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BACKGROUND: Electronic cigarettes (e-cigarettes) have become popular, in part because they are perceived as a safer alternative to tobacco cigarettes.
An increasing number of studies, however, have found toxic metals/metalloids in e-cigarette emissions.

OBJECTIVE: We summarized the evidence on metal/metalloid levels in e-cigarette liquid (e-liquid), aerosols, and biosamples of e-cigarette users
across e-cigarette device systems to evaluate metal/metalloid exposure levels for e-cigarette users and the potential implications on health outcomes.

METHODS:We searched PubMed/TOXLINE, Embase®, and Web of Science for studies on metals/metalloids in e-liquid, e-cigarette aerosols, and bio-
samples of e-cigarette users. For metal/metalloid levels in e-liquid and aerosol samples, we collected the mean and standard deviation (SD) if these
values were reported, derived mean and SD by using automated software to infer them if data were reported in a figure, or calculated the overall
mean (mean ± SD) if data were reported only for separate groups. Metal/metalloid levels in e-liquids and aerosols were converted and reported in
micrograms per kilogram and nanograms per puff, respectively, for easy comparison.

RESULTS: We identified 24 studies on metals/metalloids in e-liquid, e-cigarette aerosols, and human biosamples of e-cigarette users. Metal/metalloid
levels, including aluminum, antimony, arsenic, cadmium, cobalt, chromium, copper, iron, lead, manganese, nickel, selenium, tin, and zinc, were pres-
ent in e-cigarette samples in the studies reviewed. Twelve studies reported metal/metalloid levels in e-liquids (bottles, cartridges, open wick, and
tank), 12 studies reported metal/metalloid levels in e-cigarette aerosols (from cig-a-like and tank devices), and 4 studies reported metal/metalloid lev-
els in human biosamples (urine, saliva, serum, and blood) of e-cigarette users. Metal/metalloid levels showed substantial heterogeneity depending on
sample type, source of e-liquid, and device type. Metal/metalloid levels in e-liquid from cartridges or tank/open wicks were higher than those from
bottles, possibly due to coil contact. Most metal/metalloid levels found in biosamples of e-cigarette users were similar or higher than levels found in
biosamples of conventional cigarette users, and even higher than those found in biosamples of cigar users.
CONCLUSION: E-cigarettes are a potential source of exposure to metals/metalloids. Differences in collection methods and puffing regimes likely con-
tribute to the variability in metal/metalloid levels across studies, making comparison across studies difficult. Standardized protocols for the quantifica-
tion of metal/metalloid levels from e-cigarette samples are needed. https://doi.org/10.1289/EHP5686

Introduction
Electronic cigarettes (e-cigarettes) are battery-operated devices
that generate aerosols by heating a liquid solution (e-liquid with or
without nicotine) with a metal coil (Bansal and Kim 2016; Mishra
et al. 2017). The use of e-cigarettes is increasing among both for-
mer smokers and young adults who have never smoked due to the
perception of safety (Goniewicz et al. 2013) and appealing flavors
(Farsalinos et al. 2015; Zare et al. 2018). There is increasing evi-
dence, however, on the toxicity of e-cigarettes to the lungs and
other organs and systems (Dinakar and O’Connor 2016; Layden
et al. 2019; NASEM 2018). Numerous studies, moreover, have
measured elevated levels of toxic organic and inorganic chemicals
in e-cigarette liquid (Beauval et al. 2017; Dunbar et al. 2018;
Kamilari et al. 2018; Palazzolo et al. 2017; Song et al. 2018) and

aerosols (Goniewicz et al. 2014; Klager et al. 2017; Mikheev et al.
2016; Tayyarah and Long 2014;Williams et al. 2013).

The presence of metals and metalloids (e.g., arsenic, chromium,
lead, nickel) in e-cigarette aerosols is a major concern, given their
serious health effects, including cancer (García-Esquinas et al.
2014; Kuo et al. 2017), cardiovascular disease (Chowdhury et al.
2018; Moon et al. 2012), renal damage (Suwazono et al. 2006), and
neurotoxicity (Sankhla et al. 2017).Metals/metalloidsmay originate
from the coil (Farsalinos et al. 2015; Olmedo et al. 2018) and from
soldered joints and other parts of the device (Williams et al. 2017).
Commonly used coils are made of alloys {e.g., kanthal [iron (Fe),
chromium (Cr), and aluminum (Al)], nichrome [nickel (Ni) and Cr],
or high-purity metals (e.g., Ni or titanium)} (Farsalinos et al. 2015;
Olmedo et al. 2018). Tin (Sn) and other metals are used in soldered
joints (Williams et al. 2015). E-liquids may also contain arsenic
(As) and other metals/metalloids at varying levels (Beauval et al.
2016; Olmedo et al. 2018; Zhao et al. 2019).

