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1 INTRODUCTION

Chordal and dually chordal graphs were found to have many applications, specially in biology. Both
classes are endowed with characteristic tree structures, clique trees in chordal graphs and compatible trees
in dually chordal graphs, which in several cases are connected with the solution of problems associated to
the applications. A good example of this are phylogenetic trees [4, 5], used to model the evolutionary history
of species, proteins, etc. In them, it is necessary that leaves represent the present individuals (or objects) and
inner vertices should indicate possible ancestors. This makes desirable, also in a more general context, the
ability to determine what vertices can be the leaves of a compatible tree or a clique tree.

The leafage of a chordal graph is the minimum number of leaves of a clique tree of the graph. A
polynomial algorithm, running in time O(n3), to find the leafage of a chordal graph has been proposed
recently [3]. The goal of this paper is to show that this enables an answer to the following problem: given a
dually chordal graph G and A ⊂ V (G), determine if there is a tree compatible with G whose set of leaves
is A. For that purpose, every dually chordal graph is found to be the clique graph of a chordal graph in such
a way that there is a correspondence between the compatible trees of the former and the clique trees of the
latter and then the problem is transformed into that of finding the leafage of a chordal graph.

2 SOME GRAPH TERMINOLOGY

This paper deals just with graphs without loops or multiple edges. For a graph G, V (G) is the set of
its vertices and E(G) that of its edges. A complete is a subset of pairwise adjacent vertices of V (G). A
maximal complete is a clique and C(G) will be used to denote all the cliques of G. And a clique edge cover
of G is defined as any subset F of C(G) such that any edge of G is contained in at least one element of F .

Given two vertices v and w of a graph G, the distance between v and w, or d(v, w), is the length of a
shortest path connecting v and w in G. For a vertex v ∈ V (G), the closed neighborhood of v, N [v], is the
set composed of v and all the vertices adjacent to it. The disk centered at vertex v with radius k is the set
Nk[v] := {w ∈ V (G), d(v, w) ≤ k}.

Let T be a tree. For all v, w ∈ V (T ), T [v, w] will denote the path of T from v to w. And `(T ) will
denote the set of leaves of T .

Let F be a family of nonempty sets. The intersection graph of F has the elements of F as vertices,
being two of them adjacent if their intersection is nonempty. The clique graph K(G) of a graph G is the
intersection graph of C(G).

A graph such that C(G) is a Helly family, i.e., any subfamily of pairwise intersecting cliques has a
nonempty intersection, is called a Helly graph.

3 BASIC NOTIONS AND PROPERTIES

A chord of a cycle is an edge joining two nonconsecutive vertices of the cycle. Chordal graphs are those
without chordless cycles of length at least four. A clique tree T of G is a spanning tree of K(G) such that,
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for any v ∈ V (G), the set {C ∈ C(G), v ∈ C} induces a subtree of T . One of the many characterizations
for the aforementioned class is that a graph is chordal if and only if it has a clique tree [6].

A vertex w is a maximum neighbor of v if N2[v] ⊆ N [w]. A linear ordering v1...vn of the vertices of G is
a maximum neighborhood ordering of G if, for i = 1, ..., n, vi has a maximum neighbor in G[{vi, ..., vn}].
Dually chordal graphs can be defined as those possessing a maximum neighborhood ordering.

Moreover, more characterizations of dually chordal graphs have been given. In fact, given a connected
graph G, it is dually chordal if and only if [1]:

1. There is a spanning tree T of G such that any clique of G induces a subtree in T.

2. There is a spanning tree T of G such that any closed neighborhood of G induces a subtree in T.

3. G is Helly and K(G) is chordal.

It is even true that any spanning tree fulfilling (i) also fulfills (ii) and vice versa. Such a tree will be said
to be compatible with G. We also have the following equivalence:

Theorem 1 [2] Let T be a spanning tree of a dually chordal graph G. Then T is compatible with G if
and only if, for all x, y, z ∈ V (G), xy ∈ E(G) and z ∈ T [x, y] − {x, y} implies that xz ∈ E(G) and
yz ∈ E(G).

4 LEAVES AND DOMINATED VERTICES

Before the goal of this paper is achieved, some properties about domination will be necessary to find
some conditions that the leaves of a compatible tree should satisfy. The graphs considered are always
connected.

