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We use lattice QCD to calculate the form factors fþðq2Þ and f0ðq2Þ for the semileptonic decay Bs → Klν.
Our calculation uses six MILC asqtad 2þ 1 flavor gauge-field ensembles with three lattice spacings. At the
smallest and largest lattice spacing the light-quark sea mass is set to 1=10 the strange-quark mass. At the
intermediate lattice spacing, we use four values for the light-quark sea mass ranging from 1=5 to 1=20 of
the strange-quark mass. We use the asqtad improved staggered action for the light valence quarks, and the
clover action with the Fermilab interpolation for the heavy valence bottom quark. We use SU(2) hard-kaon
heavy-meson rooted staggered chiral perturbation theory to take the chiral-continuum limit. A functional z
expansion is used to extend the form factors to the full kinematic range. We present predictions for the
differential decay rate for both Bs → Kμν and Bs → Kτν. We also present results for the forward-backward
asymmetry, the lepton polarization asymmetry, ratios of the scalar and vector form factors for the decays
Bs → Klν and Bs → Dslν. Our results, together with future experimental measurements, can be used to
determine the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element jVubj.
DOI: 10.1103/PhysRevD.100.034501

I. INTRODUCTION

Semileptonic decays of hadrons can be used to determine
elements of the Cabibbo-Kobayashi-Maskawa (CKM)

matrix. However, since the quarks that participate in the
underlying electroweak transition are constituents of bound
states, it is necessary to understand the effects of the strong
interactions on the decay. These effects are encapsulated in
form factors for hadronic matrix elements of the weak
currents that govern the decay. Lattice QCD has allowed us
to calculate the form factors with increasing precision,
making possible stringent tests of the Standard Model and
theCKMparadigm. Should there be a violation of unitarity of
the CKMmatrix, or should two decay processes that depend
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on the same CKM matrix element imply different values for
that CKM matrix element, we would have evidence for
physics beyond the StandardModel. The decay studied here,
Bs → Klν depends on the same matrix element Vub as the
decay B → πlν. Indeed, the only difference between the
two decay processes is that the light spectator up (u) or
down (d) quark in the latter process is replaced by a strange (s)
quark in the case at hand. Since in lattice QCD, strange
quarks generally yield smaller statistical errors and are
easier to deal with computationally, a lattice calculation of
the form factors for Bs → Klν decay can enable a precise
jVubj determination. This, in turn, can provide a useful test
of jVubj determinations from the exclusive B → πlν and
Λb → plν processes, and, if consistent, a reduced error on
jVubj (exclusive) after combination.
On the experimental side, however, while BABAR [1,2]

and Belle [3,4] have published precise measurements of the
differential decay rate for B → πlν, no such measurements
exist yet for Bs → Klν. The branching fraction of the
former decay is ð7.80� 0.27Þ × 10−5 [5], as it is Cabibbo
suppressed compared to final states with charm. As BABAR
and Belle observed many more BB̄ than BsB̄s events, it is
not surprising that experimental measurements of the latter
decay have not yet been reported. In contrast, the LHCb
experiment at the CERN LHC collider observes decays of
all b-flavored hadrons, including Bs mesons. They are
expected to publish the results of their ongoing Bs → Klν
decay study within the coming year [6]. The Belle II
experiment [7], where the eþe− collisions provide a cleaner
environment than at the LHC, also expects to study this
decay. The current plans are that Belle II will collect about
50 ab−1 at the ϒð4SÞ resonance (which decays predomi-
nantly into B-meson pairs), and 5 ab−1 at the ϒð5SÞ, a rich
source of Bs-meson pairs [7]. Thus, we do not expect the
experimental accuracy for Belle II’s future measurement
of Bs → Klν decay rates to rival that of their expected
results for B → πlν, but we do expect this decay to be
studied by Belle II.
This work is part of a broad study of flavor physics by

the Fermilab Lattice andMILC Collaborations to determine
a number of CKM matrix elements from semileptonic
K [8], DðsÞ [9], and BðsÞ [10–19] decays using the asqtad
2þ 1 flavor ensembles generated by the MILC Colla-
boration [20–22]. These studies are currently being
extended [23–27] to use HISQ 2þ 1þ 1 flavor ensembles
[28,29]. These newer ensembles include ones with physi-
cal-mass Goldstone pions at several lattice spacings that
significantly improve our control of the chiral limit. In
order to provide a systematic mode by mode comparison of
results obtained with the two sets of configurations, it is
important to complete this analysis of Bs → Klν.
The techniques used here are very similar to those

employed in Ref. [16], where the functional z expansion
was introduced. However, in this work, we use a subset of
six MILC ensembles covering a range of lattice spacing a

between approximately 0.12 and 0.06 fm. Prior work used
12 ensembles including one with a ≈ 0.045 fm.
The decay Bs → Klν has been studied by three other

lattice-QCD groups, the HPQCD Collaboration [30], the
RBC and UKQCD Collaborations [31], and the ALPHA
Collaboration [32], each choosing different actions for the
b-quark and for the light sea and valence quarks. Other
previous calculations of the Bs → Klν decay form factors
are based on the relativistic quark model [33], light-cone sum
rules [34,35], and next-to-leading-order (NLO) perturbative
QCD [36]. In Sec. VI C, we compare our results with the
prior results. Preliminary reports on this study can be found
in Refs. [37,38], where the vector current renormalization
factors were still multiplied by a blinding factor. This factor
was disclosed only after the analysis was finalized.
The rest of this paper is organized as follows. In Sec. II,

we define the continuum decay form factors and the
hadronic matrix elements needed to calculate them. In
Sec. III, we introduce the lattice QCD operators and the
form factors most convenient to calculate on the lattice. We
detail how to calculate the needed lattice matrix elements
and enumerate the MILC asqtad 2þ 1 flavor ensembles
we have used. Section IV discusses our analysis of the
two- and three-point functions needed to construct the
lattice form factors. We also explain how we take the chiral-
continuum limit. Section V contains our analysis of
systematic errors in the range of momentum transfer
accessible in our calculation. To construct the continuum
form factors over the entire range of momentum transfer,
we present the functional z expansion in Sec. VI. We then
apply it to obtain our final results for the form factors.
Section VII presents some of the phenomenological impli-
cations of the results. Appendix A contains details of our
application of SU(2) chiral perturbation theory to perform
the chiral extrapolation in Sec. IV. Appendix B details how
we construct the continuum form factors in Sec. VI B.
Appendix C contains the binned differential decay rates, as
well as the full correlation matrices.

II. MATRIX ELEMENTS AND FORM FACTORS

To lowest order in the weak coupling constant, the
semileptonic Bs → Klν decay can be described via the
Feynman diagram shown in Fig. 1. The relevant hadronic
matrix element can be written as

FIG. 1. Lowest order Standard Model Feynman diagram shown
here for example of semileptonic B0

s → K−lþνl decay.
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hKðpKÞjVμjBsðpBs
Þi¼
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where Vμ ≡ ūγμb is the vector current, pμ
Bs

and pμ
K are the

Bs and K four-momenta, respectively, MBs
and MK are

the corresponding meson masses, qμ ¼ pμ
Bs
− pμ

K is the
momentum transferred to the lepton pair, and fþðq2Þ and
f0ðq2Þ are the vector and scalar form factors corresponding

to the exchange of 1− and 0þ particles. These two form
factors are subject to a kinematic constraint:

fþð0Þ ¼ f0ð0Þ; ð2:2Þ
which eliminates the spurious pole at q2 ¼ 0 in Eq. (2.1).
The tensor form factor fT parametrizes the hadronic matrix
element of the tensor current Tμν ¼ iūσμνb. Since it does
not contribute to the Standard Model decay rate, we do not
include it in this calculation.
In the Standard Model, the angular-dependent differ-

ential decay rate for the Bs → Klν can be written as
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ð2:3Þ

in the Bs meson rest frame. Here GF is the Fermi constant,
Vub is an element of the CKM matrix, ml is the lepton
mass, and θl is the angle between the final charged lepton
and the Bs meson momenta in the rest frame of the final
state leptons. Thus, to determine jVubj from a measurement
of the differential decay rate, it is necessary to compute the
form factor fþðq2Þ. If the charged lepton is the τ, however,
the lepton mass cannot be neglected and f0ðq2Þ is also
necessary.

III. LATTICE-QCD CALCULATION

In this section, we present the ingredients of our lattice-
QCD calculation. The definitions of form factors and
correlation functions are given in Sec. III A. The lattice
actions and simulation parameters are described in
Sec. III B. The lattice interpolating operators, currents,
and correlation functions are presented in Sec. III C.

A. Definitions

For lattice calculations and Heavy Quark Effective
Theory (HQET), it is convenient to work in the Bs rest
frame and introduce the Bs four-velocity

vμ ¼ pμ
Bs
=MBs

: ð3:1Þ

The square of the lepton momentum transfer q2 can then be
expressed as

q2 ¼ ðpμ
Bs
− pμ

KÞ2 ¼ M2
Bs
þM2

K − 2MBs
EK; ð3:2Þ

where EK ¼ pK · v is the kaon energy. Defining

pμ
⊥ ≡ pμ

K − ðpK · vÞvμ ð3:3Þ

as the projection of the kaon momentum in the direction
perpendicular to vμ and using Eq. (3.2), one can rewrite
the matrix element Eq. (2.1) in terms of the form factors
fkðEKÞ and f⊥ðEKÞ as

hKðpKÞjVμjBsðpBs
Þi ¼

ffiffiffiffiffiffiffiffiffiffiffi
2MBs

q
½vμfkðEKÞ þ pμ

⊥f⊥ðEKÞ�:
ð3:4Þ

The relations to the original form factors fþ and f0 are
given by

fþðq2Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2MBs

p ½fkðEKÞ þ ðMBs
− EKÞf⊥ðEKÞ�;

ð3:5aÞ

f0ðq2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2MBs

p
M2

Bs
−M2

K
½ðMBs

− EKÞfkðEKÞ

þ ðE2
K −M2

KÞf⊥ðEKÞ�: ð3:5bÞ

The kinematic constraint, Eq. (2.2), is automatically
satisfied in Eq. (3.5).
In the Bs rest frame, which we use throughout the lattice-

