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Predicting the metabolic behavior of the human gut microbiota in different contexts is
one of the most promising areas of constraint-based modeling. Recently, we presented
a supra-organismal approach to build context-specific metabolic networks of bacterial
communities using functional and taxonomic assignments of meta-omics data. In this
work, this algorithm is applied to elucidate the metabolic changes induced over the
first year after birth in the gut microbiota of a cohort of Spanish infants. We used
metagenomics data of fecal samples and nutritional data of 13 infants at five time
points. The resulting networks for each time point were analyzed, finding significant
alterations once solid food is introduced in the diet. Our work shows that solid food
leads to a different pattern of output metabolites that can be potentially released from
the gut microbiota to the host. Experimental validation is presented for ferulate, a
neuroprotective metabolite involved in the gut-brain axis.
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INTRODUCTION

The study of nutrition has become increasingly concerned with human metabolism and the
individualized human metabolic responses to diet. This approach was defined as personalized
nutrition or nutrigenetics (Mutch et al., 2005). However, although personalized nutrition is
frequently considered in the context of diet–gene interactions, individual human physiology
depends not only on human genes, but also on the gut microbiota (Sonnenburg and Bäckhed,
2016). The gut harbors a densely populated microbial ecosystem containing a number of bacterial
cells larger than the number of eukaryotic cells in the entire human body. The colon is the major
site for the gut microbiota’s ‘co-metabolic’ activity, which enhances the efficiency of energy harvest
from foods and influences the synthesis, bioavailability, and function of nutrients (Tremaroli and
Bäckhed, 2012). This activity produces different beneficial compounds that regulate host health,
such as short chain fatty acids (SCFAs), polyphenol metabolites, neuroactive chemical species, etc.
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In this context, one of the major challenges in nutrition and
health is to elucidate the interaction between diet and the
metabolism of the gut microbiota (den Besten et al., 2013).

Systems Biology and metabolic networks are an elegant
approach to predict the overall functionality of the gut
microbiota as well as the biosynthesis of specific health-related
metabolites in response to diet. Current network-based methods
to analyze gut microbiota metabolism are divided in two different
strategies. On the one hand, some studies have used a supra-
organism approach, which ignores boundaries for species and
models community-level metabolism, based on graph-theory, by
integrating metagenomics (Greenblum et al., 2012) or taxonomic
data (Sridharan et al., 2014) with metabolic reaction repositories,
such as KEGG (Kanehisa et al., 2016) or SEED (Henry et al.,
2010). A more evolved approach than graph-based methods is
constraint-based modeling (CBM), which includes mass-balance
and thermodynamic constraints (Price et al., 2004). Current
CBM approaches focus on inter-species models, requiring the
genome-scale metabolic reconstruction of each organism as
input data. A remarkable work was recently presented in
Magnúsdóttir et al. (2017), which released the first large-scale
human gut microbiota reconstruction involving 773 different
species resident in the human gut. These methods typically
integrate 16S rRNA sequence data of bacterial species contained
in the samples. Despite these relevant advances, multi-species
CBM is still in its infancy and key technical challenges must be
addressed (Magnúsdóttir and Thiele, 2018).

In a previous work (Tobalina et al., 2015), we presented a
mixed approach that builds on CBM but, at the same time,
uses a supra-organismal strategy. In particular, our approach
was constructed to identify metabolic networks that capture
the differences between two scenarios of interest based on the
functional and taxonomic assignments of available meta-omics
data. In this work, this algorithm is extended and applied to
elucidate the metabolic changes induced over the first year after
birth in the gut microbiota of a birth cohort of Spanish infants.
To that end, we used metagenomics data of fecal samples and
nutritional data for 13 infants at five time points during the first
year after birth. Our aim is to analyze the resulting context-
specific metabolic networks for each time point considered and
establish metabolic differences.

