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Scaling and width distributions of parity-conserving interfaces
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We present an alternative finite-size approach to a set of parity-conserving interfaces involving attachment,
dissociation, and detachment of extended objects in 1 + 1 dimensions. With the aid of a nonlocal construct
introduced by Barma and Dhar in related systems [Phys. Rev. Lett. 73, 2135 (1994)], we circumvent the
subdiffusive dynamics and examine close-to-equilibrium aspects of these interfaces by assembling states of
much smaller, numerically accessible scales. As a result, roughening exponents, height correlations, and width
distributions exhibiting universal scaling functions are evaluated for interfaces virtually grown out of dimers and
trimers on large-scale substrates. Dynamic exponents are also studied by finite-size scaling of the spectrum gaps
of evolution operators.
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I. INTRODUCTION

The theory of surface growth processes has by now reached
a mature status that allows one to describe statistically a wide
variety of nonequilibrium phenomena in terms of universality
classes of scaling regimes [1–3]. As is known, these latter
depend strongly on the conservation laws of the underlying
dynamics, bringing about important effects at long times.
An interesting example of this, introduced in the context
of restricted solid-on-solid dimer-growing interfaces [4,5], is
the set of parity-conserving (PC) processes [2,3]. Here the
seemingly microscopic variation of considering the dynamics
of extended objects (i.e., involving more than one interface
location) rather than that of monomers has, however, far
reaching implications, giving rise to an anomalous growth
of the global roughness or interface width. In one dimension,
where nonequilibrium roughening transitions can also take
place [4], this anomaly has been investigated in terms of
even-visiting random walks [5]. In that representation the
height levels of the interface are thought of as the visited sites
of a one-dimensional (1D) Brownian path extended on a given
time interval, here playing the role of the substrate length L.
The constraint to cover each path location an even number
of times (or, more generally, conserving this number modulo
k > 2) introduces long-range temporal correlations [6], which
causes the interface to roughen as ∼L1/3 [5]. This is in marked
contrast to the usual root mean square displacement of normal
(diffusive) random walks characterizing the asymptotic L1/2

width of a variety of interfaces grown out of monomers
[1–3] and typical of both 1D Edwards-Wilkinson (EW) [7]
and Kardar-Parisi-Zhang (KPZ) [8] universality classes. Also,
roughening anomalies were reported in other growth models
with similar global constraints including multiparticle corre-
lations [9], self-flattening, and self-expanding surfaces [10].

In this work we examine further aspects of the PC processes
referred to above, focusing attention on more detailed levels
of description such as height difference correlation functions
and width probability distributions. Interestingly and in line
with a variety of studies of several growth models [11–15], it
will turn out that in approaching the stationary regime there
is a single length scale, namely, the usual average width, that
characterizes these latter distributions in terms of a universal

scaling function. Here we follow an alternative description of
PC interfaces [16] using a simple extension of the well known
1D mapping between stochastic dynamics of binary lattice
gases and body-centered solid-on-solid (BCSOS) growth
processes [1–3,17]. There the differences of adjacent pairs
of height variables hn are restricted to ±1, while, as shown
in Fig. 1, attachment and detachment of dimers (or k-mers
in general) are viewed as exchanges of Ising spins sn ≡
hn+1 − hn on three (2k − 1) consecutive bonds. Although the
adsorbed particles do not diffuse explicitly in either k-mer
or monomer form, they are allowed to rearrange throughout
the interface by explicit dissociation of k-mers. This takes
place under desorption attempts that may occur whether the
k targeted monomers were original adsorbing partners or not.
In passing, it is worth mentioning that this is also a typical
feature of catalytic surface reactions where the reconstitution
of composite objects actually does matter [2,3,18].

The simplicity of these rules is deceptive as they entail
a number of conservation laws that grows exponentially
with the substrate size. At the root of this rather unusual
partitioning of the phase space is a useful construction, namely,
the irreducible string, introduced by Barma and Dhar in
closely related systems [19]. We shall exploit this nonlocal
construct, defined later in Sec. II A, using a simple numerical
algorithm that enables an approach to the stationary behavior
without actually evolving the system. To that aim, we must
content ourselves with analyzing just the situation of equal
deposition and evaporation rates. The idea, to become clear in
a moment, is to concatenate parts of steady configurations of
initially flat but small interfaces such that the final assembly
also bears the global constraint of an originally flat but
much larger substrate. This approximation circumvents the
problem of going through the slow subdiffusive dynamics
characteristic of these processes [2–5,16] (thus permitting a
thorough sampling of width distributions in scaling regimes),
which otherwise would be hard to examine by standard
simulations. Nonetheless, to probe simple features of our
assembled interfaces under the actual dynamics, we shall also
make use of those simulations in large yet accessible scales. To
complement this finite-size approach we also focus attention
on dynamic exponents that, as is known [20], can be read off
from the spectral gaps of evolution operators. Thus we shall
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FIG. 1. Microscopic rules of a dimer-growing BCSOS interface
and its equivalent 1D lattice gas. The dynamics of the former
involves deposition (evaporation) of dimers with rate ² (² 0) at random
locations having at least two consecutive height minima (maxima).
The corresponding spin- 1

