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Abstract. A number of near-optimal techniques were implemented to reduce computing times for

the Discrete Element Method (DEM) code named DESOL. Among these, the following showed the

largest improvements: multilevel bins, periodic rebuild, trimming and Symmetric Multiprocessor (SMP)

parallelization. These improvements have led to Central Processing Unit (CPU) reduction of the order of

1:3-1:5 on scalar machines, while also showing excellent scalability up to the point of memory saturation,

which on current Intel Xeon processors occurs at approximately 8 cores for double precision and 16 cores

for single precision.
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1 INTRODUCTION

Many engineering processes involve the transport of materials that, at the engineering scale

of interest, have to be considered discontinuous. Examples include loading, crushing, smelting

and abrasion of materials. One very common way the describe these materials is via DEM. The

material is treated as a system of individual particles, which interact with each other via bond-

ing, contact, friction and damping, producing the resulting motion of the system. Since the sem-

inal publication of Cundall and Strack (1979), the method has developed rapidly and its field of

applications has expanded considerably (Cleary and Sawley, 2002; Latham and Munjiza, 2004;

Radeke et al., 2010; Govender et al., 2014, 2015).

In DEM techniques, the overwhelming computational cost is due to contact search (the ac-

tual contact force calculation is insignificant). This can be particularly burdensome if large

variations of sphere/element sizes and large variations of wall face sizes are present in the prob-

lem. Faced with stagnating clock cycles on current hardware, a decision was made to revisit

these parts of the DEM code DESOL in order to see whether better algorithms could not lead

to significant improvements in performance. At the same time, current and emerging hardware

has forced developers to vectorize as much as possible all CPU-intensive operations. This led

to a review of all CPU-intensive modules in DESOL.

In the sequel, we describe the DEM used, the techniques implemented to reduce contact

search and the scalability obtained on modern CPU architectures.

2 DISCRETE ELEMENT MODEL

2.1 Basic Equations

The equations describing the motion of the discrete elements are the well known Newton-

Euler equations (Sommerfeld, 1976) for the balance of forces and moments:

miẍi = Fi , (2.1.1)

Θiω̇i − ωi × (Ii · ωi) = Mi , (2.1.2)

where mi,xi,Fi,Θi,ωi,Mi denote, respectively, the mass, position of the center of mass, force

vector, tensor of inertial moments, rotation vector, and moment vector of the discrete element/

object i. The mass and moment tensors are dependent on the spatial distribution of the density

ρ, and are obtained in the usual way from:

m =

∫

Ω

dm =

∫

Ω

ρdΩ , Iij =

∫

Ω

ri0r
j
0ρdΩ , (2.1.3)

Θ = tr(I) · 1− I =







Iyy + Izz −Ixy −Ixz
−Ixy Ixx + Izz −Iyz
−Ixz −Iyz Ixx + Iyy







, (2.1.4)

where r0 denotes the vector from the center of mass to any given position of the body. The forces

and moments are given by the usual body forces (gravity, magnetic) and - most importantly from

computational considerations - contact forces with other discrete elements/ objects or walls.

With the additional identity:

v = ẋ , (2.1.5)
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these equations may be recast as a coupled system of the form:

u̇i = ri , (2.1.6)

where the vector of unknowns is:

u = (x,v,ω) , (2.1.7)

and r from Eqns.(2.1.1-2.1.4).

2.2 Time Integration

Equations 2.1.6 are integrated in time either using an explicit, low-storage Runge-Kutta

scheme of the form:

∆u
n+i =

1

s+ 1− i
∆t r(un +∆u

n+i−1) , i = 1, s , ∆u
0 = 0 , (2.2.1)

or the usual 4-stage (1/6, 1/3, 1/3, 1/6)Runge-Kutta scheme (Butcher, 2003). Here n, i,∆t, r,∆u

denote the timestep number, the iteration number within a timestep, the timestep size, vector of

right-hand sides and increments of unknowns.

2.3 Contact Forces

Both linear and nonlinear (Hertz) dash-pot models are used to estimate the contact forces

between particles. With the notation of Figure 2.3.1, the forces are separated into normal and

tangential.