QCD calculation, the form factors fk and f⊥ are related to
the temporal and spatial components of the matrix element
of the vector current Vμ via

fkðEKÞ ¼
hKjV0jBsiffiffiffiffiffiffiffiffiffiffiffi

2MBs

p ; ð3:6aÞ

f⊥ðEKÞ ¼
hKjVijBsiffiffiffiffiffiffiffiffiffiffiffi

2MBs

p 1

pi
K
: ð3:6bÞ
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Note that there is no summation over the superscript i in
Eq. (3.6b). The continuum-QCD current is related to the
lattice current operator Vμ by a multiplicative renormaliza-
tion factor, i.e.,

VμðxÞ ¼ ZVμ
VμðxÞ: ð3:7Þ

The lattice current Vμ is defined in Sec. III C, below.
We use a mostly nonperturbative method to compute ZVμ

.
The details are explained in Sec. III C.
The desired matrix elements (and hence form factors)

can be calculated from suitably defined two- and three-
point correlation functions:

CBs
2 ðt; pBs

¼ 0Þ ¼
X
x

hOBs
ð0; 0ÞO†

Bs
ðt; xÞi; ð3:8aÞ

CK
2 ðt; pKÞ ¼

X
x

hOKð0; 0ÞO†
Kðt; xÞieipK ·x; ð3:8bÞ

CBs→K
3;μ ðt; T; pKÞ ¼

X
x;y

hOKð0; 0ÞVμðt; yÞO†
Bs
ðT; xÞieipK ·y;

ð3:8cÞ

where OBs
and OK are lattice interpolating operators,

which are defined in Sec. III C, below. Further, pK is the
kaon spatial momentum, whose components in a finite
volume are integer multiples of 2π=Ns, where Ns is the
lattice spatial dimension in lattice units.
The basic procedure for calculating the continuum form

factors fþ and f0 in Eq. (2.1) in lattice QCD is the following:
(1) For each ensemble:

(i) Determine the lattice Bs meson masses, kaon
masses, and energies from the lattice two-point
correlation functions.

(ii) Determine the lattice form factors flatk and flat⊥
at several discrete kaon momenta pK from the
two- and three-point correlation functions.

(iii) Obtain the renormalized form factors by match-
ing the lattice current to the continuum as
in Eq. (3.7).

(2) Use chiral perturbation theory together with
Symanzik effective theory to perform a combined
chiral-continuum fit to the renormalized form
factors and extrapolate them to the physical
quark masses and continuum (zero lattice spacing)
limits. This yields the continuum form factors fk
and f⊥ as functions of the kaon recoil energy EK in
the interval covered by the simulation, roughly
0.5 GeV≲ EK ≲ 1 GeV.

(3) Construct the continuum form factors fþ and f0
from fk and f⊥ via Eq. (3.5) and employ a z
expansion to parametrize their shapes and to
extrapolate them from the low-recoil range to the
entire kinematically allowed region, which extends
at high recoil to q2 ¼ 0.

B. Actions and parameters

We use lattice gauge configurations with Nf ¼ 2þ 1

flavors generated by the MILC Collaboration [20–22].
These configurations include two degenerate dynamical
light quarks, acting as u and d quarks, and one heavier, s,
quark. The gluon fields are simulated with the one-loop
improved Lüscher-Weisz action [39]. The a2 tadpole-
improved staggered action (asqtad) [40–46] is used for
generating dynamical light quarks (u, d, and s).
Reference [22] is a review of simulations and formalism
of improved staggered quarks.
The asqtad fermion action is also used for the

valence u, d, and s quarks. The heavy valence bottom
(b) quarks use the Sheikholeslami-Wohlert (SW) Wilson-
clover action [47] with the Fermilab interpretation [48].
Some of the parameters used to generate the configu-

rations are listed in Table I. Six ensembles with three
different lattice spacings, a ≈ 0.12, 0.09, and 0.06 fm,
are used. For each lattice spacing, we have dynamical
sea quarks with light-to-strange quark mass ratio

TABLE I. Parameters used for generating the lattice QCD gauge fields. The columns from left to right are
approximate lattice spacing a in fm, the lattice dimensions in lattice units N3

s × Nt, the sea-quark mass ratios
am0

l=am
0
h, the gauge coupling β, the tadpole improvement factor u0, the number of gauge-field configurations Nconf ,

and the pion mass times the box linear spatial size MπL (L ¼ Nsa). The gauge-field configurations can be
downloaded using the DOI links provided in Refs. [49–58].

≈a ðfmÞ N3
s × Nt am0

l=am
0
h β u0 Nconf MπL

0.12 [49] 243 × 64 0.0050=0.050 6.76 0.8678 2099 3.8

0.09 [50–52] 283 × 96 0.0062=0.031 7.09 0.8782 1931 4.1
0.09 [53] 323 × 96 0.00465=0.031 7.085 0.8781 1015 4.1
0.09 [54,55] 403 × 96 0.0031=0.031 7.08 0.8779 1015 4.2
0.09 [56] 643 × 96 0.00155=0.031 7.075 0.877805 791 4.8

0.06 [57,58] 643 × 144 0.0018=0.018 7.46 0.88764 827 4.3
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m0
l=m

0
h ¼ 0.1.1 For the intermediate lattice spacing

a ≈ 0.09 fm, we have three additional values of
m0

l=m
0
h ¼ 0.05, 0.15, and 0.2 to provide results for the

chiral extrapolation. The subset of ensembles used for the
analysis is based on experience from previous semileptonic
form factor analyses [16,18]. The tadpole factor u0 appear-
ing in the one-loop improved Lüscher-Weisz gauge action
and in the asqtad fermion action are determined from the
fourth root of the average plaquette.
The parameters used in the valence quarks and in

generating correlation functions are listed in Table II.
The valence light quarks are degenerate with the sea
quarks, i.e., aml ¼ am0

l; the valence s quark masses are
set to our best determination of the s quark mass on each
ensemble, based on all of our analysis of the asqtad
ensembles. In general amh < am0

h. The heavy b quark
Wilson fermions with SW lattice action are controlled by
the hopping parameter κ and the clover coefficient of the
SW action csw. We use κ0b to denote the values used in the
computation. We use the tadpole-improved tree-level value
for csw ¼ u−30 , with u0 listed in Table I. The parameter d1 is
used for the correlation function generation and will be
explained later in Sec. III C.
Table III lists the parameters derived from the lattice

simulation. The relative lattice scale is set by calculating
r1=a on each ensemble, where r1 is related to the force
between static quarks, r21Fðr1Þ ¼ 1.0 [59,60]. A mass-
independent procedure is used to set r1=a. We use the r1=a
to convert all lattice quantities to r1 units. The physical
value of r1 is determined from fπ∶ r1 ¼ 0.3117ð22Þ fm
[22,61]. The physical value κb [14], corresponding to the
physical b-quark mass, and the critical value κcrit, corre-
sponding to the zero quark masses in the SWaction on each
ensemble, are also listed in Table III. They will be used only
for correcting the b-quark masses as will be discussed

in Sec. IV C. The Goldstone pion mass Mπ and the root-
mean-square (rms) pion massMrms

π are listed in the last two
columns of Table III.

C. Interpolating operators, currents,
and correlation functions

Here we specify the interpolating operators for the kaon
and Bs meson and the lattice vector current needed for the
correlation functions in Eq. (3.8). For the kaon, the local
pseudoscalar interpolating operator is used

OKðt; xÞ ¼ χ̄ðt; xÞð−1Þtþx1þx2þx3χðt; xÞ; ð3:9Þ

where χðt; xÞ is the one-component staggered fermion field.
The Bs meson interpolating operator contains a b-quark

field, simulated with the improved Wilson action, and a
light staggered field for the s-quark [11,62,63]

OBs
ðt; xÞ ¼

X
y

ψ̄ðt; yÞSðy; xÞγ5Ωðt; xÞχðt; xÞ; ð3:10aÞ

Ωðt; xÞ≡ γx11 γ
x2
2 γ

x3
3 γ

t
4; ð3:10bÞ

where ψðt; yÞ is the four-component b-quark field, and
Sðx; yÞ is a spatial smearing function. We use two smearing
functions for the Bs meson. One is the local Sðx; yÞ ¼
δðx − yÞ. The other one is the ground-state 1S wave
function of the Richardson potential [61].
The lattice vector current operator in Eqs. (3.7) and

(3.8c) is defined as in Refs. [11,62]

VμðxÞ ¼ Ψ̄ðxÞγμΩðxÞχðxÞ; ð3:11Þ

where the rotated b-quark field Ψ, defined by

Ψ ¼ ð1þ ad1γ · DlatÞψ ; ð3:12Þ

removes OðaÞ discretization effects from the current [48].
Here Dlat is a symmetric nearest-neighbor covariant differ-
ence operator. The coefficient d1, shown in Table II, is set to
its tadpole-improved tree-level value so that the lattice
vector current is tree-level OðaÞ improved.
The renormalization constant ZVμ

, needed to match the
lattice vector current to its continuum counterpart [see
Eq. (3.7)], is determined using a mostly nonperturbative
renormalization procedure [64,65]:

ZVμ
bl
¼ ρVμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZV4

bb
ZV4

ll

q
; ð3:13Þ

where ZV4
bb
and ZV4

ll
are the renormalization factors for the

flavor-diagonal b- and light-quark temporal vector currents
that are calculated nonperturbatively in Ref. [16] and listed
in Table IV. The remaining flavor-off-diagonal parameters
ρVμ are calculated to one-loop order in perturbation theory,

TABLE II. Parameters used for generating the valence quarks.
The approximate lattice spacing a and lattice dimensionsN3

s × Nt
in the first two columns identify the ensemble. The light valence
quarks ml are degenerate with the sea quarks m0

l. The valence s
quarks mh are better tuned than the sea s quarks m0

h. The
parameters csw and κ0b are used in the SWaction for b quarks. The
rotation parameter d1 is used in the current.