The contribution of e-cigarettes to metal/metalloid exposure is
not fully understood, particularly because of the rapidly changing
nature of devices and e-liquids. E-cigarettes can be classified into
three types: cig-a-like, tank, and pod devices (Williams and Talbot
2019; Williams et al. 2019a; Williams et al. 2019b). Cig-a-likes
look similar to conventional cigarettes and have small disposable
liquid cartridges. Tanks (clearomizer and mod) have a larger
capacity to store refill fluid in comparison with cig-a-likes, and
users can change coils and adjust power based on their preference.
Most pod devices resemble USB drives; they have small cartridges
or pods that are disposable (or refillable in the newest versions). As
of 2014, ∼7,000 e-liquids were available in the U.S. market with a
wide range of flavors, nicotine content, and chemical compositions
(Zhu et al. 2014). Device design, e-liquid composition, andoperation
preferences can affect the metal/metalloid levels that e-cigarettes
deliver to users (Williams et al. 2019b; Zhao et al. 2019). To
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demonstrate internal exposure to toxic metals associated with
e-cigarette use, metal/metalloid levels have not only been meas-
ured in e-liquids and aerosols but also in human biosamples such
as urine (Aherrera et al. 2017; Goniewicz et al. 2018; Jain 2018),
saliva (Aherrera et al. 2017), serum (Badea et al. 2018; Jain
2018), and blood (Jain 2018) collected from e-cigarette users.

Reviews on e-cigarettes have summarized e-cigarette develop-
ment (Cooke et al. 2015; Glasser et al. 2017), their impact on
decreasing smoking use (Kalkhoran and Glantz 2016; Rahman
et al. 2015), health and physiological effects (Hajek et al. 2014;
Pisinger and Døssing 2014; Zucchet et al. 2017), and effects of
vaping on indoor air quality (Fernández et al. 2015; Zainol Abidin
et al. 2017). Some of these reviews reported on metal levels; in
addition, two systematic reviews have specifically evaluated
metals/metalloids in cig-a-like cartomizers (Mishra et al. 2017)
and in e-cigarette aerosols (Gaur and Agnihotri 2019). Overall,
previous reviews reporting on e-cigarette–related metal/metalloid
levels focused on aerosols, e-liquids, or human biosamples, sepa-
rately. Moreover, none of the reviews systematically evaluated
metals/metalloids across multiple samples in comparable metrics.

In this systematic review, we included studies that measured
metal/metalloid levels in e-liquids (bottle, cartridge, open wick,
and tank), e-cigarette aerosols (from cig-a-like and tank), and
human biosamples (urine, saliva, serum, and blood) of e-cigarette
users. The objective was to summarize the range of metal/
metalloid levels across e-cigarette device systems to better
understand the metal/metalloid levels e-cigarette users are
exposed to and the potential implications on health outcomes.

Methods

Data Sources and Search Strategy
We searched PubMed/TOXLINE, Embase®, and Web of Science
through 19 July 2018, using keywords and Mesh terms listed in
“Search strategies” in the Supplemental Material. The Preferred
Reporting Items for Systematic Review and Meta-Analyses
(PRISMA) guidelines were followed to identify the studies on
metals/metalloids in e-cigarette liquid, aerosol, and human bio-
samples of e-cigarette users with no language restrictions.

Study Selection
Two research groups independently developed search strategies and
executed literature searches; three authors (D.Z., A. Aravindakshan,
and A. Aherrera) conducted title and abstract screening independ-
ently, followed by full text reviews conducted by two authors (D.Z.
and A. Aravindakshan) independently, after which both searches
were combined. Conflicts regarding manuscripts to include and in
the data abstracted by each of the two authors independently were
resolved through review of the original manuscripts and consensus
with four other authors (A.Aherrera, A.N.-A., A.R., andM.H.).

We included studies published between January 2008 and July
2018. Studies prior to 2008 were excluded because e-cigarettes
were introduced in the U.S. market in 2007 (Regan et al. 2013). To
be included, studies must have quantified metal/metalloid levels in
e-cigarette liquids, e-cigarette aerosols, and/or human biosamples
from e-cigarette users. A hand search was conducted after complet-
ing the search process in the bibliographic databases, but during the
record screening and full text review process, we found three addi-
tional papers related to metals in e-cigarettes that met the search cri-
teria. E-liquid was classified as coming from the bottle (with no
contact with the heating coil), from cartridges or pods (where the
e-liquid is in contact with the coil), and from open wick and tanks
(where the e-liquid is in contact with the coil and the samples were
often collected after vaping the device). Studies measuring metals/

metalloids only in indoor air (reflecting secondhand exposure to e-
cigarette aerosols) were excluded from this review (Liu et al. 2017;
O’Connell et al. 2015; Oldham et al. 2017; Saffari et al. 2014;
Schober et al. 2014).We placed no restriction on the type or genera-
tion of e-cigarette device and/or e-liquid, the method of sample col-
lection, or the method ofmetals/metalloids analysis. Secondary data
and reviewswere excluded.