2 (Sn ≡ hn+1 − hn) or hard-core particle
dynamics consists, respectively, of two simultaneous left (right)
particle hoppings. The array between square brackets illustrates an
irreducible string (see Sec. II A). Also, note that the identity of dimers
is not necessarily maintained by subsequent evaporations.

diagonalize the latter exactly in reachable dimensions. In line
with what was mentioned before, these exponents will end up
being subdiffusive and in close agreement with those obtained
by the usual dynamic scaling of the interface width [21].

The layout of this work is organized as follows. In Sec. II
we recast the master equation of these processes in terms
of a quantum spin Hamiltonian through which we not only
obtain dynamic exponents but also span the entire phase
space of small substrates. Following Ref. [19] to identify
the conservation laws of this k-mer dynamics and utilizing
the full configuration lists provided by the spanning, we then
put forth our algorithm to sample rapidly the phase space
of large interfaces. In Sec. III, at first we test this sampling
method so as to retrieve known roughening exponents as
well as steady-state correlations of smaller systems. Then
we carry on with the evaluation of width distributions for
which the onset of a universal scaling function is suggested.
Surprisingly, the later exhibits a longer tail than that of
normal random-walk-like interfaces [11]. Section IV contains
a concluding discussion along with brief remarks on open
issues and possible extensions of this work.

II. DYNAMICS OF k-MER INTERFACES

The stochastic dynamics of discrete Markovian systems
such as those referred to above amounts to a generic prescrip-
tion of transition probability rates R(S → S 0) > 0 between all
possible configurations S,S 0 explored in time (here taken as
being continuous). Therefore, the evolution of the probabilities
P (S,t) to observe the system in one of the latter is controlled
by a gain-loss relation known as the master equation [22],
namely,

∂tP (S,t) =
X
S 0 6=S

[R(S 0 → S)P (S 0,t) − R(S → S 0)P (S,t)].

(1)

Conveniently, this relation can also be rewritten in the form of
a Schrödinger equation in imaginary time, that is, ∂t |P (t)i =
−H |P (t)i, thus permitting one to derive the probability
distribution |P (t)i ≡ P

S P (S,t)|Si at subsequent moments
from the action of H on a given initial condition, i.e.,

|P (t)i = e−Ht |P (0)i. Here the Liouville or evolution operator
H embodying the dynamics is defined through its matrix
elements

hS 0|H |Si =
(

−R(S → S 0) for S 6= S 0P
S 0 6=S R(S → S 0) for S = S 0,

(2)

which, due to conservation of probability, clearly constrain all
H columns to add up to zero. Thereby it can be shown [22]
that the steady state corresponds to a unique H eigenmode
with eigenvalue λ0 = 0, whereas the relaxation time of any
observable is upper bounded by 1/Re(λ1) > 0, with λ1 being
the first excitation level of the H spectrum.

In our case, for what follows it is helpful to think of this
evolution operator as being applied to a space of 1

2 -spinors. To
do that we interpret the slope configurations |Si ≡ |S1, . . . ,SLi
of Fig. 1 as being already diagonal in the z component, say,
of Pauli matrices Eσ1, . . . ,EσL assigned to each slope site. By
construction it is then clear that up to a constant h1 chosen
as a reference level, the heights of the BCSOS interface are
obtained as

hn = h1 +
X
j<n

Sj . (3)

In particular note that under periodic boundary conditions
(PBCs) the dynamics is consistent with a vanishing total mag-
netization Sz ≡ P

j σ z
j , though, as we shall see below, many

further additional conservation laws also emerge. Introducing
now the right and left k-mer hopping operators A+,A−,

A±
j =

kY
i=1

σ±
j+2i−1σ

∓
j+2i−2, (4)

associated, respectively, with the detachment and attachment
processes described in Fig. 1, and taking into account the
algebra of the spin- 1

2 raising and lowering operators σ+
j ,σ−

j ,
we can readily write down the operational counterpart of
Eq. (2), which here reduces to

H =
X

j

(²0A+
j + ²A−

j )(A+
j + A−

j − 1). (5)

Such simplicity is only apparent as the commutation algebra
of the hopping operators complicates the analytical treatment
(except for monomers and ² = ²0, where H reduces to the
isotropic Heisenberg ferromagnet). In the latter equation evi-
dently each of the off-diagonal terms provides the appropriate
transition elements of the dynamics, whereas the addition of
its diagonal parts B± ≡ P

j A±
j A∓

j ,

B+=
X

j

kY
i=1

n̂j+2i−2(1 − n̂j+2i−1), n̂j ≡ σ+
j σ−

j ,

(6)

