogroup. The arrow shows the B2 nodal, characterized by rCRS differences at 16183C-16189-16217-073-263-
315+C-499. We show also the new lineage B2l, characterized by the B2 core plus the 470 polymorphism. The northern haplotypes characterized by
the 16188 polymorphism and the 455+T insertion are also noted.
doi:10.1371/journal.pone.0043486.g003

Figure 4. Network for the C1 haplogroup. The arrow shows the C1b nodal, characterized by rCRS differences at 16223-16298-16325-16327-073-
249d-263-290d-291d-315+C-489-493-522d-523d. We also show the C1b13 lineage, characterized by the 258 polymorphism plus C1b core.
doi:10.1371/journal.pone.0043486.g004

New Model for the Early Peopling of Patagonia
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Table 1. Comparison of the coalescence ages calculated using different mutation rates.

Mutational rates/
Groups

0.45 m/s/myaa

years BP
0.34 m/s/myab

years BP
0.302 m/s/myac

years BP
0.24 m/s/myad

years BP
Soares clocke

years BP

D1g 10,184 13,479 15,175 19,096 27,174

B2l 9,511 12,588 14,172 17,833 22,645

C1b13 7,773 10,288 11,583 14,575 14,040

D4h3a5 6,867 9,088 10,232 12,875 9,964

m/s/mya = mutation/site/million years ago.
a, b, c & dare calculated based on Bayesian analysis.
eis calculated based on r calculation according to Saillard et al., 2000.
a = Howell et al., 2000; b = Kemp et al., 2007; c = Endicott & Ho, 2008; d = Santos et al., 2005; e = Soares et al. (2009).
doi:10.1371/journal.pone.0043486.t001

Figure 5. Bayesian Skyline Plot (BSP) showing effective population sizes over time derived from mtDNA D-loop sequences. A)
Southern Cone specific haplotypes. B) By ethnic group.
doi:10.1371/journal.pone.0043486.g005
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BSP curve of C1b13 compared to D1g and B2l, added to the

differences observed in the haplotype networks and the coales-

cence age, suggest different events for the emergence of C1b13.

We also performed BSP with the sequences grouped by

populations (see Figure 5b). The pattern of growth over time

varied among the populations studied, in accordance with their

different histories and subsistence strategies. In northern Chile the

Aymara showed a large growth, the greatest of the studied

populations, beginning around 8,000 BP and reaching its

maximum about ,5,000 years BP, corresponding to the beginning

of plant and animal domestication which was the basis of the later

development of agriculture [63], and then became stable except

for a slight decrease ,500 years ago, attributable to the

catastrophic disruption produced by European colonizers. Despite

not having found direct evidence of old agriculture in north

Chilean populations, discoveries in Peru shown that the adoption

of agricultural techniques by native populations is older than

previous estimations. There is evidence of irrigation canals

associated with architectural structures dated between 7,600 and

4,500 14C yr BP [64], and also an early adoption of peanut,

squash, cotton and quinoa, whose archeological remains have

been dated between 9,240 and 5,500 14C yr BP [65]. The curve

for the Atacameño, on the other hand, shows a much lower rate of

expansion than the Aymara, which may be explained by a greater

influence of Andean populations and access to Altiplano’s

resources for the Aymara than for the Atacameño [54].

In the south, between 38u and 42uS, we analyzed four

populations: the Pehuenche, Mapuche (Chile and Argentina)