Data Extraction
For each study, the following data were collected: citation (author/
year), source of e-cigarettes/e-liquids (online, local outlet, manufac-
turer), device/e-liquid brand, device type (cig-a-likes, tanks, pods),
e-liquid container (bottle, cartridge, openwick, tank), e-liquid flavor,
nicotine content, puffing protocol, type of coil (nichrome, kanthal,
other, not reported), whether the study accounted for background
concentration (considered unaccounted for if notmentioned), sample
size, analytical methods for metals/metalloids detection, and sum-
mary data ofmetal/metalloid levels. If the informationwas not avail-
able in the publishedmanuscript, we contacted the study authors. For
e-liquid and aerosol samples, we collected or derived the mean and
standard deviation (SD). For human biosamples, we collected the
median and interquartile range (IQR) or the geometric mean (GM)
and 95% confidence interval (CI). For studies reporting metal/metal-
loid summary data bothwith andwithout background correction, we
abstracted and reported values that accounted for background metal/
metalloid levels (subtraction of metal/metalloid levels assessed in
blanks or controls to account for interference or external contamina-
tion). For nicotine content, if only the volume fraction of nicotine
(%) was provided, nicotine density of 1:01 g=ml (Oldham et al.
2018) was used to convert this number into a mass concentration
(mg/ml).

Metal/Metalloid Data Synthesis
Several decisions were made in order to report and summarize metal
levels in comparablemetrics across studies. For studies reporting data
in the form of plots (Mikheev et al. 2016; Williams et al. 2015), we
used automated software tools to infer the underlying mean (SD) val-
ues [Origin (version 9.0; OriginLab Corporation)]. For studies that
reported metal/metalloid levels for individual samples but not the
mean (SD) (Beauval et al. 2016, 2017), we calculated the mean (SD).
If metal/metalloid levels were below the limit of detection (LOD) and
the study reported the original data but not the mean (SD), we
replaced values below the LOD by LOD=

p
2 before calculating the

mean (SD) (Beauval et al. 2016, 2017; Kamilari et al. 2018;
Margham et al. 2016; Song et al. 2018; Tayyarah and Long 2014).
For studies reporting themean (SD) formultiple groups (e.g., by nico-
tine levels, by differentflavors) (Goniewicz et al. 2014;Kamilari et al.
2018; Talio et al. 2015, 2017; Tayyarah and Long 2014), we calcu-
lated the weighted mean and total SD to facilitate summary and com-
parison across studies and device types after confirming therewere no
major differences across flavors and nicotine levels. The total SDwas
estimated because it accounts for the SD within the groups as well as
among the groups (Sharma 2006). For some studies, therewere insuf-
ficient data to estimate the SD because only means were reported,
with no estimation of variability around those point estimates
(Beauval et al. 2017; Dunbar et al. 2018; Margham et al. 2016;
Palazzolo et al. 2017; Song et al. 2018; Williams et al. 2013;
Williams et al. 2017; Zhao et al. 2018). The study by Olmedo et al.
(2018) reportedmedians instead of means (SDs) in the original publi-
cation, but we calculated them directly from the original data. For the
study that reported two aerosol size fractions of particulate matter
(PM0:1 and PM0:1–2:5), we kept only the PM0:1, because it is likely
inhaled deep into the lungs, and metals/metalloids were not detected
in the PM0:1–2:5 (Zhao et al. 2018).
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Most studies of e-liquids reported metals/metalloids in micro-
grams per kilogram. For easy comparison, for studies reporting
e-liquid metal/metalloid levels in micrograms per liter (Beauval
et al. 2017; Hess et al. 2017; Palazzolo et al. 2017; Talio et al.
2015, 2017; Zhao et al. 2018) and parts per billion (ppb)
(Beauval et al. 2016; Dunbar et al. 2018; Song et al. 2018), those
concentrations were converted to micrograms per kilogram,
assuming the e-liquid density was 1:16 g=ml (Sleiman et al.
2016). Most studies of aerosols reported metals/metalloids in ng
per puff. For studies reporting aerosol metal/metalloid levels in
other units (Beauval et al. 2017; Goniewicz et al. 2014; Mikheev
et al. 2016; Olmedo et al. 2018; Palazzolo et al. 2017; Williams
et al. 2013, 2015, 2017; Zhao et al. 2018), we converted them to
ng per puff. For the study by Mikheev et al. (2016) that reported
aerosol metal/metalloid levels in nanograms per milligram of
total PM (TPM), we used the average mass of TPM per puff of
2 mg to convert nanograms per milligram TPM to ng per puff.
For the study by Olmedo et al. (2018) that reported aerosol
metal/metalloid levels in micrograms per kilogram, we first con-
verted micrograms per kilogram to milligrams per cubic meter
using the equation described in the original paper (Ci = hi × mtot

Vair
),

and then converted milligrams per cubic meter to nanograms per
puff using the conversion factor of 6:67× 10−5 m3=puff (Olmedo
et al. 2018). The study by Zhao et al. (2018) reported aerosol
metal/metalloid levels (nanograms per milligram) in PM with an
aerodynamic diameter of ≤0:1 lm (PM0:1). To facilitate compar-
ison with the other studies, we estimated the mass of metals/met-
alloids per puff from the total aerosol mass (measured in PM0:1)
collected in 10 min divided by the number of puffs (17.65 puffs
based on an inter-puff time of 30 s and puff duration of 4 s pro-
vided by their study) and multiplied by the metals/metalloids
mass fraction (Zhao et al. 2018).