MATERIALS AND METHODS

Reference Metabolic Network
We obtained the list of reactions and metabolites from the
Model Seed (Henry et al., 2010), a freely available resource
to reconstruct, compare, and analyze genome-scale metabolic
networks. We introduced the following changes: first, in order
to model compounds that can be potentially released by the gut
microbiota to the human host, we added an irreversible output
exchange reaction for each metabolite defined in the extracellular
compartment of the Model Seed database. Second, we extracted
from the metabolic model presented in Heinken and Thiele
(2015) the subset of output exchange reactions not considered in
the previous step. Overall, we have 717 output metabolites in our

reference metabolic network. Third, we defined an irreversible
input exchange reaction for each input metabolite identified
in our nutritional assessment of infants involved in the study
(see below). In total, we have 135 input nutrients, including
minerals, carbohydrates, amino acids, vitamins, lipids, fiber, and
flavonoids. Fourth, as in Tobalina et al. (2015), we included a
biomass reaction in our network, which represents a consensus
equation for the metabolic requirements of different members of
the human gut microbiota to support growth. In total, we have
17664 metabolites and 14124 reactions, which are stored in the
stoichiometric matrix, S.

Our objective is to contextualize this reference metabolic
network for each condition in our study based on available
metagenomics and nutritional data. In other words, we aim to
select a particular subset of active metabolites and reactions for
each condition. To that end, the algorithm presented in Tobalina
et al. (2015) was applied. As noted above, this algorithm uses
a supra-organismal strategy to select active reactions; however,
unlike existing graph-based methods, the resulting context-
specific metabolic networks satisfy mass-balance constraints
and biomass production, as typically done in CBM. On the
other hand, although this algorithm was first tested with
metaproteomics data, it can be similarly used in cases where
metagenomics or metatranscriptomics data are available. Clearly,
metaproteomics data are more reliable to infer active enzymes
in a microbial community; however, metagenomics is more
common in the literature and widely used to infer metabolic
capabilities (Greenblum et al., 2012; Sridharan et al., 2014), as it
is done here. In addition, although the correlation between gene
abundances and mRNA/protein levels has not been sufficiently
explored, it is considerably high in some cases reported in
the literature (Franzosa et al., 2014; Zhao et al., 2015), which
supports the analysis conducted here. We describe below how
metagenomic and nutritional data were integrated into the
algorithm in Tobalina et al. (2015).

Metagenomic Data
From Vallès et al. (2014), we collected 454 pyrosequencing
metagenomic data of the gut microbiota of 13 Spanish infants
at five different time points during the first year after birth
(1 week and 1, 3, 7 months, and 1 year). For the second time
point considered (1 month), we only have data for 9 out of 13
infants and, therefore, we have 61 samples overall. Information
on sex, type of delivery, antibiotic exposure, and feeding habits
for these infants is provided in Supplementary Table S1. In
brief, all infants were born at term (>37 weeks of gestation),
10 of them by vaginal delivery and three by C-section. Their
mothers had not taken antibiotics in at least 3 months before the
onset of labor. Six women received antibiotics during delivery.
Nine infants were exclusively breastfed during at least 3 months,
three received a few formula feedings during the first days of
life and one was partially breastfed during the first month and
formula-fed thereafter. All infants remained healthy throughout
most of the sampling period and solid foods were introduced
into their diets between 4 and 6 months after birth, following
typical patterns of Spanish Mediterranean infant diets. Previous
statistical analyses have established that metagenomic variation in
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these samples is mainly driven by the infants’ age, as differences
among infants within a sampling time point (including those that
may result from variation in mode of birth, feeding regime or
antibiotic use) are smaller than those present among infants of
different ages (Vallès et al., 2014). This justifies the comparisons
among metabolic networks at different time points presented in
Section “Results.”