and Huilliche. The BSP graphs show some differences in the

population dynamics of these groups. The Mapuche of Argentina

and Chile had a similar pattern, with less population expansion

than that observed in the Aymara. The Huilliche also showed

growth, but less than that of the Mapuche. By contrast, the

Pehuenche showed almost no population expansion, clearly

different than the Mapuche and Huilliche. It should be noted

that the Pehuenche are the only group in which all of the B, C and

D lineages belong to clades B2l, C1b13 and D1g (Figure 1). Thus,

the differences in the history of their demographic growth may be

related to different subsistence strategies, hunter-gatherers in the

case of the Pehuenche and agriculture in the case of the Mapuche

and Huilliche [66]. Finally, the groups analyzed from southern

Tierra del Fuego-Patagonia, the Tehuelche and the ‘‘canoe

people’’, the Yámana and Kawésqar, showed similar historical

dynamics with little population growth, which is consistent with

their ways of life as terrestrial (Tehuelche) and marine (Yámana

and Kawésqar) hunter-gatherers [67]. There was a slight increase

in the population size of the Tehuelche in the last 2000 years,

which may be due to the movement of the Mapuche to the south,

mixing with the inhabitants of southern Patagonia. Complex

patterns of interaction between the native inhabitants on both

sides of the southern Andes have been recorded in a plethora of

archaeological, historical and ethnohistorical studies [68–69]. The

intensity of contact, with important eastward migrations, increased

notably from the 17th century onwards as a strategy to cope with

colonial pressure on southern Chilean populations. This process

resulted in what is known as the araucanization of Pampa-

Patagonia, i.e. the important cultural and biological influence of

trans-Andean populations. Further biological admixture occurred

as a consequence of the military conquest of Patagonia by the

Argentinean Army in the 1870s that resulted in the forced

southward relocation of native populations from Northern

Patagonia. With regard to the Tehuelche population analyzed in

this paper, the available historical and genealogical information

both record the recent introgression of both Mapuche and

admixed Chileans [70].

Genetic diversity analyses
We used Wright’s FST pairwise measure of population

differentiation to evaluate the genetic differences among ethnic

groups (Table S4), which indicated the existence of two main

groups: the populations from northern Chile (the Aymara and

Atacameño) and the populations of southern Chile and Argentina,

the Huilliche, Pehuenche, Argentine Mapuche and Chilean

Mapuche. The Tehuelche, Yámana and Kawésqar were closer

to the southern than the northern group; however, they also have

high FST values with respect to the rest of the southern

populations, which indicate that the extreme southern populations

remained more isolated yet. A dendrogram constructed from the

matrix of FST values using neighbor-joining illustrates this

situation graphically (Figure S2).

Discussion

This study analyzed aboriginal populations of Chile and

Argentina, some of which are carriers of clades D1g, B2l and

C1b13, a set of lineages that so far have been described only in the

southernmost part of South America. Their geographic location,

diversity and presence in populations confirm that these are three

new clades in the Amerindian mitochondrial tree not previously

characterized. The estimated ages of D1g and B2l, about

,15,000 yr BP, together with their similar population dynamics,

suggest that they probably appeared soon after the arrival of the

first settlers. By contrast, the results for C1b13 show a somewhat

later appearance, in a group that underwent a lineage expansion.

The differences apparent according to several analyses (network

topologies, descriptive statistics, Bayesian Skyline Plot) in C1b13

vs. B2l and D1g also support a different temporal and geographic

scenario to explain the origin of D1g and B2l compared to C1b13.

A possible scenario to explain the appearance of clades D1g and

B2l is that these linages arose in populations of hunter-gatherers in

the extreme south with population sizes that were stable for a long

period, thus having the time necessary to accumulate mutations

and develop more complex patterns, while clade C1b13 originated

,3–4 Kyr later than D1g and B2l, in a population with increased

growth and possibly farther north, where ecological conditions

allowed population expansion. The Spanish chronicles of the

colonization period for south-central Chile show an extensively

populated region, with calculations of over one million inhabitants

[71]. This contrasts with the southern region (south of 42uS),

where the ecological resources constrained population growth over

time, with a calculated population of around 10,000 people for

Patagonia-Tierra del Fuego [67].

This analysis also suggests a different microevolutionary history

for the north and south. In the north, haplogroup B2 was in

greater proportion, 70% in the Aymara and 60% in the

Atacameño, and the haplotype diversity was close to 1, the highest

found. This, along with the star formation of the networks, the

absence of a node and the large number of unique haplotypes both

in the Aymara and Atacameño, suggests an important ancient

population expansion, estimated to have occurred at least 6,000

years ago by Bayesian analysis. The distribution of the major

clades in the Southern Cone did not show large differences among

the populations; we did not find clusters linked to a specific

population. The principal difference encountered was the high

proportion of clade D4h3a5 in southern Patagonia. This clade was

originally defined by Perego et al. (2009) [21] but is redefined here

(see nomenclature), and is signposted by the presence of 16051 in
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the control region. D4h3a5 was found exclusively in southern

Patagonia-Tierra del Fuego, with the sole exception of one

Huilliche. The limited distribution of this lineage reinforces our

hypothesis of the continuity of the current Patagonian populations

with the initial founders. Additionally, for a specific lineage

restricted to the end of the Southern Cone of South America, the

dates for D1g and B2l are old and allow us to support a scenario

for the settlement of America with dates of the first entry between

18–20 Kyr [17,54], the first settlers having taken ,3–5 Kyr to

cross the continents and reach Patagonia.