Quality Assessment
We conducted a quality assessment for each study using the
QualSyst tool for systematic reviews of quantitative studies (Kmet
et al. 2004), which draws upon existing published tools, including
instruments developed by Cho and Bero (1994) and Timmer et al.
(2003). QualSyst uses a set of 14 criteria for the reporting of study
objectives, design, methods, analysis, results, and conclusions to
derive a final numerical score and to allow quantitative means of
assessing research quality among the different studies. To account
for different biases, we adapted this list to include specific items per-
tinent to e-cigarette devices (device characteristics reported; e-liquid
characteristics reported) and elaborate on certain criteria (Table S1),
resulting in a total of 17 criteria.

Each criterion on theQualSyst tool is given a score ranging from0 to
2 (yes or criteria fulfilled = 2, partial or criteria partially fulfilled= 1,
no or criteria not reported or conducted= 0). Items that were not ap-
plicable to the study design were marked “N/A” and were excluded
from the calculation. A summary score for each study was obtained
by calculating the total sum and dividing by the total possible sum
(Kmet et al. 2004). Rather than being considered as a factor for
inclusion criteria, the summary scores were used to categorize
articles as strong (>0:80), good (0.71–0.79), adequate (0.50–0.70),
or limited (<0:50) in research quality (Lee et al. 2008; Maharaj and
Harding 2016).

Results

Study Characteristics
Two research groups developed search strategies independently.
The search strategy retrieved a total of 728 individual studies by
search A, including 118 duplicates and 320 studies by search B,

including 112 duplicates (Figure 1). After abstract and full text
review, a total of 24 individual studies met the inclusion criteria,
including 3 studies identified through hand search (Badea et al.
2018; Goniewicz et al. 2018; Jain 2018).Of the 21 studies not count-
ing the 3 found through manual search, 14 were identified both by
search A and search B, 17 were identified by search A, and 18 were
identified by search B. Among those 24 studies, 12 reported data on
metals/metalloids in e-liquids [9 from bottle, 4 from cartridges (3
from cig-a-likes and 1 from pod), 1 from an open wick, 1 from both
bottles and cartridges, and 1 from the tank after heating]. (The sum
of the types of samples is higher than 12 because some studies col-
lectedmultiple types of samples) (Table 1). Twelve reported data on
metals/metalloids in e-cigarette aerosols (8 from cig-a-likes, 3 from
tank devices, and 1 from both cig-a-like and tank devices) (Table 2),
and 4 reported data on metals/metalloids in human biosamples of e-
cigarette users (Table 3).

The number of metals/metalloids analyzed across studies was
diverse, and some metals/metalloids (Be, Hg, Si, Tl, and V) were
analyzed only in either e-liquid or aerosol in two studies (Table
S1; Table S2). We prioritized metals/metalloids that were ana-
lyzed in at least three studies: Al, antimony (Sb), As, cadmium
(Cd), cobalt (Co), Cr, copper (Cu), Fe, lead (Pb), manganese
(Mn), Ni, selenium (Se), Sn, and zinc (Zn). Among these metals/
metalloids, Cd and Pb were the most commonly determined in
e-liquids, and Cu and Ni were the most commonly determined in
aerosols. For easy comparison, metal/metalloid levels in e-liquid
and aerosol samples from e-cigarette devices were converted to
the same units (micrograms per kilogram and nanograms per
puff, respectively). Metal/metalloid levels in e-liquid and aerosol
samples before (Table S2; Table S3) and after conversion (Table
4; Table 5) are both provided. We report the mean metal/metal-
loid levels for e-liquid samples grouped according to the source
of the e-liquid (bottle, cartridge, open wick, and tank) and for aer-
osol samples grouped according to device type (cig-a-likes and
tanks; no study reported aerosol metal levels in pods during the
search period).