Lemma 1 Let G be a dually chordal graph and T a tree compatible with G. If v is a leaf of T and w is the
vertex such that vw ∈ E(T ) then v is dominated by w.

Proof. For any vertex u in N [v] − {v, w} it holds that w ∈ T [u, v]. From Theorem 1 we infer that
w is adjacent to u and thus N [v] − {v, w} ⊆ N [w]. As {v, w} is also a subset of N [w], the inclusion
N [v] ⊆ N [w] follows. �

Corollary 1 Let G be a dually chordal graph , |V (G)| ≥ 3, and T a tree compatible with G. Then each
vertex in `(T ) is dominated by at least one vertex of `(T )C .

Lemma 2 Let G be a dually chordal graph and T be a tree compatible with G. Then, given v ∈ V (G), the
set D = {w ∈ V (G) : N [v] ⊆ N [w]}, i.e., v itself and the vertices dominating it, induces a subtree in T .

Proof. Let w ∈ V (G). Then w ∈ D if and only if, for all u ∈ N [v], u ∈ N [w], that is, w ∈ N [u] for all
u ∈ N [v]. Thus w ∈ D if and only if w ∈

T
u∈N [v] N [u] and so D =

T
u∈N [v] N [u].

Since T is compatible with G, any closed neighborhood induces a subtree in T . And if some subsets
induce subtrees so does their intersection. Therefore D induces a subtree. �

As it was said before, clique trees of chordal graphs will be essential for the solution of the problem.
Therefore the existence of a relationship between compatible trees of dually chordal graphs and clique trees
of chordal graphs is desirable. There is indeed one relationship and it is as follows:

Theorem 2 Let G be a dually chordal graph and F be a clique edge cover of G. Let H be the intersection
graph of F ∪ V (G), i.e., the family whose elements are the cliques of G in F and the vertices of G. Then

(1) H is chordal.

(2) K(H) ≈ G.
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(3) Any clique tree of H is isomorphic to a tree compatible with G and vice versa.

Proof. Let T be a tree compatible with G. Then any member of F ∪ V (G) induces a subtree in T . As
intersection graphs of subtrees in a tree are chordal [7], (1) follows.

Given any vertex v ∈ V (G), the set Dv = {v} ∪ {C ∈ F : v ∈ C} is a clique of H because Dv is a
complete and the equality NH [v] = Dv implies maximality (and also that v is simplicial in H). And in fact,
every clique of H is equal to Dv, for some v ∈ V (G). A proof of this is given below.

Let D ∈ C(H). Then the elements of F ∩ D are pairwise intersecting. As dually chordal graphs are
Helly, there is a vertex w which is an element of each clique of G in F ∩D and therefore F ∩D ( NH [w] =
Dw. This implies that F ∩ D is not a maximal complete of H and thus there exists v ∈ V (G) such that
v ∈ D. Since D ∈ C(H) and it is contained in Dv, also in C(H), it follows that D = Dv and then
C(H) = {Dv : v ∈ V (G)}.

Now we need to demonstrate that DuDv ∈ E(K(H)) if and only if uv ∈ E(G), which implies that
K(H) ≈ G. And the reasoning is as follows:

DuDv ∈ E(K(H)) ⇔ Du ∩ Dv 6= ∅ ⇔ ∃C ∈ F, C ∈ Du ∧ C ∈ Dv ⇔ ∃C ∈ F, u ∈ C ∧ v ∈ C
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa⇔ uv ∈ E(G)

being the assumption that F covers all the edges of G necessary in the last step. This proves (2).
Let T be a clique tree for H and T 0 the spanning tree of G such that uv ∈ E(T 0) if and only if DuDv ∈

E(T ). Let x, y be vertices adjacent in G and z ∈ T 0[x, y]−{x, y}. Then Dx and Dy are adjacent in K(H)
and let C ∈ Dx ∩ Dy. As T is a clique tree the subset {D ∈ C(H) : C ∈ D} induces a subtree of T ,
implying that Dz also belongs to it because Dz ∈ T [Dx, Dy]. Consequently Dx∩Dz 6= ∅ and Dy∩Dz 6= ∅
and hence xz, yz ∈ E(G), making T 0 compatible with G.