The functional annotation of sequenced reads was conducted
using HMMER2 (Finn et al., 2011) against TIGRFAMs database
9.0 (Haft et al., 2003). As a result, for each of the 61 samples
available, we obtained the read count assigned to 2703 proteins
annotated in TIGRFAMS (Supplementary Data S1). We denote
aijt the read count for protein i (i = 1,. . .,N) in infant j
(j = 1,. . .,J) at time point t (t = 1,. . .,T). N, J, and T are
the total number of TIGRFAMS proteins, infants and time
points, respectively.

On the other hand, the taxonomic assignment of sequenced
reads was carried out with BLASTX (Altschul et al., 1990),
obtaining for each analyzed sample the read count for 632
taxa (Supplementary Data S1). We denote bwit the read
count for taxonomy w (i = 1,. . .,W) in infant j (j = 1,. . .,J)
at time point t (t = 1,. . .,T). W is the total number of
taxonomies considered.

Absolute Classification of TIGRFAMs Proteins
Functional metagenomics data were first summarized per time
period, namely ait =

∑J
j=t aijt , which substantially reduces

the variability in sequencing depth for different samples and
increases the read count data for the cases analyzed. For each
time point considered, we identified the subset of highly (Ht) and
lowly (Lt) abundant (TIGRFAMs) proteins based on summarized
read counts. To that end, we take as a null hypothesis that
all proteins are equally abundant and, therefore, assume that
the read count for each protein follows a Poisson distribution
χit(λ̂t), where the mean value is normalized by time point: λ̂t =∑N

i=1 ait/N. We consider as lowly abundant those proteins with
an observed read count significantly less abundant than expected
under the above hypothesis (significant threshold: p-value≤ 0.05;
p-value = p(χit(λ̂t) ≤ ait)). If the opposite occurs, we consider
such protein as highly abundant.

Differential Classification of TIGRFAMs Proteins
In order to avoid the selection of lowly abundant proteins, we
first filtered proteins (i) that were classified as lowly expressed
in all time points considered or (ii) for which 50% of infants
had no reads assigned in all time points considered. We then
conducted differential abundance analysis for the rest of proteins
in the TIGRFAMs database between each successive time point.
This analysis was done with edgeR (Robinson et al., 2009),
using the trimmed mean of M-values (TMM) normalization,
which blocks different sources of variability associated with
read count data. We selected as differentially abundant proteins
between two successive time points (Kt,t+1) those proteins
with p-value ≤ 0.05. Again, we removed from Kt,t+1 those
proteins classified as lowly expressed in time points t and t+1 or
proteins for which 50% of infants had no reads assigned in time
points t and t+1.

Taxonomic Analysis
Again, in order to reduce the sequencing depth variability
among samples, we first summarized the taxonomic assignment
per time period, namely bwt =

∑J
j=1 bwjt . Second, for each

time period, we selected those taxa with an abundance (xt)
higher than 1%: xt = {w| (bwt/

∑W
w=1 bwt) ≥0.01}, as done in

Vallès et al. (2014). For these taxa, we obtained the set of
related genomes from the KEGG website (Kanehisa et al., 2016).
Enzymes from these genome annotations that were neither
included in proteins in Ht nor Lt were included in Mt . Full details
regarding these taxa and genome annotations can be found in
Supplementary Data S1.

Summary
Based on metagenomic data, for each time period considered,
we have a different set of highly abundant (Ht) and lowly
abundant (Lt) TIGRFAMs proteins, as well as a different
set of enzymes annotated from relevant taxonomies (Mt).
We denote the set of enzymes from the reference metabolic
network not included in Ht , Lt , or Mt as Dt . Namely, Dt
involves the subset of non-identified enzymes that are currently
annotated for organisms not present in the community.
Note here that we used Enzyme Commission (EC) number
to code for enzymes. Metabolic proteins annotated in
TIGRFAMS have at least one EC number assigned. By
linking enzymes to reactions via EC numbers, sets Ht , Lt ,
Mt , and Dt can be transformed to the reaction level for
each time step. The same can be done for Kt,t+1, the list
of differentially abundant TIGRFAMs proteins between two
consecutive time-steps.

