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1 Introduction

The Standard Model (SM) of electroweak (EW) and strong interactions has been put on

solid grounds by past and current experimental data, collected at e.g. the Large Hadron

Collider (LHC) or the Large Electron Positron (LEP) collider [1, 2]. However, based on

experimental information (as e.g. the existence of dark matter), and theoretical input (as

e.g. the sensitivity of the EW scale to ultraviolet (UV) physics, a.k.a. the hierarchy prob-

lem), we believe that the SM is not the ultimate fundamental theory but, instead, it is an

effective theory which works at scales below a few TeV. In order to cope with the hierarchy

problem, extensions of the SM have been proposed where the above sensitivity cancels, the

most popular ones being supersymmetry and theories with a warped extra dimension [3],

the latter being conjectured to be dual (the AdS/CFT conjecture) to conformal four di-

mensional (4D) theories, with composite Higgs boson and heavy fermions, as well as towers

of composite resonances.

In this paper we are mainly concerned for theories which solve the hierarchy problem

by means of a warped extra dimension and offer, as stated above, a very interesting dual

interpretation. However the elusiveness of (isolated and narrow) heavy resonances at the

LHC [4, 5] has led people to imagine different solutions to the hierarchy problem that could

possibly escape present detection. One possible alternative approach is the clockwork
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models [6], or better their five-dimensional (5D) continuum limit [7], the linear dilaton

models [8], dual to Little String theories (LST) [9], which predict an (almost) continuum

spectrum with a TeV mass gap and a mass separation between modes ∼ 30 GeV. In these

models the “fundamental” scales, i.e. the 5D Planck scale M as well as the curvature of

the 5D space k, are at the TeV, while the 4D Planck scale, MP , which is obtained after

warping, is not fundamental. In these theories the weakness of gravity and the hierarchy

problem are related to the smallness of the string coupling in LST.

Here we will pursue a more conventional approach and propose a model where the 4D

Planck scale is the fundamental one, and the TeV gap scale is obtained by the warp factor

from the UV to the IR brane. The spectrum of particles has a TeV mass gap followed

by a continuum of states. This is achieved by the bulk dynamics of a stabilizing scalar

field which back reacts on the 5D gravitational metric and generates a singularity at a

finite distance in proper coordinates from the UV brane. The singularity is admissible in

the sense of ref. [10], since it satisfies the condition for a bulk geometry to support finite

temperature in the form of a black hole horizon, as was proven in ref. [11]. The bulk

dynamics of the scalar field generates a 5D metric of the so-called soft-wall type. In this

class of models, as the 5D metric goes to zero at the singularity, the Higgs profile has a

maximum away from the IR, where the Kaluza-Klein (KK) modes are localized, which

suppresses their contribution to EW observables [12–19], a phenomenon which was already

observed in ref. [18], where this class of models were dubbed non-custodial models. This

mechanism provides an alternative to the so-called custodial models where the bulk gauge

symmetry is enlarged, to encompass custodial symmetry, to SU(2)L ⊗ SU(2)R ⊗U(1)B−L,

which is broken to SU(2)L ⊗ U(1)Y at the UV brane but conserved at the IR brane [20],

or even custodial models where the symmetry in the bulk is an enlarged group G [21],

and where the Higgs is identified with the fifth component of the 5D gauge field (dubbed

gauge-Higgs unification, or composite, Higgs models) and where EW symmetry breaking

proceeds dynamically.

In this paper we will present the critical case of non-custodial models where the spec-

trum is continuum with a gap at the TeV scale, and the hierarchy problem is solved by a

stabilizing scalar field à la Goldberger-Wise [22]. The back reaction of the scalar field on

the metric generates a linear dilaton only in the IR region, while in the UV the behavior is

AdS5, which allows to solve conventionally the hierarchy problem. Moreover, this permits

a holographic interpretation of the model and connections with unparticles [23, 24] in the

presence of a mass gap. The model is defined in the finite interval of the extra dimension

between the UV brane and the singularity. On top of that we introduce an IR brane (the

EW breaking brane) with the sole purpose of triggering EW symmetry breaking. The

model has to be imposed boundary conditions on the UV brane, jump conditions on the

IR brane and regularity conditions at the singularity.

Let us stress that the idea of models with an isolated resonance and a gapped continuum

spectrum, reminiscent of unparticle models [23, 24], is by far not new. In fact introducing

a TeV IR cutoff in a conformal theory was already proposed in refs. [25, 26], where the gap

µ was triggered by the coupling Φφφ of a field with the profile Φ = µ2z2, and in principle

the scale µ should be at the TeV value. Our formalism departs from this idea as the gap is
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induced from the fundamental scale k by the warp factor, and thus is linked to the solution

of the hierarchy problem. Moreover in our theory, the Higgs boson shares in particular the

property of having an isolated narrow resonance, with a mass fixed by the experimental

Higgs mass (triggered by the Higgs potential localized at the IR brane), and a continuum

of states separated from the resonance by a TeV mass gap. In this sense our theory is

a modelization of theories, dubbed Unhiggs theories, which share those features. The

properties and phenomenology of Unhiggs theories were extensively studied and developed

in a number of papers, as can be seen in refs. [27–33]. In our model we have explored

the simplest possibility where the Higgs is a mesonic doublet, an additional IR brane was

shown to be necessary to trigger electroweak symmetry breaking, and the stability of the IR

brane was implemented by the stabilizing bulk field φ with a Goldberger-Wise mechanism

explicitly breaking the conformal invariance with potentials in both branes. Of course

since our IR brane is not a boundary, jump conditions guaranteeing the continuity of the

solutions need to be imposed for all degrees of freedom propagating in the bulk. Moreover

in our theory, not only the Higgs has its continuum excitations in the conformal sector,

but also all the rest of Standard Model fields, including the gauge bosons, graviton, radion

and the different fermions. Along the same direction, a linear dilaton 5D composite Higgs

model with continuum spectrum has been recently analyzed in refs. [34, 35].

The outline of the paper is as follows. We introduce in section 2 the general formalism

for the 5D action, and the gravitational background which will be used in the rest of

the paper. In particular our metric and dilaton behave linearly in conformal coordinates

in the deep IR while their behavior is AdS5 near the UV. The stabilization mechanism

of the model, à la Goldberger-Wise, is described in section 3. The Higgs sector of the

theory, and the electroweak symmetry breaking, are then studied in section 4, where we

also confront the model predictions with electroweak precision tests. We study in section 5

the spectral functions and the holographic (UV-brane-to-UV-brane) Green’s functions of

the continuum spectra of the KK modes for all particles: gauge bosons, fermions, graviton,

radion and Higgs boson. We analyze in section 6 the general and, in particular, the brane-

to-brane Green’s functions, and study how they modify the LHC phenomenology. Finally

we conclude with a discussion of our results, and an outlook toward future directions in

section 7.

2 The gravitational background

We consider a slice of 5D space-time between a brane at the value y = y0 = 0 in proper

coordinates, the UV brane, and an admissible singularity placed at y = ys. In addition,

we will introduce an IR brane, at y = y1 < ys, responsible for electroweak breaking. The

5D action of the model, including the stabilizing bulk scalar φ(x, y), with mass dimension

3/2, reads as

S =

∫
d5x
√
| det gMN |

[
− 1

2κ2
R+

1

2
gMN (∂Mφ)(∂Nφ)− V (φ)

]
−
∑
α

∫
Bα

d4x
√
| det ḡµν |λα(φ)− 1

κ2

∑
α

∫
Bα

d4x
√
| det ḡµν |Kα , (2.1)
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where κ2 = 1/(2M3), with M being the 5D Planck scale, V (φ) and λα(φ) are the bulk and

brane potentials of the scalar field φ, and the index α = 0 (α = 1) refers to the UV (IR)

brane. We will assume a Z2 symmetry (y → −y) across the UV brane, which translates into

boundary conditions on the fields, while we will impose matching conditions for bulk fields

across the IR brane. Note that the fifth dimension continues beyond the IR brane until

the singularity. The IR brane is responsible for the generation of the IR scale ∼ TeV, and

contains the brane Higgs potential which spontaneously breaks the electroweak symmetry,

as we will see. In addition, we will assume the Higgs field to be propagating in the bulk

and localized toward the IR brane in order to solve the hierarchy problem.

The parameter κ2, can be traded by the parameter N in the holographic theory by

the relation [36] N2 ' 8π2`3

κ2
, where ` ≡ 1/k is a constant parameter of the order of the

Planck length, which determines the value of the 5D curvature. The metric gMN is defined

in proper coordinates by

ds2 = gMNdx
MdxN ≡ e−2A(y)ηµνdx

µdxν − dy2 , (2.2)

so that in eq. (2.1) the 4D induced metric is ḡµν = e−2A(y)ηµν , where the Minkowski metric

is given by ηµν = diag(1,−1,−1,−1). The last term in eq. (2.1) is the usual Gibbons-

Hawking-York (GHY) boundary term [37, 38], where Kα are the extrinsic UV and IR

curvatures. In terms of the metric of eq. (2.2) the extrinsic curvature term reads as [39]

K0,1 = ∓4A′(y0,1).