Origin of the indigenous populations of Patagonia
The majority of the genetic studies in the last few years have

focused on the study of mitochondrial lineages, the Y chromosome

or autosomes rather than on the phylogeographic relations among

Native Americans, which has produced a gap in information on

the microevolutionary processes that occurred in South America

before the Spanish and Portuguese colonization. Unfortunately,

except for the study of the Coya from Argentina [30], none of the

available published sequences from indigenous populations of

South America has included the complete D-loop; thus there is no

information on the SNPs which define C1b13 and/or B2l, making

it difficult to compare our results with those of other studies with

native populations: the Guaranı́, Kaingang [72], Arara [73],

Yanomama [74], Zoro, Gaviao and Xavante [51] of Brazil, the

Toba, Wichi, Mataco and Pilaga [34] from Argentina, the Ayoreo

[36] and Aché [75] of Paraguay, and from the Andean region, the

Quechua [32,35,39–40] and Aymara [29,32–33,35,40]. In addi-

tion, other studies published in the last three years with complete

sequences or at least the D-loop of the mtDNA have been

principally focused on the description of Amerindian mitochon-

drial lineages [17,21,52,54] or in the description of urban South

American populations [59,76–81]. From our results and those

from the publications mentioned above, it may be inferred there is

a complete absence of D1g, C1b13 and B2l in indigenous

populations outside of Chile and Argentina. These three lineages,

together with the exclusive variants of haplogroup D4h3a, which

had a frequency of 87.6% in Patagonia, all suggest strong isolation

of the southern populations. We also detected a variant of

haplotype B2 in the Aymara (44%) and Atacameño (18.8%)

characterized by the polymorphism C16188T; it also has a

geographic restriction between 14u and 23uS [29–30,32–33,39],

which firms up the north-south disconnection in these two

countries. The evident impact the colonization process had,

including decimation of entire populations and loss of diversity to

different degrees in the remainder, along with relocation,

admixture, acculturation, etc. [71,82], have imposed an extra

degree of difficulty on the study of phylogeographic relations,

possible colonization routes and demographic processes under-

gone by Native Americans. Due to lack of data, hypotheses on the

peopling, migration routes and origins of Southern Cone of South

America populations are scarce.

Recently Rothhammer & Dillehay, (2009) [83], in a revision

based on different lines of evidence, proposed two main routes for

the peopling of the different areas of South America. From one

side, the oldest migration route moved south along the Pacific

coast through Chile, following favorable fishing localities and using

watercraft, with Monte Verde likely the most southern evidence of

this route. The other route could have followed the Andean

highlands by way of the river valleys from south to north in

Colombia; from there people moved toward the west side of

Cordillera, crossing the Altiplano to enter the open parkland

country of eastern Brazil and settle the Amazon basin on one side

and the Andes of northwest Argentina on the other; from there

they spread throughout the Pampas and Patagonia. Therefore, the

populations of the two sides of Cordillera in Chile and Argentina

should have a closer relationship than those at the same latitude;

the populations of Patagonia should be more closely related to

those of the Andes of north-west Argentina than with those of

southern Chile. Our results indicate, by contrast, the native

populations south of 40u S in both Chile and Argentina share a

common origin and belong to the same population substrate. We

also found no genetic evidence that the migratory route on the

oriental side of Andes Cordillera proposed by Rothhammer &

Dillehay (2009) would have reached Patagonia. So, Patagonia

would have been settled by at least about 15 Kyr ago by migrants

that followed the Pacific coast route. Once they arrived in the

Monte Verde area, the migrants could not have advanced further

along the Pacific coast due to the extension of the glaciers, which

covered most of the coast of Patagonia; they crossed the Andes and

continued their southern advance on the eastern side. The Andes

are low south of 39uS, which would have allowed movement of

individuals across them. The whole region would remain isolated

afterwards, and the migratory flow would have occurred more in

the east-west direction than north-south. Thus the present-day

indigenous populations that live south of 38uS are probably

descendants of the first settlers, and subsequent migrations from

northern regions have had only minor impact on them. They also

appear to have remained isolated most of the time, with a

minimum migratory flow, probably until the beginning of the

Spanish colonization.