Nutritional Data
In order to assess the daily intake of food and nutrients for each
infant, we used a semi-quantitative food frequency questionnaire
based on the validated questionnaire by Vioque et al. (2013). The
infants’ food consumption was specified by their mothers. Food
frequency consumption of different infants was recorded 1 week
and 1, 3, 7, and 12 months after birth, similarly to metagenomic
data, taking into account lactation, the formulas used and the
regular food for supplementing lactation. Nutrient intake was
calculated using the online software i-Diet1, which was developed
for the use of professionals in the field of nutrition and dietetics.
As a result, daily consumption of 135 nutrients was obtained (see
Supplementary Data S1).

For each time point, we identified the active input metabolites
and added their associated exchanges to Ht . Instead, the
exchange reactions associated with inactive input metabolites
(zero abundance) were excluded from the reference network. On
the other hand, the relative abundance of identified metabolites
between each successive time point was compared using a paired
t-test. We used the following threshold cutoff for differentially
abundant metabolites: p-value ≤ 0.05 and increase/decrease
by fold-change ≥ 1.5. Exchange reactions that are associated
with differentially abundant metabolites were included in
the set Kt,t+1.

1https://i-diet.es/
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Data Integration and
Metabolic Reconstruction
As detailed in Tobalina et al. (2015), we seek a functional network
that includes the maximum number of highly likely reactions
(Ht) and the minimum number of lowly likely reactions (Lt).
We complete the network using the reactions in the reference
network, preferably those annotated in taxonomic groups present
in the community (Mt). Note here that, in order to capture
the metabolic differences between time points considered,
we particularly force the inclusion of the maximum number
of over-abundant TIGRFAMs enzymes and input metabolites
in each situation.

As typically done in CBM, the selected reactions must
satisfy the mass balance equation, the growth medium and
thermodynamic constraints and the biomass production:

S · v = 0 (1)

vmin
≤ v ≤ vmax (2)

vbio ≥ ε (3)

where v represent reaction fluxes, vmin and vmax the lower
and upper bounds for reaction fluxes, respectively, vbio the
flux through the biomass reaction and ε the minimum
required flux through the biomass reaction. Note here that,
aside from input and output reaction exchanges, the rest
of reactions are potentially reversible and they are split
into two different steps (forward and backward reactions)
with non-negative fluxes (vmin = 0). In addition, we fixed
vj

max = α = 1000, except for exchange reactions associated
with inactive input metabolites, whose upper bound is zero
(equivalent to deletion). Finally, we set ε = 1. In Tobalina et al.
(2015), it was shown that the results are robust to the value
of ε and α.

In order to guide the search of a reaction network that
satisfies Eqs (1)–(3) and takes into account metagenomics
and nutritional data, we used the algorithm presented in
Tobalina et al. (2015), which consists of a three-step iterative
procedure based on linear optimization and a reaction scoring
based on the classification of reactions described above. In
the first two steps (Steps 1–2), steady-state central metabolic
pathways for biomass production are established based on
single reaction knockout perturbations. Here, we also included
double reaction knockout perturbations to have more complete
networks. The resulting networks are then expanded to include
over-abundant nutrients and enzymes and emphasize metabolic
differences at each scenario (Step 3). In order to have a more
complete view of the output metabolites obtained from over-
abundant nutrients and enzymes, we implemented a single
reaction knockout perturbation strategy for output metabolites
obtained in Step 3.

A step-by-step description of the algorithm can be found in
the Supplementary Methods. The algorithm was implemented in
MATLAB, using IBM Ilog Cplex to solve optimization problems.
A Matlab implementation of our algorithm is available in the
Supplementary Code.

Metabolomic Validation
To validate our approach (see section “Results”), we measured
the levels of ferulate (ferulic acid) in different time steps using a
targeted metabolomics approach. Note here that we used aliquots
of the same samples from which metagenomic data was obtained.
Details are presented below.