≈a ðfmÞ N3
s × Nt aml=amh csw κ0b d1

0.12 243 × 64 0.0050=0.0336 1.53 0.0901 0.09332

0.09 283 × 96 0.0062=0.0247 1.476 0.0979 0.096765
0.09 323 × 96 0.00465=0.0247 1.477 0.0977 0.096708
0.09 403 × 96 0.0031=0.0247 1.478 0.0976 0.096688
0.09 643 × 96 0.00155=0.0247 1.478 0.0976 0.0967

0.06 643 × 144 0.0018=0.0177 1.4298 0.1052 0.0963

1In this paper, we use primed quantities to denote the sea
quarks and the unprimed for the valence quark.
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separately from this analysis, and also listed in Table IV. In
order to reduce subjectivity in our analysis, we employed a
blinding procedure in the form of a small multiplicative
offset applied to the ρ factors and known to only two of the
authors. This blinding factor was subsequently disclosed
and removed only after the analysis choices were finalized.
In the generation of the correlation functions defined

in Eqs. (3.8), (3.9), (3.9), and (3.11), we increase statistics
by repeating the calculation at Nsrc source times evenly
distributed in the Nt direction. The three-point correlation
functions are generated with two adjacent temporal source-
sink separations: T ¼ Tsink and T ¼ Tsink þ 1. Both Nsrc
and Tsink are listed in Table V. For the kaon recoil momenta
we include the following lowest possible values:
pK=ð2π=NsÞ¼ð0;0;0Þ;ð1;0;0Þ;ð1;1;0Þ;ð1;1;1Þ and
(2,0,0). In practice, the largest momentum pK ¼ 2πð2; 0; 0Þ=
Ns is too noisy and is excluded from the analysis.

IV. ANALYSIS

With lattice correlation functions in hand, we follow the
steps outlined near the end of Sec. III A to determine the

form factors defined there, where we make use of the
spectral decomposition of the correlation functions to
extract the desired parameters. The two-and three-point
functions take the form [62]

CBs
2 ðt; 0Þ ¼

X2N−1

n¼0

ð−1Þnðtþ1ÞjZðnÞ
Bs
j2ðe−MðnÞ

Bs
t þ e−M

ðnÞ
Bs

ðNt−tÞÞ;

ð4:1aÞ

CK
2 ðt;pKÞ¼

X2N−1

n¼0

ð−1Þnðtþ1ÞjZðnÞ
K ðpKÞj2ðe−E

ðnÞ
K tþe−E

ðnÞ
K ðNt−tÞÞ;

ð4:1bÞ

CBs→K
3;μ ðt; T; pKÞ ¼

X2N−1

m;n¼0

ð−1Þmðtþ1Þð−1ÞnðT−t−1Þ
���ZðnÞ

Bs

���
×
���ZðmÞ

K ðpKÞ
���Dμ

mne−E
ðmÞ
K te−M

ðnÞ
Bs

ðT−tÞ;

ð4:1cÞ

withTABLE IV. Parameters for the renormalization of the form
factors. The approximate lattice spacing a and lattice dimensions
N3

s × Nt in the first two columns identify the ensemble. The light-
light and heavy-heavy renormalization factors ZV4

ll
and ZV4

bb
are

listed in the third and fourth columns. The one-loop estimates of
ρVi and ρV4 are listed in the fifth and sixth columns. The errors
shown are statistical. The complete current renormalization is
obtained via Eq. (3.13).

≈a ðfmÞ N3
s × Nt ZV4

ll
ZV4

bb
ρVi ρV4

0.12 243 × 64 1.7410(30) 0.5015(8) 0.973082 1.006197

0.09 283 × 96 1.7770(50) 0.4519(15) 0.975822 0.999308
0.09 323 × 96 1.7760(50) 0.4530(15) 0.975775 0.999405
0.09 403 × 96 1.7760(50) 0.4536(15) 0.975744 0.999441
0.09 643 × 96 1.7760(50) 0.4536(15) 0.975703 0.999416

0.06 643 × 144 1.8070(70) 0.4065(21) 0.979176 0.995327

TABLE III. Parameters derived from the simulation. The approximate lattice spacing a in fm and the lattice
dimensions in lattice units N3

s × Nt are used for identifying the ensemble. Relative scales r1=a are listed in the third
column. The statistical errors on r1=a are 0.1 to 0.3% and the systematic errors are comparable. The physical κb [14]
for the SWaction are listed in the fourth column, where the first error is the statistics plus fitting error and the second
one is due to the uncertainty in the lattice spacing. The critical κcrit for the SWaction are listed in the fifth column. The
errors of κcrit are in the last digit. We also list the Goldstone pion mass (Mπ) and root-mean-square pion mass here.

≈a ðfmÞ N3
s × Nt r1=a κb κcrit Mπ (MeV) Mrms

π (MeV)

0.12 243 × 64 2.73859 0.0868(9)(3) 0.14096 277 456

0.09 283 × 96 3.78873 0.0967(7)(3) 0.139119 354 413
0.09 323 × 96 3.77163 0.0966(7)(3) 0.139134 307 374
0.09 403 × 96 3.75459 0.0965(7)(3) 0.139173 249 329
0.09 643 × 96 3.73761 0.0964(7)(3) 0.13919 177 277

0.06 643 × 144 5.30734 0.1050(5)(2) 0.137678 224 255

TABLE V. The number of time sources Nsrc used in the two-
and three-point correlation function generation and the source-
sink separations Tsink used in the three-point correlation function
generation. The approximate lattice spacing a and lattice dimen-
sions N3

s × Nt in the first two columns identify the ensemble.

≈a ðfmÞ N3
s × Nt Nsrc Tsink

0.12 243 × 64 4 18

0.09 283 × 96 4 25
0.09 323 × 96 8 25
0.09 403 × 96 8 25
0.09 643 × 96 4 25

0.06 643 × 144 4 36
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ZðnÞ
Bs

¼ jh0jOBs
jBs

ðnÞijffiffiffiffiffiffiffiffiffiffiffiffi
2MðnÞ

Bs

q ; ð4:2aÞ

ZðnÞ
K ðpKÞ ¼

jh0jOKjKðnÞðpKÞijffiffiffiffiffiffiffiffiffiffiffi
2EðnÞ

K

q ; ð4:2bÞ

Dμ
mn ≡ hKðmÞjVμjBðnÞ

s iffiffiffiffiffiffiffiffiffiffiffi
2EðmÞ

K

q ffiffiffiffiffiffiffiffiffiffiffiffi
2MðnÞ

Bs

q : ð4:2cÞ

The ð−1Þnðtþ1Þ and ð−1ÞnðT−tÞ terms in Eq. (4.1) arise
because with our choice for the light-quark valence action
the interpolating operators also generate opposite-parity

(scalar) states. The overlap factors ZðnÞ
Bs

and ZðnÞ
K ðpKÞ

describe the overlap of the interpolating operators with
the states jBs

ðnÞi and jKðnÞðpKÞi, respectively, while the
Dμ

mn contain the desired matrix element.
In Sec. IVA, we extract the meson masses, and the

overlap factors ZðnÞ
Bs

and ZðnÞ
K ðpKÞ from the two-point

correlation functions. We explain how the lattice form
factors are extracted from the two- and three-point corre-
lation functions in Sec. IV B. We briefly describe the heavy
b-quark mass corrections in Sec. IV C. The chiral-
continuum fit function and extrapolation are described in
Sec. IV D.

A. Analysis of the two-point correlation functions

The Bs-meson masses, kaon masses, kaon energies, and
Bs and kaon overlap factors are obtained from fitting the
two-point correlation functions to the functional forms in
Eqs. (4.1a) and (4.1b).
As listed in Table V, there are 4 or 8 time sources for each

ensemble. The two-point correlation functions are averaged
together and folded around Nt=2 before constructing the
ensemble-averaged propagators and covariance matrix
required for the two-point function fits. We use Bayesian
constraints with Gaussian priors to perform fits to the
correlation functions which include excited states. We vary
the number of states and range of time slices included in the
fits to separate excited state contributions from the desired
ground state parameters and obtain reliable estimates of the
uncertainties. The lower end of the fit ranges tmin is chosen
small enough to get a good handle on the excited states and
to obtain a good correlated p value as defined in Ref. [66].
We choose the upper end of the fit ranges tmax such that the
relative error does not exceed 3%, because we find that
adding data at larger t values does not significantly affect
the statistical errors or the quality of the fits. However, the
resulting increase in the size of the covariance matrix
makes it even more difficult to accurately determine the
smallest eigenvalues (and corresponding eigenvectors) of
the covariance matrix without significantly increasing the

number of configurations we analyze. Similar conclusions
were also obtained in Ref. [16]. The fit ranges ½tmin; tmax�
for different lattice spacings are also adjusted so that the
physical distances are similar. Our fit functions include the
same number of opposite parity states as regular parity
states. The number-of-states parameter N in Eq. (4.1)
therefore refers to a fit function with the pseudoscalar
ground state plus N − 1 of its radial excitations and N
scalar states. Our central value fits have N ¼ 3. The prior
central values for the ground state energies and overlap
factors are guided by the effective mass and effective
amplitude evaluated at large times t. The effective mass
meff and effective amplitude Zeff are constructed from the
two-point correlation functions via

meff ≡ − log ½C2ðtþ 1Þ=C2ðtÞ�; Z2
eff ≡ eþmeff tC2ðtÞ:

ð4:3Þ

Here C2 stands for the lattice two-point correlation function

for the kaon or Bs meson. The prior central values forMð0Þ
Bs
,

Mð0Þ
K ≡ Eð0Þ

K , Zð0Þ
Bs
, Zð0Þ

K ð0Þ, and Zð0Þ
K ðpKÞ are set according to

Eq. (4.3) and the widths are set to be 0.1 or larger in lattice

units. The prior central values for Mðn≠0Þ
Bs

and Eðn≠0Þ
K are set

using the energy difference between ground states and the
corresponding excited states from the PDG [67] values as a
guide wherever available and the widths are set to be 0.1 or

larger in lattice units. The prior central values for Zð1Þ
Bs
,

Zð1Þ
K ð0Þ, and Zð1Þ

K ðpKÞ are set using the N ¼ 1 fit results as a
guide and the widths are set to be 0.1 or larger in lattice

units. The prior central values for Zð2Þ
Bs
, Zð2Þ

K ð0Þ, and

Zð2Þ
K ðpKÞ are set using Zð0Þ

Bs
, Zð0Þ

K ð0Þ, and Zð0Þ
K ðpKÞ as a

guide and the widths are set to be 0.1 or larger in lattice

units. Finally the prior central values for Zð3;4;5Þ
Bs

, Zð3;4;5Þ
K ð0Þ,

and Zð3;4;5Þ
K ðpKÞ are set to be 0.1 and the widths are set to be

1.0 or larger in lattice units. In summary, our choices for the
prior widths are guided by previous experience [16,18] and
we find that they are large enough so that no bias is
introduced in the fits as illustrated in Fig. 2. An example
of the Bs effective mass, prior, and fit result is shown in
the left panel of Fig. 2. The corresponding kaon effective
mass has smaller oscillations and much smaller errors as
shown in the right panel of Fig. 2.
As illustrated in Fig. 3, our fit results are stable over a

range of tmin choices and we find that they are consistent
with results from N ¼ 2 fits. The lattice correlation
functions are precise enough to determine the first excited
and opposite-parity, N ¼ 2, states. Including extra N ¼ 3
excited states better stabilizes the errors of fit posteriors.
The left panel of Fig. 3 shows an example of the stability
plot for the Bs meson. Fit intervals are chosen based on
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these plots and are listed in Table VI. Representative fit
results for the kaon are shown in the right panel of Fig. 3.
The fit results for the kaon energies and overlap factors

can be compared with the continuum relations

E2
K ¼ M2

K þ p2K; Zð0Þ
K ðpKÞ ¼ Zð0Þ

K ð0Þ
ffiffiffiffiffiffiffiffi
MK

EK

s
ð4:4Þ

to study momentum-dependent discretization errors. As

illustrated in Fig. 4, we find that the EK and Zð0Þ
K ðpKÞ satisfy

Eq. (4.4) albeit with increasing statistical errors at higher

momenta. We therefore use the continuum relations for the
kaon energies and ZK factors whenever possible.

B. Extracting form factors from two- and
three-point correlation functions

The form factors are related to the semileptonic matrix
elements via Eq. (3.6), and the lattice matrix elements
are contained in the three-point correlation function as in
Eqs. (4.1c) and (4.2). To get the lattice form factors flatk;⊥, we
fit the two- and three-point correlation functions together.
In particular, we perform combined two- and three-point
correlation-function fits according to Eqs. (4.1) and (4.2)
with N ¼ 3. The three-point fit ranges are chosen to be
½tKmin; T − tBs

min� with T ¼ Tsink or Tsink þ 1. The parameters

to be fitted are MðnÞ
Bs
, EðnÞ

K , ZðnÞ
Bs
, ZðnÞ

K ðpKÞ, and Dμ
mn. The

prior central values for the Bs-meson and kaon masses,

Zð0Þ
Bs
, and Zð0Þ

K ðpKÞ are chosen as the posteriors of the two-

point correlator fits. The kaon energies and Zð0Þ
K ðpKÞ

are constrained according to Eq. (4.4). The Zðn≠0Þ
Bs

and
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FIG. 2. Bs and kaon meson two-point correlation function for the a ≈ 0.12 fm, N3
s × Nt ¼ 243 × 64 ensemble. The blue points are the

effective mass constructed via Eq. (4.3). The prior is shown as a green band. The fitted meson mass is shown as a thin gray horizontal
band. Some of the blue-point error bars are too small to be visible. The error of the fitted kaon meson mass is magnified 20 times to make
it visible in the plot.
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FIG. 3. Fitted Bs-meson and kaon masses, MBs
and MK in lattice units at different tmin for the a ≈ 0.12 fm, N3

s × Nt ¼ 243 × 64
ensemble. The left vertical axes show the fitted masses and the right vertical axes show the corresponding p value of the fit. The chosen
fit results are shown in wide gray bands. The masses are shown in circles with error bars. The selected value of tmin is plotted using a
solid circle and its error band is extended across the plot in gray. Red diamonds denote the p values.

TABLE VI. Fit ranges ½tmin; tmax� used in the kaon and Bs
meson two-point correlator fits.

≈a ðfmÞ Kaon Bs meson

0.12 [5,31] [3,22]
0.09 [7,47] [4,30]
0.06 [10,71] [6,44]
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Zðn≠0Þ
K ðpKÞ central values are taken to be the same size as

Zð0Þ
Bs

and Zðn≠0Þ
K ð0Þ. The priors for Dμ

00 are guided by the

constructed ratio R̄Bs→K
3;0 ðt; TÞ defined in Refs. [16,18]. The

prior widths for the above parameters are chosen to be 0.1
or larger in lattice units. The priors for all the other Dμ

mn

are chosen to be 0.1� 2.0. The ground-state energies
obtained from the combined two- and three-point correlator
fits are consistent with those from the two-point fits as
described in Sec. IVA.
Figure 5 shows that the fitted fklat coming from the

combined fit is in slight tension with the constructed ratio
R̄Bs→K
3;0 ðt; TÞ defined in Refs. [16,18]. This small difference

comes from excited state contributions still present in the
ratio but accounted for in the fit method used here. We find
that they are significant at the present level of precision.
Figure 6 shows an example of the stability of the fit result
when varying the fit range.
In summary, the form factors fk and f⊥ are obtained

from Dμ
00 and EK according to Eqs. (3.6) and (4.2c), after

adding the renormalization factors as in Eq. (3.6).

0.95
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1.05

0 0.1 0.2

0.95

1.00

1.05

0 0.1 0.2

FIG. 4. Test of Eq. (4.4) for the a ≈ 0.12 fm, N3
s × Nt ¼ 243 × 64 ensemble. Left: energy-momentum dispersion relation where

EK and MK come from the kaon 2-point correlators. Right: test of wave function overlap momentum dependence. The dashed lines on
both plots show the power-counting estimate of the size of the momentum-dependent discretization error, OðαsjpK j2a2Þ.

FIG. 5. The lattice form factor from a combined two-point and
three-point correlation function fit for the a ≈ 0.12 fm, N3

s ×
Nt ¼ 243 × 64 ensemble. The green band is the combined fit
result for fklat. The blue points with errors are obtained from the
ratio defined in Refs. [16,18]. The black curve is the ratio
constructed directly from combined fit results. The small differ-
ence between the green band and the ratio comes from excited
state contributions still present in the ratio but accounted for in the
fit method used here.

FIG. 6. Fit results of hKð0ÞjV0jBð0Þ
s i from different fit ranges for the a ≈ 0.12 fm, N3

s × Nt ¼ 243 × 64 ensemble with lattice kaon
momentum pK ¼ ð2π=NsÞð0; 0; 0Þ. Left: The three-point correlator fit maximum are fixed to be t3ptmax ¼ 15 and 16 and the minimum are
varied between 1 and 10. Right: The three-point correlator fit minimum are fixed to be t3ptmin ¼ 3 and the maximum is varied between 12
and 17. The preferred fit ranges are shown with filled points.
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C. Heavy bottom quark mass correction

The heavy valence b quark is simulated with the
Sheikholeslami-Wohlert (SW) action [47] with the
Fermilab interpretation [48]. The b-quark mass is con-
trolled by the hopping parameter κb. The hopping param-
eter κ0b used in the simulations differs slightly from the
physical value κb as can be seen in Tables II and III. We
need to correct the form factors to account for these small
shifts. A detailed description of the κ tuning analysis
and results is provided in Appendix C of Ref. [14]. We
use the method described in Refs. [16,18] to adjust the form
factors to account for the slightly mistuned values of κb.
The relative change in the form factors under small
variations of the b-quark mass can be described as

fðm0
2Þ ¼ fðm2Þ

�
1 −

∂ ln f
∂ lnm2

�
m2

m0
2

− 1

��
; ð4:5Þ

where m2 is the physical b-quark kinetic mass, m0
2 is the

b-quark mass used in the production run. The slopes ∂ ln f
∂ lnm2

were determined in Ref. [16]. The corrections to the form
factors are about 0.1%–1.8% on different ensembles.

D. Chiral-continuum extrapolation

The lattice form factors extracted from the correlation
functions as described in Sec. IV B are obtained at the three
finite lattice spacings and unphysical light-quark masses
listed in Table I. Here we extrapolate them to the continuum
limit and physical light-quark masses using SU(2) hard-
kaon heavy-meson rooted staggered chiral perturbation
theory (HMrSχPT) [68,69]. Based on previous experience
with the analyses of similar processes in Refs. [16,18],
this best describes the data. Heavy-quark discretization
effects are also taken into account in the chiral-continuum
extrapolation.
We employ the HMrSχPT expansion at next-to-leading

order in SU(2), leading order in 1=MB, where MB is the
B-meson mass, and include next-to-next-to-leading-order
(NNLO) analytic and generic discretization terms. In the
SU(2) hard-kaon limit, the valence and sea s-quark masses
are taken to be infinitely heavy and hence dropped from the
HMrSχPT formula; the large kaon energy is integrated out,
and its effects are absorbed into the low-energy constants
(LECs). In Ref. [18], the conversion rules for B → K and
B → π processes from SU(3) HMrSχPT to SU(2) hard-
kaon and hard-pion limits were derived. Here we follow the
same procedure to obtain the corresponding formula for
Bs → Klν. The details are presented in Appendix A.
The NLO expression for Bs → Klν form factors in the

SU(2) hard-kaon limit that we obtain is

fP;NLO ¼ fð0ÞP

h
c0Pð1þ δfSUð2ÞP;logsÞ þ c1Pχl þ c2Pχh

þ c3PχE þ c4Pχ
2
E þ c5Pχa2

i
; ð4:6Þ

where P ¼ k or⊥, δfSUð2ÞP;logs are the nonanalytic contributions
from the light-quark mass and lattice spacing, and the χ
variables are dimensionless. They are defined in Eqs. (A3)
and (A7). The leading-order factor is

fð0ÞP ¼ 1

fπ

gπ
EK þ Δ�

P
; ð4:7Þ

where fπ is the decay constant involved, and gπ is the B�Bπ
coupling constant.2 TheΔ�

P term takes the pole contribution
into account and is determined by requiring fk and f⊥ to
have the same poles as the physical form factors f0 and fþ,
respectively. This is reasonable because, by Eq. (3.5), fk is
dominated by the 0þ contributions of f0, and f⊥, by the 1−
contributions of fþ in the q2 range considered. Using
Eq. (3.2), one obtains the exact expression for Δ�

P:

Δ�
P ¼ M2

B� −M2
Bs
−M2

K

2MBs

: ð4:8Þ

The vector meson (with JP ¼ 1−) has been experimentally
measured [5] to beMB� ¼ 5324.65ð25Þ MeV; the scalar B�

meson (with JP ¼ 0þ) has not been observed experimen-
tally, but a lattice calculation [70] estimates the mass
difference between 0þ and 0− states to be around 400 MeV:

MB� ð0þÞ −MB ≈ 400 MeV: ð4:9Þ

The vector-meson mass MB� is below the Bπ production
threshold that is involved in the Bs → Klν decay, and the
scalar-meson mass MB� ð0þÞ is above the threshold. The
inclusion of the scalar pole and its exact location have little
impact on the chiral fit results but stabilizes the form factor
extrapolations.
NNLO analytic terms are included in the fits to take

into account higher-order contributions. The leading heavy
b-quark discretization effects are also included. The
expressions for the NNLO fit functions are

fP;NNLO ≡ fP;NNLOþHQ ¼ ðfP;NLO þ fð0ÞP δfNNLOÞ
× ð1þ δfHQÞ; ð4:10aÞ

δfNNLO ¼ c6PχlχE þ c7Pχa2χE þ c8Pχ
3
E þ c9Pχ

2
l þ c10P χlχ

2
E

þ c11P χa2χl þ c12P χa2χ
2
E þ c13P χ2a2 þ c14P χ4E;

ð4:10bÞ

δfHQ ¼ ðh1PfE þ h2PfX þ h3PfYÞðaΛÞ2
þ ðh4PfB þ h5Pf3ÞðαsaΛÞ þ h6PαsðaΛÞ2; ð4:10cÞ

2SU(3) breaking effects renormalize the gπ=fπ ratio; however,
since it results in a overall multiplicative factor, it has been
reabsorbed in the fitting coefficients.
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where the heavy-quark discretization effects are modeled
with δfHQ. The mismatch functions fE;X;Y;B;3 are defined
in the appendix of Ref. [61]. The next-to-leading-order
analytic term fP;NLO was defined previously in Eq. (4.6). A
Bayesian method is used in the chiral-continuum fit. The
priors are listed in Table VII. The fit results using the
NNLO fit function in Eq. (4.10) are used as the central fit
and are shown in Fig. 7.

V. SYSTEMATIC ERROR ESTIMATIONS

The chiral-continuum extrapolated form factors are
given in Sec. IV. The statistical-fit errors, which are
propagated through each step of the analysis already
include the effects of NNLO terms in the chiral expansion
as well as light- and heavy-quark discretization. Here we
discuss tests of the robustness of this error estimate to check
for the presence of residual truncation effects. We also
consider other sources of error not already included in our
chiral-continuum fit function and construct a complete
systematic error budget over the range of q2 for which we
have lattice data, 19 GeV2 ≲ q2 ≲ 24 GeV2.

A. Chiral-continuum extrapolation errors

Our central fit uses the NNLO SU(2) hard kaon
HMrSχPT fit function described in Eq. (4.10). In order
to study truncation effects, we consider variations of the
central fit function. We also perform fits which include
fewer form factor data.
We estimate chiral truncation effects by comparing our

central NNLO fit with fits using either only the NLO

function, defined in Eq. (4.6), or a fit function that includes
the complete set of next-to-NNLO (NNNLO) terms. The
coefficients of the NNNLO terms are constrained with
the same priors as the NNLO ones. Figure 8 shows the
comparison of results for the fþ form factor from the three
fits. The corresponding results for f0 are similar. We see
that the results from the three different fits are consistent
with each other over the range of q2 where the simulation
data are located. The NNNLO errors at small q2 are larger
since the data points in that region are scarce as can be seen
in Fig. 7, and the fits cannot determine the higher order
terms accurately. The truncation errors are well saturated in
the q2 ≳ 19 GeV2 region, and therefore it is unnecessary to
add an additional systematic error.
The SU(2) hard-kaon formula is used for the central fit.

To see how other choices of the HMrSχPT formula affect
the fits, we performed the fit with soft-kaon HMrSχPT. The
resulting difference is small, especially for the fþ form
factor. This can be seen in Fig. 9. Since the valence s-quark
masses are not equal to the sea ones, the corresponding
SU(3) HMrSχPT formulas are extremely complicated.

FIG. 7. Chiral-continuum extrapolated form factors fk and f⊥ in r1 units as functions of the recoil energy r1EK. The color denotes the
lattice spacings and the symbols denote the ratio of the sea-quark masses m0

l=m
0
h. The colored fit lines correspond to the fit results

evaluated at the parameters of the ensembles. The cyan band with the black curve shows the chiral-continuum extrapolated results.

TABLE VII. Priors used in the chiral-continuum extrapolation
fit. cNLOp represents c0P;…; c5P as shown in Eq. (4.6). cNNLOp
represents c6P;…; c14P as shown in Eq. (4.10b). hP represents
h1P;…; h6P as appears in Eq. (4.10c).

fπ gπ cNLOP cNNLOP hP

130.4 MeV 0.45(8) 0(1.0) 0(0.6) 0(1.0)

FIG. 8. Comparison among chiral-continuum extrapolated
results for fþ with different analytic terms. The gray band shows
the preferred fitting result with NNLO SU(2) HMrSχPT. The red
(dashed) and blue (solid) curves show the error ranges resulting
from the fits with only NLO analytic terms and with all terms up
to NNNLO, respectively.
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We therefore did not perform any trial fits with the SU(3)
formula. Nevertheless, from previous experience, [16,18],
SU(3) HMrSχPT typically does not provide a good
description of the data.
Our results with kaon momentum up to 2πð1; 1; 1Þ=Ns

are used in the central chiral fit. To check how the kaon
energy range affects the results, we perform the fit omitting
the pK ¼ 2πð1; 1; 1Þ=Ns data. The differences are shown in
Fig. 9. Again, the difference is small especially for the fþ
form factor and also for f0 at q2 ≳ 19 GeV2.
Based on the tests discussed above and visually sum-

marized in Figs. 8 and 9, we find that the deviations
between the results from the central fit and the alternative
fits are smaller than the statistical error of the preferred
central fit. We therefore do not assign additional systematic
errors due to these sources.

B. Current renormalization uncertainties

The mostly nonperturbative renormalization procedure,
described in Eq. (3.7), used to renormalize the matrix
elements (and hence the form factors) requires, as inputs,
the factors ZV4

bb
, ZV4

ll
, ρV4 , and ρVi . We estimate the error on

fk; f⊥ due to the uncertainties of the nonperturbatively
determined ZV4

bb
and ZV4

ll
by varying their central values by

1 standard deviation in each direction. As expected, the
resulting changes in the form factors are small, yielding
errors on fk; f⊥ in the range of 0.2%–0.3%.
For ρV4 and ρVi , the dominant source of error is the

truncation at one-loop order in perturbation theory. As seen
in Table IV, the one-loop corrections provided by ρV4 and
ρVi are small, with ρV4 (ρVi) deviating from unity by less
than 1% (2.4%). Here, we adopt the estimate of the
perturbative truncation error presented in Ref. [16], which
yields an uncertainty of 1% on both ρV4 and ρVi . This
estimate is consistent with the observed differences
between nonperturbative [71] and perturbative [72] calcu-
lations of ρV4 ¼ ρA4 , discussed in Ref. [71]. In particular,

the observed differences decrease in the continuum limit, as
expected. Note, however, that the nonperturbative result
[71] employs the HISQ action for the light quarks, while
our one-loop results [72] employ the asqtad action. For this
reason, the comparison is suggestive but not definitive.

C. Lattice-scale uncertainties

The dimensionful form factors f⊥ and fk, and meson
energies and masses are converted to physical units via the
relative scales r1=a listed in Table III and the absolute scale
r1 ¼ 0.3117ð22Þ fm [61]. The statistical errors on r1=a are
small and their effects on the form factors can be neglected.
We estimate the error due to the uncertainty of r1, as before,
by shifting its value by 1 standard deviation and repeating
the chiral fit. The shifts on the form factors fþ;0 are at most
0.8% in the range of simulated momenta.

D. Quark mass uncertainties

The continuum physical form factors are obtained by
evaluating the chiral-continuum extrapolated functions,
as discussed in Sec. IV D at the physical averaged
u- and d-quark masses, namely, r1m

phys
ud ¼0.000965ð33Þ,

and the physical s-quark mass r1m
phys
s ¼ 0.0265ð8Þ as

determined by analyzing the light pseudoscalar meson
spectrum [22]. The error due to the uncertainties in these
masses is obtained by varying their central values by 1
standard deviation to find the corresponding changes in the
form factors. The maximum changes are below 0.15% in
the simulated q2 region.

E. Uncertainties arising from the bottom
quark mass correction

As explained in Sec. IV C, the form factors are adjusted
to account for the slightly mistuned valence b-quark masses
before the chiral-continuum extrapolation. This accounts
for the dominant effect from b-quark mass mistuning. The
errors on the form factors due to the uncertainties in the

FIG. 9. Percent deviations of alternative chiral-continuum extrapolations from the preferred central fit of fþ and f0. The curves show
the deviation from the preferred central fit obtained by either omitting the pK ¼ 2πð1; 1; 1Þ=Ns data points or by using SU(2) soft pion
HMrSχPT formula. The gray band shows the statistical errors from the preferred NNLO SU(2) HMrSχPT fits. The deviations are
smaller than the statistical errors.
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κb-correction factors and the tuned κb values are taken into
account by following the procedure described in Ref. [16].
A q2-independent 0.4% error due to tuning κb is assigned to
both fþ and f0.

F. Finite volume effects

Finite-volume effects, estimated by comparing infinite-
volume integrals with finite sums in HMrSχPT, are
negligibly small [16,18], so they are omitted from the total
error budget.

