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Abstract: In this paper, we merge two theories: that of pulse processes on weighted digraphs and
that of evolution algebras. We enrich both of them. In fact, we obtain new results in the theory of
pulse processes thanks to the new algebraic tool that we introduce in its framework, also extending
the theory of evolution algebras, as well as its applications.
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1. Introduction

A complex system can be understood as a system determined by many components which may
interact with each other (see [1] for a deeper discussion about the term). Such systems are usually
described by a weighted digraph (that is, a network) where the nodes represent the components
of the system, and the arcs their interactions. The study of complex networks is a modern, active,
and interdisciplinary area of research addressed to the empirical study of complex systems, such as
computer networks, technological networks, brain networks, and social networks.

To understand a complex network, a mathematical framework is needed in order to determine
the properties of the underlying weighted digraph, for instance, to make predictions on the evolution
of the system.

A pulse process is a structural model to analyze a complex network. Its mathematical foundation
is established in [2] (see also [3]) and is summarized in [4,5]. Such a process is a simple dynamic model
to study the propagation of changes, through the vertices of a weighted digraph, after introducing an
“initial pulse” in the system at a particular vertex. It is based on a spectral analysis of the corresponding
weighted digraph to face large scale decision making problems.

Pulse processes have been applied to topics, such as food production, energy, air pollution,
transportation systems, coastal resources, health care delivery, manpower, water policy,
inland waterway traffic, ecosystems, and the analysis of historical events, to make decisions (see
for instance [2,6–17]). Particularly, the pulse process analysis has been used in many reports of
the National Science Foundation, especially in those of the study entitled “Evaluation Measures to
Conserve Energy” achieved by the Rand Corporation (see National Science Foundation (NSF) reports
R-756-NSF, R-926-NSF, R-927/1-NSF, R-927/2-NSF, and R-1578-NSF referenced in [3,7,18–20]). In the
last report [20], pulse processes were used in the context of energy demand, air pollution, and related
environmental problems in order to analyze the transportation system of a hypothetical metropolitan
area similar to San Diego, California. As it is stated in R-756-NSF, the result of using graph theory
to model such problems, “while it does not necessarily provide a complete solution to the problem,
it often brings a better understanding of what the possible solutions are or an insight into the qualitative
interrelationships that underlie the problem, or an identification of significant or vulnerable points
of attack”.

Evolution algebras are non-associative algebras with a dynamic nature. They were introduced
in 2008 by J. P. Tian [21] for the study of Non-Mendelian Genetics. As it is shown in this pioneering
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monograph, they have strong connections with group theory, Markov processes, theory of knots,
adynamic systems and graph theory. Because of this, a vast literature around them has grown since
2008, with direct applications in Biology, Physics and Mathematics itself (see for instance [22–27] and
references therein).

In Section 2 of this paper, we summarize the mathematical substrate of the pulse processes
analysis and, similarly, in Section 3, we briefly review the notion of evolution algebra with emphasis in
the associated weighted digraph relative to a natural basis.

In Section 4, we merge the theory of evolution algebras with the theory of pulse processes,
enlightening an original way to introduce algebraic techniques into the study of pulse processes that
simultaneously enriches the theory of evolution algebras. We illustrate this approach with new results
that help to understand in a deeper way many aspects of the aforementioned NSF’s reports.

In Section 5, we explore the role of the ideals of the evolution algebra associated to a pulse process.
We apply this to get a better knowledge of what, in report [20], are called “interesting strong connected
components” by showing, in algebraic terms, that the behavior of such components is not always the
same. More precisely, we describe when the stability of one or more of these components determines
the stability of the given pulse process (see Examples 8,10,11). To do this, we apply some results such
as Theorem 9, Theorem 11 and Corollary 5. Moreover, we use these results in Section 6 to describe what
we name the “reduction process”. This is a method to obtain, from a given pulse process, another very
simplified one, called the reduced process, which is such that its stability (in pulse and/or value) is
equivalent to that of the original pulse process. With the examples quoted above, we also show in an
explicit way how the reduction process simplifies and enriches the analysis achieved in [20].

2. Pulse Processes on Weighted Digraphs: A Brief Review

In this section, we review the main results about the stability of the pulse processes,
following [2,4,5].

Let D be a weighted digraph with vertices x1, x2, ..., xn. We suppose that each vertex xi attains a
value vi(t) at each discrete time t = 0, 1, 2, ... Then, the successive value vi(t + 1) is determined from
the last time period t according to the following model:

vi(t + 1) = vi(t) + p0
i (t + 1) + ∑

j
w(xj, xi)pj(t), (1)

where

• vi(t) is the value of vertex xi at time t,
• p0

i (t + 1) is the value of the external pulse introduced at vertex xi at time t + 1 (therefore,
the possibility of externally influencing the variables of the system at each time is considered in
this model),

• w(xj, xi) is the weight of the arc xjxi (that is the value which measures the strength of the effect
that vertex xj has over xi), and

• pj(t) is the pulse at vertex xj at time t, defined by:

pj(t) =

{
vj(t)− vj(t− 1) if t > 0

p0
j (0) if t = 0.

(2)

Hence, the value vi(t + 1) of vertex xi at time t + 1 is obtained by the value vi(t) that xi had at the
last time period, the external pulse p0

i (t + 1) introduced in xi at time t + 1, and the weighted pulse
that the vertices xj, adjacent to xi, transmit to vertex xi from t to t + 1.

Consequently, the pulse process on a weighted digraph D, with vertices x1, x2, ..., xn, is defined
by Equation (1), along with an initial vector of values

V(0) = (v1(0), v2(0), ..., vn(0)),
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and the vector providing the value of the external pulse introduced at each vertex at each time period,
denoted by

P0(t) = (p0
1(t), p0

2(t), ..., p0
n(t)).

Finally, the vector P(t) = (p1(t), ..., pn(t)), defined by Equation (2), is called the pulse vector and
shows the evolution of the system.

It is clear that Equation (1) describes a discrete-time system with parameters w(xj, xi), which can
be rewritten as:

pi(t + 1) = p0
i (t + 1) + ∑

j
w(xj, xi)pj(t). (3)

The weights of the weighted digraph associated to the pulse process have a specific interpretation.
In fact, w(xj, xi) means that an increase of k units in vertex xj at any time t leads to an increase of
k× w(xj, xi) units in vertex xi at time t + 1 (or a decrease, whenever the value w(xj, xi) is negative).