Extraction of Ferulic Acid
Fecal samples frozen upon collection were processed by
resuspension of approximately 200 mg of sample per mL of
phosphate buffered saline. Samples were sonicated for 15 min
and centrifuged at 13000 rpm for 10 min, and the supernatant
was set aside. One mL of the supernatant was mixed with 1 mL
of diethyl ether in a 2 mL tube and was kept in the dark
for 24 h. Afterward, the supernatant (containing diethyl ether
along with phenolic compounds) was separated into a clean
10 mL tube. Thereafter, 1 mL of diethyl ether was added to
the 2 mL tube, mixed by inversion and the supernatant (diethyl
ether) separated into the 10 mL tube. This step was repeated
one more time, so that 3 mL of diethyl ether were collected
into the 10 mL tube. Afterward, anhydrous sodium sulfate was
added to eliminate humidity. Diethyl ether was then evaporated
with vacuum at 30◦C. Phenolic compounds were resuspended
in 1 mL of a water:methanol mix (50:50) and transferred to a
high-performance liquid chromatography (HPLC) vial right after
filtering them through a 0.22 µ filter.

HPLC Measurement of Ferulic Acid
Ferulic acid identification was carried out by HPLC following the
method described in Moreno-Montoro et al. (2015). The HPLC
system was a Thermo Fisher-Scientific Accela 600 equipped with
a quaternary pump, an autosampler, a column oven and a variable
wavelength UV-vis detector (PDA) set at 280 nm. The analytical
column was a reverse phase C18 column thermostatized at 25◦C.
Mobile phase A was water with 0.1% of formic acid and phase B
was acetonitrile with 0.1% of formic acid. The method was carried
out with a flow rate of 0.7 mL/min with the following gradient: 0%
of B for 15 min, 100% of B at minute 110, 100% of B for 10 min
and 0% of B for 5 min. Twenty µL were injected and the ferulic
acid peak was identified by comparison with a reference standard.
A calibration curve was performed with a reference standard with
concentrations ranging from 5 to 0.0001 ppm.

Cell Count
To ensure that measurements were obtained for similar amounts
of bacterial cells, we evaluated the number of cells per mL in
each sample suspension to determine the volume required for
the ferulic acid assay. Cell count was performed with a Neubauer
Haemocytometry chamber, which is the standard procedure for
cell counting. Cells were resuspended in 1 mL of water and
diluted accordingly to obtain around 100 cells per large square
in the hemocytometer. Trypan blue was added to this suspension
to dye cells and facilitate counting. Ten µL of such suspension
were placed in the hemocytometer and cells were counted in the
four corners of the 5x5 grid, obtaining afterward an average value
for the four corners.
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FIGURE 1 | Hierarchical clustering analysis of reconstructed metabolic networks of gut microbiota of infants at 1 week and 1, 3, 7 months, and 1 year of age.
Distances based on active reactions (A), metabolites (B) and functional metagenomic annotations (C). In (A), for each time point, we defined a binary vector that
stores active reactions in its reconstruction. We compared these binary vectors for the different time points using Jaccard’s distance. A similar analysis was done for
metabolites in (B). For functional metagenomic annotation data in (C), we used Euclidean distance.

RESULTS

Based on Tobalina et al. (2015) and data presented above,
we calculated a consensus metabolic network for the gut
microbiota of infants of 1 week and 1, 3, 7, and 12 months
of age. It is important to note that these networks are not
fully comprehensive but they emphasize the main metabolic
differences across two consecutive conditions. Full details as
to the reactions involved for each case can be found in
Supplementary Data S1.