Conversely, let T be a tree compatible with G and T 0 the spanning tree of K(H) such that DuDv ∈
E(T 0) if and only if uv ∈ E(T ). For any v ∈ V (G) the set {D ∈ C(H) : v ∈ D} = {Dv} so it
obviously induces a subtree. Let C ∈ F , Dx and Dy such that C ∈ Dx ∩ Dy and Dz be any vertex of
T 0[Dx, Dy]− {Dx, Dy}. Then x ∈ C, y ∈ C and z ∈ T [x, y]− {x, y}. Since T is compatible with G and
C induces a subtree in T , z ∈ C, that is, C ∈ Dz . This implies that the set {D ∈ C(H) : C ∈ D} induces
a subtree in T 0 and therefore T 0 is a clique tree of H . �

As a consequence of this, looking for a compatible tree with certain characteristics can be considered as
equivalent to finding a clique tree.

Having narrowed down before what the elements of `(T ) can be for a tree T compatible with a dually
chordal graph G it remains to introduce an auxiliary graph G0 which will contain information about the
problem. The results required now are the following:

Lemma 3 Let G be a dually chordal graph, T a tree compatible with G and u, v, w vertices such that
uv ∈ E(T ), v ∈ T [u, w] and N [u] ∩N [v] ⊆ N [w]. Then T 0 = T − uv + uw is also compatible with G.

Proof. Let x be any vertex of G. We need to prove that N [x] induces a subtree in T 0. Call T [A] and T [B]
the connected components of T − uv, with u ∈ A and v ∈ B. The proof is divided into three cases.

If N [x] ⊆ A then N [x] induces the same subtree in T and T 0. If N [x] ⊆ B the reasoning is similar.
Otherwise we have two vertices y, z ∈ N [x] such that y ∈ A and z ∈ B. As N [x] induces a subtree in T
and u, v ∈ T [y, z] we conclude that u, v ∈ N [x], that is, x ∈ N [u] ∩ N [v] and therefore w is adjacent to
x. Now, u and v are connected in T 0 by the path formed by merging uw and T [w, v] (contained in N [x]
because w, v ∈ N [x] and T is compatible with G); and any other two vertices of N [x] adjacent in T are still
adjacent in T 0. Therefore vertices of N [x] adjacent in T are connected in T 0 by paths within N [x] and this
is enough to claim that N [x] induces a subtree in T 0, making T 0 compatible with G. �

Theorem 3 Let G be a dually chordal graph and A ⊆ V (G) be a set of vertices, being each of them
dominated by a vertex in AC . Let G0 be a graph constructed from G by adding, for each v ∈ A, a vertex
v∗ and the edge vv∗. Then G0 is dually chordal. Moreover, there is a tree T compatible with G such that
`(T ) = A if and only if there is a tree T 0 compatible with G0 such that `(T 0) = A∗ := {v∗, v ∈ A}.
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Proof. Let T be a tree compatible with G. Then the tree T 0 such that V (T 0) = V (G) ∪ A∗ and E(T 0) =
E(T ) ∪ {vv∗, v ∈ A} is compatible with G0, so this graph is dually chordal. Furthermore, if `(T ) = A
then `(T 0) = A∗.

Conversely, let T 0 be a tree compatible with G0 and such that `(T 0) = A∗. Consider now the tree
T0 = T 0−A∗ spanning G. Since C(G) ⊆ C(G0), any clique of G induces a subtree of T 0 and thus in T0 as
well and we conclude that T0 is compatible with G.

Now, none of the leaves of T 0 are leaves of T0 (they were simply removed). That the leaves of T0 are not
those of T 0 means that the degree of the former have decreased after the removal of vertices, and therefore
`(T0) ⊆ A. Of all the trees compatible with G and with set of leaves contained in A (we know that there is
at least one) choose T1 such that |`(T1)| is maximum. It will be proved that `(T1) = A. If `(T1) 6= A take
a vertex u ∈ A − `(T1), let w be a vertex in AC dominating u and w0 the vertex adjacent to u in T1[u, w].
Lemma 2 implies that w0 dominates u. Moreover it is not a leaf of T1. In fact, if w0 = w we know that w is
not a leaf; and if w0 is an internal vertex of T1[u, w] then it is adjacent to two vertices of that path.