Definition 1. A pulse process with vertices x1, ..., xn, is called an autonomous pulse process when

P0(t) = (p0
1(t), p0

2(t), ..., p0
n(t)) = (0, ..., 0), for t > 0.

Therefore, these are pulse processes with no external pulses introduced in the system (that is at any vertex)
for t > 0. An autonomous pulse process for which

P0(0) = (0, ...,
(i)
1 , ..., 0),

for some i ∈ {1, ..., n}, is called a simple pulse process starting at vertex xi.

Example 1. Consider the following weighted digraph Figure 1.

Figure 1. Signed digraph.

(here, the values of the weights are ±1, and because of this it is said that it is signed digraph). The simple pulse
process starting at x3 is described by the following values and pulses:

If t = 0, then V(0) = (0, 0, 1, 0) = P(0).
If t = 1, then the value of the vertex x1 decreases in one unit, while x4 increases one unit and x2 does not

change. Therefore, V(1) = (−1, 0, 1, 1) with a pulse value P(1) = (−1, 0, 1, 1)− (0, 0, 1, 0) = (−1, 0, 0, 1).
If t = 2 then, V(2) = (−1, 2, 1, 1) because

v1(2) = v1(1) + p0
1(2)− p3(1) = −1 + 0− 0 = −1

v2(2) = v2(1) + p0
2(2)− p1(1) + p4(1) = 0 + 0 + 1 + 1 = 2

v3(2) = v3(1) + p0
3(2) + p2(1) = 1 + 0 + 0 = 1

v4(2) = v4(1) + p0
4(2) + p3(1) = 1 + 0 + 0 = 1,

with pulse value P(2) = V(2)−V(1) = (−1, 2, 1, 1)− (−1, 0, 1, 1) = (0, 2, 0, 0), etc.
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In this paper, we will consider only autonomous pulse processes. From the above definition,
we obtain that an autonomous pulse process with vertices x1, ..., xn is given by

pi(t + 1) = ∑
j

w(xj, xi)pj(t), (4)

or, equivalently, by the weighted digraph D with vertices x1, x2, ..., xn and weights w(xi, xj), along with
the initial pulse vector P(0). In this case, the adjacency matrix of the graph D is given by

A =

 w(x1, x1) · · · w(x1, xn)
. . .

w(xn, x1) · · · w(xn, xn)

 ,

and in [2], Theorem 3, it was established the following fact, easy to check.

Theorem 1. In an autonomous pulse process on a weighted digraph with adjacency matrix A, the pulse vector
P(t) is given by

P(t) = P(0)At, for t ≥ 0. (5)

Example 2. In the simple pulse process starting at vertex x3 of the signed digraph of Figure 1, we have

P(0)A = (0, 0, 1, 0)


0 −1 0 0
0 0 1 0
−1 0 0 1

0 1 0 0

 = (−1, 0, 0, 1) = P(1),

P(1)A = (−1, 0, 0, 1)


0 −1 0 0
0 0 1 0
−1 0 0 1

0 1 0 0

 = (0, 2, 0, 0) = P(2), etc.

Therefore, for t = 0, we have (0, 0, 1, 0) = V(0) = P(0) = P(0)A0.

For t = 1, we obtain:

V(1) = V(0) + P(1) = P(0)A0 + P(0)A = (0, 0, 1, 0) + (−1, 0, 0, 1) = (−1, 0, 1, 1).

For t = 2,

V(2) = V(0) + P(2) = P(0)A0 + P(0)A + P(0)A2 = (−1, 2, 1, 1).

Similarly, V(3) = (−1, 2, 3, 1) and P(3) = (0, 0, 2, 0), etc.

The main qualitative property studied on a complex system is the stability. Within the framework
of the pulse processes associated to a weighted digraph, two notions of stability are considered in [2].
These are the following:

Definition 2. Let D be a weighted digraph. We say that a vertex xj of D is pulse stable under a pulse
process if the sequence

{
∣∣pj(t)

∣∣ : t = 0, 1, 2, ...}

is bounded. Similarly, xj is value stable under a pulse process if the sequence
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{
∣∣vj(t)

∣∣ : t = 0, 1, 2, ...}

is bounded. (Pulse and/or value) unstable processes are those that are not stable. A weighted digraph D is
pulse (resp. value) stable under the pulse process if each vertex of D is pulse (resp. value) stable.

Let D be a weighted digraph. Under any pulse process, the value stability at a vertex xj of D
implies the pulse stability at xj. This is due to the fact that,

|pj(t)| = |vj(t)− vj(t− 1)| ≤ |vj(t)|+ |vj(t− 1)|,

for t > 0. The next result (see [2], Theorem 4) provides a sufficient condition for pulse and
value instability.

Theorem 2. Let D be a weighted digraph, with adjacency matrix A. If D has an eigenvalue λ with |λ| > 1,
then D is pulse unstable under some simple pulse process.

The next result is nothing but [2], Theorem 5, and describes the pulse stability.

Theorem 3. Let D be a weighted digraph, with adjacency matrix A. Then, the following assertions are
equivalent:

(i) D is pulse stable under all autonomous pulse processes.
(ii) D is pulse stable under all simple pulse processes.

(iii) If λ is an eigenvalue of A then |λ| ≤ 1, and if the algebraic multiplicity of λ differs from its geometric
multiplicity then |λ| < 1.

The next result (see [2], Theorem 6) characterizes the value stability.

Theorem 4. Let D be a weighted digraph, with adjacency matrix A. Then, the following assertions are
equivalent:

(i) D is value stable under all autonomous pulse processes.
(ii) D is value stable under all simple pulse processes.

(iii) D is pulse stable under all simple pulse processes and λ = 1 is not an eigenvalue of A.

3. Evolution Algebras and Weighted Digraphs: A Brief Review

An algebra is a vector space A over a field K = (R or C) provided with a bilinear map A×A→ A,
called the product of A, given by (a, b) → ab, for a, b ∈ A. An algebra is said to be associative if
(ab)c = a(bc) for every a, b, c ∈ A, and commutative if ab = ba for every a, b ∈ A. Through this paper,
all the algebras that we consider are finite-dimensional.