The equations of motion (EoM) read then as1

A′′ =
κ2

3
φ′ 2 +

κ2

3

∑
α

λα(φ)δ(y − yα) , (2.3)

A′ 2 = −κ
2

6
V (φ) +

κ2

12
φ′ 2 , (2.4)

φ′′ − 4A′φ′ = V ′(φ) +
∑
α

λ′α(φ)δ(y − yα) . (2.5)

The EoM in the bulk can also be written in terms of the superpotential W (φ) as [40]

φ′ =
1

2

∂W

∂φ
, A′ =

κ2

6
W , (2.6)

and

V (φ) =
1

8

(
∂W

∂φ

)2

− κ2

6
W 2(φ) . (2.7)

The localized terms impose the following constraints in the UV (α = 0) and IR (α = 1)

branes,

A′(y)
∣∣∣y+α
y−α

=
κ2

3
λα(φα) , φ′(y)

∣∣∣y+α
y−α

=
∂λα(φα)

∂φ
, (2.8)

1From here on the prime symbol ( ′ ) will stand for the derivative of a function with respect to its

argument, and the dot symbol (
.
) derivative only with respect to the conformal coordinate z related to y

by dy = e−Adz.
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where φα = φ(yα) and y±α = yα ± ε. As mentioned above, we will assume Z2 symmetry

across the UV brane, and one finds the following boundary conditions in the UV brane

A′(y0) =
κ2

6
λ0(φ0) , φ′(y0) =

1

2

∂λ0(φ0)

∂φ
, (2.9)

while eq. (2.8) for the IR brane corresponds to the jumping conditions

∆A′(y1) =
κ2

3
λ1(φ1) , ∆φ′(y1) =

∂λ1(φ1)

∂φ
, (2.10)

where ∆X(y1) ≡ X(y+
1 )−X(y−1 ) is the function jump.

For concreteness we consider for the brane potentials the form

λα(φ) = λα(vα) + λ′α(vα)(φ− vα) +
γα
2

(φ− vα)2 (2.11)

in the stiff limit where γα →∞, which fixes the brane minima at φα = vα. Then, the UV

boundary conditions (2.9) read

λ0(v0) = W (φ0) , λ′0(v0) = W ′(φ0) . (2.12)

Regarding the IR brane, a way to have matching conditions compatible with the EoM is

by assuming λ1(v1) = λ′1(v1) = 0, i.e. a brane potential of the form

λ1(φ) =
γ1

2
(φ− v1)2 , (2.13)

which implies that A′(y) and φ′(y) are continuous functions at y = y1, cf. eq. (2.10).2

Let us now consider the following ansatz for the superpotential

W (φ) =
6k

κ2
(1 + eνφ) , (2.14)

where the parameter ν has mass dimension −3/2. Then, using eq. (2.7), it follows that the

scalar potential is

V (φ) = −6k2

κ2

[
1 + 2eνφ +

(
1− 3ν2

4κ2

)
e2νφ

]
. (2.15)

The EoM (2.6) can be solved analytically with this ansatz, and the solution reads

φ(y) = −1

ν
log

[
3kν2

κ2
(ys − y)

]
, A(y) = ky − κ2

3ν2
log

[
1− y

ys

]
, (2.16)

where we have chosen A(0) = 0. There is a singularity at y = ys, while near the UV

boundary y � ys the geometry is AdS5, A(y) ' ky.

2A non-vanishing value for λ1(v1) would lead to a jump ∆A′(y1), and this would also demand a jump in

the superpotential, ∆W (φ1) (by eq. (2.6)). But then W ′(φ1) would be divergent, and consequently the jump

∆φ′(y1) would also be divergent. On the other hand, if one assumed a non-vanishing value for λ′1(v1), and

consequently a finite jump ∆φ′(y1), this would also induce a jump ∆W ′(φ1). In the following we will use

analytical (and continuous) expressions for the superpotential, so that we will not address this possibility.
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It is useful to define the metric also in conformally flat coordinates defined by

ds2 = e−2A(z)
(
ηµνdx

µdxν − dz2
)
, (2.17)

where dz = eA(y)dy. One can easily find, for ν > 0, that

ρ · (z − z0) = Γ[1− κ2/(3ν2), k(ys − y)]− Γ[1− κ2/(3ν2), kys] , (2.18)

with

ρ = k(kys)
−κ2/(3ν2)e−kys , (2.19)

where z0 = 1/k corresponds to the location of the UV brane, and Γ[a, x] is the upper

incomplete gamma function. As we will see below, ρ is a scale of the order of TeV, so that

it is the relevant mass scale for the 4D spectrum, and it is responsible for the mass gap in

the spectrum.

Let us now discuss the behavior of the background solution, in the deep IR close to

the singularity, i.e. y ' ys. Then, the asymptotic behavior of z(y) is

z(y) ∝ const + (ys − y)1−κ2/(3ν2) + · · · . (2.20)

The second term in the right-hand side is zero (divergent) in the limit y → ys for ν > κ/
√

3

(ν < κ/
√

3), and this means in the former case the existence of a singularity at some finite

value of the conformal coordinate, i.e. zs <∞.

In the critical case ν = κ/
√

3 the asymptotic behavior is

ρz = c0 − log(k(ys − y)) +O(ys − y) , (2.21)

where c0 = ρz0 − γE − Γ(0, kys) ' −γE , with γE being the Euler’s constant. In this case

the domain of the conformal coordinate is z0 ≤ z < +∞. Moreover, the scalar field profile

behaves in this case as

φ(z) '
√

3

κ
(ρz − c0) +O

(
e−ρz

)
, for z → +∞ , (2.22)

and the warp factor of the metric

A(z) ' ρz − c0 − log(ρ/k) +O
(
e−ρz

)
, for z → +∞ . (2.23)

In this way, both φ and A behave linearly in terms of the conformal coordinate in the IR

region. As we will see in the next section, this is the only case that allows for the existence

of a continuum KK spectrum. Notice that in this case, ν = κ/
√

3, it is convenient to define

z0 =
Γ(0, kys)

ρ
=

1

k

(
1 +O((kys)

−1)
)
, (2.24)

as then eq. (2.18) has the property z(y) −→
y→−∞

0. Plots of the dimensionless quantities, κφ

and A as functions of the conformal coordinate are shown in figure 1.
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A
Figure 1. Left panel: scalar field φ as a function of the conformal coordinate z. Right panel: warp

factor of the metric A as a function of z. We display the exact results in solid blue lines, and the

linear behavior of eqs. (2.22) and (2.23) in dashed lines. We have used ν = κ/
√

3 and kys = 31.55,

as follows by assuming A1 = 35 and c = 1 (cf. section 3).

3 Brane and singularity stabilization

We have assumed brane potentials λα(φ) fixing the dilaton on the branes to specific values

φα = vα. This fixing can stabilize the brane UV/IR distance, by the Goldberger-Wise

mechanism, and fix the position of the singularity according to the solution of the hierarchy

problem. We will do it in the critical case where ν = κ/
√

3 for which

φ(y) = −
√

3

κ
log [k(ys − y)] , A(y) = ky − log

[
1− y

ys

]
, ρ ≡ k(kys)

−1e−kys , (3.1)

where ρ is the spectrum mass gap, as we will see, and seek for solutions with y1 < ys.

As the Higgs vacuum expectation value will be fixed at the IR brane, as we will see in

section 4, we need to define the scale

ρ̄ = k e−A(y1) (3.2)

of the order of the TeV, so that we have to fix A(y1) ≡ A1 ' 35 to solve the hierarchy

problem.

Moreover, as both ρ and ρ̄ should be of the order of the TeV, we can impose the

condition that

ρ̄ = cρ (3.3)

with c = O(1) constant. Then using the explicit expressions of A(y) and ρ (cf. eq. (3.1)),

this condition leads to

ky1 = kys −W(c) , (3.4)

where W(x) is the Lambert function,3 so that y1 is located before the singularity.

3The Lambert function is the solution of the equation c = W(c)eW(c). For c = 0 it vanishes while for

c > 0, W(c) > 0. For instance, for c = 1, the IR brane is located at ky1 ' kys − 0.57.
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Figure 2. Left panel: κv0 and κv1 as a function of the parameter c. Right panel: location of the

IR brane, ky1, and singularity, kys, as a function of the parameter c. We have used A1 = 35 and

ν = κ/
√

3.