Metal/Metalloid Levels in e-Liquids
Twelve studies published between 2015 and 2018 met the inclu-
sion criteria for the analysis of metals/metalloids in e-liquids
(Table 1). E-liquids for metals/metalloids analysis were collected
from the bottle (no contact with the heating coils) in 9 studies, from
the cartridge (cig-a-likes) in 3 studies, from the pods (JUUL) in one
study, from the open wicks in one study, from both bottles and car-
tridges reported together in one study, and from the tanks after
heating the aerosol in one study (the sum of the types of samples is
higher than 12 because some studies collected multiple types of
samples). E-cigarettes were obtained from themanufacturers, local
or online stores, or e-cigarette users. The studies assessed between
1 and 10 e-liquid brands and between 1 and 9 flavors. The reported
nicotine levels ranged from 0 to 24 mg=ml. The number of differ-
ent e-liquid samples in individual containers of different brand, fla-
vor, or nicotine content ranged from 1 to 56, and the total number
of samples analyzed for metal concentrations including replicates
ranged from 3 to 132. Seven studies used inductively coupled
plasma mass spectrometry (ICP-MS) to quantify element levels in
e-liquids; others used atomic absorption spectrometry (AAS)
(Dunbar et al. 2018), total reflection X-ray fluorescence (Kamilari
et al. 2018), molecular fluorescence (Talio et al. 2015; Talio et al.
2017), and sector field inductively coupled plasma mass spectrom-
etry (SF-ICP-MS) (Zhao et al. 2018). Three studies used a mixture
solution of propylene glycol and glycerol as blank e-liquids to
assess matrix effects (Beauval et al. 2016; Olmedo et al. 2018;
Palazzolo et al. 2017); other studies did not report metal/metalloid
background correction.
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Metal/metalloid levels in e-liquid samples not in contact with
the heating coil (bottle) were generally lower than levels in most
e-liquid samples collected from cartridges or from open wicks/
tanks, which had already been in contact with the coil (Table 4;
Figure S1); however, for most metals, mean levels varied
between 1 and 3 orders of magnitude across studies even within
similar types of e-liquid samples.

Metal/Metalloid Levels in Aerosols of e-Cigarettes
Twelve studies published between 2013 and 2018 met the inclu-
sion criteria for metals/metalloids in e-cigarette aerosols gener-
ated by cig-a-likes (n=8), tank devices (n=3), and both cig-a-
like and tank devices (n=1) (Table 2). Studies of aerosols are
particularly important because these samples reflect the metal/
metalloid levels inhaled by the user. E-cigarettes were obtained
from the manufacturers, local or online stores, or e-cigarette
users. The studies assessed between 1 and 11 device brands. The
e-liquids assessed included between 1 and 7 flavors, with nicotine
levels ranging from 0 to 45 mg=ml. The puffing protocols to col-
lect the aerosols were widely different, although seven studies
used the same puff duration (4 s per puff). The total number of
puffs ranged from 4 to 150. Background metal/metalloid levels
were used to correct aerosol metal/metalloid levels in all studies
except in Lerner et al. (2015). Nine studies used ICP-MS or
inductively coupled plasma optical emission spectrometry (ICP-

OES), one study used AAS (Lerner et al. 2015), one study used
ICP-MS and AAS (Margham et al. 2016), and one used SF-ICP-
MS (Zhao et al. 2018) to quantify metal/metalloid levels. The
number of different devices evaluated ranged from 1 to 56, and
the total number of aerosol samples ranged from 3 to 108.

Studies of aerosol samples showed generally higher metal/
metalloid levels in samples from tank devices in comparison with
levels in cig-a-likes (Table 5; Figure S2). It is also important to
compare metals found in the aerosol samples with those found in
e-liquid samples. Al, Fe, Ni, and Zn were found in studies look-
ing at e-liquids and aerosols, whereas Cr, Cu, and Pb were more
consistently found in aerosols. Notably, Cd levels were low and
even undetectable in both e-liquid and aerosol samples in several
studies. Only four studies compared metal/metalloid levels meas-
ured in the e-liquid and the corresponding aerosol from the same
device (Beauval et al. 2017; Olmedo et al. 2018; Palazzolo et al.
2017; Zhao et al. 2018). These studies allow us to compare
changes in metal/metalloid levels before and after the e-liquid is
in contact with the device, which can contribute to identifying the
source and processes that determine metal/metalloid contamina-
tion in e-cigarettes. With the exception of Beauval et al. (2017),
where metal/metalloid levels in the aerosol were comparable
with those of the e-liquid samples, studies found markedly higher
levels in the aerosol than in the e-liquid samples. Zhao et al.
(2018) detected Zn only in the e-liquid formulation but found Al,
Cu, Fe, Mn, Ni, Pb, and Zn in aerosols. Similarly, Palazzolo et al.

Figure 1. Summary of the search and screening process. *The number of studies in the final box adds to 28 instead of 24 because some studies reported data
both for e-liquid and aerosol metal/metalloid levels. Of the 21 studies (not counting the 3 found through manual search), 14 had been identified by both
searches, 17 were identified by search A and 18 were identified by search B.
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(2017) found higher Al, As, Ni, and Zn in aerosols in comparison
with the liquids before aerosolization. Olmedo et al. (2018)
reported markedly higher metal/metalloid levels in the aerosols,
with Pb and Zn aerosol levels 25 times higher, and Cr, Ni, and Sn
levels 6 times higher than levels in the bottle samples. Still higher
metal/metalloid levels were found in the remaining e-liquids
from the tank after vaping, with Cr, Cu, Ni, Pb, and Zn aerosol
levels being more than 35 times higher than levels in the bottles.