By Lemma 3, if for any vertex x different from w0 and adjacent to u in T1 we add the edge wx to T1 and
remove ux we get a new tree T2 compatible with G such that dT2(w

0) > dT1(w
0), u is a leaf of T2 and the

remaining vertices have the same degree in T1 and T2. Then `(T2) = `(T1)∪{u}, contradicting the way T1

was chosen. Therefore `(T1) = A. �

Now it is possible to prove the main theorem:

Theorem 4 Let G be a dually chordal graph and A be a subset of V (G) such that for each vertex of A
there is a vertex in AC dominating it. Determining if there exists a tree compatible with G and whose set of
leaves equals A can be reduced, in polynomial time, to the problem of finding a clique tree with minimum
number of leaves in a chordal graph and hence it is itself polynomial.

Proof. Let G0 be the same graph as in Theorem 3 and H 0 be a chordal graph such that K(H 0) = G0 and
constructed as in Theorem 2. Denote by T 0 a clique tree for H 0 with minimum number of leaves and let T ∗

be a tree compatible with G0 and isomorphic to T 0. By part (3) of Theorem 2, T ∗ is a compatible tree for G0

with minimum number of leaves.
If `(T ∗) = A∗, Theorem 3 implies that there is a tree T compatible with G and `(T ) = A. Otherwise,

since the degree in G0 of the vertices in A∗ equals 1, A∗ ( `(T ∗). As the number of leaves of T ∗ is
minimum, no tree compatible with G0 has A∗ as set of leaves and this time Theorem 3 implies that there is
not any tree T compatible with G and such that `(T ) = A.

Overall, H 0 was constructed from G0 by using one of its clique edge covers, being possible to take a cover
whose number of elements is bounded by E(G0), and so by E(G)+V (G), and the complexity of computing
an intersection graph and finding a clique tree of H 0 with minimum number of leaves is polynomial; hence
the whole procedure can be accomplished in polynomial time. �

Consequently, given G dually chordal graph and A ⊂ V (G) such that each vertex of A is dominated by
a vertex in AC , the algorithm to determine if there is a tree T compatible with G and such that `(T ) = A
can be summarized as follows: find a clique edge cover of G0 to compute H 0 and then calculate the leafage
of H 0. If the leafage equals |A| the requested tree exists. Otherwise it does not.
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1 BASIC DEFINITIONS

For a graph G, V (G) denotes the set of its vertices and E(G) that of its edges. A complete is a set of
pairwise adjacent vertices. The subgraph induced by A ⊆ V (G), G[A], has A as vertex set and two vertices
are adjacent in G[A] if they are adjacent in G.

Given two vertices v and w of a graph G, the distance between v and w, or d(v, w), is the length of a
shortest path connecting v and w in G. When such a path does not exist it may be said that d(v, w) = ∞.
For a vertex v ∈ V (G), the open neighborhood of v, N(v), is the set of all vertices adjacent to v. The
closed neighborhood of v, N [v], is defined by N [v] = N(v) ∪ {v}. The disk centered at vertex v with
radius k is the set of vertices at distance at most k from v and it is indicated by Nk[v]. The eccentricity of
v is ecc(v) = max{d(v, w), w ∈ V (G)}. A vertex w in G is called eccentric of v if no vertex in V (G) is
further away from v than w, that is, if ecc(v) = d(v, w).

The kth-power, Gk, of a graph G is a graph which has the same vertices as G, being two of them adjacent
in Gk if the distance between them is at most k in G.

A chord of a cycle is an edge joining two nonconsecutive vertices of the cycle. Chordal graphs are
defined as those without chordless cycles of length at least four.

A vertex v is simplicial if N [v] is a complete. A linear ordering v1v2...vn of vertices of a graph G is
called a perfect elimination ordering if, for 1 ≤ i ≤ n, vi is simplicial in Gi = G[{vi, ..., vn}].

One of the most classical characterizations of chordal graphs states that a graph is chordal if and only if
it has a perfect elimination ordering.

A vertex w ∈ N [v] is a maximum neighbor of v if N2[v] ⊆ N [w]. A linear ordering v1...vn of vertices
of G is a maximum neighborhood ordering if, for all 1 ≤ i ≤ n, vi has a maximum neighbor in Gi. Dually
chordal graphs can be defined as those possessing a maximum neighborhood ordering.