Definition 3 ([21]). A finite-dimensional evolution algebra is an algebra A over K (= R or C) provided
with a natural basis. This is a basis B = {e1, ..., en} such that eiej = 0 if i 6= j, with i, j ∈ {1, ..., n}. This is
nothing but a basis B such that the multiplication table of A relative to B is diagonal. If such a table is

e1 · · · en

e1
n
∑

k=1
wk1ek 0 0

... 0
n
∑

k=1
wkiek 0

en 0 0
n
∑

k=1
wknek



Mathematics 2020, 8, 387 6 of 20

then, the coefficients wij ∈ K determine a matrix MB(A), named the structure matrix of A relative to B,
that encodes the product of A as well as the dynamic nature of A. More precisely, this matrix is obtained by
writing the coefficients of e2

i in columns as follows:

MB(A) =

 w11 · · · w1n
. . .

wn1 · · · wnn

 .

It is easy to check that if a = ∑n
i=1 αiei and b = ∑n

i=1 βiei then, ab = ∑n
i=1 γiei where γ1

...
γn

 =

 w11 · · · w1n
. . .

wn1 · · · wnn


 α1β1

...
αnβn

 . (6)

The dynamic nature of A is described by the evolution operator of A associated to B, which is defined
as the unique linear operator LB : A → A such that LB(ei) = e2

i . It is easy to check that LB(a) = ea,
where e = e1 + ... + en . Therefore, fixed the natural basis B, we have that LB is the linear operator determined
by the structure matrix MB(A).

Evolution algebras are non-associative algebras (in fact, it is easy to see that they are not even
power-associative), and they are commutative. On the other hand, except in very special cases, they do
not have a unit as we show next.

Definition 4. An evolution algebra A with a natural basis B = {e1, ..., en} is said to be a non-zero trivial
evolution algebra if there exist constants wii 6= 0 such that e2

i = wiiei, for every i = 1, ..., n.

The evolution algebras that have a unit were characterized in [28] as follows.

Theorem 5. The only evolution algebras that have a unit are the trivial finite-dimensional evolution algebras.

In [29], the following notion of spectrum of an element in a non-necessarily associative algebra
was introduced, and therefore many results of the spectral theory of Banach algebras were extended to
the non-associative framework.

Definition 5. The multiplicative spectrum (or m-spectrum) of an element a in a complex algebra A with a
unit e is defined as the set:

σA
m (a) := {λ ∈ C : a− λe is not m-invertible}. (7)

An element b ∈ A is said to be m-invertible if the left (Lb) and right (Rb) multiplication operators by the
element b are bijective. If A does not have a unit then σA

m (a) := σA1
m (a), where A1 denotes the unitization of A.

Similarly, if A is real then σA
m (a) := σ

AC
m (a), where AC denotes the complexification of A.

Recall that, as usual, AC := {a + ib : a, b ∈ A} and A1 = A⊕ 1K = {a + 1λ : a ∈ A, λ ∈ K}.
Moreover, if A is a real algebra without a unit, then σA

m (a) = σ
(A1)C
m (a) = σ

(AC)1
m (a) for every a ∈ A;

see [29] for details.
On the other hand, as proved in [29], Proposition 2.5, if (A, ‖·‖) is a non-associative Banach algebra

then σA
m (a) is a set of complex numbers such that |λ| ≤ ‖a‖ , for every a ∈ A. In fact, the m-spectrum

extends the classical notion of spectrum of an element in an associative algebra to the non-associative
framework by keeping a good number of its essential properties.
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As proved in [29], Proposition 2.2, for an arbitrary complex algebra A and a ∈ A, we have that,
if A has not a unit then

σA
m (a) = σL(A)(La) ∪ σL(A)(Ra) ∪ {0}, (8)

whereas if A has a unit then
σA

m (a) = σL(A)(La) ∪ σL(A)(Ra), (9)

where, for a linear operator T : A→ A, the set σL(A)(T) denotes the spectrum of T in the associative
algebra L(A) of all linear operators on A. This is,

σL(A)(T) = {λ ∈ C : T − λI : A→ A is not bijective}.

Next, we show the behavior of the m-spectrum of surjective homomorphisms.
Recall that an homomorphism between two arbitrary algebras A and Ã is a linear map θ : A→ Ã

such that θ(ab) = θ(a)θ(b), for every a, b ∈ A. Surjective homomorphism are named epimorphisms,
while the bijective ones are named isomorphisms.

Theorem 6. Let A and Ã be algebras and θ : A→ Ã an homomorphism.
(i) If θ is an isomorphism then σÃ

m (θ(a)) = σA
m (a), for every a ∈ A.

(ii) If θ is an epimorphism then σÃ
m (θ(a)) ⊆ σA

m (a), for every a ∈ A.

Proof. It is not restrictive to assume that A and Ã are complex algebras. In fact, if A and Ã are
real algebras, and if θ is replaced by θC : AC → ÃC where θC(a + ib) = θ(a) + iθ(b), then we
obtain an isomorphism θC that extends θ. Since in the real case, by definition, σA

m (a) := σ
AC
m (a) and

σÃ
m (θ(a)) := σ

ÃC
m (θ(a)) for every a ∈ A, we have that, to prove the theorem, we can replace θ by θC.

(i) Suppose that θ is an isomorphism. Let a ∈ A. For simplicity, suppose that A is commutative.
Then, from Equations (8) and (9), we obtain that σA

m (a) = σL(A)(La) ∪ {0} if A does not have a
unit, whereas σA

m (a) = σL(A)(La) if A has a unit. Let σ
L(A)
p (La) and σ

L(A)
su (La) denote the pointwise

spectrum and the surjective spectrum of La, respectively. That is,

σ
L(A)
p (La) = {λ ∈ C : La − λI : A→ A is not injective},

σ
L(A)
su (La) = {λ ∈ C : La − λI : A→ A is not surjective}.

Since dim A < ∞, we have that, for every λ ∈ C,

λ ∈ σL(A)(La)⇐⇒ λ ∈ σ
L(A)
p (La)⇐⇒ λ ∈ σ

L(A)
su (La). (10)

Moreover, ab = λb if and only if θ(a)θ(b) = λθ(b), for every a, b ∈ A, as θ is an isomorphism.