B−=
X

j

kY
i=1

(1 − n̂j+2i−2)n̂j+2i−1,

accounts for the number of manners N±
S = hS|B±|Si in which

a given spin configuration may access other ones by either
right or left jumps, i.e.,

P
S 0 6=S R(S → S 0) = ²0N+

S + ²N−
S ,

thus complying with conservation of probability. In contrast,
combining this with the microscopic reversibility of our model,
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here expressed simply as R(S → S 0) = ²0 (or ²) ⇐⇒ R(S 0 →
S) = ² (or ²0), we then obtainX
S 0 6=S

[R(S 0 → S) − R(S → S 0)] = (² − ²0)(N+
S − N−

S ), (7)

from which some brief remarks about the steady-state dis-
tribution now follow. First, note that the monomer case is
special in that for PBCs (hereafter considered throughout) the
latter identity always cancels out as for k = 1 Eq. (6) simpli-
fies to B+ = B− = 1

4

P
j (1 − σ z

j σ z
j+1). Therefore, comparing

Eq. (7) with the right-hand side of the master equation, we
thus see that the monomer steady state, either in equilibrium
or not (² 6= ²0), is consistent with a constant distribution [23].
More generally, however, except for the equilibrium situation,
this feature does not hold for k > 2 because the diagonal
B+,B− operators of Eq. (6) are now different, so in general
N+

S 6= N−
S . Since the equiprobability issue is essential for the

sampling algorithm that follows, this breakdown will restrict
the numerical findings of Sec. III only to the case ² = ²0, yet
being nontrivial for k > 2, as we shall see below.

A. Irreducible strings

Turning to conservation laws and assuming that the lattice
3 = 31 + . . . + 32k is 2k partite (in one dimension just
meaning L multiples of 2k), the first invariant set of quantities
one can readily identify from the composite spin exchanges of
Fig. 1 is that of the sublattice magnetization differences

Dz
n,m ≡

X
j∈3n

σ z
j − (−1)n+m

X
j∈3m

σ z
j , (8)

with n,m = 1, . . . ,2k. From these ( 2k

2 ) possible pairs only
2k − 1 of them are independent, so the number of conservation
laws would grow at most as L2k−1. However, as mentioned
earlier, there is in fact a much subtler set of constants of motion,
in turn growing exponentially with the lattice size.

To construct that set, here we briefly survey the ideas
of Ref. [19] concerning the dynamics of the deposition and
evaporation of trimers reconstructing on a line; for what
follows it is convenient to adapt to larger objects of even
length, e.g., • • • • *) ◦ ◦ ◦ ◦. Clearly, those processes are
then isomorphic to ours via a simple particle-hole mapping,
say, on even sublattices. Thus, in analogy to Ref. [19] we
now define the irreducible string (IS) I {S1, . . . SL} of any spin
configuration as the sequence obtained by deleting all groups
of 2k consecutive antiparallel spins appearing on chosen
locations and then repeating recursively the procedure on the
resulting shorter string until no further such groups remain. As
an illustration, consider for simplicity the following examples
of k = 2:

I
©↑↓ ↓↑↓↑ ↓↑ª = I

©↑↓↓↑ ↓↑↓↑ ª = ©↑↓↓↑ª
,

I
n

↑↓ ↓↑↓↑ ↑↓
o

= ©∅ª
(null string), (9)

I
©↑↑↓↓↑↓↓↑ª = ↑↑↓↓↑↓↓↑ .

In the first case this deletion, marked by boxes, is applied
to a group of spins chosen starting from either the left or
right. In the second instance the procedure is carried out
recursively in two steps and no characters are left. In the

↑ ↑ ↓ ↑ ↓ ↓ ↓ ↑ ↑ ↓ ↑ ↓

↑ ↓ ↑ ↓ ↑ ↓ ↓ ↑ ↑ ↓ ↑ ↓

↑ ↓ ↑ ↓ ↑ ↓ ↓ ↑ ↓ ↑ ↓ ↑
↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↓ ↑
↑ ↓ ↓ ↑ ↓ ↑ ↑ ↓ ↑ ↓ ↓ ↑

✻

time

. . . .

. . . .

. . . .

. . . .

FIG. 2. (Color online) Schematic random walk of irreducible
characters obtained by the deletion process described in the text,
here drawn as boxes around reducible groups of spins. At each
step the identification of the latter is made from left to right.
Larger spins denote the irreducible characters whose ordering is
left invariant by the dynamics. Dots signal the locations of updated
spins.