2 ECCENTRIC VERTICES

We can see that vertices with a maximum neighbor are as important for dually chordal graphs as simpli-
cial vertices are for chordal graphs. Then, if any vertex of a chordal graph has a simplicial eccentric vertex
the question wether any vertex of a dually chordal graph has an eccentric vertex with a maximum neighbor
arises. The answer is yes, and before proving it we need some previous results.

Lemma 1 [1] If G is a dually chordal graph and A is a subset of V (G) such that any pair of vertices of A
is at a distance not greater than 2, then there is a vertex w with A ⊆ N [w].

Lemma 2 [1] If G is dually chordal then G2 is chordal.

Lemma 3 Let G be a dually chordal graph and v a simplicial vertex in G2. Then v has a maximum neighbor
in G.
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Proof. As v is simplicial in G2 the distance in G between any pair of vertices of N2[v] is at most 2.
Applying Lemma 1 gives a vertex w such that N2[v] ⊆ N [w]. Then w is a maximum neighbor of v. �

Now the major result can be proved. From now on it will be assumed that G is always a connected graph.
Otherwise the proofs are trivial.

Theorem 1 Let G be a dually chordal graph and v a vertex of G. There exists an eccentric vertex of v with
maximum neighbor.

Proof. First suppose that eccG(v) is odd. As G2 is chordal we can choose a vertex w simplicial in G2

which is eccentric of v in G2. Hence, by Lemma 3, w has a maximum neighbor in G. Note first that,
because of the definition of G2, if two vertices are at distance k in G their distance in G2 is k

2 if k is even or
k+1
2 if k is odd. Furthermore any eccentric vertex of v in G will be also eccentric in G2, implying that the

eccentricity of v in G2 equals eccG(v)+1
2 because eccG(v) is odd. By using the definition of G2 again and

that dG2(v, w) = eccG(v)+1
2 , we have two possible values for dG(v, w), namely, eccG(v) or eccG(v) + 1.

The definition of eccentricity implies that d(v, w) = eccG(v) and thus w is the required vertex.
If eccG(v) is even, let G0 be a graph obtained from G by adding a new vertex v0 and making it adjacent

to v. Then G0 is dually chordal. In fact, if v1...vn is a maximum neighborhood ordering for G then v0v1...vn

is a maximum neighborhood ordering of G0. It is valid that eccG0(v0) is odd and by proceeding like in the
previous paragraph there is a vertex u with a maximum neighbor in G0 (and so in G) such that d(v0, u) =
eccG0(v0). It can be easily verified that u is the desired vertex. �

Corollary 1 If G is a nontrivial, i.e., not composed of just one vertex, dually chordal graph then there are
two vertices v1 and v2 with maximum neighbors and such that d(v1, v2) = diam(G).

Proof. Let k = diam(G) and x, y two vertices with d(x, y) = k. Then there exists a vertex v1 with
maximum neighbor and eccentric of x, so d(x, v1) = k. And likewise there is a vertex v2 with a maximum
neighbor and eccentric of v1 and consequently d(v1, v2) = k. �

At this moment it is interesting to determine if similar properties are valid for more specific types of
graphs. The answer is affirmative and we will prove it for power chordal and doubly chordal graphs.

A graph G is said to be power chordal if all of its powers are chordal. It is true that a graph is power
chordal if and only if G and G2 are chordal [1]. A graph is doubly chordal if it is chordal and dually chordal.
Any vertex of it which is simplicial and has a maximum neighbor is called doubly simplicial.

It is known that a power chordal graph is complete or there are two nonadjacent vertices which are
simplicial in both G and G2. The demonstration can be seen in [1]. A similar technique enables to prove
the following result:

Theorem 2 Let G be a power chordal graph. If v ∈ V (G) then there exists a vertex w eccentric of v in G2

which is simplicial in both G and G2.

Proof. The proof is direct if G2 is complete. Assume that G2 is not complete. Since G2 is chordal we
can take a vertex u which is simplicial in G2 and eccentric of v in G2. If u is also simplicial in G there is
nothing else to do and we can set w = u. On the contrary, let x and y be two nonadjacent neighbors of u
and S a minimal xy-separator in G. Then S is a complete because G is chordal [2] and u ∈ S.