Thus σ
L(A)
p (La) = σ

L(Ã)
p (Lθ(a)), and consequently, for a ∈ A,

σL(A)(La) = σ
L(A)
p (La) = σ

L(Ã)
p (Lθ(a)) = σL(Ã)(Lθ(a)). (11)

Hence, regardless of whether A has a unit or not, we obtain σÃ
m (θ(a)) = σA

m (a), as desired.
If A is not commutative, then the same reasoning with the operator Ra shows that σL(A)(Ra) =

σL(Ã)(Rθ(a)), and the result follows from Equations (8) and (9), as

σA
m (a) = σL(A)(La) ∪ σL(A)(Ra) ∪ {0} = σÃ

m (θ(a)) = σL(Ã)(Lθ(a)) ∪ σL(Ã)(Rθ(a)) ∪ {0},

if A does not have a unit. Similarly, if A has a unit, then

σA
m (a) = σL(A)(La) ∪ σL(A)(Ra) = σÃ

m (θ(a)) = σL(Ã)(Lθ(a)) ∪ σL(Ã)(Rθ(a)).
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(ii) Since ker θ is an ideal of A, from Lemma 19 in [30], we have that

σA/ ker θ
su (La) ⊆ σA

su(La), and σA/ ker θ
su (Ra) ⊆ σA

su(Ra),

and it follows from Equation (10) that σA/ ker θ
m (a + ker θ) ⊆ σA

m (a), for every a ∈ A.

The spectrum of an element a in an evolution algebra A with a natural basis B = {e1, ..., en}
was determined in [28]. From Proposition 5.1,5.3 in [28], we obtain the following description of the
spectrum of an element in an evolution algebra.

Theorem 7. Let A be an evolution algebra over K (= R or C) with a natural basis B = {e1, ..., en} and
structure matrix MB(A) = (wij). Let a = ∑n

i=1 αiei ∈ A. Then, λ ∈ C\{0} is such that λ ∈ σA
m (a) if and

only if λ is an eigenvalue of the following matrix w11 w1n
...

. . .
...

wn1 wnn


 α1 0

. . .
0 αn

 . (12)

If A is a non-zero trivial evolution algebra, then MB(A) = diag(w11, ..., wnn), and from the above
result we obtain that, if a = ∑n

i=1 αiei, then

σA
m (a) = {αiwii : i = 1, ..., n}.

Similarly, if A is not a non-zero trivial evolution algebra (that is, MB(A) is not diagonal with
non-zero entries), then 0 ∈ σA

m (a), for every a ∈ A. Indeed, since in this case A does not have a unit as
shown in Theorem 5, it follows that a ∈ A is not invertible in A1 as the unit of A1 cannot belong to A.
Thus, if A does not have a unit (which means that A is not a non-zero trivial evolution algebra) then
σA

m (a) is given by the eigenvalues of the product matrix (12) joint with zero.

4. Evolution Algebras and Pulse Process

Every couple (A, B), where A is an evolution algebra and B = {e1, ...en} is a natural basis of A,
uniquely determines a weighted graph GB(A) with set of vertices B and adjacency matrix MB(A)T (we
consider the transposition of the structure matrix of A since, in graph theory, it is usual to determine
the i-th row of the adjacency matrix by the weight of the arcs with origin in the vertex ei). Consequently,
and conversely, every weighted graph G with set of vertices B and adjacency matrix MG uniquely
determines an evolution algebra A provided with a natural basis B in which structure matrix is
MB(A) = MT

G (thus, we have that the associated graph to (A, B) is G ).
From now on, if A is an evolution algebra and B is a natural basis of A then, we will denote the

graph associated to A relative to B by GB(A).

Example 3. Consider the following weighted digraph Figure 2 taken from R-1578-NSF [20].

Figure 2. Weighted digraph with vertices {C, D, F}. Captured from [20], p. 40. Copyright permission
from The Rand Corporation

The associated evolution algebra A has a natural basis B = {eC, eD, eF} and structure matrix
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MB(A) =

 0 −0.9 −0.05
−0.9 0 0

0 −0.9 0

 .

Note that MT
B(A) is the adjacency matrix of the given graph.

From Theorem 7 we obtain the following result.

Corollary 1. Let A be an evolution algebra, B = {e1, ..., en} a natural basis, and e = e1 + ... + en. Let GB(A)

be the weighted digraph associated to A relative to B. Let MG be the adjacency matrix of GB(A) and σ(MG)

its spectrum.

(i) If A is a non trivial evolution algebra, then σA
m (e) = σ(MG) ∪ {0}.

(ii) If A is a trivial evolution algebra, then σA
m (e) = σ(MG).

The above result and the fact that the evolution operator of A relative to B is the multiplication
operator by the element e = e1 + ... + en, motivate the following definition.

Definition 6. If A is an evolution algebra and B = {e1, ..., en} a natural basis then, we define the evolution
element of A relative to B as e = e1 + ... + en.

Next, we translate the theory of pulse processes on weighted digraphs to the framework of
evolution algebras.

Definition 7. Let A be an evolution algebra and B = {e1, ..., en} a natural basis. We say that A is pulse
(resp. value) stable relative to B, under all autonomous pulse processes, if the associated weighted digraph
GB(A) is pulse (resp. value) stable.

Consequently, a graph G is pulse and/or value stable if, and only if, its associated evolution algebra is pulse
and/or value stable.

If A is not pulse (resp. value) stable relative to a natural basis B, then we say that A is unstable relative
to B.

From Theorem 3, Theorem 4 and Corollary 1, we obtain the following result, where D denotes the
closed unit disk and D the open unit disk.

Theorem 8. Let A be an evolution algebra with a natural basis B = {e1, ..., en}, and let e = e1 + ... + en be
the corresponding evolution element. Then, the following assertions are equivalent:

(i) A is pulse stable relative to B, under all autonomous pulse processes, if and only if σA
m (e) ⊆ D, and it

satisfies that, if λ ∈ σA
m (e) is an eigenvalue in which algebraic and geometric multiplicities do not coincide,

then λ ∈ D.
(ii) A is value stable relative to B, under all autonomous pulse processes, if and only if A is pulse stable relative

to B, under all autonomous pulse processes, and 1 /∈ σA
m (e).

Moreover, the pulse and/or value stability of A under all autonomous pulse processes is equivalent to that
of simple pulse processes.

From the above result, we have that the value stability of A relative to B is equivalent to the fact
that σA

m (e) ⊆ D\{1} and the property that if λ ∈ σA
m (e) is an eigenvalue in which algebraic and geometric

multiplicities do not coincide, then λ ∈ D.

Corollary 2. Let A be an evolution algebra with B = {e1, ..., en} a natural basis, and let e = e1 + ... + en be
the corresponding evolution element. If σA

m (e) ⊆ D, then A is pulse and value stable relative to B, under all
autonomous pulse processes.
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Example 4. Let A be an evolution algebra with a natural basis B = {e1, ..., en}, relative to which the associated
graph is

e1
w12→ e2

w23→ · · ·
w(n−2)(n−1)→ en−1

w(n−1)n→ en.