Based on Jaccard’s distance, we evaluated the similarity at the
reaction and metabolite levels between the different computed
networks (Supplementary Table S2) and conducted hierarchical
clustering analysis (Figures 1A,B). Networks associated with data
collected after 7 months and 1 year of birth are clearly separated
from data taken after 1 week and 1 and 3 months. This significant
change is related with the introduction of solid food, between
4 and 6 months after birth, which modifies nutritional patterns
and, thus, the input exchange reactions (active nutrients) in the
reconstructed networks. The effect of solid diet is more clearly
observed after 1 year, where we found more significant differences
at both taxonomic and functional level, as discussed in detail
in Vallès et al. (2014). This analysis shows that we were able to
capture the main metabolic network adaptation during the first
year after birth. Note here that the computed metabolic networks
capture more clearly the effect of solid foods than functionally
annotated metagenomic data, as observed in the dendrogram
of Figure 1C, which reinforces the usefulness of the integrative
approach presented here.

For every pair of successive time points, we compared the
metabolic pathways involved in their resulting networks through
KEGG maps (see Supplementary Tables S3–S6). However, in
order to summarize the functional changes associated with the
introduction of solid diet, following the results in Figure 1,
we merged the metabolic networks before (1 week and 1 and
3 months) and after (7 months and 1 year) the solid diet
introduction and analyzed KEGG maps. For comparing both
scenarios, we used a dissimilarity score (Jp), based on Jaccard’s
distance, which was introduced in Tobalina et al. (2015). We
ranked the KEGG pathways according to this measure (see
Supplementary Data S1).

Table 1 shows the top 10 most dissimilar KEGG pathways
between metabolic networks before and after solid food
introduction. The importance of the metabolism of phenolic
compounds after the introduction of solid food is clearly reflected
in Table 1 with the activation of “Flavonoid biosynthesis”
and “Phenylpropanoid biosynthesis” maps. These changes are
linked to the intake of fruits and vegetables. In addition,
infants before solid diet introduction seem more dependent on
vitamin B6 metabolism, which is in line with previous reports
suggesting the need for supplementation during breast-feeding
(Falsaperla et al., 2017).

TABLE 1 | Ten most dissimilar KEGG pathways between metabolic networks
before and after solid food introduction.

KEGGID Name Before
solid diet

After solid
diet

Dissimilarity
score

map00941 Flavonoid
biosynthesis

0 18 18.00

map00630 Glyoxylate and
dicarboxylate
metabolism

27 21 7.65

map00130 Ubiquinone and other
terpenoid-quinone
biosynthesis

6 16 6.25

map00940 Phenylpropanoid
biosynthesis

1 8 6.13

map00622 Xylene degradation 1 7 5.14

map00523 Polyketide sugar unit
biosynthesis

0 5 5.00

map00750 Vitamin B6
metabolism

4 1 4.00

map00360 Phenylalanine
metabolism

11 7 3.69

map00500 Starch and sucrose
metabolism

14 15 3.30

map00440 Phosphonate and
phosphinate
metabolism

0 3 3.00

For each KEGG pathway in table, the entries in “Before solid diet” and “After solid
diet” columns represent the number of its annotated reactions that are involved in
the merged reconstructions before and after solid diet introduction, respectively.
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Importantly, the modulation of the gut microbiota of infants
after the introduction of solid diet leads to different output
metabolites (Supplementary Data S1). These output metabolites
may be released to human cells and fluids and, thus, regulate host
health. Among the predicted output metabolites that differentiate
the networks before and after solid food introduction, we focused
on ferulate (ferulic acid), which is a phenolic compound involved
in the “Phenylpropanoid biosynthesis” KEGG map. Ferulate
is a neuroprotective metabolite (Cheng et al., 2008), involved
in the gut-brain axis (Westfall et al., 2017), which has been
previously associated with cognitive development in embryonic
rats (Yabe et al., 2010).