Let G[A] and G[B] be the connected components of G−S containing x and y respectively. Without loss
of generality we can assume that v 6∈ A. It holds that G[A∪S] is chordal and since S is a complete minimal
separator (G[A ∪ S])2 = G2[A ∪ S] and thus (G[A ∪ S])2 is also chordal. Then we have two possibilities:
either G[A∪S] is complete or contains two nonadjacent vertices which are both simplicial in G[A∪S] and
G2[A ∪ S] = (G[A ∪ S])2 [1]. Whichever the case we conclude that the set A contains a vertex w which is
simplicial in G[A ∪ S] and G2[A ∪ S]. It is evident that w is simplicial in G. Now it will be demonstrated
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that w is also simplicial in G2. If N2[w] ⊆ A∪S it is obvious. Otherwise, w must be adjacent to a vertex w0

in S. If z ∈ N2[w]∩(A∪S), then z ∈ N2[u] because u ∈ N2[w] (note that w ∈ N [w0] and w0 ∈ N [u]) and
w is simplicial in G2[A∪S]. If z ∈ N2[w]− (A∪S) then again z ∈ N2[u] because any path of length two
joining w and z (vertices which are in different connected components of G−S) must have its intermediate
vertex in S, which could be u or adjacent to it because S is a complete. This makes a path between z and u
of length at most two possible. Therefore N2[w] ⊆ N2[u] and as u is simplicial in G2 so is w.

Since v and w are in different connected components of G − S any path joining them must include a
vertex in S, and so in N [u]. We can conclude that dG(u, v) ≤ dG(v, w) and then dG2(v, w) is maximum
and has the required properties. �

Theorem 3 Let G be a power chordal graph. If v ∈ V (G) then there exists an eccentric vertex of v, in G,
which is simplicial in G and G2.

Proof. The proof is very similar to that of Theorem 1, so we will just give a sketch of it.
We suppose at first that ecc(v) is odd and applying Theorem 2 will give the required vertex.
And if ecc(v) is even the graph G0 is again introduced.

�

Corollary 2 Let G be a doubly chordal graph. If v ∈ V (G) then there exists an eccentric vertex of v which
is doubly simplicial.

Proof. As G is dually chordal G2 is chordal, so the previous theorem can be applied to get a vertex w
simplicial in G and G2 and eccentric of v. Because of Lemma 3 w has a maximum neighbor in G, so it is
doubly simplicial. �

So far it was possible to prove the existence of eccentric vertices with characteristics distinguishing all the
classes related to chordal and dually chordal graphs that have been discussed. One that was not mentioned
yet is that of strongly chordal graphs and fortunately a similar property can be deduced.

A vertex v of a graph G is simple if the set {N [u] : u ∈ N [v]} is totally ordered by inclusion. From this
definition we infer that, particularly, simple vertices are simplicial and have a maximum neighbor. A linear
ordering v1v2...vn of V (G) is called a simple elimination ordering of G if, for 1 ≤ i ≤ n, vi is simple in Gi.
Strongly chordal graphs are just those possessing at least one such ordering. One of the main characteristics
of strongly chordal graphs is that they are hereditary. In fact, being a strongly chordal graph is equivalent to
being a hereditary dually chordal graph.

In connection with eccentric vertices we have the following:

Lemma 4 Let v ∈ V (G) and w be a maximum neighbor of v with ecc(w) > 1 and u such that d(u, v) ≥ 2.
Then d(u, v) = d(u, w) + 1 and any vertex eccentric of w is also eccentric of v and vice versa.

Proof. The property is true if d(u, v) = 2 due to the definition of maximum neighbor, so suppose now that
d(u, v) > 2. By the triangle inequality d(u, v) ≤ d(u, w) + d(w, v), that is, d(u, v) ≤ d(u, w) + 1. Let
vv1v2...u be a shortest path from v to u. Then wv2...u is a path from w to u of length d(u, v)−1. Therefore
d(u, v) − 1 ≥ d(u, w) and hence d(u, v) ≥ d(u, w) + 1. Then the equality d(u, v) = d(u, w) + 1 holds.
This implies that any vertex eccentric of w is at distance greater than or equal to 3 of v and consequently

d(v, u) = ecc(v) ⇔ d(v, u) = max{d(v, x) : x ∈ V (G)} ⇔ d(v, u) = max{d(v, x) : x ∈ V (G), d(v, x) ≥ 3} ⇔

d(w, u)+1 = max{d(w, x)+1 : x ∈ V (G), d(w, x) ≥ 2} ⇔ d(w, u) = max{d(w, x) : x ∈ V (G), d(w, x) ≥ 2}