Metal/Metalloid Levels in Biosamples of e-Cigarette Users
Four studies reported metal/metalloid levels in biosamples of
e-cigarette users (Table 3). Aherrera et al. (2017) recruited 64 daily
e-cigarette users from Maryland in the United States (5 users of
cig-a-like devices and 59 users of mod devices), including 50 sole
e-cigarette userswho had never smoked before or had quit smoking
at least 3 months prior and 14 dual users (users of both e-cigarettes
and cigarettes) who smoked traditional cigarettes at least weekly.
Badea et al. (2018) recruited 34 e-cigarette users (device type not
reported) who were former smokers, 58 nonsmokers, and 58 con-
ventional smokers from Brasov, Romania. All e-cigarette partici-
pants in this study were sole e-cigarette users (dual users of
e-cigarettes and traditional cigarettes were excluded from the
study). Goniewicz et al. (2018) used data of 5,105 U.S. adults (247
e-cigarettes–only users, 2,411 cigarette-only smokers, 792 dual
users, and 1655 never tobacco users) from the Population Assess-
ment of Tobacco and Health Study in the United States (PATH
2013–2014). Jain (2018) used data from cigars, cigarettes, and
e-cigarettes users from the 2013–2014 National Health and
Nutrition Examination Survey (NHANES) in the United States (23
e-cigarette–only users, 417 conventional cigarette-only users, and
43 cigar-only users). All studies used ICP-MS for metal/metalloid
analysis. The number of e-cigarette users across the four studies
ranged from 23 to 247.

Three studies reported metal/metalloid levels in urine in micro-
grams per liter (Aherrera et al. 2017; Jain 2018) and in micrograms
per gram creatinine (Goniewicz et al. 2018; Jain 2018). Most met-
als/metalloids (As, Ba, Be, Cd, Cr, Mn,Mo, Ni, Pb, Sb, Sn, andW)
were reported in only one study. Four metals/metalloids (Co, Sr,
Tl, and U) were reported in two studies, although in different units.
In PATH and NHANES, no statistically significant differences
were found in the urinary Ba, Be, Co,Mo,Mn, Sb, Sn, and Tl levels
of e-cigarette users and cigarette smokers (Goniewicz et al. 2018;
Jain 2018) (Table S4), except urinary Sr levels, which were higher
among e-cigarette users in comparison with cigarette smokers and
cigar users (Jain 2018), and urinary Cd levels, which were signifi-
cantly lower in e-cigarette users (Goniewicz et al. 2018). Neither
PATH norNHANES hasmeasured Ni or Cr.

Among studies reporting metal/metalloid levels in serum
(n=2) (Badea et al. 2018; Jain 2018), most metals/metalloids
(Ag, As, Ba, Be, Cd, Co, Fe, Hg, Mn, Mo, Ni, Pb, Pd, Sb, Sn, Sr,
Th, Tl, U, and V) were reported in only one study. Both studies
reported Cu, Se, and Zn in the serum of e-cigarette users. In
NHANES, serum Cu and Se were higher in e-cigarette users in
comparison with both cigar and cigarette users in adjusted mod-
els, even though the results were not statistically significant (Jain
2018). In e-cigarette users from Romania, levels of Ag, Se, and V
were higher among e-cigarette users in comparison with levels
found among nonusers and cigarette smokers (Badea et al. 2018).

One study reported Cr and Ni in urine, saliva, and exhaled
breath condensate (EBC) (micrograms per liter) of e-cigarette
users (Aherrera et al. 2017). This study is the only one correlating
measures of metals/metalloids reported in the aerosol of the
e-cigarette devices used by the users with metal/metalloid levels
in urine, saliva, and EBC. In comparison with the lowest tertile,
participants in the two highest tertiles of aerosol Ni showed 16%T
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and 72% higher urinary Ni (p-trend 0.03), and 202% and 321%
higher saliva Ni (p-trend 0.01), whereas no association was found
with EBC (adjusted for sociodemographic). For aerosol Cr, the
corresponding comparison showed 98% and 193% higher saliva
Cr (p-trend 0.02), with no association with EBC. In NHANES,
e-cigarette users had significantly higher blood Mn levels in com-
parison with levels in cigar users in adjusted models (p-trend
0.02) (Jain 2018).

E-cigarette use behaviors may influence metal/metalloid expo-
sure because e-cigarette users who changed their heating coils
more frequently and consumed more e-liquid per week were asso-
ciated with higher urinary Ni levels (Aherrera et al. 2017), and
being a “daily” e-cigarette user (vs. being a “some days” user) was
associatedwith having significantly higher urinary Pb and Sr levels
(Goniewicz et al. 2018).

Quality Assessment
Overall, the majority of studies were ranked as “strong” (71%) in
research quality, whereas fewer were ranked as either “good”
(18%) or “adequate” (11%). None of the studies were “limited”
(score<0:50) in research quality. The studies ranked as “good”
or “adequate” lacked or had an incomplete report of important
aspects of the study protocols in the published manuscript, such
as estimates of variance for the main results (Song et al. 2018;
Flora et al. 2016; Zhao et al. 2018; Williams et al. 2013;
Mikheev et al. 2016), information on limits of detection or quan-
tification (Song et al. 2018; Zhao et al. 2018; Williams et al.
2013; Lerner et al. 2015; Mikheev et al. 2016), report of blanks
and background correction (Song et al. 2018; Flora et al. 2016;
Zhao et al. 2018; Lerner et al. 2015; Badea et al. 2018), labora-
tory quality control (Song et al. 2018; Flora et al. 2016; Williams
et al. 2013; Lerner et al. 2015; Mikheev et al. 2016), and meas-
ures of central tendency (Song et al. 2018; Flora et al. 2016;
Zhao et al. 2018; Mikheev et al. 2016). This assessment demon-
strates the need to standardize the reporting of vaping conditions
in the study of e-cigarette contaminants.