Kn

Cn

Kt
Ct

Figure 2.3.1: Dashpot Model Used for Contact Forces

For the linear case, the normal force is given by:

fn = knδijnij − cn(vij · nij)nij , (2.3.1)

where δij,nij ,vij, kn, cn denote the penetration depth, contact normal, relative translational

velocity, spring stiffness and viscous damping coefficient. For the case of spherical particles of

radius r these reduce to:

δij = max(0, ri + rj − |xi − xj|) , (2.3.2)

nij =
xi − xj

|xi − xj|
, (2.3.3)

vij = vi − vj , (2.3.4)
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The tangential force is given by the friction forces resulting from particles sliding past each

other while in contact. The relative velocity is given by:

v
t
ij = v

c
ij − (nij · vc

ij)nij , (2.3.5)

where the relative velocity at the contact point takes the rotation of the particles into considera-

tion:

v
c
ij = vij + (xc

ij − xi)× ωi − (xc
ij − xj)× ωj , (2.3.6)

and x
c
ij denotes the contact point.

For the nonlinear (Hertz), the equivalent elastic modulus, radius and mass are given by:

Eeq =

(

1

Ei

+
1

Ej

)

−1

; req =

(

1

ri
+

1

rj

)

−1

, meq =

(

1

mi

+
1

mj

)

−1

, (2.3.7)

The normal stiffness is obtained from:

kn =
4

3
Eeq

√
req , (2.3.8)

yielding the normal elastic force:

fne = knδ
1.5
n , (2.3.9)

The normal damping factor is given by:

cn = αn

√

meqkn
√
δ , (2.3.10)

resulting in the normal damping force:

fnd = cn(vij · n)n . (2.3.11)

3 DEM-DEM CONTACT DETECTION ALGORITHMS

As in most DEM techniques, the overwhelming computational cost is due to contact search

(the actual contact force calculation is insignificant). Therefore, care has to be taken in the

design of fast contact detection algorithms. In the present case, lists of possible contacts are

built every so often. These pairs, which will be denoted as edges in the sequel, are tested at

the beginning of each timestep in order to see if an actual contact exists. Given that this test is

cheap, a compromise has to be reached between the extent of possible contacts (memory, tests

if contacting) and the cost of rebuilding the possible contact pairs. The larger the list of possible

contacts, the less often the list needs to be rebuilt.

3.1 Bin Data Structure

The potential contact edges are built using a bin data structure (see Figure 3.1.1).
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Figure 3.1.1: Bin Data Structure for Points (2-D)

In a first step, the bounding box (maximum extent) of the centroids of the discrete elements

is obtained, yielding xmin, xmax, ymin, ymax, zmin, zmax. This bounding box is then subdivided

into a cartesian mesh of Nb = Nx×Ny×Nz bins (voxels) of size ∆x,∆y,∆z. Given a discrete

element with centroid at x, y, z, the bin into which it falls is obtained from:

ix =
x− xmin

∆x
, iy =

y − ymin

∆y
, iz =

z − zmin

∆z
, (3.1.1)

ibin = Nx ·Ny · (iz − 1) +Nx · (iy − 1) + ix . (3.1.2)

The bin is stored as a linked list with two arrays. The first array stores the discrete elements

while the second (of size Nb) stores the locations of the discrete elements in each bin in the first

array. These arrays are built in two (scalar) passes over the discrete elements and one pass over

the bins. In the first pass over the discrete elements, the storage locations for each bin are added

up. In a pass over the bins, the final storage locations are obtained. This is then followed by

a second pass over the discrete elements where the storage into bins is completed. Thus, the

computational complexity of this step is O(2NDEM + Nb), where NDEM denotes the number

of DEMs.

3.2 Near Neighbour Detection

For each centroid x, y, z the search region for nearest neighbours is given by:

x− ds ≤ x ≤ x+ ds , y − ds ≤ y ≤ y + ds , z − ds ≤ z ≤ z + ds . (3.2.1)

As stated before, a compromise has to be found between the storage of many potential contact

pairs and the need to rebuild the contact pairs. If ds is chosen too large, memory and potential

contact detection costs increase while the need to redo the lists decreases. The opposite is true

if ds is kept too small. As contact between two spheres occurs if:

δij = ri + rj − |xi − xj| ≤ 0 , (3.2.2)

a safe choice is to take:

ds = 2r + dsafe + drb , (3.2.3)
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where r denotes the radius of the particle, dsafe is a safety distance based on how far the particle

can move in a given number of timesteps, and drb the distance particles can move before the bin

is rebuilt. Typical choices are:

dsafe = n∆t|v|max , drb = 2rmin , (3.2.4)

where ∆t, |v|max, rmin denote the timestep, maximum velocity of the particles and minimim

radius, and n = O(5). Given the bounds of the search region (Eqn.(3.2.1)), the minimum and

maximum extent of bins in the x, y, z directions are obtained from Eqn.(3.1.1). The centroids

stored in these bins then yield the list of potential contact pairs.