In order to evaluate the statistical significance of ferulate,
we first conducted 50 bootstrap random permutations of
metagenomic and nutritional data and applied our network
reconstruction pipeline to each of them. The output exchange
reaction of ferulate was active in less than 5% of these random
reconstructions, which provides additional support for the result
presented here. Figure 2A shows the targeted metabolomic
analysis of ferulate in fecal samples during the first year after
birth of the infants considered. It can be observed that the
levels of ferulate significantly increase after 7 months (one-
tailed paired Wilcoxon test, p-value = 0.0116), maintaining a
similar value after 1 year (non-significant differences between

7 months and 1 year and significant differences between 1 year
and the rest of time points). Therefore, the levels of ferulate
seem to be linked to solid diet introduction, as predicted
by our algorithm.

Based on our metabolic reconstructions, we calculated input
nutrients that are degraded to form ferulate. For this analysis,
we adapted the K-shortest Elementary Flux Modes algorithm (de
Figueiredo et al., 2009) and enumerated minimal combinations
of nutrients that produce ferulate (see Supplementary Methods).
Three input nutrients were identified: cyanidin, catechin, and
epicatechin. Figure 2B shows the consumption of cyanidin
of infants in our study along the first year after birth.
These data were taken from the available nutritional data
described above. It can be observed that the consumption
of cyanidin is solid-diet specific, mainly associated with the
intake of fruits. A similar result was found for catechin and
epicatechin (Figures 2C,D).

Our hypothesis is that, once solid diet is introduced, ferulate
starts being synthesized by the gut microbiota of infants from
available cyanidin, catechin, and epicatechin. Of course, it may
happen that the ferulate found in many plant-based foods (not
accounted for in our nutritional data) explains the differences
observed in Figure 2A. However, we have found extensive
literature supporting that the biosynthesis of ferulate from

FIGURE 2 | Analysis of ferulate production in feces samples taken from infants over the first year after birth. Metabolomic analysis of ferulate (A) and consumption of
cyanidin (B), catechin (C), and epicatechin (D) (precursors of ferulate) based on nutritional data. ∗p < 0.05, ∗∗∗p < 0.001.
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cyanidin, catechin, and epicatechin is carried out by the gut
microbiota (de Ferrars et al., 2014; Yang et al., 2014).

DISCUSSION

Constraint-based modeling is a promising tool to analyze
the interaction of diet, gut microbiota and host. While inter-
species metabolic models are currently under development,
in this work we apply a supra-organism CBM approach,
previously presented in Tobalina et al. (2015), in order to
elucidate metabolic changes induced in the gut microbiota of
infants during the first year of life based on functional and
taxonomic assignment of metagenomics and on nutritional
data. Our approach was successful in predicting clear
metabolic patterns before (e.g., vitamin B6 metabolism)
and after solid foods were introduced (e.g., metabolism of
phenolic compounds).

The main application of our approach is to predict active
gut microbiota metabolites that could regulate host health, as
illustrated in the case of ferulate. In particular, we predict that
ferulate starts getting produced in the gut microbiota once solid
food is introduced in the infant diet, which is supported by the
metabolomic analysis provided and previous literature reporting
its biosynthesis from predicted nutrients (cyanidin, catechin, and
epicatechin). This result is of interest, since ferulate has been
associated with neuroprotection and cognitive development,
which reinforces the need and importance of solid food for the
infant’s growth.

According to the World Health Organization (WHO) and
Food and Agriculture Organization of the United Nations (FAO),
complementary feeding should start at the age of 6 months, a
time at which the brain and the gut are still developing and
maturing. The transition from exclusive breastfeeding to family
foods should cover the period from 6 to 18–24 months of age.
Both FAO and WHO agree that this period of life is especially
important since it is a time of vulnerability and therefore the
choice of complementary foods is crucial for the proper physical
and neurological development of children. Much work will be
needed to understand the impact of solid food introduction
patterns on gut microbiota metabolism and infant development
and health, but our work demonstrates that the analysis of
supra-organismal metabolic networks via CBM methods can help
in this endeavor.
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