Materials and Methods

Population Samples
We collected samples from five native populations from Chile

and two from Argentina. From northern Chile: (1) Aymara

(n = 38), from individuals inhabiting small villages in the Chilean

Puna (Putre, Codpa, Esquiña and Illapata, all in the Arica and

Parinacota Regions); (2) Atacameño (n = 29), from individuals

inhabiting indigenous communities from San Pedro de Atacama,

Antofagasta Region. From southern Chile: (3) Mapuche (n = 19)

from the city of Temuco, Araucania Region; (4) Huilliche (n = 59),

inhabitants of the coastal zone of San Juan, Los Lagos Region; (5)

Pehuenche (n = 42) from Trapa-Trapa, (6) Kawésqar (n = 13) from

the last descendants of this group, currently inhabiting Punta

Arenas, Mallaganes Region, and (8) Yámana (n = 21) from Ukika,

Puerto Williams and Isla Navarino. From Argentina: (9) Mapuche

(n = 51), from Cerro Policı́a and Aguada Guzmán, Rio Negro

Province, and (10) Tehuelche (n = 29), from Loma Redonda and

El Chalı́a, Chubut Province (see Figure 1 and Table S1 for exact

geographic locations).

All samples were from healthy donors from whom informed

consent was obtained according to the standards at the time of

sampling. Samples were taken at a time when grant institutions for

Chile (FONDECYT) did not seek written consent. Oral informed

consent was required in all cases. The three projects in which

samples were collected, including the oral informed consent

protocols, were approved by the ethics committee of the Faculty of

Medicine, University of Chile. All data were analyzed anony-

mously, and only the geographic location and ethnic affiliation of

the populations were considered. This study was approved by the

Bioethics Committee for Human Research, Facultad de Medicina,

Universidad de Chile.

Molecular analysis
Control region sequences. We amplified and sequenced

1016 bp corresponding to the mtDNA control region (rCRS
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positions 16032–16544 and 051–555) in all the Chilean popula-

tions (except for 13 Huilliche, see below). The amplification

conditions used were as described elsewhere [26]. The sequencing

and purification of the PCR (Polymerase Chain Reaction)

products were performed by Macrogen, of South Korea.

Sequences were aligned and edited with Alignment Explorer in

MEGA 4.0 [84]. Polymorphisms were confirmed directly using

Sequencher 4.9 vDemo. Samples from the Tehuelches and

Mapuches of Argentina and a fraction of the Huilliches (N = 13)

were also PCR-amplified, sequenced and analyzed for the

complete control region between positions 16024–576 and the

adjacent 59 portion between positions 15878–16023 in rCRS,

following [85–86]. An additional quality control check was

performed by EMPOP (http://www.empop.org).

Analysis of coding region SNPs. Fragments around transi-

tions at 8116, 10202–10724 and 13020 were amplified and

sequenced employing primer pairs F7955 (59-CCCCCAT-

TATTCCTAGAACCA-39) and B8785 (59-TCCGAGGAGGT-

TAGTTGTGG-39), F10084 (59-TCAACACCCTCCTAGCCT-

TA-39) and B10931 (59-AGGAAAAGGTTGGGGAACAG-39),

and F12879 (59-TTTCATCCTCGCCTTAGCAT-39) and B13590 -

(59-CAGGGAGGTAGCGATGAGAG-39), respectively. Amplicons

were sequenced in a set of samples derived from admixed populations

in Argentina carrying matches or near matches for the D1g sequences

described in this paper and covering all the major subclades

recognizable in the network, plus several individuals carrying the

nodal haplotype.