G. Summary of the statistical and systematic
error budgets

The systematic errors discussed in this section are
summarized in Fig. 10. We see that the largest source of
systematic uncertainty by far comes from the chiral-
continuum extrapolation, which includes higher-order dis-
cretization effects. This is especially obvious at small q2,
i.e., large r1EK, because the statistical errors of the
correlations functions increase with increasing recoil
momentum so that the corresponding form factors at large
r1EK have large errors. This is also due to a lack of data
points in the large r1EK region as shown in Fig. 7.
Furthermore, the HMrSχPT used to perform the extrapo-
lation is valid only for moderate EK . This is a generic
feature common to all similar lattice calculations. Our aim,
however, is to get the form factor in the whole kinemat-
ically allowed region, all the way to q2 ¼ 0. In the next
section, Sec. VI, we will describe how the extrapolation can
be done by including physical information to control the
error in the small q2 region.
The subdominant errors, excluding the chiral-continuum

extrapolation error, have mild q2 dependence. Following
Ref. [16] we therefore treat them as constants in q2 when
propagating them to the z-parametrization fit in Sec. VI B.
We conservatively take the maximum estimated error from
each source in the simulated q2 range and add them in
quadrature. Specifically, the overall additional systematic

error is 1.4% for both fþ and f0, which is added to the
covariance function of the chiral-continuum fit using the
procedure described in Ref. [16] prior to the next step in
the analysis described in the following section.

VI. CONTINUUM FORM FACTORS

The continuum form factors obtained from the chiral-
continuum extrapolations described in the previous two
sections are reliable only in the high momentum transfer
q2 ≳ 17 GeV2 region. In this section, we use a model-
independent parametrization and expansion, namely, the z
parametrization, to extrapolate the form factors to the whole
kinematically allowed region. This parametrization and
expansion is based on the analyticity of the form factors and
angular momentum conservation. The parametrization we
used was introduced by Bourrely, Caprini, and Lellouch
(BCL) [73] and the fitting procedure and extrapolation
technique was first introduced in our previous B → πlν
paper [16].
In Sec. VI A, we briefly review the z parametrization

and give the expansion form used in the analysis. In
Sec. VI B, we present the extrapolated continuum form
factors in the whole kinematically allowed region. The
results are shown in Table X, and Figs. 12 and 13. A
comparison with results of other groups is presented in
Sec. VI C.

A. z parametrization of form factors

Before discussing the details of the method, let us first
consider the properties of the semileptonic form factors.
Causality and unitarity [74] imply that the Bs → Klν
semileptonic form factors are real analytic functions3

in the complex q2 plane with a cut from q2 > tcut to ∞,

FIG. 10. Distribution of the errors for fþ (left) and f0 (right) as a function of q2. The left y axis shows the square of the errors added in
quadrature. The right y axis shows the errors themselves. The different bands show the total error when adding individual sources of
error in quadrature one by one. The error bands associated with κb and ml are too small to be visible on the plots.

3An analytic function fðxÞ is real analytic if it satisfies
fðx�Þ ¼ ðfðxÞÞ�. If fðxÞ is a real analytic function with a branch
point at x0, then fðxÞ is real for x < x0 and its discontinuity
across the cut is purely imaginary: fðxþ iϵÞ − fðx − iϵÞ ¼
2iImfðxþ iϵÞ.
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except at physical poles below tcut. The parameter tcut is the
particle-pair-production threshold. For Bs → Klν, this is

ffiffiffiffiffiffi
tcut

p ¼ MBþ þMπ0 ¼ 5.414 GeV: ð6:1Þ

The pole for the vector form factor is below the cut;
while the one for the scalar form factor is above it. The
above-threshold pole corresponds to an unstable particle,
or resonance, and may appear only on the second
Riemann sheet.
From deep-inelastic-scattering experiments and perturba-

tive QCD scaling [75,76], it is known that the semileptonic
form factors vanish rapidly as 1=q2, up to logarithmic
corrections, when q2 approaches minus infinity.
Near the threshold tcut, the form factors have the

following scaling behavior

Imflðq2Þ ∼ ðq2 − tcutÞ2lþ1
2 ; ð6:2aÞ

Reflðq2Þ ∼ al þ blðq2 − tcutÞ; ð6:2bÞ

with l ¼ 0 for f0 and l ¼ 1 for fþ, obtained from simple
partial wave analysis.
Now let us look at the z parametrization. The z para-

metrization involves a conformal mapping. Conventionally,
the variable q2 is mapped to a new variable z according to

zðq2; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − q2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − q2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tcut − t0
p ; ð6:3Þ

where t0 is a parameter that can be chosen to optimize the
mapping. The maximum momentum transfer allowed in
the semileptonic Bs → Klν decay is defined as

t− ¼ ðMBs
−MKÞ2 ð6:4Þ

for convenience. This conformal mapping was first con-
sidered in Ref. [77] and further developed and used to get
model-independent constraints, usually called “unitarity
bounds,” on form factors in Ref. [78]. A stronger constraint
based on heavy-quark power counting was derived in
Ref. [79]. The conformal transformation Eq. (6.3) maps

the physical semileptonic region 0 ≤ q2 ≤ t− onto a small
region on the real z axis, the upper edge of the cut onto the
upper edge of the unit circle, the lower edge of the cut
onto the lower edge of the unit circle, the limiting points
q2 ¼ �∞ to z ¼ 1, and q2 ¼ tcut to z ¼ −1. The complex
q2 cut plane is mapped onto the unit disk in the z plane with
the cut mapping onto the unit circle. The parameter t0 can
be chosen such that the semileptonic region is centered
around z ¼ 0 after the conformal mapping. This is obtained
by solving the equation

zðq2 ¼ 0; t0Þ ¼ −zðq2 ¼ t−; t0Þ: ð6:5Þ

The solution for t0 is

t0 ¼ tcut −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcutðtcut − t−Þ

p
: ð6:6Þ

This mapping is schematically shown in Fig. 11 with small
lepton masses ignored and with the optimized t0 as defined
in Eq. (6.6).
Under the above transformation, the form factors are

always in the region where jzj < 1, and therefore they can
be parametrized as a power series in z. Since the physical
semileptonic region in terms of z is usually small, jzj ≤
0.205 for Bs → Klν, this parametrization converges
quickly. Table VIII has a list of quantities in terms of
r1EK , q2, and z parameters.
Two commonly used parametrizations are given by

Boyd, Grinstein, and Lebed (BGL) [80] and by BCL
[73]. Here we use the BCL parametrization as given by

fþðq2Þ ¼
1

1 − q2=m2
B�ð1−Þ

XK−1
k¼0

bþk ðt0Þ
�
zk − ð−1Þk−K k

K
zK

�
;

ð6:7aÞ

f0ðq2Þ ¼
1

1 − q2=m2
B�ð0þÞ

XK−1
k¼0

b0kðt0Þzk: ð6:7bÞ

The factors 1=ð1 − q2=m2
B� Þ take the poles into account

and ensure the asymptotic scaling, fðq2Þ ∼ 1=q2 at large
q2. Moreover, the scaling condition of Eq. (6.2) near tcut is

FIG. 11. A schematic diagram of the conformal mapping of the form factor regions from the complex q2 plane to the complex z plane.
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also enforced for fþ. Note that Eq. (6.2) in the q2 plane
implies the following relations

dfþ
dz

����
z¼−1

¼ dfþ
dk

dk
dz

����
k¼0

¼ 0; ð6:8aÞ

df0
dz

����
z¼−1

¼ df0
dk

dk
dz

����
k¼0

¼ const: ð6:8bÞ

The form factors constructed with this BCL z para-
metrization satisfy all three properties of the semileptonic
form factors discussed at the beginning of this section.

B. z-parametrization fit and extrapolation

We use Eq. (6.7) to perform the z-parametrization fit to
our chiral-continuum-extrapolated form factor results
obtained in Secs. IV D and V. The vector pole MB�ð1−Þ is
taken to beMB�ð1−Þ ¼ 5.32465ð25Þ GeV [5], and the above
threshold scalar poleMB�ð0þÞ is taken to be the theoretically

predicted value MB�ð0þÞ ¼ 5.68 GeV [70]. The parameter
t0 is chosen as in Eq. (6.6), and the corresponding value for
the Bs → Klν process is 16.5 GeV2. Table IX lists the
relevant meson masses used in the z-parametrization fit.
The functional method introduced in Ref. [16] is used

to perform the z-parametrization fit, where, following
Ref. [16], we take as inputs the results from the chiral-
continuum extrapolation and systematic error analysis as
presented in Sec. V G.
Our preferred (central) fit has K ¼ 4, where K is the

number of terms in the expansion in Eq. (6.7). The results
of this fit are shown in Table X. These can be used to
reconstruct the final form factors as described in
Appendix B. We arrive at this preferred fit choice by first
simultaneously fitting the form factors fþ and f0 with
K ¼ 2 and without constraining the z-parametrization
parameters bþ;0

i in Eq. (6.7). The coefficients bþ0 and b00
are well determined, but the quality of this fit is poor. When
increasing K from 2 to 3, the quality of the fit improves,
and all the bþ;0

i coefficients can be determined well.

TABLE VIII. Quantities in terms of different parameters.

r1EK q2ðGeV2Þ z

Lattice data range [0.846, 1.71] [17.4, 23.3] ½−0.186;−0.0174�
Physical range [0.780, 4.28] [0, 23.7] ½−0.205; 0.205�
t ¼ ðMBs

−MKÞ2 0.780 23.7 −0.205
tcut ¼ ðMB þMπÞ2 −0.0395 29.3 −1.0
t0 ¼ tcut −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcutðtcut − t−Þ

p
1.84 16.5 0.0

M2
B� ð1−Þ 0.102 28.4 −0.569

M2
B� ð0þÞ −0.473 32.3 −0.625þ 0.781i

TABLE IX. Input meson masses used in the z-parametrization fit.

MBs
MK MB Mπ MB� ð1−Þ MB� ð0þÞ

Value (GeV) 5.36682 0.493677 5.27931 0.1349766 5.32465 5.68

TABLE X. The results of the preferred z-parametrization fit from Eqs. (6.7), (6.6), (6.9), and Table IX withK ¼ 4. These values can be
used to reconstruct the form factors as explained in Appendix B. The correlation matrix is listed with only four digits after the decimal
point. The correlation matrix has one near zero eigenvalue due to the kinematic constraint used. See Appendix B for details.