Using this result, the values of the scalar field and warp factor in the IR brane turn

out to be

v1 = −
√

3

κ
log (W(c)) , A(y1) = kys + log (kys/c) , (3.5)

while in the UV brane they are

v0 = −
√

3

κ
log(kys) , A(0) = 0 . (3.6)

The solution of ys from the second equation of (3.5) leads to

kys =W(c eA1) , (3.7)

and then one can express y1 and v0 also in the form

ky1 =W(c eA1)−W(c) , and v0 = −
√

3

κ
log
(
W(c eA1)

)
. (3.8)

The values of κv0 and κv1 are plotted in the left panel of figure 2 as functions of the

parameter c defined in eq. (3.3). We can see that, in units of κ, they are always in absolute

value O(few).

Finally, it is possible to obtain the explicit dependence of the parameter c in terms of

y1 and A1 by solving the first equation in (3.8). The result is

c = ky1

exp
(

eA1ky1
eA1−eky1

)
eA1 − eky1

. (3.9)

Plots of kys and ky1 as functions of the parameter c are explicitly shown in the right panel

of figure 2.

4 The Higgs sector

We have previously introduced the IR brane, stabilized at a distance y = y1, with the only

purpose of triggering electroweak symmetry breaking. In the simplest theory where the
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Higgs is a 5D bulk doublet

H(x, y) =
1√
2
eiχ(x,y)

(
0

h(y) + Ĥ(x, y)

)
, (4.1)

with an action given by

S5 =

∫
d5x
√
| det gMN |

[
|DMH|2 − V (H)

]
−
∫
d4x
√
−gind(−1)αλα(H)δ(y − yα) , (4.2)

where V (H) = M2(φ)|H|2 is the 5D Higgs potential, electroweak breaking is triggered by

the brane potentials defined as

λ0(H) = 2M0|H|2, λ1(H) = M1|H|2 − γ|H|4 . (4.3)

Here the mass dimension of the Higgs field is 3/2 and that of γ is −2.

The background Higgs field is then determined from the EoM [14, 41]

h′′(y)− 4A′(y)h′(y)− ∂V

∂h
= 0 , (4.4)

with the boundary conditions on the UV brane

h′(0) =
1

2

∂λ0(h)

∂h

∣∣∣∣
y=0

, (4.5)

and the jump conditions on the IR brane

∆h′(y1) = − ∂λ1(h)

∂h

∣∣∣∣
y1

. (4.6)

As we want to have a Higgs profile h(y) ∝ eaky, we can simply define a bulk Higgs potential

with M2(φ) = ak(ak−2κ2W (φ)/3). In this case the general solution to eq. (4.4) is given by

h(y) = eaky
[
c1 + c2k

∫ y

0
e4A(y′)−2aky′dy′

]
, (4.7)

where c1 and c2 are integration constants, to be determined from boundary and jump

conditions. We will consider the solution (4.7) in two regions: region A (0 < y ≤ y1), and

region B (y1 < y < ys), with four integration constants: cA1 , c
A
2 , c

B
1 , c

B
2 .

We will impose on region A the boundary and jump conditions, eqs. (4.5) and (4.6),

corresponding to the UV and IR branes, respectively. In particular the boundary condition

on the UV brane imposes the condition cA2 = (M0/k− a) · cA1 , and the solution in region A

is written as

hA(y) = eakycA1 [1− (M0/k − a)F (0) + (M0/k − a)F (y)] , (4.8)

where the function F (y), as defined by F ′(y) = ke4A(y)−2aky, can be obtained analytically as

F (y) = −(2(a− 2))3(kys)
4e−2(a−2)kys · <Γ [−3,−2(a− 2)k(ys − y)] , (4.9)
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Figure 3. Left panel: dashed (blue) lines are contour plots of F (y1). Solid (black) lines provide

the χ2 allowed region by the oblique S and T parameters at 1, 2 and 3 σ. We display in blue the

region in which F (y1) > 0.1, and in red the excluded region for oblique parameters at 95% C.L.

Right panel: contour lines of the parameter M1/k as given from eq. (4.17), where c = 1/4 has

been taken.

where Γ[n, x] is the upper incomplete gamma function, and � stands for the real part. The

approximate values of F (y) at y = 0 and y = y1 are, respectively,

F (0) � − 1

2(a− 2)
, F (y1) �

(kys)
4

3W(c)3
e−2(a−2)kys . (4.10)

As pointed out in ref. [14], to keep the exponential solution without the need of the fine-

tuning M0 = ak, we must require the function F (y) to be small. Since F is a monotonically

increasing function of y, it will be enough to guarantee that F (y1) � 1. The structure of

the function F implies that a necessary condition is that a > 2. Contour lines of F (y1) are

shown in the left panel of figure 3 (dashed lines).

Finally we have to impose the IR jump and continuity conditions

∆h′(y1) = h′B(y1)− h′A(y1) = −[M1 − γh2(y1)]h(y1), hA(y1) = hB(y1) , (4.11)

as well as the regularity condition at y = ys in region B, which fixes cB2 = 0, as F (y) is

singular at ys. After imposing regularity, the jump conditions in eq. (4.11) are satisfied by

fixing the integration constants cA1 and cB1 as

cB1 = [1− (M0/k − a)F (0)] · cA1 =
√

M1/γ · e−aky1 , (4.12)

by which the continuity of h′(y1) follows.

As for the profile of the zero mode of the Higgs excitation, Ĥ(y), for mH = 0 it satisfies

the same equation as the background, so that Ĥ(y) � h(y). This approximation also holds

for a light Higgs, so that in particular it should be a good approximation for the physical

Higgs mass mH = 125GeV, as was shown in detail in ref. [14]. Of course, as we will see in
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section 5, for momenta p > 3ρ/2 there is a continuum of states, as for the other fields in

the model.

The next step is to impose correct electroweak symmetry breaking by using the ex-

pression, for v = 246 GeV [14],

v2 =

∫ ys

0
dy h2e−2A . (4.13)

After using our metric A(y), as well as the equations obtained in this section, one can get

the expression for the dimensionless parameter M1/(k
3γ), as

M1

k3γ
=
v2

ρ2
· f(a, c), with f(a, c) =

4(a− 1)3

e2aW(c)
. (4.14)

Moreover, by constructing the effective 4D theory, and using the IR Higgs brane po-

tential, one can get the expression for the Higgs mass, as was done in ref. [14]. The result

for the SM Higgs potential VSM = −µ2|HSM|2 + λ|HSM|4, where

H(x, y) ≡ 2(a− 1)3/2
√
k
h(y)

h(ys)

k

ρ
HSM (4.15)

is

µ2 = (M1/k)f(a, c)c4ρ2, λ = f2(a, c)c4k2γ , (4.16)

and therefore the Higgs mass

m2
H = 2c4f(a, c)M1ρ

2/k , (4.17)

from where we can see that the “natural” value of m2
H would be ρ2, which triggers a little

naturalness problem, as usually ρ � mH . Therefore we have to tune the mass M1 to

small values, and this provides a measure of the size of the “unnaturalness” in this class of

theories. Contour lines of the parameter M1/k are shown in the right panel of figure 3, in

the plane (a, ρ) for c = 1/4. We can see that the tuning is typically O(10%) for ρ . 3 TeV.

Clearly the tuning is tougher for larger values of the parameter c, as it grows as c4.

We can now compute the S and T parameters along the lines of ref. [14]. The experi-

mental bounds on the S and T parameters are given by [2]

S = 0.02± 0.07 , T = 0.06± 0.06 , r ' 0.92 , (4.18)

where r is the correlation. The results can be obtained analytically, although the expres-

sions are rather cumbersome. The result is plotted in the left panel of figure 3 where the

solid lines correspond to 1, 2 and 3 σ. We have used c = 1, but the figure does not change

appreciably when considering other values of c in the interval 1/4 < c < 2.

5 Holographic Green’s functions

We will discuss in this section the holographic spectral functions, and UV-brane-to-UV-

brane Green’s functions, for the case of continuum spectra of KK modes. We will analyze

separately the cases of KK gauge bosons, fermions, graviton, radion and the Higgs boson.
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5.1 Massless gauge bosons

In the case of massless gauge bosons Aµ (i.e. the SM photon and gluon) the Lagrangian is4

L =

∫ ys

0
dy

[
−1

4
FµνF

µν − 1

2
e−2AA′µA

′
µ

]
. (5.1)

Defining Aµ(x, y) = fA(y)Aµ(x), the EoM of the fluctuations is given by [13]

p2fA +
d

dy
(e−2Af ′A(y)) = 0 , (5.2)

where we have replaced the eigenvalue m2 by p2. In conformal coordinates, and after

rescaling the field by fA(z) = eA(z)/2f̂A(z), we obtain the Schrödinger like form for the

equation of motion

−
..
f̂A(z) + VA(z)f̂A(z) = p2f̂A(z) , (5.3)

where the potential is

VA(z) =
1

4

.
A

2
(z)− 1

2

..
A(z) . (5.4)

An equivalent expression for the potential, in terms of the superpotential W [φ], is

VA(z) =
κ2

48
e−2A(z)

(
κ2W 2[φ(z)]− 2(W ′[φ(z)])2

)
. (5.5)

This expression is valid for any W [φ]. Close to the singularity, the potential behaves as

VA(z) −→
z→∞

1

4
ρ2 . (5.6)

This behavior can be easily understood from the property that, in this limit,
.
A(z) → ρ

and
..
A(z)→ 0. Then, we find the existence of a mass gap of the potential.