Discussion
Numerous metals/metalloids—Al, Sb, As, Cd, Co, Cr, Cu, Fe,
Pb, Mn, Ni, Se, Sn, and Zn—were present in e-cigarette samples
in the studies reviewed. For most metals/metalloids, levels were
heterogeneous according to sample (e-liquid, aerosol), source of
the sample (bottle, cartridge, open wick tank), and device type
(cig-a-likes and tank). Studies of biosamples support the hypothe-
sis that e-cigarettes are a source of metals/metalloids because
most metal/metalloid biosample levels, with the exception of Cd,
were similar or even higher in e-cigarette users in comparison
with conventional cigarette users, and higher in comparison with
cigar users. The direct comparison of metal/metalloid aerosol lev-
els to human biosample levels (Aherrera et al. 2017) also pro-
vides direct support for the hypothesis that aerosol metals/
metalloids are inhaled and absorbed by the e-cigarette user.

In comparison with conventional cigarettes, e-cigarette aero-
sols may result in less exposure to Cd but not to other toxic
metals/metalloids found in tobacco. In the United States, the
highest metal/metalloid levels in mainstream smoke of conven-
tional cigarettes were for Cd (<5:0–80 ng=cigarette), followed by
Pb (<5:0–23 ng=cigarette), whereas other metal/metalloid levels
were markedly lower (As, Co, Cr, Mn, Ni) or undetectable
(Ni, Cr) (Pappas et al. 2014). In cig-a-like devices, such as Blu®
e-cigarettes, Lerner et al. (2015) measured Cu levels, which were
6.1 times higher than those previously measured in conventional
smoke (Stohs et al., 1997); in tank devices, aerosol levels of Cr
and Ni were higher than, and Pb and Zn levels were similar to,T
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levels measured from conventional cigarette smoke (Olmedo et al.
2018).

As indicated, most e-liquids sampled from cartridges or from
tanks or open wicks that were in contact with the coil had higher
metal/metalloid levels in comparison with levels in e-liquids
sampled from the bottle. Numerous studies have shown that
e-liquids in contact with heating coils like nichrome or kanthal
(Olmedo et al. 2018; Palazzolo et al. 2017; Williams et al. 2013,
2015, 2017; Zhao et al. 2018) facilitate leaching of metals/metal-
loids into the liquid present in the tank or cartomizer. A recently
published study showed that metals (Cu, Ag, Ni, Si, Ca, Al, Mn,
Zn, and Sn) were used in various device components, such as
thick wires, wicks, sheaths, and joints (Williams et al. 2019a).
These device components may also transfer metals/metalloids
into the e-liquid because the presence of brass clamps and copper
wires with silver coatings have been associated with higher Zn,
Cu, Ag, and Al in the aerosol (Williams et al. 2013, 2017).
Furthermore, the presence of soldered joints of poor quality or
with signs of fraying were associated with higher Sn levels
(Williams et al. 2013, 2015, 2017), emphasizing that poor manu-
facturing techniques (Loewenstein and Middlekauff 2017) make
a notable contribution to potential metal impurities that may
reach the user. The e-cigarette user’s vaping regimen, which
includes modifications in voltage, resistance, temperature, and
puff duration, may also play a role in the degradation of the heat-
ing coils and other metal elements, and in turn modify the aerosol
composition and degree of metal/metalloid exposure, although
few studies have evaluated their contribution.