Correlation matrix

Value bþ0 bþ1 bþ2 bþ3 b00 b01 b02 b03
bþ0 0.3623(0.0178) 1.0000 0.6023 0.0326 −0.1288 0.7122 0.6035 0.5659 0.5516
bþ1 −0.9559ð0.1307Þ 1.0000 0.4735 0.2677 0.7518 0.9086 0.9009 0.8903
bþ2 −0.8525ð0.4783Þ 1.0000 0.9187 0.5833 0.7367 0.7340 0.7005
bþ3 0.2785(0.6892) 1.0000 0.4355 0.5553 0.5633 0.5461
b00 0.1981(0.0101) 1.0000 0.8667 0.7742 0.7337
b01 −0.1661ð0.1130Þ 1.0000 0.9687 0.9359
b02 −0.6430ð0.4385Þ 1.0000 0.9899
b03 −0.3754ð0.4535Þ 1.0000
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The kinematic constraint Eq. (2.2) is satisfied within
errors.4 Enforcing this kinematic constraint, as explained
below, further improves the fþ form-factor fit. The fit
parameters also satisfy the unitarity condition [73] and the
condition estimated from heavy-quark power counting
[79]. Adding the heavy-quark constraint does not affect
the fit results. The kinematic constraint is enforced by
requiring fþ and f0 to be exactly equal at the q2 ¼ 0 point.
In practice, we set a prior in the z-parametrization fit

fþðq2 ¼ 0Þ − f0ðq2 ¼ 0Þ ¼ 0; ð6:9Þ

with width ϵ ¼ 10−10. When further increasing the expan-
sion order to K ¼ 4, the central value of the form factors at
q2 ¼ 0 agrees with the results with K ¼ 3, but the error
increases. The unitarity and heavy-quark constraints are
still satisfied automatically. The results stabilize at K ¼ 4
and do not change withK ¼ 5. We conclude that the K ¼ 4
fit with the kinematic constraint includes the systematic
uncertainty due to truncating the z-parametrization series.
The left panel of Fig. 12 shows the preferred K ¼ 4

form-factor results, with poles removed, as functions of z.
The q2 ¼ 0 point is at the right end of the plot. Note that
the shape of the form factors as functions of z is para-
metrization dependent. For convenience, the right panel of
Fig. 12 shows the form factors as functions of q2. The q2

dependence of the form factors is parametrization inde-
pendent and can be used directly to compare with results of
other groups.

C. Comparison with existing results

Several other groups have also calculated the same
form factors. We note that Refs. [30,31] use the BsK
threshold instead of Bπ in their implementation of the

z parametrization. Since the z parameter, by definition [see
Eq. (6.3)], depends on the threshold (tcut), we cannot
directly compare the z dependence of our form factors
with those of Refs. [30,31]. We therefore compare our form
factors with those from other lattice QCD calculations only
as functions of q2. This is shown in Fig. 13.
The results of the HPQCD Collaboration [30] are based

on (2þ 1)-flavor-MILC-asqtad configurations for the sea
quarks, and employ the HISQ action for the light valence
quarks, and lattice NRQCD for the heavy b quark. The
RBC and UKQCD Collaborations [31] use (2þ 1)-flavor-
domain-wall fermions for the sea quarks and light valence
quarks, and a variant [81,82] of the Fermilab action for
the heavy b quark. The ALPHA Collaboration [32] uses

FIG. 13. Theoretical lattice QCD calculations of the Bs → Klν
form factors from the HPQCD Collaboration [30], the RBC and
UKQCD Collaborations [31], the ALPHA Collaboration [32],
and the Fermilab Lattice and MILC Collaborations, marked as
“This work” in the figure. Different treatments of the bottom
quark on the lattice are listed in parenthesis.

FIG. 12. Preferred K ¼ 4 z-parametrization fit results for the form factors fþ (upper curve) and f0 (lower curve) as functions of z and
q2. The kinematic constraint Eq. (6.9) is applied. The corresponding bands with larger errors are the results of the chiral-continuum
extrapolation, as shown in Sec. IV D. They are used as inputs for the z-parametrization fit. The bands with smaller errors are the resultant
z-parametrization fits. The q2 ¼ 0 point corresponds to z ¼ 0.205 as shown in Table VIII. The meson poles are listed in Table IX.

4Note that the kinematic constraint is automatically satisfied in
Eq. (3.5) before taking the extrapolation as is being done in this
section. After the extrapolation, this constraint is not guaranteed
if not imposed in the fit.
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leading-order lattice HQET to get the form factors at one
point, q2 ¼ 22.12 GeV2. While our results are consistent
with those from Refs. [31,32], they are in tension with
HPQCD’s results [30]. We note that Ref. [30] employs
the so-called modified z expansion, where the chiral-
continuum extrapolation is combined with the z expansion
into one fit function by modifying the z coefficients with
lattice spacing and light-quark-mass dependent terms. This
procedure may affect the shape of the form factors. Indeed,
in their calculation of the form factors for the B → Klþl−

decay in Ref. [83], the HPQCD Collaboration compared
the form factors obtained after the modified z expansion
with the results from a two-step method that is very similar
to ours, performing first a chiral-continuum extrapolation,
and then a z-expansion fit. While they find only small
differences between the two sets of form factors, those
obtained from their implementation of the two-step method
are in better agreement with the results of Ref. [18].
However, unlike the case at hand, the form factors of
Ref. [18] are not in significant tension with HPQCD’s
results of Ref. [83]. We see that the tension between our
Bs → Klν form factor results and those of Ref. [30]
increases with decreasing q2 to roughly 2.3σ at q2 ¼ 0.
The RBC and UKQCD Collaborations [31], on the
other hand, adopt the same procedure as we do, namely
a chiral-continuum extrapolation at high q2, followed by a
z-expansion extrapolation to q2 ¼ 0.
A comparison of the form factor at q2 ¼ 0 is shown in

Fig. 14, where we also include results from calculations
using light-cone sum rules [34,35], a relativistic quark
model [33], and NLO perturbative QCD [36].

VII. PHENOMENOLOGICAL APPLICATIONS

The angular-dependent differential decay rate for
Bs → Klν is given in Eq. (2.3). One can construct at most
three independent observables from there. In the following,
we will consider the differential decay rate dΓ=dq2 in
Sec. VII A, the forward-backward asymmetry Al

FBðq2Þ in
Sec. VII B, and the lepton polarization asymmetry Al

polðq2Þ
in Sec. VII C. The latter two quantities are sensitive to the
mass of the final-state charged lepton. In Sec. VII D, we
also construct the ratios of the scalar and vector form
factors between the Bs → Klν and Bs → Dslν decays. In
Sec. VII E, we briefly compare our results for several
quantities with those found in Refs. [30,31].

A. Decay rate

The differential decay rate can be obtained from Eq. (2.3)
by integrating over the angle θl, which yields

dΓ
dq2

¼
Z

1

−1

d2Γ
dq2d cos θl

d cos θl

¼ G2
FjVubj2

128π3M2
Bs

�
1 −

m2
l

q2

�
2

jpKj

×

�
16

3
M2

Bs
jpKj2

�
1þ m2

l

2q2

�����fþðq2Þj2
þ 2m2

l

q2
ðM2

Bs
−M2

KÞ2jf0ðq2Þj2
�
: ð7:1Þ

In Fig. 15, we plot the Standard Model predictions of the
differential decay rate divided by jVubj2 over the whole
kinematic range of q2 for Bs → Kμν and Bs → Kτν.
One can also explore the ratio of the differential decay

rates

Rτ=μðq2Þ ¼ dΓðBs → KτνÞ=dq2
dΓðBs → KμνÞ=dq2 : ð7:2Þ

Figure 16 shows the prediction for Rτ=μðq2Þ.
The total decay rate is given by

ΓðBs → KlνÞ ¼
Z

q2max

m2
l

dq2
dΓ
dq2

; ð7:3Þ

with q2max ¼ t− ¼ ðMBs
−MKÞ2, as in Eq. (6.4). The

numerical results for Γ=jVubj2 are

jVubj−2ΓðBs → KμνÞ ¼ 4.26ð0.92Þ ps−1; ð7:4aÞ

jVubj−2ΓðBs → KτνÞ ¼ 3.27ð0.47Þ ps−1: ð7:4bÞ

In Appendix C, we also provide partially integrated
differential decay rates in evenly spaced q2 bins.

FIG. 14. Comparison of the theoretical calculations of the
Bs → Klν form factors at q2 ¼ 0. The results shown are from
light-cone sum rules (LCSR) [34,35], NLO perturbative QCD
(pQCD) [36], relativistic quark model (RQM) [33], and (2þ 1)-
flavor lattice QCD (LQCD) from the HPQCD Collaboration [30],
the RBC and UKQCD Collaborations [31], and the Fermilab
Lattice and MILC Collaborations.
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The ratio of the total decay rate is

ΓðBs → KτνÞ
ΓðBs → KμνÞ ¼ 0.836ð34Þ; ð7:5Þ

which takes the correlations between the form factors into
account and is more precise than directly using Eq. (7.4).

B. Forward-backward asymmetry

The forward-backward asymmetry, AFB, which depends
on the linear cos θl term in Eq. (2.3), is given by

Al
FBðq2Þ ¼

Z
1

0

d2Γ
dq2d cos θl

d cos θl

−
Z

0

−1

d2Γ
dq2d cos θl

d cos θl

¼ G2
FjVubj2

32π3MBs

�
1 −

m2
l

q2

�
2

jpKj2
m2

l

q2
ðM2

Bs
−M2

KÞ

× Re½fþðq2Þf�0ðq2Þ�: ð7:6Þ

The Standard Model predictions for the forward-backward
asymmetry divided by jVubj2 are shown in Fig. 17. For the
corresponding integrated quantities we find

Z
q2max

m2
μ

dq2jVubj−2Aμ
FBðq2Þ ¼ 0.0137ð69Þ ps−1; ð7:7aÞ

Z
q2max

m2
τ

dq2jVubj−2Aτ
FBðq2Þ ¼ 0.83ð14Þ ps−1: ð7:7bÞ

The normalized forward-backward asymmetry is
given by

FIG. 15. Standard Model predictions of the differential decay rate divided by jVubj2 for Bs → Kμν (left) and Bs → Kτν (right).