To compute the spectral density and Green’s function we will use the holographic

method. After Fourier transforming the coordinates xµ into momenta pµ, we define5

Aµ(p, z) = fA(p, z)a(4)
µ (p) , (5.7)

where fA(p, z) satisfies eq. (5.2) and the 4D wave function a
(4)
µ (x) satisfies the 4D EoM

[ηµν2− ∂µ∂ν(1− 1/ξ) + p2ηµν ]a(4)
ν (x) = 0 , (5.8)

where we have considered the gauge fixing term LGF = −1/(2ξ)[∂µa
(4)
µ ]2. Using now the

EoMs into the Lagrangian, we can write the holographic Lagrangian as

Lhol =
1

2
e−A(z0)fA(p, z0)

.
fA(p, z0)a(4)

µ (p)Pµνa(4)
ν (p) , (5.9)

4We are using in this section the gauge A5 = 0.
5For the sake of notational simplicity, we are using the same notation for functions and their Fourier

transforms.
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Figure 4. Left panel: spectral density ρA(z0, z0; p) for a continuum gauge boson. Right panel:

absolute value squared of the Green’s function, GA(z0, z0; p), for gauge bosons. We have used

A1 = 35 and c = 1 in both panels.

where Pµν(ξ) = ηµν − (1 − 1/ξ)pµpν/p2. If we fix the boundary condition at the UV

brane as

Aµ(p, z0) = a0
µ(p) , (5.10)

where a0
µ is the source coupled to the CFT vector operator J Aµ , the holographic Lagrangian

turns out to be (we have normalized the metric as A(z0) = 0)

Lhol =
1

2

.
fA(p, z0)

fA(p, z0)
a0
µP

µν(ξ)a0
ν . (5.11)

The two-point function is now the inverse of the bilinear operator in (5.11) as

GµνA (z0, z0; p) = [ηµν − (1− ξ)pµpν/p2]GA(z0, z0; p) , (5.12)

where the 4D Green’s function GA(z0, z0; p) is

GA(z0, z0; p) =
fA(p, z0)
.
fA(p, z0)

≡
∫ ∞

0
ds

σA(s)

s− p2 + iε
, (5.13)

and the spectral density σA is then obtained as

σA(z0, z0; p) =
1

π
Im

[
fA(p, z0)
.
fA(p, z0)

]
. (5.14)

The solution of eq. (5.3) in the IR is of the form

f̂A(z) ' c−e−∆z + c+e
∆z , (5.15)

with ∆ = ρ
2

√
1− (2p/ρ)2. The computation of the retarded Green’s function demands

the use of “IR regular” solutions for Euclidean AdS, i.e. the solution with c+ = 0. This

corresponds to outgoing wave boundary conditions after analytical continuation [42]. We

have solved numerically eq. (5.2) by using the IR boundary condition mentioned above.

As scale invariance is explicitly broken by the scale ρ, we have looked for a rescaling of the
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Green’s function GA which makes it scale invariant (i.e. invariant with respect to variation

of the parameter ρ). The required rescaled Green’s function

GA(z0, z0; p) ≡ (ρ2/k)W(k/ρ)GA(z0, z0; p) (5.16)

is shown in figure 4, where we plot, in the left panel, the corresponding scale invariant

spectral function,

ρA(z0, z0; p) ≡ (ρ2/k)W2(k/ρ)σA(z0, z0; p) (5.17)

and, in the right panel, the squared scale invariant Green’s function |GA(z0, z0; p)|2, as

functions of p/ρ. The latter translates into the behavior GA(z0, z0; p) ∼ 1/p2 for p � ρ.

Moreover the Green’s function has, on top of the continuum for momenta larger than the

value of the mass gap, an isolated massless mode, which signals the contribution from the

SM massless gauge boson, say the photon or the gluon.

Notice that the scaling behaviors of the Green’s function GA, eq. (5.16), and its spectral

density σA, eq. (5.17), are different from each other. This situation can happen when the

imaginary part of the Green’s function is much smaller than its real part, in which case the

absolute value of the Green’s function is dominated by the real part, which then provides

its global scaling. We will find this kind of behaviors for the Green’s function and its

spectral density for other fields in this paper.

In this way the correlator of the CFT field J Aµ is given by [43]

∆A
µν =

δ2S

δa0
µδa

0
ν

= 〈J Aµ J Aν 〉 =
Pµν(ξ)

GA(p2)
, (5.18)

and the comparison with the correlator in a pure CFT [44] of a vector J Aµ with anomalous

dimension d,

∆µν ∝ (−p2 − iε)d−2

[
ηµν −

2(d− 2)

d− 1
pµpν/p

2

]
, (5.19)

yields (in the physical unitary gauge ξ → ∞), as dimension of the operator J Aµ , dA = 3.

Of course, as the correlator (5.12) is not written in a pure conformal theory, one cannot

really interpret dA as a true dimension of the operator J Aµ .

5.2 Massive gauge bosons

In the case of massive gauge bosons Aµ (i.e. the SM Wµ and Zµ) there is an extra term in

the 5D Lagrangian, eq. (5.1), as [14]

∆L5 = −1

2
M2
A(y)A2

µ (5.20)

where6

M2
A(y) = m2

A ys
e2aky−2A(y)∫ ys

0 e2aky−2A(y)dy
(5.21)

6For a nearly-constant profile fA this leads to

m2
A '

1

ys

∫ ys

0

M2
A(y)dy .
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Figure 5. Left panel: inverse Green’s functions for a = 2.4 and different values of mA = 0,mW ,mZ

as a function of p. Right panel: absolute value of the Green’s function, GA(z0, z0; p), for an extra

heavy gauge boson with mass mA = 1.5 TeV and a = 0. We have used A1 = 35, c = 1 and

ρ = 2 TeV in both panels.

with mA = mW,Z being the physical value of the gauge boson mass, and which leads, after

the decomposition Aµ(x, y) = fA(y)Aµ(x), to a modification of the EoM (5.2) as

p2fA +
d

dy

(
e−2Af ′A(y)

)
= M2

A(y)fA . (5.22)

After changing to conformal coordinates and making the field replacement fA(z) =

eA(z)/2f̂A(z), we obtain the Schrödinger equation (5.3) with a potential VA(z) + ∆VA(z),

where VA(z) is the potential given in eq. (5.4), and

∆VA(z) = M2
A(y(z)) . (5.23)

As limz→∞∆VA(z) = 0, the mass gap is the same as that of the massless case, i.e. mg = ρ/2.

The computation of the holographic spectral and Green’s functions follows the same

lines as in section 5.1. In particular the spectral function shows a continuum for momenta

p ≥ mg and a Dirac delta function for p = mA, which corresponds to a stable resonance

at the order we are computing.7 This pole behavior should also show up in the Green’s

function GA(z0, z0; p), which translates into a zero in the inverse Green’s function. In the

left panel of figure 5 the inverse Green’s function, as a function of p, is shown for several

values of mA = (0,mW ,mZ), and where we have fixed ρ = 2 TeV. We can see that the

zeroes of the inverse Green’s functions appear at p = mA. In the case of some extra heavy

gauge boson, e.g. an extra Z ′ or W ′, with a mass mA > mg the isolated resonance appears

in the sea of the continuum. We have shown this hypothetical case in the right panel of

figure 5 where we have fixed ρ = 2 TeV and mA = 1.5 TeV. As we can see the resonance

gets a non-zero width and looks like a Breit-Wigner resonance. This phenomenon can be

interpreted at this level as representing the propagator of the isolated resonance getting

an imaginary part, and therefore the particle becoming unstable against decays into the

lighter continuum KK resonances. This phenomenon was already studied in the case of

unparticles in ref. [45] with similar conclusions.