⇔ d(w, u) = max{d(w, x) : x ∈ V (G)} ⇔ d(w, u) = ecc(w)

�
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Theorem 4 Let G be a strongly chordal graph. If v ∈ V (G) then there exists an eccentric vertex of v which
is simple.

Proof. It will be by induction on n = |V (G)|. The property is obviously valid when n = 1. Suppose now
that it is always valid when n = k, k ≥ 1, and that G is a strongly chordal graph with |V (G)| = k + 1.
Given v, the proof will be divided into cases.

Case 1: G has at least one universal vertex.
Let w be a universal vertex of G. If w is simple then G is complete because simple vertices are simplicial

and thus the existence of an eccentric simple vertex is evident. Otherwise, it is trivial in case that v = w,
so assume now that v 6= w and that w is not simple. Then we consider the strongly chordal graph G − w.
In case that G − w is not connected, any vertex simple in G − w and located in a connected component
different from that of v is an eccentric simple vertex for v in G. If G−w is connected, applying the inductive
hypothesis yields an eccentric simple vertex u for v in G−w. Then again it will be simple and eccentric of
v in G.

Case 2: G has not a universal vertex.
Case 2a: v is simple.
Let v0 be a maximum neighbor of v. G − v is strongly chordal and applying the inductive hypothesis

on this subgraph gives a simple eccentric vertex of v0 in G− v which will be named w. Then it is true that
d(v0, w) ≥ 2 because otherwise v0 would be universal in G. Now, as v0 is a maximum neighbor of v in G,
and so N2[v] ⊆ N [v0], we conclude that d(v, w) ≥ 3 and thus the neighborhoods of vertices in N [w] are
coincident in G and G− v, from what we can deduce that w is simple in G. And because of Lemma 4 w is
also eccentric of v.

Case 2.b: v is not simple and there is a simple vertex which is not adjacent to v.
Let w be a simple vertex not adjacent to v. If it is also eccentric we are done. If not, consider the

strongly chordal graph G−w, which possesses a simple vertex w0 eccentric of v. As removing a simplicial
vertex does not change the distance between the other vertices (simplicial vertices are never intermediate
vertices in shortest paths) w0 is also eccentric in G, so it suffices to prove that w0 is simple in G. If w0 is
not simple in G, there is at least one vertex in N [w0] whose neighborhood is not the same in G and G− w,
implying that w ∈ N2[w0]. Let u be a maximum neighbor of w in G. Then u is adjacent to w0 and therefore
d(v, w0) ≤ d(v, u) + 1, which combined with Lemma 4 implies that d(v, w0) ≤ d(v, w), contradicting that
w was not an eccentric vertex of v. Consequently w0 is necessarily simple.

We claim that all these cases are enough to prove the property for every strongly chordal graph. In fact,
if v is not simple and is adjacent to all the simple vertices it will be proved that diam(G) ≤ 2 and thus G
has a universal vertex by Lemma 1. Let x and y be vertices such that d(x, y) = diam(G). If diam(G) ≥
3 then {x, y} * N [v] so we can assume without loss of generality that x 6∈ N [v]. Since all simple vertices
are simplicial and adjacent to v we conclude that none of them is adjacent to x. Then, by case 2.b, x has a
simple eccentric vertex x0 and thus d(x, x0) = diam(G). By case 2.a we know that x0 has a simple eccentric
vertex x00 so d(x0, x00) = diam(G). But d(x0, x00) ≤ 2, contradicting that diam(G) ≥ 3. �

Corollary 3

• If G is a nontrivial power chordal graph there are two vertices v1 and v2, simplicial both in G and
G2, such that d(v1, v2) = diam(G).

• If G is a nontrivial doubly/strongly chordal graph there are two doubly simplicial/simple vertices v1

and v2 such that d(v1, v2) = diam(G).
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