Then, A is pulse and value stable. This is due to the fact that σA
m (e) = {0}.

Corollary 3. Let A be an evolution algebra with B = {e1, ..., en} a natural basis, and let e = e1 + ... + en be
its evolution element. If σA

m (e) ∩ (C\D) 6= ∅ then, A is pulse unstable under some simple pulse process and,
consequently, value unstable.

5. Pulse Processes, Evolution Algebras, Cycles, And Ideals

The ideals, and mainly the basic ideals of evolution algebras associated to a pulse process, play a
main role in determining the pulse and/or value stability of the given pulse process, as we show next.
In R-1578-NSF (see [20]), the behavior of the so-called “interesting strong connected components” was
checked as a “logical” preliminary test. However, the fact of making clear to what extent the behavior
of such components determines the stability of the whole pulse process was omitted. By means of
the notion of basic ideal we will clarify the role of these “interesting strong connected components”,
showing that such components often determine the stability of the whole pulse process, and giving the
reasons for this.

Recall that a subspace M of a commutative algebra A is said to be an ideal if MA ⊆ M
(which means that A/M is an algebra with the canonical product (a + M)(b + M) = ab + M for
a, b ∈ A). An ideal M of an evolution algebra A is a subalgebra. Nevertheless, an ideal M is not
necessarily an evolution subalgebra. In other words, not every ideal of an evolution algebra has a
natural basis.

Example 5. Let A be the evolution algebra determined by the natural basis B = {e1, e2, e3}, where e2
1 =

e1 + e2 = −e2
2 and e2

3 = e1 − e3 (and eiej = 0 for i 6= j). Then, it is easy to check that the ideal M generated
by e2

1 and e2
3, given by

M = {(α + β)e1 + αe2 − βe3 : α, β ∈ K}, (13)

is an ideal that does not have a natural basis. In fact, it does not exist v1, v2 ∈ M linearly independent and such
that v1v2 = 0, because if v1 = (α + β)e1 + αe2 − βe3 and v2 = (γ + δ)e1 + γe2 − δe3 for α, β, γ, δ ∈ K then
it follows that

v1v2 = ((α + β)(γ + δ)− αγ)u1 + βδu2.

Thus, v1v2 = 0 if and only if (α + β)(γ + δ)− αγ = 0 and βδ = 0. If β = 0, then α(γ + δ)− αγ = 0
with α 6= 0 (as u1 6= 0), so that δ = 0 and hence v1 and v2 are proportional (and, therefore, linearly dependent).
A similar situation is obtained if δ = 0. This proves that M does not have a natural basis.

This motivates the following definition:

Definition 8. Let A be an evolution algebra. An evolution ideal of A is an ideal M having a natural basis
BM (this is an ideal M that, regarded as an algebra, is an evolution algebra).

If A is an evolution algebra and M is an ideal, then A/M is an evolution algebra. In fact,
if B = {e1, ..., en} it turns out that A/M = lin{e1 + M, ..., en + M}, with (ei + M)(ej + M) = 0 + M,
if i 6= j. However the set {e1 + M, ..., en + M} does not need to be linearly independent, as the next
example shows. This means that {e1 + M, ..., en + M} contains a natural basis of A/M, but this set
needs to be linearly independent to become a natural basis of A/M.
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Example 6. Let A be the evolution algebra from Example 5, and B = {e1, e2, e3} the natural basis provided
there. If M is the ideal defined in (13), then we have that e1 + M = −(e2 + M) = e3 + M, so they are
proportional and therefore a natural basis of A/M is given, for instance, by BA/M = {e1 + M}.

An outstanding type of ideals of an evolution algebra are the following ones.

Definition 9. Let A be an evolution algebra. We say that M is a basic ideal of A if M is an evolution ideal
having a natural basis BM such that BM ⊆ BA, for some natural basis BA of A. In this case, more explictly,
we also say that M is a basic ideal relative to the natural basis BA.

Not every evolution ideal of an evolution algebra is a basic ideal.

Example 7. Let A be an evolution algebra and B = {e1, e2, e3} a natural basis such that e2
1 = e3, e2

2 =

e1 + e2 and e2
3 = e3. Then, M = lin{e1 + e2, e3} is an evolution ideal such that any of its natural basis is

contained in (or can be extended to) a natural basis of A; see [22], Example 2.11, for details.

An interesting property of the basic ideals is the following one.

Proposition 1. Let A be an evolution algebra and M a basic ideal of A. If B = {e1, ..., en} is a natural basis of
A such that M is a basic ideal of A relative to B, then the set

BA/M = {e1 + M, ..., en + M}\{0 + M}

is a natural basis of A/M.

Proof. If M = B then the result is obvious. Otherwise, by reordering B if needed, it is not restrictive to
assume that BM = {e1, ..., ek} is a natural basis of M, with 1 ≤ k < n, and B = {e1, ..., ek, ek+1, ..., en}.
Note that the set BA/M is a natural basis of A/M if, and only if, it is linearly independent (as it
generates A/M and (ei + M)(ej + M) = 0 + M if i 6= j). To prove that BA/M is linearly independent,

let α1, ..., αn ∈ K be such that
n
∑

i=1
αi(ei + M) = 0 + M. Since e1, ..., ek ∈ M, we obtain that

n

∑
i=k+1

αi(ei + M) = (
n

∑
i=k+1

αiei) + M = 0 + M.

Therefore, there exists m =
k
∑

β=1
βiei ∈ M such that

n
∑

i=k+1
αiei = m. This means that

β1e1 + ... + βkek − αk+1ek+1 − ...− αnen = 0;

hence, β1 = ... = βk = αk+1 = ... = αn = 0 as B is a basis of A. This shows that the set

{ek+1 + M, ..., en + M}

is linearly independent; hence, BA/M is a natural basis of A/M as desired.

Corollary 4. Let A be an evolution algebra and B = {e1, ..., en} a natural basis. Let M be a basic ideal relative
to B and

BA/M = {e1 + M, ..., en + M}\{0 + M}.

If A/M is pulse and/or value unstable relative to BA/M then A is pulse and/or value unstable relative
to B.
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Proof. From the previous proposition, BA/M is a natural basis of A/M. Let π : A → A/M be the
canonical projection. Note that π is an epimorphism so that, by Theorem 6,

σA/M
m (π(a)) ⊆ σA

m (a), for every a ∈ A.