7A non-zero width should be induced at the loop level, corresponding to the available decay channels of

the massive gauge boson, as in the SM.
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5.3 Fermions

In the case of fermions ψ = (ψL, ψR)T , after rescaling the fields as ψL,R(y)→ e2AψL,R(y),

the action is [16]

L =

∫ ys

0
dy
[
eA iψ̄/∂ψ −Mψ(y)ψ̄ψ + (ψ̄Rψ

′
L + ψ̄′LψR)

]
, (5.24)

where Mψ is a bulk mass of the fermions which in general will depend on y, in terms of

which the equations of motion read as [16]

mψL,R = e−A(Mψ(y)± ∂y)ψR,L , (5.25)

where we define the chiral fermions as ψL,R = 1
2(1∓γ5)ψ and γ5 = diag(−1, 1). Using twice

the equation in both versions, for left and right handed fields, we obtain the Schrödinger

like form for the equations of motion (replacing m2 by p2)

−
..
ψL,R(z) + VL,R(z)ψL,R(z) = p2ψL,R(z) , (5.26)

where we are using conformal coordinates z, and the potential VL,R(z) is given by

VL,R(z) = e−2AM2
ψ(z) + e−A(∓Mψ(z)

.
A(z)±

.
Mψ(z)) . (5.27)

We will make the choice Mψ(z) = εcψ
κ2

6 W (φ(z)) where ε = −1 holds for 5D fermions with

left-handed zero modes, while ε = +1 for 5D fermions with right-handed zero modes, and

cψ is an arbitrary constant. Then, this potential can be written as

VL,R(z) = εcψ
κ2

36
e−2A(z)

(
κ2(εcψ ∓ 1)W 2[φ(z)]± 3(W ′[φ(z)])2

)
. (5.28)

Finally, it follows that the potentials have a mass gap, and its value is given by

VL,R(z) −→
z→∞

(cψρ)2 . (5.29)

To compute the Green’s function and spectral density we will again use holographic

methods. We will define

ψL,R(p, z) = fL,R(p, z)ψ
(4)
L,R(p) , (5.30)

where ψ
(4)
L,R(x) are the 4D plane-wave spinors satisfying the 4D Dirac equation with

mass p =
√
p2

iσ̄µ∂µψ
(4)
L (x) = pψ

(4)
R (x) , iσµ∂µψ

(4)
R (x) = pψ

(4)
L (x) . (5.31)

After using the EoM, the bulk action reduces to a pure boundary term on the UV brane [26],

which yields the holographic Lagrangian

Lhol = −ψ̄L(p, z0)ψR(p, z0) = −f̄L(p, z0)fR(p, z0)ψ̄
(4)
L (p)ψ

(4)
R (p) . (5.32)
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We now fix the boundary condition on the UV brane by fixing one of the component

spinors, e.g. the left handed one, to be the spinor ψ0
L, which plays the role of a left-handed

source coupled to the right-handed CFT operator OR, ψ̄0
LOR + ŌRψ0

L, i.e.

ψL(p, z0) = ψ0
L(p) . (5.33)

Plugging now (5.33) into (5.32) results in

Lhol = −fR(p, z0)

fL(p, z0)

ψ̄0
Lσ̄

µpµψ
0
L

p
. (5.34)

The two-point function is now given by the inverse of the quadratic term in eq. (5.34) as

SL = σµpµGL(z0, z0; p) , (5.35)

where the 4D Green’s function GL is given by

GL(z0, z0; p) = −1

p

fL(p, z0)

fR(p, z0)
, (5.36)

and the spectral density is obtained as

σL(z0, z0; p) =
1

π
ImGL(z0, z0; p) = − 1

π

1

p
Im

[
fL(p, z0)

fR(p, z0)

]
. (5.37)

The same analysis can be done for the right-handed spinor fixed on the UV brane to

the spinor ψ0
R, which couples to a left-handed CFT operator OL, ψ̄0

ROL + ŌLψ0
R. This

corresponds to a different CFT, and the result is

GR(z0, z0; p) = −1

p

f̄R(p, z0)

f̄L(p, z0)
, (5.38)

σR(z0, z0; p) =
1

π
ImGR(z0, z0; p) =

1

π

1

p
Im

[
fR(p, z0)

fL(p, z0)

]
. (5.39)

Similarly to the procedure followed for gauge bosons in section 5.1, we have looked for

the appropriate rescalings of the Green’s functions GL,R which make them scale invariant

GL,R. The result is

GL,R(z0, z0; p) ≡ ρ1±2cψGL,R(z0, z0; p) , (5.40)

where the plus (minus) sign corresponds to GL (GR). The scale invariant spectral function

ρL(R) for a left-handed (right-handed) fermion

ρL,R(z0, z0; p) ≡ ρ1±2cψσL,R(z0, z0; p) , (5.41)

is shown in the upper left (right) panel of figure 6, for ε = −1. Similarly, the absolute value

of the scale invariant Green’s function for a left-handed (right-handed) fermion is displayed

in the lower left (right) panel of figure 6. The latter translate into the behavior for the

Green’s functions GL,R ∼ p−1∓2cψ for p� ρ.
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Figure 6. Upper panels: spectral density for a continuum left-handed fermion, cf. eq. (5.37)

(left panel), and a continuum right-handed fermion, cf. eq. (5.39) (right panel). We have used

cψ = 0.1, 0.2, 0.3 and 0.4. Lower panels: absolute value of the Green’s functions for a continuum

left-handed fermion (left panel), and a continuum right-handed fermion (right panel). We have

used cψ = 0.1, 0.2, 0.3, 0.4 (solid lines) and 0.57 (dashed lines). All cases use ε = −1. The results

with ε = 1 would be the above plots but with L↔ R. We have used A1 = 35 and c = 1.

By using the correlators in the CFT of spinors OR,L

∆R(p, cψ) =
δ2S

δψ̄0
Lδψ

0
L

= 〈ORŌR〉 ≡ σ̄µpµḠR , (5.42)

∆L(p, cψ) =
δ2S

δψ̄0
Rδψ

0
R

= 〈OLŌL〉 ≡ σµpµḠL , (5.43)

their comparison with the propagators in the case of unparticles OL,R with dimension d

∆L ∝ (−p2 − iε)d−5/2σµpµ , ∆R ∝ (−p2 − iε)d−5/2σ̄µpµ , (5.44)

translates into the dimension for the operators OL,R: dL,R = 2 ∓ cψ, in agreement with

general results [26].

Up to now we have used ε = −1 and cψ < 1/2 in eq. (5.27). It is worth mentioning

that a change in the sign of the parameter ε, i.e. considering ε = 1, is equivalent to the

exchange between left-handed and right-handed fermions. This means that the expressions

of eqs. (5.37) and (5.39) for the spectral densities σL(p2) and σR(p2) would still be valid

for ε = 1, but the results would be as in figure 6, right panel and left panel, respectively.

The same applies for the 4D Green’s functions GL and GR.
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For the case cψ > 1/2 we find that the scale invariant Green’s function and spectral

density are given by

GL,R(z0, z0; p) ≡ ρ1±2c0GL,R(z0, z0; p), c0 = 1/2

ρL,R(z0, z0; p) ≡ ρ1±2c0σL,R(z0, z0; p) , c0 = 1/2 (5.45)

which coincide with the scaling behaviors in eqs. (5.40) and (5.41) with cψ = c0 = 1/2.

We can see this behavior for the Green’s functions in the lower panels of figure 6 where we

plot the case cψ = 0.57 (dashed lines). In the holographic interpretation, the dimension

of the CFT operator for cψ > 1/2 is then dL,R = 2 ∓ c0. For the case of ε = −1 we are

considering here, the 5D fermion has a left-handed massless zero mode with dimension

dL = 3/2 pointing out toward the existence of an elementary fermion.