As the pairs of potential contact pairs are built, a pair i, j may appear twice, having been ob-

tained for both the near neighbour region of sphere i and sphere j. Therefore, one has to decide

which pair to keep. In the present case, the sphere with the larger radius is kept as the first one.

This implies that when searching for potential near neighbours of sphere i, all spheres of radius

larger than ri can be discarded.

3.3 Trimming The Near Neighbour List

The search of neighbours in the region given by Eqn.(3.2.1) can yield a much larger number

of neighbours than those that can actually contact. As an example consider the situation shown

in Figure 3.3.1.

D
C

B

A

E

F

S

Figure 3.3.1: Search Region for Close Neighbours (2-D)

The potential contact neighbours in the search region of discrete element S include A, F and

D. But these are shielded from S by B, E and C. In order to avoid considering these redundant

discrete elements as neighbours of S, the list of neighbours found from Eqn.(3.2.1) is ordered

according to the distance from S. For each of the neighbours, a check is made whether other

neighbours are blocked by this neighbour.
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CS
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P

Figure 3.3.2: Neighbour Blocking Criteria

Using the notation in Figure 3.3.2, blocking is assumed to occur if the following conditions are

satisfied:

(xD − xS) · (xC − xS) > 0 , (3.3.1.a)

|xD − xS| > |xP − xS| , (3.3.1.b)

|xP − xC | < α · rC , (3.3.1.c)

with α = O(1). The trimming of neighbours is not very important for cases with a uniform

distribution of sphere radii. However, if sphere radii vary greatly, trimming greatly reduces the

number of potential neighbours, leading to considerable gains in CPU performance.

3.4 SMP Parallelization

While the placing of discrete elements into bins and the rebuilding of the linked lists is a

mostly scalar operation, the search for potential DEM-DEM contact pairs can easily be paral-

lelized for shared memory parallel machines such as common multicore Intel Xeon, KNL or

AMD processors. In the present case, the lists of nearest neighbours are obtained independently

in groups of 2056 discrete elements at a time. Scalability is excellent up to the point of memory

saturation, which on current Intel Xeon processors occurs at approximately 8 cores for double

precision and 16 cores for single precision.

4 DEM-WALL CONTACT DETECTION ALGORITHMS

DEM-wall contact detection is the second most CPU-intensive operation of DEM codes after

DEM-DEM contact detection. The wall description is always assumed to be given in the form

of a triangulation that may move, deform, or change topology in time. As before, a list of

potential contact pairs (DEM-Triangle) is kept and rebuilt on a regular basis.

4.1 Multi-Level Bin Data Structure

The potential wall contact edges are built using a bin data structure for the faces (see Fig-

ure 4.1.1). In a first step, the bounding boxes of the boundary faces is obtained. These bounding

boxes are then placed into a bin. However, unlike the centroids (points) of discrete elements,

boundary faces can cover several bins, so they must be stored multiple times. Therefore, a bal-

ance has to be struck between bins that are too fine (storing a face in many bins) or too coarse

(storing many faces in a bin) (see Figure 4.1.2).
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Figure 4.1.1: Bin Data Structure for Faces (2-D)

The optimal bin size is of the order of the size (e.g. maximum side length or bounding box) of

the face being stored. For many realistic geometries, face size can vary by orders of magnitude.

A single bin size would therefore negatively affect performance.