third example the string considered is already jammed (same
irreducible block of Fig. 1) and cannot evolve further. The
invariance of the irreducible characters (if any) left by this
process is in line with the idea that the successive action of
the hopping operators of Eq. (4) on a given spin configuration
just changes the position of those characters by multiples of 2k

lattice spacings. The separations between them are mediated
by substrings of different lengths (proportional to 2k), though
all of these are in turn reducible to null strings. Thus the
interface dynamics may be thought of as a random walk of
hard-core irreducible characters (they cannot cross each other),
as depicted schematically in Fig. 2. The positions of these
walkers at a given instant of course depend on the order in
which the reduction rule is applied, but the key issue to bear in
mind here is that the sequence of irreducible characters remains
unaltered throughout. In addition, as noted in Ref. [19], two
spin configurations |Si,|S 0i are connected by the dynamics
⇐⇒ I {S} = I {S 0}. Thus the IS uniquely labels all subspaces
left invariant by the k-mer kinetics, regardless of the order in
which the reducible groups are removed. In contrast, it is clear
that the number of combinations forming these irreducible
sequences grows exponentially with the number of characters
or string length L 6 L. More specifically, a straightforward
analysis of a recursion relation for this length [19,24] shows
that for large L and k > 1 the number of invariant subspaces
increases as fast as xL, where x is the largest root of
x2k = 2x2k−1 − 1.

On a more fundamental level, it would be interesting to
identify the symmetries at the origin of these conservation
laws. For instance, in the much simpler case of the sublattice
differences of Eq. (8) the symmetries responsible for them
just involve θ1, . . . ,θ2k rotation angles around the z direction
of each sublattice. Recalling that under those rotations σ±
transform as ei±θσ±, evidently as long as

P
n(−1)nθn = 0 is

held, the hopping operators of Eq. (4) will be left invariant and
so will H in Eq. (5). Thus, from the infinitesimal generatorsP

n(−1)nθn(
P

j∈3n
σ z

j ) of these 2k − 1 independent rotations
one is finally led to the conservation laws of Eq. (8), already
obtained on more intuitive grounds. However, in the case of
the IS and the exponential proliferation of constants of motion
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it entails, the analysis appears to be much more involved. Due
to the highly convoluted form in which the IS is obtained,
unlike Eq. (8) it is not clear how to construct its operational
counterpart (possibly nonlocal) or identify the corresponding
symmetries in the evolution operator. Despite that formal
insufficiency, the invariance of the IS provides an alternative
computational tool to approach the equilibrium regime, which
we now implement.

B. Assembling null string states

Notice that whenever ρ = L/L is kept finite in the thermo-
dynamic limit, the interface cannot roughen at large times [16].
This is because for ² = ²0 the distances λ between irreducible
characters (or random walkers) are distributed as 'ρe−ρλ [25].
Thus mean square height fluctuations along those distances (or
reducible substrings, all with Sz = 0) remain bounded as 1/ρ3.
Thus, hereafter we will focus on the null string subspace only.
Besides, it is the most natural to consider in the context of
growing interfaces, as it stems from initially flat conditions
(plain antiferrous states).

Although in equilibrium all configurations are equally
weighted, the expectation value of most observables are not
analytically simple to obtain because the ensemble of averaged
states must be consistent not just with Sz = 0, but also with
a vanishing IS. This introduces spatial correlations (absent in
the monomer case, where |Pj Sj | always coincides with L),
which develop slowly in the course of growth simulations.
At long times, however, such a process ultimately amounts to
producing a uniform distribution of null string states. Here we
put forth an approximation of such a distribution in large-scale
substrates based on the construction of small ones. The idea
is to assemble pieces of small substrates in such a way that by
applying the above deletion rules the whole set is reducible to
the null string.

There are several forms to attempt this, but consider, for
instance, a set of 2N spin configurations (sketched as the
initial blocks of Fig. 3) with a common length L0 ∝ 2k and
drawn randomly from a list of null string blocks previously
prepared. The latter, in turn, can be constructed from the
repeated action of the hopping operators (4) on, say, initial
antiferrous states, until exhausting the full space (typically
growing exponentially with L0 [19]). At the first step, half of
the drawn blocks are divided in two parts at random locations,
while as depicted in Fig. 3 each of the remaining blocks is
settled between the split pairs. Thus one is left with 2N−1

blocks of length 2L0, all of which are evidently reducible to
the null string [see, e.g., Eq. (9)]. Next, the process is recursed,
eventually by splitting further parts of the original blocks, until
a single block of length 2NL0 is obtained. The algorithm thus
generates an ensemble of substrates that are fully reducible
by successive reductions around a central L0 block, always
left unsplit. Though uniform, this assembled distribution (AD)
cannot be entirely representative of the much larger substrate
space; at most it just can be approximative. Nevertheless, as
will be tested in Sec. III, it does reproduce known features
of the scaling regimes in which one is ultimately interested
while enabling one to examine there width distributions
otherwise difficult to reach. Let us finally comment that had

FIG. 3. Schematic representation of the sampling algorithm after
two iterations. The initial blocks stand for null string configura-
tions drawn randomly from all possible ones constructed for an
accessible lattice size L0. Dashed lines denote random locations
where an entire block is interposed. At each step the block size is
doubled while complying with the null string constraint. Eventually,
parts of the original blocks can also be further split by random
intercalations.

a simple concatenation of blocks been carried out it would
have bounded all heights as |hj | 6 L0/2, whereas to the other
extreme, the use of more reduction centers would not bring
about a better approximation to the equilibrium regime.