5.4 The graviton

The graviton is a transverse traceless fluctuation of the metric of the form

ds2 = e−2A(y)(ηµν + hµν(x, y))dxµdxν − dy2 , (5.46)

where hµµ = ∂µh
µν = 0. We will use the ansatz hµν(x, y) = h(y)hµν(x). The Lagrangian is

given by

L = − 1

8κ2

∫ ys

0
dye−2A

[
∂ρhµν∂

ρhµν + e−2Ah′µνh
′µν] , (5.47)

from where the EoM can be written as

e2A(e−4Ah′)′ + p2h(y) = 0 . (5.48)

In conformal coordinates, cf. eq. (2.17), and after rescaling the field by h(z) = e3A(z)/2ĥ(z),

the equation of motion for the fluctuation can be written in the Schrödinger like form [11] as

−
..
ĥ(z) + Vh(z)ĥ(z) = p2ĥ(z) , (5.49)

where the potential is given by

Vh(z) =
9

4

.
A2(z)− 3

2

..
A(z) . (5.50)

Using the EoM of the background, this potential can be expressed in the form

Vh(z) =
κ2

48
e−2A(z)

(
5κ2W 2[φ(z)]− 6

(
W ′[φ(z)]

)2)
. (5.51)

This potential has a mass gap, and its value is given by

Vh(z) −→
z→∞

9

4
ρ2 . (5.52)

The spectral density and Green’s function are obtained by again using holographic

methods. In momentum space the graviton field is decomposed as

hµν(p, z) = h(p, z)h(4)
µν (p) , (5.53)
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Figure 7. Left panel: spectral density ρh(z0, z0; p) for a continuum graviton. Right panel: absolute

value squared of the scale invariant Green’s function, Gh(z0, z0; p), for the graviton. We have used

A1 = 35 and c = 1.

where h
(4)
µν (x) is a 4D graviton field whose components satisfy the Klein-Gordon equation

(2 + p2)h(4)
µν (x) = 0 , (5.54)

as well as conditions ∂µh
(4)
µν = 0 and h

µ(4)
µ = 0, which eliminate five out of the ten compo-

nents of the symmetric tensor h
(4)
µν . By replacing the bulk EoMs we obtain the holographic

Lagrangian

Lhol =
1

32κ2
h(p, z0)

.
h(p, z0)h(4)

µν (p)h(4)
µν (p) . (5.55)

After fixing the boundary conditions at the UV brane in terms of the source field h0
µν(p),

hµν(p, z0) = h0
µν(p) , (5.56)

coupled to the CFT operator Oµν , the holographic Lagrangian reads as

Lhol =
1

32κ2

.
h(p, z0)

h(p, z0)
h0
µν(p)h0

µν(p) , (5.57)

from where the Green’s function and spectral density are given by

Gh(z0, z0; p) =
h(p, z0)
.
h(p, z0)

, σh(z0, z0; p) =
1

π
Im

[
h(p, z0)
.
h(p, z0)

]
. (5.58)

A plot of the spectral function ρh = kσh is shown in the left panel of figure 7. The

scale invariant Green’s function

Gh(z0, z0; p) ≡ (ρ2/k)Gh(z0, z0; p) (5.59)

is shown in the right panel of figure 7. The required rescaling, translates into the behavior

Gh ∼ τh/p2 for p� ρ where

τh '
4W2(k/ρ)

1 + 2W(k/ρ)[W(k/ρ)− 1]
=

2M3

kM2
P

, (5.60)

which is τh ≈ 2.1 for A1 = 35 and c = 1. In the IR region the Green’s function shows an

isolated massless pole corresponding to the graviton mode, as can be seen from the right

panel of figure 7.
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5.5 The radion

The radion field ξ(x, y) is defined as the metric perturbation

φ(x, y) = φ(y) + δφ and ds2 = −N2dy2 + gµν(dxµ +Nµdy)(dxν +Nνdy) , (5.61)

with N = 1 + δN , Nµ = ∂µψ and gµν = e−2A−2 ξ ηµν . Here we will consider the unitary

gauge δφ = 0 and follow the approach of ref. [46].8 After using the equations of motion, δN

and Nµ can be obtained in terms of ξ(x, y) and its derivatives. Then using the background

solution one can cast the action as

S =
1

2κ2

∫
d5xe−4Aβ2

[
e2A(∂µξ)

2 − (ξ′)2
]
, (5.62)

where β = −κφ′/A′, leading to the bulk EoM

e2A 1

β2

[
e−4Aβ2ξ′

]′
= 2ξ . (5.63)

In conformal coordinates and after redefining ξ = e(3/2)Aξ̂/β, one can cast the EoM in a

Schrödinger-like form, as

−
..
ξ̂(z) + Vξ(z)ξ̂(z) = p2ξ̂(z) , (5.64)

where the potential

Vξ = β2G

(
G−

.
β

β2

)
− β

.
G, with G = −

.
β

β2
+

3

2

.
A

β
(5.65)

goes to 9ρ2/4 in the limit z →∞.

The spectral density can again be obtained by using holographic methods. After

replacing the EoM into the action one obtains the holographic Lagrangian in momentum

space as

Lhol =
1

2κ2
e−3A(z0)

[
β2(z0)f(p, z0)

.
f(p, z0)− 8λ̄0(v0)f2(p, z0)

]
R(4)R(4) , (5.66)

where λ̄0 ≡ 2κ2λ0 and we have decomposed ξ(p, z) = f(p, z)R(4)(p) with the 4D scalar

field R(4) satisfying the free field equation. After fixing the UV condition

ξ(p, z0) ≡ R0(p) , (5.67)

one can write

Lhol =
1

2κ2

[
3

(1 + kys)2

.
f(p, z0)

f(p, z0)
− 8λ̄0(v0)

]
R0(p)R0(p) . (5.68)

Then the Green’s function for the radion reads as

Gξ(z0, z0; p) =

(
3

(1 + kys)2

.
f(p, z0)

f(p, z0)
− 8λ̄0(v0)

)−1

, (5.69)

8For the choice of a different gauge where Nµ = 0 and δφ 6= 0 see ref. [47].
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Figure 8. Left panel: scale invariant spectral density for a continuum radion, as given by eq. (5.72).

Right panel: scale invariant Green’s function for a continuum radion, as given by eq. (5.73). We

have used A1 = 35 and c = 1.

and the spectral density is given by

σξ(z0, z0; p) =
1

π
ImGξ(z0, z0; p) . (5.70)

Note that the UV boundary conditions in the background demand (cf. eq. (2.12))

λ̄0(v0) = 2κ2W (φ0) = 12k

(
1 +

1

kys

)
. (5.71)

The results for the scale independent spectral density

ρξ(z0, z0; p) ≡ k (ρ/k)−4 σξ(z0, z0; p) , (5.72)

and Green’s function

Gξ(z0, z0; p) ≡ kGξ(z0, z0; p) , (5.73)

are plotted in the left and right panels, respectively, of figure 8. The Green’s function

has a constant behavior at momenta p ∼ O(ρ), as the term λ0(v0) is by far the dominant

contribution at these scales. More in detail, the behavior of the Green’s function at low

momenta is

G−1
ξ (z0, z0; p) ' 1

τξ
W−2(k/ρ)(ρ/k)2(p/ρ)2 − 8k−1λ̄0(v0) , (5.74)

where

τξ =
2

3

(1 + kys)e
2kys

(1 + kys + (−1 + kys)e2kys)
' 2

3

W(k/ρ) + 1

W(k/ρ)− 1
, (5.75)

which is τξ ' 0.71 for A1 = 35 and c = 1. In eq. (5.74) we have neglected an imaginary

contribution, which is typically small. Only when p is large enough, the Green’s function

has a non-constant behavior and in particular it goes to zero when p→∞.
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5.6 The Higgs boson

The action for the physical Higgs boson H(x, y) ≡ h(y)+Ĥ(x, y) is given by eq. (4.2), from

where the bulk EoM, UV boundary and IR jump conditions for the excitation Ĥ(x, y) are

Ĥ ′′(y)− 4A′(y)Ĥ ′(y)− ∂2V (h)

∂h2
Ĥ + p2e2AĤ(y) = 0 ,

Ĥ ′(0) =
1

2

∂2λ0(h)

∂h2
Ĥ

∣∣∣∣
y=0

,
∆Ĥ ′(y1)

Ĥ(y1)
= − ∂2λ1(h)

∂h2

∣∣∣∣
y=y1

, (5.76)

where we have already replaced the squared mass eigenvalue m2 by p2, and used the

equation of motion (4.4), boundary condition (4.5) and jump condition (4.6), for the back-

ground field h(y). The bulk equation can be expressed in a Schrödinger like form, leading

to the result

−
..
Ĥ(z) +VH(z)Ĥ(z) = p2Ĥ(z) , with VH(z) =

9

4

.
A2(z)− 3

2

..
A(z) + e−2A(z)∂

2V (h)

∂h2
. (5.77)

In this equation we have rescaled the field as Ĥ(z) → e3A(z)/2Ĥ(z). Eq. (5.77) yields a

mass gap of (3ρ/2)2.