Taking into account that the canonical projection π transforms the evolution element of A relative
to B (that is e = e1 + ...+ en) into the evolution element of A/M relative to BA/M, the proof is concluded
from Theorem 8.

Note that the graph GB/M(A/M) (that is the graph associated to A/M relative to the natural
basis BA/M = {e1 + M, ..., en + M}\{0 + M}) is the graph that we obtain from GB(A) by deleting all
the nodes ei ∈ B such that ei ∈ M (that is ei + M = 0), as well as the arcs ending in these nodes.

Theorem 9. Let A be an evolution algebra and BA = {e1, ..., en} a natural basis of A. Let M be a proper basic
ideal of A with a natural basis BM such that BM ⊆ BA. Let A/M be the quotient algebra and let eB, eBM and
eBA/M be the evolution elements associated to B, BM and BA/M, respectively.

(i) If σM
m (eBM ) or σA/M

m (eBA/M ) intersect C\D then A is not pulse and value stable relative to B.
(ii) If σM

m (eBM ) ⊆ D and σA/M
m (eBA/M ) ⊆ D then A is pulse and value stable relative to B.

Proof. It is not restrictive to assume that B = {e1, ..., ek, ek+1, ..., en} where BM = {e1, ..., ek},
by reordering B if needed. Consequently, by Proposition 1 we have that

BA/M = {ek+1 + M, ..., en + M}.

Moreover, if MB(A), MBM (M) and MBA/M (A/M) are, respectively, the structure matrices of A
relative to B, of M relative to BM, and of A/M relative to BA/M, then we have

MB(A) =

(
MBM (M) P

0 MBA/M (A/M)

)
, (14)

for a certain k× (n− k) matrix P. Therefore, from [31], Section 3, the eigenvalues of MBM (M) and
MBA/M (A/M) determine those of MB(A), and it follows from Corollary 1 that

σA
m (eB)\{0} = σM

m (eBM )\{0} ∪ σA/M
m (eBA/M )\{0},

and the result is obtained from Corollaries 2 and 3.

Note that an application of Theorem 8, whenever σM
m (eBM ) or σA/M

m (eBA/M ) meets the boundary
of D, connects with the well known Carlson Problem [32].

In the next example, we apply the above theorem to a pulse process considered in R-1578-NSF,
providing a new approach for the analysis achieved there.

Example 8. In the report R-1578-NSF [20], the pulse process for the 10% bus case is given by the following
weighted digraph (see Figure 3 below).

The associated evolution algebra A has a natural basis

B = {eM, eY, eP, eC, eR, eE, eA, eD, eF},

(where eM ≡ passenger miles, eY ≡ fuel economy, eP ≡ population size, eC ≡ cost of the bus system, eR ≡
prize of the ticket, eE ≡ emissions, eA ≡ accidents, eD ≡ average delay, eF ≡ fuel consumption).
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Figure 3. Weighted digraph for the 10% Bus Case. Captured from [20], p. 40. Copyright permission
from The Rand Corporation

The associated structure matrix (whose columns are the coefficients of {eM, eY, eP, eC, eR, eE, eA, eD, eF}
respectively) is given by

MB(A) =



0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 −0.05 0 0 0 0 0 −0.9 0.05
−0.9 −0.05 0 1 0 0 0 −0.9 0.05

0 −0.9 0 1 0 0 0 −0.9 1
0 0 0 0 0 0 0 0 0
0 0 0 −0.9 0 0 0 0 0
0 −0.9 0 0 0 0 0 −0.9 0


(15)

Note that M = lin{eM, eP, eR, eE, eA} is a basic ideal of A. The structure matrix of M relative to the
natural basis BM = {eM, eP, eR, eE, eA} is given by

MBM (M) =


0 1 0 0 0
0 0 0 0 0
−0.9 0 0 0 0

0 0 0 0 0
0 0 0 0 0

 , (16)

whereas the structure matrix of A/M relative to BA/M = {eY + M, eC + M, eD + M, eF + M} is

MBA/M (A/M) =


0 0 0 0
−0.05 0 −0.9 0.05

0 −0.9 0 0
−0.9 0 −0.9 0

 . (17)

Since σM
m (eM) ⊆ D and σA/M

m (eBA/M ) ⊆ D, the pulse and value stability of A relative to B, and hence
the pulse process described by Figure 3, follows from Theorem 9.

There are some types of basic ideals M, of an evolucion algebra A, with the property that the study
of the pulse and/or value stability of A can be reduced to the corresponding study in the quotient
algebra A/M, as we show next.
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Recall that the annihilator of an algebra A is the ideal defined as

An(A) = {a ∈ A : ab = ba = 0, for every b ∈ A}.

If A is an evolution algebra, then the annihilator of A can be obtained from each natural basis of
A, as it is shown in the following proposition ([22], Proposition 2.18).

Proposition 2. Let A be an evolution algebra and B = {e1, ..., en} a natural basis. Then

An(A) = lin{ei : e2
i = 0}. (18)

Consequently, the annihilator of an evolution algebra A is a basic ideal (with respect to any natural
basis of A). The following result shows that this basis ideal is very helpful for determining the stability
of A.

Theorem 10. Let A be an evolution algebra with non-zero annihilator, An(A), and let B = {e1, ..., en} be a
natural basis of A. Then, An(A) = lin{ei : e2

i = 0} is a basic ideal of A, and

BA/An(A) := {ei + An(A) : ei ∈ B with e2
i 6= 0} (19)

is a natural basis of A/An(A). Moreover,

σ
A/An(A)
m (a + An(A))\{0} = σA

m (a)\{0}. (20)

Therefore, A is pulse and/or value stable relative to B if and only if A/An(A) is pulse and/or value stable,
respectively, relative to BA/An.

Proof. As said before, from Proposition 2.18 in [22], we obtain (18) and, consequently, by Proposition 1,
we have that (19) is a natural basis of A/An(A). To prove (20), it is not restrictive to assume that
A is a complex algebra. Let a ∈ A. From Theorem 6 we obtain that σ

A/An(A)
m (a + An(A))\{0} ⊆

σA
m (a)\{0}. On the other hand, if λ ∈ C\{0} is such that λ ∈ σA

m (a), then La − λI is not bijective and,
since dim A < ∞, we have that La − λI is not injective. Thus, there exists b ∈ A such that ab− λb = 0.
Moreover b /∈ An(A) because, in this case, ab = 0, and hence λb = 0, so that b = 0. It follows that
(La+An(A)−λI)(b+ An(A)) = 0+ An(A) with b+ An(A) non-zero, so that λ ∈ σ

A/An(A)
m (a+ An(A))

as desired. This proves (20). The rest is clear, from Theorem 8.