All the Chilean D1g samples were analyzed for the presence of

8116 by means of PCR-RFLP analysis. The samples were

amplified using the primer pair 8116F (59-TGAAGCCCC-

CATTCGTATAA-39) and 8116R (59-GTGGGCTCTA-

GAGGGGGTAG-39). The 275 bp amplicons produced were

digested O.N. at 37uC with the SmaI restriction enzyme. The

digestion products were visualized on a 2% Agarose gel.

Complete mtDNA sequences. Complete mitochondrial

DNA sequences - Korn06, Korn08, Teh14, and Teh50 - were

obtained as in Tanaka et al. (2004) [87], while lineages Teh26,

Hui28, and YA2D were sequenced following procedures described

elsewhere [88]. A phylogenetic tree for haplogroup D was

constructed by hand from the complete sequences (Figure S1).

Nomenclature. Bodner et al. (2012) defined D1g by the

shared presence of transitions at rCRS positions 8116 and 16187.

Our findings of Yámana D1 lineages with 16187 but without 8116

led us to propose a revised definition of clade D1g, which is now

identified by 16187, while 8116 is restricted to its major nested

clade D1g1. A new sister branch that lacks 8116, D1g2, is erected

for the Yámana lineages. For the time being, D1g2 remains poorly

defined because only one complete mtDNA is available.

In the absence of complete mtDNA sequences that would allow

us to establish their deep phylogenetic affinities, we propose to

provisionally assign B2l to our Patagonian cluster defined by a

control region transition at 470, and assign C1b13 to the clade that

includes those lineages carrying 258.

We also propose a revised definition of D4h3a5 (Figure S3).

This clade was originally defined by the presence of a back

mutation at 16301, a change that is even recurrent for Chilean

lineages in the small dataset of 45 complete D4h3a mtDNAs

provided by the authors [21]. In our opinion, such a weak

definition artificially joined one Patagonian-exclusive cluster with

one Peruvian lineage, resulting in a non-monophyletic clade.

Further evidence for the artifactual nature of D4h3a5 as defined in

[21] stems from the fact that its estimated coalescence age of 25.3–

30.6 ky is well beyond the range of ages estimated using similar

methods for the other Native American clades by the same authors

[21,51].

Statistical analysis
Summary Statistics. Summary statistics of genetic diversity

were calculated using the program Arlequin 3.1 [89] using

Tamura-Nei distances [90] and a gamma parameter value of 0.26

[91]. The following summary statistics were computed: total and

per population number of segregating sites (S), nucleotide diversity

(p), Haplotype diversity (Hd) and mean number of pairwise

differences (K). For each analysis, the sequences were grouped by

population and haplotype (see Tables S1 and S2). In order to test

the demographic structure, we performed Fst analyses in Arlequin

ver. 3.1. Sites 309+C and 309+CC were eliminated from all

analyses.

Haplotype networks. Sequences were grouped by mito-

chondrial haplogroup (D, B and C) and analyses were performed

separately. Sites 16519 and 152 were eliminated due to their

homoplasy; the rest of the homoplastic sites were given a low

weight in order to avoid non-phylogenetic reticulations. Calcula-

tions were made using the Network 4.5.0 program (www.fluxus-

engineering.com/sharenet_rn.htm); median joining and maximum

parsimony were used as post-processing options.

Supplement networks (A2, B2, C1b and D) were constructed by

hand (see Supplemental Networks S1).

Demographic reconstruction and age estimation. Bayesian

analyses were performed in the BEASTv1.53 program [92]. To study

population dynamics over time we generated BSPs, built with the

software Tracer v1.5. Sequences were grouped by population and by

lineage and analyzed separately, with at least two runs per grouping.

Runs used both strict and relaxed log normal molecular clock models;

the resulting BSPs were compared. The BSPs were equivalent for all

runs with both models except for lineages C1b13 and D1g. For

C1b13 it was impossible to construct a BSP with the strict clock; thus

we used the relaxed log exponential model. The rate of nucleotide

substitution in the runs was 1, which was later corrected using the

lower rate of Endicott & Ho, (2008) [53], of 30.2% mutations per

million years (see Supplemental Discussion S1 for mutational rate

choice). Analyses were run for 100 million iterations, discounting the

first 10% as burn-in. Genealogies and model parameters were

sampled every 2500 iterations. For the final construction of the BSP,

the output from Tracer was corrected for a mutation rate of 3.02E-7

for time and effective population size (Nef). We used the median to

calculate the Nef, with a generation time of 25 years. Graphs were

constructed in Excel, transforming to log10.