Large Face Covers Many Bins

Too Many Small Faces Per Bin

Figure 4.1.2: Small/Large Faces Placed in Bin (2-D)

The solution is to use a hierarchy of bins (Teschener et al., 2003; Sommerfeld, 1976). Assume a

series of Nb bins with bin sizes increasing from ∆xmin via increase factors of cincr = O(2− 5)
to ∆xmax = cNb

incr∆xmin. Each face is then placed in the bin most suitable for its size. Compared

to the single bin, the memory allocation is optimal. Every face is stored in only a few bins, all

of them optimally suited to its size. The extra bin placement information amounts to a very

modest increase in memory, as the number of bins in the coarser bins decreases rapidly (at least

an order of magnitude for each level of coarsening). For cases with very small faces, the finest

bin may be limited by the available memory. In this case, all the faces with sizes smaller or

equal to the size of this finest bin will be stored in it. This implies no extra storage, but more

faces per bin and hence more data to be processed when detecting contact. The computational

complexity to build the bin data structure is O(2NTRI +Nb), where NTRI denotes the number

of triangles defining walls.
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4.2 Near Neighbour Detection

For each centroid x, y, z the search region for nearest neighbours is given by Eqns(3.2.1,3.2.4).

This search region yields the extent of bins that need to be interrogated for faces. Each of the

multilevel bins is interrogated, and all faces stored in these bins are retrieved for subsequent

processing.

4.3 Trimming The Near Face List

The search of close faces in the region given by Eqn.(3.2.1) may yield faces that are stored

multiple times in neighbouring bins. This list is trimmed using hashing techniques (Schornbaum,

2009).

4.4 SMP Parallelization

While the placing of wall faces into bins and the rebuilding of the linked lists is a mostly

scalar operation, the search for potential DEM-wall contact pairs can easily be parallelized, as

the same way that in the search for potential DEM-DEM contact.

5 TIMINGS

Typical timings are reported for the mill case shown in Figure 5.1. The rotating surface

walls were described by nface=796 surface triangles. The total number of discrete spherical

elements was npart=74,189, of which npart=74,111 had radii in the range 0.0095 − 0.0105 m
(representing the material being crushed) and npart=78 had radii in the range 0.095 − 0.105 m
(representing the steel balls used for crushing). The total integration time was T = 10 sec (one

complete rotation of the mill), which required ntime=86,577 timesteps. The timings obtained, as

well as the resulting speedups (both for the overall runs and the detailed parts of the integration

in time) are shown Figures 5.2-5.4. Note that the speedup for all parts suffers due to memory

bandwidth constraints, but is particularly noticeable for: a) the time integration, which has

a very small computational intensity, and b) for the DEM-Wall forces due to the very small

number of surface triangles, leading to memory contention.
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Figure 5.1: SAG Mill (Approximate Diameter: 10 m)

Figure 5.2: Mill: CPU/Particle/Timestep
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Figure 5.3: Mill: Speedups Achieved

Figure 5.4: Mill: Speedups Achieved (Detailed)

The entire run, including input, initialization and all output diagnostics, took approximately

11 minutes to complete on a 16 core Xeon machine running in single precision (which is en-

tirely sufficient for accuracy purposes), showing that applications of this kind have now become

feasible on laptops.

6 CONCLUSIONS AND OUTLOOK

A number of near-optimal techniques were implemented to reduce computing times for the

DEM code DESOL. Among these, the following showed the largest improvements:

a) Multilevel Bins: The use of multilevel bins for spatial objects allows an optimal placement

matching object and bin size. This circumvents the usual disadvatage of bins: too many objects

in a bin or an object in too many bins.
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b) Periodic Rebuild: The list of possible contact pairs is rebuilt every so often. These pairs

are tested at the beginning of each timestep in order to see if an actual contact exists. Given

that this test is cheap, a compromise has to be reached between the extent of possible contacts

(memory, test if contacting) and the cost of rebuilding the possible contact pairs. The larger the

list of possible contacts, the less often the list needs to be rebuilt.

c) Trimming: The search for possible contact pairs can yield a much larger number of neigh-

bours than those that can actually contact. Particularly when large variations of sphere/ element

sizes are present, intermediate particles may ‘shield’ others, thus making contact impossible.

Therefore, the list is examined further and trimmed accordingly.

d) SMP Parallelization: The search for potential contact pairs can easily be parallelized for

shared memory parallel machines such as common multicore Intel Xeon, KNL or AMD pro-

cessors. In the present case, the lists of nearest neighbours are obtained independently in groups

of 2056 discrete elements at a time.

These improvements have led to CPU reduction of the order of 1:3-1:5 on scalar machines,

while also showing excellent scalability up to the point of memory saturation, which on current

Intel Xeon processors occurs at approximately 8 cores for double precision and 16 cores for

single precision.
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