Note that the annihilator of the algebra A/An(A) does not need to be zero, as we show next.

Example 9. In Example 8 we have that An(A) = lin{eC, eE, eA} so that the pulse and/or value stability of A
is equivalent to that of A/An(A) relative to the natural basis BA/An(A) given by

{eM + An(A), eY + An(A), eP + An(A), eC + An(A), eD + An(A), eF + An(A)}.

Since e2
M + An(A) = 0 + An(A), we conclude that the annihilator of the quotient algebra A/An(A) is

not zero.

Recall that a source vertex of a graph is a node with positive outdegree but zero indegree.
This means that the vertex has edges leading from, but not leading to, the node. Conversely, a sink
vertex is a node with positive indegree but zero outdegree, which means that it has edges leading to,
but not from, the node. An isolated node is a vertex with zero indegree and zero outdegree (that means



Mathematics 2020, 8, 387 15 of 20

that no edge starts or ends in this vertex). According to this, if B = {e1, ..., en} is a natural basis of an
evolution algebra A, then we split B as follows:

B = Bisol
·
∪ Bsink

·
∪ Bsour

·
∪ Bstan,

where Bisol is the set of elements in B that are isolated vertices of the associated graph GB(A).
Similarly, Bsink (resp. Bsour) is the set of elements in B that are sink (resp. source) vertices of GB(A),
and Bstan is the set of standard elements in B, which are those nodes in GB(A) having both positive
outdegree and positive indegree.

Looking at the structure matrix MB(A) we have that ei ∈ Bisol if and only if both the i−th row
and the i−th column of MB(A) are zero, respectively. Similarly, ei ∈ Bsink (resp. Bsour) if and only if
the i−th column (resp. arrow) is zero while the i−th row (resp. column) is non-zero. Finally, ei ∈ Bstan

if and only if both the i−th row and the i−th column of MB(A) are non-zero.

Note that according to (18) we have An(A) = lin(Bisol
·
∪ Bsink). Therefore,

BA/An(A) := {ei + An(A) : ei ∈ (Bsour
·
∪ Bstan)}.

Consequently, the structure matrix MBA/An(A)
is nothing but the matrix obtained by removing

from MB(A) the rows and the columns corresponding to the elements in Bisol
·
∪ Bsink. Moreover,

GBA/An(A)
(A/An(A)) is the graph obtained by removing from GB(A) its sinks and the arcs leading

to them.

Theorem 11. Let A be an evolution algebra and B = {e1, ..., en} a natural basis. Let IB := lin(Bsink
·
∪ Bstan).

Then, IB is a basic ideal of A with natural basis

BI = Bsink
·
∪ Bstan.

Moreover, A is pulse and/or value stable relative to B if and only if I is pulse and/or value stable relative to
BI . In fact, if eB and eI denote the respective evolution elements (of A relative to B and of I relative to BI), then

σA
m (eB)\{0} = σI

m(eI)\{0}.

Proof. The fact that BI = Bsink
·
∪ Bstan is a basic ideal of A is obvious, as B is a natural basis of

A and BI ⊆ B. Suppose that Bsink
·
∪ Bstan = {e1, ..., ek} and Bisol ∪ Bsour = {ek, ..., en} which is not

restrictive, by reordering B if needed (note that such a reordering of the elements of B defines an
isomorphism on A and that isomorphisms preserve the spectrum of each element, as shown in
Theorem 6). Then eI = ek + ... + en and eB = e1 + ... + en. If MB(A) is the structure matrix of A relative
to B and MBI (A) is the structure matrix of IB relative to BI , then we have that

MB(A) =

(
MBI (A) P(n−k)×k
0k×(n−k) 0k×k

)

for a certain matrix P(n−k)×k. Since σA
m (eB)\{0} is given by the non-zero eigenvalues of MB(A) and

σI
m(eI)\{0} is given by the non-zero eigenvalues of MBI (A) (see Corollary 1), the result follows from

Theorem 8.

Definition 10. If A is an evolution algebra and if B = {e1, ..., en} is a natural basis, then we define the reduced
ideal of A relative to B as the basic ideal

IB := lin(Bsink
·
∪ Bstan).
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By combining Theorem 10 and Theorem 11, we obtain the following result.

Corollary 5. Let A be an evolution algebra and B = {e1, ..., en} a natural basis. Let IB := lin(Bsink
·
∪ Bstan).

Then, IB/An(A) is an evolution algebra and

BIB/An(A) = {ei + An(A) : ei ∈ Bstan}

is a natural basis of IB/An(A). Moreover, A is pulse and/or value stable if and only if IB/An(A) is pulse
and/or value stable. In fact, if eA is the evolution element of A relative to B and if eBIB/An(A)

is the evolution
element of IB/An(A) relative to BIB/An(A) then

σA
m (eB)\{0} = σ

IB/An(A)
m (eBIB/An(A)

)\{0}.

6. The Reduction Process

Let A be an evolution algebra and B = {e1, ..., en} a natural basis. We define the first spectral

reduction of (A, B) as the couple (IB/An(A), BIB/An(A)) where IB := lin(Bsink
·
∪ Bstan) is the reduced

ideal of A relative to B, and BIB/An(A) is the natural basis of IB/An(A) given by

BIB/An(A) = {ei + An(A) : ei ∈ Bstan}.

If some element in BIB/An(A) is not standard (that is, it is either an isolated, a sink or a source
vertex) then, we repeat the process and define the second spectral reduction of (A, B) as the first
spectral reduction of (IB/An(A), BIB/An(A)). We reiterate the process until we get a reduced natural
basis consisting only of standard elements. Then, we say that this couple is the spectral reduction
of (A, B) and we denote it by (Ared, Bred). Note that, from Corollary 5, the study of the pulse and/or
value stability of A relative to B is equivalent to the study of the stability of Ared relative to Bred.

Example 10. Consider the evolution algebra A with a natural basis B given in Example 8. Then, we have

Bisol = {eA}, Bsink = {eR, eE}, Bsour = {eY, eP}, Bstan = {eM, eC, eD, eF}.

Therefore, IB := lin(Bsink
·
∪ Bstan) = lin{eM, eC, eR, eE, eD, eF}, and

An(A) = lin(Bisol
·
∪ Bsink) = {eR, eE, eA}.