To date the appearance of the Patagonian lineages, we added to

the studied 107 D-loop sequences other published sequences of

A2, D1, C1 and B2 from South America [30,54–59], generating a

final data matrix with 406 sequences. The objective was to

produce a more complete map of the diversity in South America

and thus avoid a possible overestimation of the TMRCA. In the

same run we grouped the sequences by lineages, in order to

estimate the divergence of each lineage in the same analysis. In

order to improve the estimated ages of coalescent ancestors of

specific lineages, we calculated rho (r) (according to [93]) from the

networks (Figure 2, 3 and 4). The r values were 3 for D1g, 2.5 for

B2l, 1.55 for C1b13 and 1.1 for D4h3a5; these values were

transformed to ages with the rho calculator for the control region

provided by Soares et al. (2009) (http://www.ajhg.com) [62]. See

Table S5 for the dates obtained for each lineage.

Data access
The GenBank (http://www.ncbi.nlm.nih.gov/genbank) acces-

sion numbers for the 287 new D-loop sequences reported in this
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paper are JQ067699–JQ06794; JQ280314–JQ280336; (pending),

and for the seven novel complete mtDNA sequences are (pending).

Supporting Information

Figure S1 Phylogenetic tree of southern South American
haplogroups D1g. This tree includes 23 sequences reported by

Bodner et al. (2012) and 3 new complete mtDNA sequences, and

illustrates subhaplogroup affiliations. The position of the revised

Cambridge Reference Sequence (rCRS) (Andrews et al. 1999) is

indicated for reading off sequence motifs. All SNPs and indels are

shown on the branches except for cytosine insertions at np 309. In

the case of transversions, insertions, or heteroplasmic mutations,

the base is indicated according to the IUPAC nucleotide code.

The prefix@ indicates the reversion of a mutation occurring

earlier in the phylogeny. The suffixes ‘‘s’’ and ‘‘ns’’ indicate

synonymous and nonsynonymous substitutions, respectively, while

‘‘t’’ and ‘‘r’’ indicate affected positions in tRNA and rRNA loci,

respectively. Recurrent mutations within the phylogeny are

underlined. The green numbers on this figure are the same used

in Bodner’s D1g phylogeny figure (Bodner et al., 2012). The red

numbers correspond to numbers of the table S6.

(TIF)

Figure S2 Dendrogram Neighbor Joining built from
genetic distances obtained from the pairwise Fst
analysis.
(TIF)

Figure S3 Phylogenetic tree for D4h3a & D1. This tree

include 7 new complete mtDNA sequences (red numbers), and 7

previously reported (blue numbers, table S6). The position of the

revised Cambridge Reference Sequence (rCRS) (Andrews et al.

1999) is indicated for reading off sequence motifs.

(TIF)

Table S1 Geographic location and molecular basic indices of

studied populations

(DOC)

Table S2 Molecular basic indices for haplogroup/haplotype

lineage.

(DOC)

Table S3 Comparison of ages of TMRCA (years BP) calculated

with different mutation rates.

(DOC)

Table S4 Fst values between populations.

(DOC)

Table S5 Sequences of the D-loop region of analyzed popula-

tions.

(XLS)

Table S6 Genbank and ID samples for D4h3a and D1 tree.

(DOC)

Supplemental Discussion S1 Discussion about mutational rate

used.

(DOC)

Supplemental Networks S1 Network made by hand for

mitochondrial haplogroups A2, B2, D1, C1b and D4h3. The

numbers correspond to the table S5.

(PPT)
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Aires: Sociedad Argentina de Antropologı́a.

70. Pinotti L (2001) Sin embargo existimos. Reproducción biológica y cultural de

una comunidad Tehuelche. Buenos Aires: Editorial Universitaria de Buenos
Aires.

71. Bengoa J (2008) Historia de los antiguos Mapuches: Desde antes de la llegada de
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