After Fourier transforming the configuration space xµ into momentum space pµ, and

going to conformal coordinates z, we can decompose the field as

H(p, z) = H(p, z)H(4)(p), where (2 + p2)H(4)(x) = 0 . (5.78)

Replacing now the EoM, we obtain the holographic Lagrangian as

Lhol =
1

2

[
H(p, z0)

.
H(p, z0)− 2M0H2(p, z0)

]
H(4)(p)H(4)(p) . (5.79)

We now fix the boundary conditions at the UV brane in terms of the source field H0(p) as

H(p, z0) = H(p, z0)H(4)(p) ≡ H0(p) , (5.80)

so that the holographic Lagrangian is written as

Lhol =
1

2

[ .
H(p, z0)

H(p, z0)
− 2M0

]
H0(p)H0(p) . (5.81)

Then, finally the Green’s function and spectral density can be written as

GH(z0, z0; p) =

( .
H(p, z0)

H(p, z0)
− 2M0

)−1

, (5.82)

σH(z0, z0; p) =
1

π
Im

( .
H(p, z0)

H(p, z0)
− 2M0

)−1

. (5.83)

The scale invariant spectral

ρH(z0, z0; p) ≡ k(ρ/k)2−aσH(z0, z0; p) (5.84)
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Figure 9. Left panel: spectral density ρH(z0, z0; p) for a continuum Higgs boson. Right panel:

Green’s function, GH(z0, z0; p), for the Higgs. We display in solid (blue) line the numerical compu-

tation using eq. (5.82), and in dotted (red) line the analytical result from eq. (5.90). We have used

A1 = 35, c = 1, ρ = 2 TeV, a = 2.4 and M0 = 0.5 · ka. The pole of the Green’s function is located

at p = 0.125 TeV.

and Green’s functions

GH(z0, z0; p) ≡ kGH(z0, z0; p) (5.85)

are plotted in the left and right panels of figure 9. The latter in particular implies for the

Green’s function a constant behavior away from the pole position. In particular the value

of the Green’s functions for p > mH is

G(+)
H (z0, z0)−1 = −2M0

k
+ a− 1

F̄ (y1)
, (5.86)

and for p < mH is

G(−)
H (z0, z0)−1 ' G(+)

H (z0, z0)−1 +
F̄
′
(y1)

2M1F̄ (y1)2
+ · · · , (5.87)

with F̄ (y) ≡ F (y)−F (0), where F (y) is defined in eq. (4.9). After performing an expansion

for kys � 1, one finds

G(+)
H (z0, z0)−1 ' −2M0

k
+ (4− a) +

4

kys
+

2

(a− 2)(kys)2
+ · · · , (5.88)

and

G(−)
H (z0, z0)−1 ' G(+)

H (z0, z0)−1 (5.89)

+16(a− 1)3(a− 2)2(kys)
4 ρ2

m2
H

e−2(a−2)kys

(
1− 4

(a− 2)kys
+ · · ·

)
.

Moreover, for p ' mH , the Green’s function shows a pole behavior as

GH ∼ m2
H/(p

2 −m2
H)

which corresponds to the presence of the isolated resonance corresponding to the presence

of the SM Higgs. This pole is shown in the right panel of figure 9 where we have fixed
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Field Gauge boson Fermion f Graviton Radion Higgs

mg ρ/2 |cf |ρ 3ρ/2 3ρ/2 3ρ/2

Table 1. Values of the mass gap for different fields where ρ ≡ e−kys/ys.

ρ = 2 TeV, and we have considered ky1 = kys −W(c). In fact an excellent agreement with

the full numerical behavior of the Green’s function is given by

GH(z0, z0; p) = c1 + c2
m2
H

p2 −m2
H

, (5.90)

where the coefficient c1 = GH(z0, z0; p→∞) is determined analytically from eq. (5.86), and

c2 = GH(z0, z0; p→∞)− GH(z0, z0; p→ 0) (5.91)

' F̄
′
(y1)

2M1F̄ (y1)2
G(+)
H (z0, z0)2 ' ρ2

m2
H

16(a− 1)3(a− 2)2(kys)
4e−2(a−2)kys(

−2M0
k + 4− a

)2 + · · ·

is a relatively small difference between the UV and IR limits of the Green’s function. In the

second and third equalities of this equation we have used eqs. (5.87) and (5.89) respectively.

The values of these coefficients for the plot of the right panel of figure 9 are c1 = −1.46

and c2 = 2.88× 10−2, and the corresponding result is shown as a dotted line in that figure.

6 Phenomenological aspects

The main experimental signature for detecting heavy new physics is its production, and

subsequent decay, in colliders, and in particular in the present LHC at CERN. When

the new physics consists in heavy Breit-Wigner resonances, their presence is detected by

bumps in the invariant mass of the final states, corresponding to the mass of the exchanged

particle. However, when the new physics consists in a continuum of states beyond a mass

gap mg, as in the model we are considering in this paper, its presence should be associated,

not with a bump but with an excess, with respect to the Standard Model prediction, in the

measured cross section. The larger the mass gap, the higher energy should one produce to

detect the excess in the predicted cross sections. In this way the continuum states with the

least mass gap are the most easily produced. As we have shown in the previous section, the

different mass gaps for the different fields are those summarized in table 1. From there we

can see that, as for light fermions cf > 1/2 and so their mass gap is mg > ρ/2, the simplest

case for producing the continuum of KK modes are gauge bosons and, in particular the

strongest coupled KK modes, the KK gluons, for which we will concentrate ourselves in this

section. In Drell-Yan (DY) processes the continuum of KK gluons is produced by pairs of

light fermions (valence quarks in the proton), which we can assume to be localized on the

UV brane at z = z0. Subsequently, the continuum will decay into a pair of fermions. The

more localized toward the IR brane the fermions are, the more strongly they are coupled

to KK modes, and the more copiously they are produced. To study the different processes

we must compute the gluon Green’s function propagating between two arbitrary points in

the bulk GA(z, z′; p).
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Up to now we have presented the computation of Green’s functions GA(z0, z0; p), and

spectral densities, by using the holographic method. There is an alternative procedure

to compute these quantities, by obtaining the UV-brane-to-UV-brane Green’s functions

GA(p) from the general Green’s function GA(z, z′; p) in the form

GA(z0, z0; p) = lim
z,z′→z0

GA(z, z′; p) , (6.1)

where GA(z, z′; p) is the “IR regular” solution to the inhomogeneous bulk EoM. Moreover

the general formalism will allow us to compute the case of arbitrary, z and z′, and in

particular the interesting case where the Green’s function propagates from the UV to the

IR brane, i.e. when z = z0 and z′ = z1.

In the case of gauge bosons, the general equation writes as

e−Ap2GA(z, z′; p) +
d

dz

[
e−A

.
GA(z, z′; p)

]
= δ(z − z′) , (6.2)

where the dot indicates derivative with respect to z, which is the inhomogeneous version

of eq. (5.2).9 This equation includes the generalization to the continuous spectrum of the

Green’s function, which for the case of a discrete spectrum with mass mn for the n-th mode

fnA, is well-known to be given by

GA(z, z′; p) =
∑
n

fnA(z)fnA(z′)

p2 −m2
n

, (6.3)

where {fnA(z)} is a basis of orthonormal modes.

The Green’s function is subject to boundary and matching conditions. In particular,

after fixing the value of z′, we divide the z space into the following domains: z0 ≤ z ≤ z′,

z′ ≤ z ≤ z1 and z1 ≤ z, and consider the following conditions for the different values of z:
.
GA(z0) = 0 , ∆GA(z′) = 0 , ∆

.
GA(z′) = eA(z′) ,

∆GA(z1) = 0 , ∆
.
GA(z1) = 0 , (6.4)

where ∆f(z) ≡ limε→0 (f(z + ε)− f(z − ε)). In addition, we should impose regularity in

the IR as explained below eq. (5.15), i.e. we consider c+ = 0. The jump in the derivative of

the Green’s function at z = z′ follows after integrating eq. (6.2) in the interval [z′−ε, z′+ε].
Notice that eq. (6.2) is a second order differential equation, so that there appear two

integration constants in each of the three domains mentioned above, leading to a total of

six integration constants. These are fixed after considering the five conditions of eq. (6.4)

plus one condition of IR regularity. Finally, once the Green’s function GA(z, z′; p2) is

computed, the spectral density for gauge bosons is obtained as

σA(z, z′; p) =
1

π
ImGA(z, z′; p) . (6.5)

For the case z = z′ = z0 the value of GA(p) is computed as in eq. (6.1), and the result

9One could equivalently work in proper coordinates. Eq. (6.2) would write as

p2GA(y, y′; p) +
d

dy

[
e−2AG′A(y, y′; p)

]
= δ(y − y′) ,

where the prime indicates derivative with respect to the variable y, and we have taken into account that

δ(y − y′) = eAδ(z − z′).
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Figure 10. Scale invariant spectral density (left panel) and squared absolute value of the Green’s

function (right panel) for gauge bosons, for the case z = z0 and z′ = z1. We have used A1 = 35

and c = 1.
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Figure 11. Left (right) panel is σ(qq̄ → g∗ → QQ̄)/σSM(qq̄ → g0 → QQ̄), versus p/ρ, with p ≡
√
ŝ

being the partonic energy, while Q is a light (heavy) quark living on the UV (IR) brane. We have

used A1 = 35 and c = 1.

agrees with the plot in the right panel of figure 4. For the case z = z0 and z′ = z1 the scale

invariant spectral function

ρA(z0, z1; p) ≡ W(k/ρ)(ρ2/k)σA(z0, z1; p) (6.6)

and Green’s function

GA(z0, z1; p) ≡ W(k/ρ)(ρ2/k)GA(z0, z1; p) (6.7)

are given in the left and right panels of figure 10, respectively.