Consequently, the first spectral reduction of (A, B) is the evolution algebra IB/An(A) with natural basis

BIB/An(A) = lin{eM + An(A), eC + An(A), eD + An(A), eF + An(A)},

and structure matrix 
0 0 0 0
0 0 −0.9 0.05
0 −0.9 0 0
0 0 −0.9 0

 .

Note that eM + An(A) is an isolated element of IB/An(A) and that the other elements in BIB/An(A) are
standard. Thus, the spectral reduction of (A, B) is given by the reduced ideal of IB/An(A). Hence, Ared is the
evolution algebra with natural basis

Bred = {eC + An(A), eD + An(A), eF + An(A)},
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and structure matrix  0 −0.9 0.05
−0.9 0 0

0 −0.9 0

 . (21)

It follows that the pulse and/or value stability of A relative to of B is nothing but the pulse and/or value
stability of Ared relative to of Bred. This means that the pulse stability of this system lies on the values of the
variables: cost of the bus system, average delay and fuel consumption (marked in bold in (15)).

We point out that, concerning the pulse and/or value stability of the given system, the role of the remaining
variables is the same if we replace the non-zero value of their weights for another non-zero value (therefore, it does
not matter even if we change the sign of some of these values). In [20], the weighted digraph of Figure 2 is said
to be an “interesting strong component” of the one in Figure 3. Note that the associated graph to the spectral
reduction (Ared, Bred) of (A, B) is precisely such “strong component” {C, D, F}. The associated structure
matrix of (Ared, Bred) is (21), whose spectrum is

σ
Ared
m (ered) = {−0.87,−0.05, 0.92}.

This means that the process is both pulse and value stable. However, since the module of some of these
eigenvalues is close to 1, we deduce that small changes in some of these weights may produce an unstable digraph.
For instance, this is the case if we replace −0.9 in the first column by −1.1 (as shown in [20]).

Example 11. In the report R-1578-NSF [20], the pulse process considered for the 20% bus case is the following
one. (see Figure 4 below).

Figure 4. Weighted digraph for the 20% Bus Case. Captured from [20], p. 41. Copyright permission
from The Rand Corporation.

The corresponding evolution algebra A is given by the natural basis

B = {eM, eY, eP, eC, eR, eE, eA, eD, eF}
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and structure matrix 

0 0 1 0 −0.25 0 0 −0.25 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 −0.04 0 0 0 0 0 −0.85 0.05
−0.85 −0.04 0 1 0 0 0 −0.85 0.05

0 −0.85 0 1 0 0 0 −0.85 1
0 0 0 0 0 0 0 0 0
0 0 0 −0.85 0 0 0 0 0
0 −0.85 0 0 0 0 0 −0.85 0


. (22)

In this case, the annihilator of A is An(A) = lin{eE, eA} and the reduced ideal is given by IB =

lin{eM, eC, eR, eE, eD, eF}. Therefore, the reduced evolution algebra is Ared = IB/An(A) with natural basis

Bred = {eM + An(A), eC + An(A), eR + An(A), eD + An(A), eF + An(A)},

and structure matrix 
0 0 −0.25 −0.25 0
0 0 0 −0.85 0.05
−0.85 1 0 −0.85 0.05

0 −0.85 0 0 0
0 0 0 −0.85 0

 . (23)

Note that M = lin{eM + An(A), eR + An(A)} is a basic ideal of Ared such that

Ared/M = lin{eC + An(A), eD + An(A), eF + An(A)}.

The structure matrix of M relative to BM = {eM + An(A), eR + An(A)} is(
0 −0.25
−0.85 0

)

and BAred/M = {eC + An(A), eD + An(A), eF + An(A)} is a natural basis of Ared/M with structure matrix

MBAred/M (Ared/M) =

 0 −0.85 0.05
−0.85 0 0

0 −0.85 0

 .

Since the corresponding eigenvalues of these matrices (which determine σM
m (eBM ) and σ

Ared/M
m (eBAred/M

))

are contained in D, the pulse and value stability of the whole pulse process follows from Theorem 9.

7. Conclusions

In this paper, we established the connection between the theory of pulse processes and the theory
of evolution algebras. Both theories are enriched with this merged approach. Moreover, since we are
simultaneously dealing with two theories, the motivation increases as it comes from two different
sources. This would be the case of Proposition 1 (for evolution algebras) and Corollary 4 (for pulse
processes).

The approach of Example 8 (also used in the Example 11 when Theorem 9 was applied there)
enlightens the theory of pulse processes. The reduction process also gets it. Moreover, we have
given a meaning to the study of the “interesting strong components” considered in R-1578-NSF [20],
by showing the real role of each one of these components. For instance, in Example 10 we study a
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pulse process considered in R-1578-NSF [20] that according to this report has one interesting strong
component, namely {C, D, F}, presented in Figure 3. We show that such a component is precisely the
weighted digraph associated to the reduced evolution algebra Ared, and consequently this component
determines the pulse and/or value stability of the whole pulse process (the bus case 10%). However,
concerning Example 11, two “interesting strong components” are considered in R-1578-NSF [20],
namely {M, R} and {C, D, F}. The first one corresponds to the pulse process associated to the ideal M
of the reduced evolution algebra Ared described in Example 11, whereas {C, D, F} is that of the quotient
algebra Ared/M. The stability of {C, D, F}, in Figure 4, is a necessary condition for the pulse and/or
value stability of the main process, as deduced from Corollary 4, but it is not sufficient. However,
Theorem 9 shows that the pulse and/or value stability of both components, {C, D, F} and {M, R}, is a
necessary and a sufficient condition for the pulse and/or value stability of the main pulse process (we
gather this new information in Example 11). As we see, not all of the “interesting strong connected
components” in the different pulse processes considered in R-1578-NSF play the same role, and our
algebraic approach helps us to clarify this.

Note that all the “interesting strong components” mentioned above are evolution algebras
of dimension 2 and 3. In [33], all the evolution algebras of dimension 3 were classified in 14
non-isomorphic types of algebras (meanwhile evolution algebras of dimension 2 were classified
in 6 non-isomorphic types). To study if some of these types of evolution algebras are in general more
stable in pulse and/or value than others, justifying the reason for this, may be a topic for future
research. Note that, by Corollary 4, if some quotient algebra A/M of an evolution algebra A, by a
basic ideal M, is unstable (in pulse and/or value) then A is unstable.

Anyway, the combination of the theories of pulse processes and evolution algebras opens a
window to a new and promising field of research in both frameworks.
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