III. NUMERICAL RESULTS

Before applying this algorithm to width distributions, we
first test it against typical scaling aspects of growing interfaces.
In studying the latter one usually considers the mean square
fluctuations of the average height h̄(t) ≡ 1

L

P
j hj (t), which

provides a measure of the global interface width at a given
instant, that is,

W 2(L,t) = 1

L

X
j

h[hj (t) − h̄(t)]2i. (10)

Here the angular brackets denote an ensemble average over all
possible evolutions of heights, in our case compatible with the
null string imposed by flat initial conditions. Based on a wide
range of theoretical and numerical studies, it can be argued
that W 2 should scale as [1–3,21]

W 2(L,t) ' L2ζ f (t/Lz), (11)

with a universal scaling function behaving as f (x) ∝ x2ζ/z

for x ¿ 1, while approaching a constant for x À 1. Hence,
for t ¿ Lz the width must grow as t ζ/z [26], until saturating
as Lζ for times comparable to or larger than the relaxation
time τ . In the above hypothesis the Hurst or roughening
exponent ζ measures the stationary dependence of the interface
width on the typical substrate size, while the fundamental
scaling between length and time is given by the dynamic
exponent z.

A. Scaling exponents

When it comes to the latter it is helpful to also consider
the spectral gap Re(λ1) = 1/τ of the evolution operator
constructed in Sec. II so as to obtain a separate evaluation
(independent of ζ ), which we now briefly touch upon.
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FIG. 4. (Color online) Finite-size decay of spectral gaps of evo-
lution operators [restricted to ² = ² 0 in Eq. (5)] for dimers (squares),
trimers (triangles), and monomers (circles, just for comparison).
From top to bottom solid lines are fitted with slopes corresponding
to dynamic exponents z(k) ' 2.89, 2.61, and 2, obtained in turn
from the highest available approximants of Eq. (12). These are
exhibited in the inset for k = 2 and 3 using several lattice sizes
(L = 2mk). The horizontal line indicates the value of z(3) ' 2.85
arising from Fig. 5(b).

Assuming as usual the emergence of a finite-size scaling
regime in which τ ∝ Lz [20], we analyze those exponents for
² = ²0 and small substrates using a Lanczos diagonalization
[27] of Eq. (5) within null string subspaces in turn spanned
via the hopping operators (4) as explained in Sec. II B. The
results so obtained are displayed in Fig. 4, where it is shown
that already modest lengths are able to yield clear finite-size
trends that evidence nonuniversal and subdiffusive slopes for
dimers and trimers, i.e., z ' 2.61 and 2.89, respectively. In
that regard, a convergence estimation of these values can
be made by defining the sequence of dynamic exponents or
approximants

zm = ln[λ1(Lm)/λ1(Lm−1)]

ln[(m − 1)/m]
, (12)

with Lm ≡ 2km. As shown in the inset of Fig. 4, the relative
differences between our highest approximants are about 0.1%
for k = 2 and 1.3% for k = 3, which in any case are far
apart from the diffusive slope (z ' 1.99) of the monomer case,
only shown for comparison. It would be desirable to improve
the convergence of the trimers z, but the next approximant
(L = 48) requires one to consider spaces of more than
2.6 × 107 null string states, which goes beyond our computing
facilities. Nevertheless, we can compare these exponents with
those arising from the standard scaling hypothesis (11) while,
more importantly, testing the validity of the type of scheme
previously proposed.

To this aim, we compare the evolutions of flat substrates
with those resulting from the AD of Sec. II B. This we do
in Fig. 5, where the scaled widths of these two different
preparations are displayed for not too large sizes, so as to reach
about 104 samples in the final saturation regime (recall that z

is subdiffusive). The sets exhibit different scaling functions
according to the substrate preparations, but in both cases the
data collapse was attained upon setting a common roughening
exponent ζ ' 0.3(1) (for either k = 2 or 3), along with
common dynamic ones z ' 2.60(8) and 2.85(3) for dimers
and trimers, respectively. Interestingly, the two latter values
happen to follow closely those of the approximants referred to
above (inset of Fig. 4), while, in contrast, the early time widths
arising from the AD already scale around a significant fraction
of their asymptotic values, i.e., ∼75% for dimers and ∼84%
for trimers. This trend still improves when assembling larger
L0 blocks, namely, the scaled widths approach larger fractions
of the saturation values observed in Fig. 5 while keeping a
common roughening exponent ζ ' 0.29(3) pretty close to the
value obtained above. In Fig. 6 this is corroborated for a variety
of substrate sizes 2nL0 (n = 2, . . . ,12) assembled with several
L0 blocks, otherwise unreachable by standard simulations. In
that sense note that the algorithm of Sec. II B is not severely
limited by the number of recursions n, but rather by the large
list of null string states increasing exponentially with L0. Once
the latter are evaluated, the algorithm permits one to rapidly
average over about 106 samples of rather large lattices.