Inhaled metals/metalloids are rapidly absorbed through the re-
spiratory tract (Nordberg et al. 2007; Henry et al. 2019), and those
that were detected in the studies in this review have been associated
with serious adverse health effects. For instance, the lung is the
most sensitive target of Ni toxicity, and lung inflammatory changes
have been observed at the lowest adverse effect levels (ATSDR
2005a). Inhaled Ni exposure is also related to induced rhinitis and
sinusitis in humans (Nordberg 2007). Several cases of Ni induced
allergic dermatitis have been related to e-cigarette use (Maridet
et al. 2015; Ormerod and Stone 2017). In a recent study, 89%–
100% of aerosol samples of tank devices (n=54) exceeded the
minimum risk levels for Ni inhalation (Zhao et al. 2019). No study,
however, has measured the chemical form of Ni in the aerosols. Ni
speciation could contribute to determining the health implications
of Ni exposure from e-cigarette use. Ni and Cr are established inha-
lation carcinogens (IARC 2012a, 2012b) and have also been asso-
ciated with decreased lung function, increased risk of asthma,
bronchitis (Nordberg 2007), and cardiovascular disease (Nigra
et al. 2016). Although total Cr is reported in these studies, there is
concern regarding Cr (III)’s carcinogenic potential due to the pos-
sible oxidation of Cr (III) to Cr (VI) within the oxygen-rich envi-
ronment of lungs (U.S. EPA 2000). Pb, which requires only low
levels of exposure to result in health effects (Lin et al. 2006), is
associatedwith increased risk of cardiovascular and kidney disease
and is amajor neurotoxicant, particularly for children and the aging
population (Fadrowski et al. 2010; Navas-Acien et al. 2007).
Several studies have reported that exposure to secondhand smoke
increases blood Pb levels in U.S. children (Apostolou et al. 2012;
Mannino et al. 2003); considering the relatively high levels of Pb
in e-cigarette aerosols, increased blood Pb levels in young adults
who use e-cigarettes is possible. Mn, which is an essential nutrient
through ingestion, has been linked to an irreversible Parkinson’s-
like disease known as manganism if inhaled (Aschner et al. 2005).
Cu is known to cause respiratory irritation, coughing, sneezing,
chest pain, and runny nose through inhalation (U.S. DHHS 2004).
In an in vitro study, exposure of human lung fibroblasts to Cu nano-
particles from e-cigarette aerosols increased mitochondrial

oxidative stress and DNA fragmentation (Lerner et al. 2016).
Exposure to Al at high levels can lead to impaired lung function
and fibrosis as well as decreased performance in motor and cogni-
tive function (U.S. DHHS 2008). Fe was shown to be associated
with metal fume fever, siderosis, and fibrosis in a study of 78 iron
and steelworkers (Johnson et al. 1985), whereas Zn can cause chest
pain, dyspnea, metal fume fever, and shortness of breath (ATSDR
2005b). Last, As is highly toxic to numerous organs and body sys-
tems, and exposure to inorganic As is associated with cancer and
cardiovascular disease (Saint-Jacques et al. 2014; Moon et al.
2012). In addition, As was detected in e-liquids at varying levels
(Beauval et al. 2016; Olmedo et al. 2018; Zhao et al. 2019). The
sources of As and strategies to eliminate As in e-liquids must
be investigated. The health effects of metals/metalloids through
inhalation have been studied, mostly in occupational settings.
Although the exposure pattern in occupational settings might be
different from that of chronic e-cigarette exposure, Olmedo et al.
(2018) reported that close to 50% or more of the aerosol samples
from daily e-cigarette users exceeded current health-based limit
levels for Cr,Mn, Ni, and Pb.

This systematic review has several limitations. A major issue
was the differing puffing protocols from varied puff counts, puff
length (s per puff), and the puff volume across all studies ranging
from 13–70ml. Other studies reported their findings using
graphics (box plots, bar graphs, pie charts), which provided
rough estimations as opposed to exact values. Some studies
reported only means, which limited our analysis in the spread of
data. Background correction after measuring blanks was some-
times missing or unclear, particularly in studies measuring
metal/metalloid levels in aerosols. We recommend reporting
blank or control-corrected metal/metalloid levels. Particularly
for human biosample studies, some had a small sample size,
lacked a control group, and based their analysis of e-cigarette
use on one question, without sufficient information on the fre-
quency of use or the type of device. Notwithstanding these limi-
tations, this review has several strengths. To our knowledge, ours
is the first systematic review a) to analyze metal/metalloid levels
in e-liquids, aerosols, and human biosamples in such detail, b) to
compare across studies standardizing units as much as possible,
and c) to conduct a quality assessment of each research study. We
strove to include all information presented to identify the metals/
metalloids of concern, the devices and sources of e-liquids that
give off relatively higher metal/metalloid levels, and the levels
that can be compared with conventional cigarettes. Last, this
review has identified the need for standardization both in the
methodology of the experiments, such as puffing protocols and
accounting for background contamination, and in the reporting of
the findings (units, measures of central tendency, and variability)
because that standardization would aid in more straightforward
comparisons in future e-cigarette studies than are currently
feasible.

Overall, the evidence available consistently supports that
e-cigarettes are amajor concern for exposure to toxicmetals/metal-
loids. Substantial heterogeneity exists across products and, in par-
ticular, across e-liquids that are in contact with the heating coil.
There is also evidence that aerosols have higher metal/metalloid
levels than the unused e-liquids have. These findings indicate that
higher metal/metalloid levels in aerosol samples are, at least in
part, due to the metal/metalloid components of the devices.
Although the studies included in this review found lower Cd levels
in human biosamples of e-cigarette users than those found in con-
ventional cigarette and cigar users, most other metal/metalloid lev-
els were similar or even higher in e-cigarette users. Manufacturing
procedures could constitute a major contribution to potential metal
impurities and could influence metal/metalloid release during
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vaping. Regulation is needed to inform e-cigarette users of possible
metal/metalloid exposure through vaping as well as to prevent
metal/metalloid exposure during e-cigarette use.
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