In particular the Green’s function GA(z0, z1; p2) can be used to compute the contri-

bution of the gauge continuum to the physical partonic process with partonic energy
√
ŝ:

σ(qq̄ → g∗ → QQ̄) = σSM(qq̄ → g(0) → QQ̄)|(ŝ/ρ2)GA(z0, z1; ŝ)|2, where g∗ is the con-

tribution from the gluon continuum, g(0) is the SM gluon and we have made use of the

relation between the 5D and 4D gauge couplings g5 = g4
√
ys. We are assuming that q is

a proton valence quark, living on the UV brane, and Q is either a heavy quark living on

the IR brane (as e.g. tR) or a light quark living on the UV brane (as e.g. bL,R). In the

right panel of figure 11 we show the case where Q = tR, where we assume that tR is living

on the IR brane. As fermions localized on the IR brane are strongly coupled to the KK
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Figure 12. Scale invariant spectral density (left panel) and squared absolute value of the Green’s

function (center panel) for gauge bosons, for the case z = z1 and z′ = z1. We have used A1 = 35

and c = 1.

modes, the relative cross-section, with respect to the SM one, increases with the partonic

energy and can yield a sizeable departure from the SM prediction for large values of the

partonic energy. We see from the right panel of figure 11 that the enhancement can be

O(10) for
√
ŝ ' O(10)ρ. In the left panel of figure 11 we show the case where Q is a

light quark localized toward the UV brane. We see that the enhancement with respect to

the SM prediction is O(1) for any partonic energy and thus much more difficult to detect

experimentally. Notice also that in the limit p → 0 the processes are dominated by the

gluon zero mode (an isolated pole on top of the gluon continuum) which makes, in this

limit, σ(qq̄ → g∗ → QQ̄)/σSM(qq̄ → g0 → QQ̄)→ 1, as can be seen from figures 11.

Finally we will consider here the case of IR-brane-to-IR-brane spectral and Green’s

functions σA(z1, z1; p) and GA(z1, z1; p). This case is relevant in processes where both the

initial and final fermions are localized on the IR brane. This is the case for instance in

models explaining the RD(∗) anomalies, where right-handed third generation fermions are

localized on the IR brane [48]. The relevant Green’s function can contribute significantly to

the process σ(bRb̄R → g∗ → tRt̄R), which is parton distribution function (PDF) suppressed,

with respect to σ(qq̄ → g∗ → tRt̄R), by the small amount of bottoms inside the proton, but

enhanced, with respect to the latter, by the large coupling of the bottom to the KK modes,

while the SM contribution σSM(bRb̄R → g(0) → tRt̄R) is suppressed. The scale invariant

spectral function

ρA(z1, z1; p) ≡ (ρ2/k)σA(z1, z1; p) (6.8)

is shown in the left panel of figure 12, while the scale invariant Green’s function,

(ŝ/ρ2)GA(z1, z1; p), where

GA(z1, z1; p) ≡ W(k/ρ)(ρ2/k)GA(z1, z1; p) (6.9)

which measures the ratio σ(bRb̄R → g∗ → tRt̄R)/σSM(bRb̄R → g(0) → tRt̄R) is shown in

the right panel of figure 12. As we can see, the enhancement of the production through

the gluon continuum can easily be O(100− 1000), and so for large collider energies it can

be significant and lead, in spite of the strong PDF suppression, to a strong deviation with

respect to the SM predictions. Notice also that σ(bRb̄R → g∗ → tRt̄R)/σSM(bRb̄R → g(0) →
tRt̄R) → 1 in the limit p → 0, as the process is dominated by the isolated zero mode of

the gluon.
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7 Conclusions

In this paper we have proposed a model with a warped extra dimension solving the hierarchy

problem, and where the KK spectra of all particles (gauge bosons, fermions, graviton,

radion, Higgs boson) are continua of states with a mass gap. In this sense it provides

a modelization of the theory of unparticles in the presence of a mass gap at the TeV

scale. The existence of such continua should modify the present searches of new physics,

which are mainly concentrated on the presence of bumps in the invariant mass of final

states, corresponding to isolated (and narrow) resonances. We have shown that the model

predicts the existence of a metric singularity at a finite distance in proper coordinates

y = ys (which corresponds in conformal coordinates to zs → ∞). The singularity is

admissible as it supports finite temperature in the form of a black hole horizon. The

space has as boundaries a UV brane and the singularity. Moreover, we have introduced

an IR brane to successfully trigger electroweak breaking, and which requires special jump

conditions. The distance between branes and the singularity are fixed by the dynamics of

a bulk Goldberger-Wise field with brane potentials breaking the conformal invariance.

The gravitational background is AdS5 near the UV brane (which allows to solve the

hierarchy problem à la Randall-Sundrum) and has strong breaking of conformality near

the IR. In this way it behaves like the linear dilaton theory near the IR while it departs

from it near the UV, where it behaves as the RS theory. This requirement is proved to be

essential to solve the hierarchy problem in the conventional fashion, where the Planck scale

is fundamental and the TeV scale is derived from it by the metric warp factor. Here we

depart from the 5D version of clockwork theories, based on Little String Theories, where

the TeV scale is fundamental and the Planck scale is a derived one. As a consequence

of the existence of two very different regimes, in the UV and IR regions, the equations

of motion and Green’s functions, which are computed in this paper, cannot be solved

analytically, as was done in the model of ref. [34], but all calculations have to be done

numerically. In particular we have computed UV-brane-to-UV-brane Green’s and spectral

functions using holographic methods, and arbitrary Green’s function by solving the non-

homogeneous equations of motion.

As a particular phenomenological application we have computed the brane-to-brane

Green’s function and seen how it can modify, at the LHC, the SM cross-section where a

gluon is produced by Drell-Yan process and decays into a pair of heavy fermions Q localized

on the IR brane. The prediction is a smooth increase of the cross-section which depends

on the partonic energy, and should produce an increase in the cross section σ(pp → QQ̄).

Other, more detailed, phenomenological applications should be inspired to a large extent

on unparticle phenomenology and we will postpone their study for a future work.
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European Regional Development Fund (ERDF) under Grant SOMM17/6105/UGR, and by

the Spanish Consolider Ingenio 2010 Programme CPAN under Grant CSD2007-00042. The

research of EM is also supported by the Ramón y Cajal Program of the Spanish MINEICO

under Grant RYC-2016-20678. The work of MQ is partly supported by Spanish MINEICO

(Grant FPA2017-88915-P), by the Catalan Government under Grant 2017SGR1069, and

by Severo Ochoa Excellence Program of MINEICO (Grant SEV-2016-0588).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD

Electroweak Group, SLD Heavy Flavour Group collaboration, Precision electroweak

measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].

[2] Particle Data Group collaboration, Review of particle physics, Chin. Phys. C 40 (2016)

100001 [INSPIRE].

[3] L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys.

Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

[4] CMS collaboration, Search for resonant tt̄ production in proton-proton collisions at
√
s = 13

TeV, JHEP 04 (2019) 031 [arXiv:1810.05905] [INSPIRE].

[5] ATLAS collaboration, Search for heavy particles decaying into a top-quark pair in the fully

hadronic final state in pp collisions at
√
s = 13 TeV with the ATLAS detector, Phys. Rev. D

99 (2019) 092004 [arXiv:1902.10077] [INSPIRE].

[6] G.F. Giudice and M. McCullough, Comment on “Disassembling the clockwork mechanism”,

arXiv:1705.10162 [INSPIRE].

[7] G.F. Giudice et al., Clockwork/linear dilaton: structure and phenomenology, JHEP 06

(2018) 009 [arXiv:1711.08437] [INSPIRE].

[8] I. Antoniadis, A. Arvanitaki, S. Dimopoulos and A. Giveon, Phenomenology of TeV little

string theory from holography, Phys. Rev. Lett. 108 (2012) 081602 [arXiv:1102.4043]

[INSPIRE].

[9] I. Antoniadis, S. Dimopoulos and A. Giveon, Little string theory at a TeV, JHEP 05 (2001)

055 [hep-th/0103033] [INSPIRE].

[10] S.S. Gubser, Curvature singularities: the good, the bad and the naked, Adv. Theor. Math.

Phys. 4 (2000) 679 [hep-th/0002160] [INSPIRE].

[11] J.A. Cabrer, G. von Gersdorff and M. Quirós, Soft-wall stabilization, New J. Phys. 12 (2010)

075012 [arXiv:0907.5361] [INSPIRE].
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