As we move toward more detailed levels of description, we
now consider the height difference correlation functions for
which a similar scaling hypothesis is also expected to hold at
distances |r| ¿ L, that is [1–3,21],

D2
L(r,t) = 1

L

X
j

h[hj+r (t) − hj (t)]2i ' |r|2ζ g(t/|r|z). (13)

As before, the angular brackets are taken as in Eq. (10) and the
scaling function g(x) behaves analogously to that of Eq. (11).
From this one infers that a time t ∼ |r|z is required to fully
develop the interface roughness across a given distance |r|.
Thus, to check whether our AD can already be associated with
late stages of growth, we measure these height correlations
using over three distance decades for several L0 substrates. The
results are shown in the upper insets of Fig. 6, where it is shown
that in all cases the previous roughening exponent ζ ' 0.29(3)
is recovered. For display purposes we rescaled these data with
the same s0 amplitudes (1.3 . s0 . 1.5) used in the main
panels, which is no coincidence, as it would be expected on the
basis of the identity limr→∞ limL→∞ D2

L(r) = limL→∞ 2W 2
L.

Before continuing we pause to comment on the differences
appearing between the exponents of the dimer dynamics and
those in the even-visiting random walks (EVRW) analyzed
in Ref. [5]. Our ζ value should not be regarded as a mere
numerical deviation from the 1/3 exponent conjectured in [5].
At the origin of this departure is the exponential proliferation
of irreducible strings appearing in the dimer dynamics which
ultimately impose tighther restrictions than those already
occurring in EVRW. Although both dynamics share the
topological constraint caused by the mod 2 conservation of the
number of particles at every height level, note that the BCSOS
version of EVRW [5] mixes up all the many-sector decompo-
sition discussed in Sec. II A. For instance, besides the dimer
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FIG. 5. (Color online) Dynamic scaling of interface widths using substrates of sizes L = 2nL0 for (a) dimers (L0 = 32) and (b) trimers
(L0 = 36). Circles, squares, and triangles stand for n = 4, 5, and 6, respectively. The uppermost set of data was initially prepared from the
distributions of Sec. II B, while the lowermost set was started by the usual flat conditions. The scaling of data was obtained setting ζ ' 0.3, and
τL(k) = AkL

z(k) with z(2) ' 2.61, z(3) ' 2.85, and amplitudes A2,A3 estimated from the reciprocal ones of Fig. 4. The slopes of the straight
lines are fitted with values 2ζ/z.

dynamics Ref. [9] also considers the full restoration of ergodic-
ity by deposition-evaporation of two particles at two randomly
chosen columns with equal heights. These need not to be con-
tiguous (as in the dimer dynamics), nor necessarily share the
same terrace. That introduces a genuine one-to-one correspon-
dence with the ensemble generated by the EVRW dynamics,

so the estimate of ζ ∼ 0.33 found there in such conditions is
then in line with the theory of Ref. [5]. Similarly, that latter
work also investigates the effect of adding monomer diffusion
within terraces. That produces another estimation which yields
ζ ∼ 0.31. But further to that difference, note that the explicit
addition of monomer diffusion partially relaxes the broken

 1

 10

 100

102 103 104 105

L

 W  2s0

(b)

 1

 10

 100

102 103

r

s  D (r)
2

0

101

-0.6

-0.4

-0.2

 0

 0.2

C(r)

 1

 10

 100

102 103 104 105

L

 W  2s0

(a)

 1

 10

 100

102 103

r

s  D (r)
2

0

101

-0.3

-0.2

-0.1

 0

 0.1

C(r)

〈      〉〈      〉

 1  6  12  18
r

 1  6  12  18  24
r

FIG. 6. (Color online) Finite-size growth of interface width for (a) dimers and (b) trimers recursing the algorithm of Fig. 3. In (a) the assem-
bling uses blocks of L0 = 12, 20, 24, 28, and 36 sites (closed downward and open upward triangles, rhomboids, squares, and circles, respectively),
while in (b) those symbols stand in turn for blocks of L0 = 18, 30, 36, 42, and 48. The upper insets exhibit the height difference correlation
functions of Eq. (13) using 12 recursions. Each set of L0 data was normalized by an overall scale factor s0, chosen in turn so as to fit the saturation
amplitude obtained in Fig. 5. In all cases the scaling W 2 ∝ L2ζ and D2(r) ∝ r2ζ appears with a common roughening exponent ζ ' 0.29. The
lower insets display comparisons of assembled slope correlations of Eq. (14) (solid lines), with actual steady ones in small lattices (dashed lines).
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ergodicity of the original dimer dynamics. Hence, the above
deviations of ζ from 1/3 should not be ascribed merely to
statistical errors but mainly to the change of conservation laws.

In fact, when restoring full ergodicity Ref. [9] yields a KPZ
type exponent z ∼ 1.5 which is far apart from the subdiffusive
z ∼ 2.6 obtained in the original dimer dynamics of both
Refs. [5] and [9] as well as in this section.

Turning to smaller scales and to further probe the AD, we
finally compare the exact slope or spin correlations

C(r) = 1

L

X
j

hSj+rSj i, (14)

evaluated in the uniform distributions of our largest available
blocks (36 heights for dimers and 48 for trimers), with those
estimated in substrates assembled with smaller L0. This is
illustrated in the lower panels of Fig. 6, where it is corroborated
that in both cases these functions closely approximate each
other. As mentioned earlier, we thus see that even though the
averaged distributions are uniform, the null string constraint
enforces nontrivial correlations that otherwise would not
appear by the sole restriction of Sz = 0 (as in the case of
monomers, where all even correlators hSj1 , . . . ,Sj2n

i vanish
identically as L−n). Noting that either Eq. (10) or (13) can also
be expressed in terms of C(r), it follows that for k > 2 these
pair correlations are ultimately responsible for the anomalous
roughening of PC interfaces, as opposed to the case k = 1
where these pairs (proportional to L−1) have no effect.

B. Width distribution

It is reassuring that both roughening exponents and correla-
tions of Fig. 6, in conjunction with the near-saturated scaling
regimes of Fig. 5, suggest strongly that the construction of
Sec. II B is sampling close-to-equilibrium states. Thus we carry
on and further exploit that construction to compute the width
distributions of PC interfaces.

Since the dynamic scaling hypothesis (11) involves in
fact an integral over all interface modes, it may well occur
that corrections to scaling are needed. In our case, this is
particularly noticeable at the early stages of evolution where
the data collapse in the lower sets of Figs. 5(a) and 5(b) is not
so evident. In that sense, a variety of theoretical and numerical
studies [11–15] have suggested an alternative characterization
of interfaces in terms of the full probability distribution P (w2)
of its particular random width realizations w2. So long as
their average hW 2i diverges in the thermodynamic limit, i.e.,
ζ > 0, the relevance of such a distribution relies on that for
large substrates it scales as [11–15]

PL(w2) ' 1­
W 2

L

®8
Ã

w2­
W 2

L

®
!

, (15)

where the scaling function 8(x) is a universal characteris-
tic of the interface fluctuations. Like ζ , however, at large
times this function cannot point out dynamic aspects of
universality classes. For example, since in one dimension
the steady states grown out of k = 1 are equiprobable and
uncorrelated (recall Sec. II), 8(x) is the same for both EW
(z = 2,ζ = 1

2 ) and KPZ (z = 3
2 ,ζ = 1

2 ) universality classes
[11]. However, in view of the role of null strings for k > 2,
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FIG. 7. (Color online) Scaling of width distributions close to
equilibrium regimes of dimer and trimer interfaces for various lattice
sizes 2nL0. Squares and triangles stand for strings of k = 2 assembled
with L0 = 36 and 24 using n = 10 and 8, respectively. In turn,
circles and rhomboids denote k = 3 strings stemming from blocks
of L0 = 48 and 30, also recursed 10 and 8 times in each case.
For comparison, the solid line refers to the k = 1 distribution of
Ref. [11], whereas the dashed one is just a guide to the eye. The inset
evidences a longer tail for k > 2, clearly decaying exponentially with
ωL ≡ W/

p
hW 2

Li.

8(x) should be able to distinguish clearly the growth of PC
interfaces from that of monomer ones.

To that aim, note that the basic problem of sampling
stationary w2 under very slow relaxation (z > 2) inevitably
arising in standard simulations is to a large extent bypassed
by the close-to-equilibrium distributions of Sec. II B. In turn,
these also enable one to sample sufficiently large lattices as
otherwise there would be a rather small number of possible w2

values coarse graining the histogram of PL(w2). Thus, using
substrates in the range of 6.000–50.000 heights, in Fig. 7 we
display the scaled distributions obtained after dividing the data
into '103 intervals (not all shown) and averaging over about
5 × 107 samples. This rather extended sampling, facilitated
through the algorithm of Sec. II B, was necessary to capture
the statistics of the rare events on the tail of the distribution
given in the figure inset. As expected, in all cases the data
collapse into a single scaling function easily discernible
from the exact monomer result [11]. (The collapse is better
demonstrated within the scales of the inset where probabilities
are much smaller.) Furthermore, 8(x) appears to be the same
for dimers and trimers, each stemming from dissimilar types of
assembled null strings, thus suggesting a universal function for
equilibrium PC interfaces. In contrast to the scaling hypothesis
(11), here note that there are no parameters to collapse the
8 and no scaling properties of hW 2

Li are used or assumed.
The only approximation is the finite size of the systems
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investigated. In that regard, other large substrates assembled
with different L0 and n (not displayed to avoid overcrowding)
yielded the same, numerically indistinguishable, functions.

Just as the monomer case, we see that the length scale Lζ not
only characterizes the macroscopic level of the interface rough-
ness [Eq. (11) and Fig. 6], but also emerges as the natural length
of the whole width distribution. Since ζ < 1/2, one would
intuitively presume that height fluctuations in PC interfaces
are smaller than those in monomer ones. Thus, on approaching
the above length scale one would expect 8(x) to become more
peaked and narrower than the monomer 8, something that
in fact occurs to some extent. However, on the same basis
one would also expect the PC distribution to decay faster for
large width realizations. Surprisingly, however, it turns out
to be the other way around. This is illustrated in the inset
of Fig. 7, where the semilogarithmic plot strongly suggests an
exponential decay in the scaled variable W/

p
hW 2i rather than

its square, as occurs in the exact solution of k = 1 [11]. More
specifically, the tails of these two distributions behave as

8(x > 1.5) '
(

π2

3 exp
¡−π2

6 x
¢

for k = 1

a exp(−b
√

x) for k = 2,3,
(16)

with fitting parameters a ' 85 ± 2 and b ' 4.7 ± 0.1. Hence
we conclude that even though the average roughness of
finite PC interfaces is significantly smaller (ζ ' 0.29), their
fluctuations can eventually explore larger widths.

IV. SUMMARY AND DISCUSSION

We have presented an alternative approach to 1D
parity-conserving interfaces close to their equilibrium
regimes (² = ²0). The notion of irreducible string [19],
which partitions the dynamics into many disjoint sectors of
the configuration space, played an instrumental role in the
implementation of the assembling algorithm put forth in Sec.
II B (Fig. 3). The latter was shown to provide a fair sampling
of the almost saturated state, in turn exhibiting a scaling
regime (Fig. 5) controlled by the very same dynamic and
roughening exponents obtained through the dynamic scaling
hypothesis (11) [21]. Without explicitly evolving the system
in time, the assembled distribution also reproduced the latter
exponent at both the macroscale of the average interface
width (main panels of Fig. 6) and the microlevel of the height
difference correlations of Eq. (13) (upper insets). The value
of ζ ' 0.29(3) so obtained is also in excellent agreement with
those resulting from simulations in previous studies [16] and
with restricted solid-on-solid versions of these interfaces [4,5].

As for dynamic exponents, we diagonalized the evolution
operator (5) within the accessible null string spaces already
stored in assembling the above distributions so as to analyze

the size dependence of its spectral gap (Fig. 4). This provided
an estimation of dynamic exponents via a sequence of finite-
size approximants (inset of Fig. 4) nearing subdiffusive but
nonuniversal values, i.e., z ' 2.61 and 2.89 for dimers and
trimers respectively, both in reasonable agreement with the
exponents resulting from the scaling hypothesis (11).

Apart from avoiding the slow subdiffusive dynamics,
perhaps the most interesting aspect of our assembling approach
is that it also allows for a rich statistical analysis of the
full width distribution of large scales. All assembled sizes
yielded a single universal scaling function for both dimers
and trimers (Fig. 7), in turn quite distinct from that of normal
random-walk or monomer interfaces [11]. This contributes
to the list of already known scaling functions [11–15] that
concurrently with roughening exponents may be used to
identify static universality classes of growth processes. The
only length scale spontaneously emerging in those functions
is the average interface width proportional to Lζ , which in
the PC class is conspicuously smaller than in other classes.
Curiously, however, height fluctuations in the former turn out
to build up in such a way that tails of width distributions decay
much slower than those in monomer interfaces [stretched
exponential of Eq. (16) and inset of Fig. 7].

Returning to irreducible strings, note that in equilibrium
the only one in which fluctuations diverge even in the
thermodynamic limit is just the null string. All other ones
containing a finite density ρ = L/L of irreducible characters
might be considered as noncritical strings. In that regard,
Fig. 2 is helpful to understand the latter as random sequences
of null substrings of length λ (distributed as ρe−ρλ [25]),
through which mean square height fluctuations cannot but
remain bounded as ∼ R ∞

0 λ2ρe−ρλdλ = 2/ρ3. However, note
that as soon as ² 6= ²0, stationary probabilities immediately
become nonuniform [recall discussion below Eq. (7)] and
this simple picture no longer holds. Notwithstanding that
the nonequilibrium dynamics is still partitioned by the same
strings, it remains to figure out whether the current assembling
approach, for either null or finite strings, could be extended to
incorporate those nonuniform measures. Because of the latter,
nonequilibrium width distributions no longer need to be related
to the scaling function obtained here. Finally, in d > 1, where
there is no analog of irreducible string, all these issues, either
in equilibrium or not, remain open.
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[12] M. Plischke, Z. Rácz, and R. K. P. Zia, Phys. Rev. E 50, 3589
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