FIG. 16. Standard Model predictions of the ratio of the differ-
ential decay rates Rτ=μðq2Þ.

FIG. 17. Standard Model predictions of the forward-backward asymmetry divided by jVubj2 for Bs → Kμν (left) and Bs → Kτν
(right).
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Āl
FB ≡

R q2max

m2
l

Al
FBðq2ÞR q2max

m2
l

dΓ=dq2
ð7:8Þ

and the corresponding numerical values are

Āμ
FB ¼ 0.00321ð97Þ; ð7:9aÞ

Āτ
FB ¼ 0.2536ð84Þ: ð7:9bÞ

C. Lepton polarization asymmetry

The normalized lepton polarization asymmetry is
defined as

Al
pol ¼

dΓ−=dq2 − dΓþ=dq2

dΓ−=dq2 þ dΓþ=dq2
ð7:10Þ

from the differential decay rates with definite lepton
helicity [84]

dΓ−

dq2
¼ G2

FjVubj2
24π3

�
1 −

m2
l

q2

�
2

jpKj3jfþðq2Þj2; ð7:11aÞ

dΓþ

dq2
¼ G2

FjVubj2
24π3

�
1 −

m2
l

q2

�
2m2

l

q2
jpKj

×

�
3

8

ðM2
Bs
−M2

KÞ2
M2

Bs

jf0ðq2Þj2 þ
1

2
jpKj2jfþðq2Þj2

�
:

ð7:11bÞ

Here the superscripts þ (−) imply a right- (left-)handed
lepton in the final state. The lepton is produced via the
V − A current in the Standard Model, and therefore
the electron and muon are mainly left-handed polarized.
The Aμ

pol is close to one in the whole q2 range. Here we
provide the normalized lepton polarization asymmetry Aμ

pol

and Aτ
pol as functions of q

2 in Fig. 18.

D. Ratio of the Bs → Klν and Bs → Dslν
form factors

We also calculate the ratios of the scalar and vector form
factors between the Bs → Klν and Bs → Dslν semilep-
tonic decays. The ratios can be used along with future
experimental results to determine the ratio of the CKM
matrix elements jVub=Vcbj.
First, we reconstruct the Bs → Dslν form factors from

our previous papers [13,15]. Form factor ratios,
f2012þ;0 ðBs → DsÞ=f2012þ;0 ðB → DÞ, and the B → Dlν form
factors, f2015þ;0 ðB → DÞ, are calculated in Refs. [13,15],
respectively. They are shown in Fig. 19. The Bs → Dslν
form factor can be reconstructed via

frecoþ;0 ðBs → DsÞ ¼ f2015þ;0 ðB → DÞ × f2012þ;0 ðBs → DsÞ
f2012þ;0 ðB → DÞ :

ð7:12Þ
With the reconstructed Bs → Dslν form factors frecoþ;0 ðBs →
DsÞ shown in Fig. 20, we obtain the form-factor ratios,
fþ;0ðBs → KÞ=frecoþ;0 ðBs → DsÞ, shown in Fig. 21 as func-
tions of q2 and in Fig. 22 as functions of w. Although the
2012 analysis was carried out on a subset of the ensembles
used in the 2015 analysis, we neglect any correlations in the
two form factors in Eq. (7.12). Here q2 is the usual square
of the lepton momentum transfer as defined in Eq. (3.2).
The recoil parameter w for Bs → Dslν is defined as

w ¼ M2
Bs
þM2

Ds
− q2

2MBs
MDs

ð7:13Þ

and the corresponding one for the Bs → Klν is defined by
replacing MDs

with MK . The relation between w and q2 in
Eq. (7.13), and the kinematically allowed regions for the
two types of processes are shown in Fig. 23. The ratios
constructed with different parameters q2 and w as shown in
Figs. 21 and 22 allow us to probe the different Bs → Klν
form factor regions.
Our reconstructed Bs → Dslν form factor at q2 ¼ 0 is

frecoþ;0 ðBs → Ds; q2 ¼ 0Þ ¼ 0.755ð65Þ, which is larger than

that of HPQCD in Ref. [85] fðDsÞ
0 ð0Þ ¼ 0.661ð42Þ. The

FIG. 18. Standard Model predictions of the normalized lepton polarization asymmetry for Bs → Kμν (left) and Bs → Kτν (right).
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combination of a smaller Bs → Klν form factor, as shown
in Fig. 14, and a larger reconstructed Bs → Dslν form
factor at q2 ¼ 0 leads to the difference shown in Fig. 21.

E. Comparison with prior results

We very briefly compare our results for a number of
quantities calculated in previous subsections with those
based on the form factors calculated by the HPQCD

Collaboration [30] and by the RBC and UKQCD
Collaborations [31].
We have already seen in Figs. 13 and 14 that our form

factors agree well with those in Ref. [31] but not with those
in Ref. [30]. This is reflected in Table XI where we find
quite reasonable agreement with the RBC/UKQCD results

FIG. 19. Form factor ratios, f2012þ;0 ðBs → DsÞ=f2012þ;0 ðB → DÞ, calculated by Fermilab Lattice and MILC Collaborations in Ref. [13] in
2012 (left) and B → Dlν form factors, f2015þ;0 ðB → DÞ, calculated by the same collaborations in Ref. [15] in 2015 (right). These are the
ingredients to reconstruct the Bs → Dslν form factors frecoþ;0 ðBs → DsÞ.

FIG. 20. The reconstructed form factors frecoþ;0 ðBs → DsÞ ob-
tained from Eq. (7.12).

FIG. 21. Form factor ratios, fþ;0ðBs → KÞ=frecoþ;0 ðBs → DsÞ, as
functions of the momentum transfer q2. The result provided by
HPQCD [85] at q2 ¼ 0 is plotted for comparison.

FIG. 22. Form factor ratios, fþ;0ðBs → KÞ=frecoþ;0 ðBs → DsÞ, as
functions of the recoil parameter w.

FIG. 23. The kinematically allowed region for Bs → Klν
(upper solid line) and Bs → Dslν (lower solid line) decays in
terms of q2 and w. The solid lines are the relation between q2

and w as defined in Eq. (7.13). The green and purple areas are the
corresponding Bs → Klν regions used to construct the form
factor ratios as shown in Fig. 21 and Fig. 22, respectively.
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but differences between our results and those of HPQCD in
the range of 1.6–2.4 standard deviations.

VIII. SUMMARY AND OUTLOOK

Using six strategically selected ensembles of MILC
asqtad 2þ 1 flavor gauge configurations, we have calcu-
lated the form factors fþðq2Þ and f0ðq2Þ needed to
understand the semileptonic decay Bs → Klν. We present
predictions of the differential decay rate (divided by jVubj2)
for both light (e or μ) or heavy (τ) final-state leptons. Once
the experimental data become available, our form factors
can be used to determine jVubj, which can then be
compared to and, if consistent, combined with the jVubj
determinations from other exclusive decay processes.
Hence they may help shed light on the discrepancy with
jVubj from inclusive decays B → Xulν and, perhaps,
contribute to evidence for new physics beyond the
Standard Model by enabling more stringent tests of the
CKM paradigm. Other quantities of phenomenological
interest include the forward-backward asymmetry
Al
FBðq2Þ and the lepton polarization asymmetry Al

polðq2Þ.
We also present ratios of the form factors fþ and f0 for
Bs → Klν and Bs → Dslν as functions of both q2 and w.
These may be valuable for determining jVub=Vcbj.
Although there are no published results for the decay

Bs → Klν, this process is under investigation by the
LHCb experiment, and will be studied by the Belle II
Collaboration when they run at theϒð5SÞ resonance, which
is a copious source of Bs and B̄s mesons.
On the theoretical side, we have plans to reduce the

contributions from the dominant sources of systematic
errors in upcoming calculations, which include chiral
extrapolation, light and heavy-quark discretization, and
renormalization. The gauge ensembles generated by the
MILC Collaboration with four flavors of HISQ sea quarks
[28,29] are a crucial ingredient in these plans. These
ensembles cover a lattice spacing range of approximately
0.15–0.045 fm with physical light quark masses and a

dynamical charm quark. The chiral extrapolation becomes
a chiral interpolation, and the reduced taste breaking of the
HISQ action greatly reduces light quark discretization
errors. Using these ensembles, we will be taking two
approaches to the b quark. First, we have started a project
using Fermilab b quarks (as in this project) and HISQ light
valence quarks. Preliminary results were already reported
in Refs. [26,87]. As a further small improvement compared
to this work, we will include the full correlation matrix
between form factors for different processes in our final
results. In our second approach, we plan to use the HISQ
formalism for the b quark to calculate semileptonic BðsÞ-
and D-meson decay form factors again on the HISQ
ensembles. Heavy-quark discretization errors are simpler
with the HISQ action than with the Fermilab approach, and
can be controlled with high precision by including ensem-
bles with very fine lattice spacings in the range of
a ≈ 0.03–0.042 fm. The heavy-HISQ approach also allows
us to take advantage of Ward identities when renormalizing
the currents. Indeed, our recent work [88] employing the
heavy HISQ method for the B- and D-meson decay
constants has reached unprecedented precision. We have
recently started to generate the needed correlation functions
for this project. Finally, we also plan to consider new
methods, such as the momentum smearing introduced in
Ref. [89], that may allow us to extend the range of recoil
momenta accessible to a lattice QCD calculation. In sum-
mary, with the improvements outlined above, we expect, in
the coming years, to obtain the form factors for Bs → Klν
(and related decays) with percent level precision, at least in
the low recoil region of the phase space.
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APPENDIX A: Bs → Klν FORM FACTORS IN
SU(2) CHIRAL PERTURBATION THEORY

In this appendix, we derive Eq. (4.6), the SU(2) chiral
formula for Bs → Klν.
We start from the NLO SU(3) HMrSχPT expression for

Bx → Pxy semileptonic decay. It is expressed as [69]

f
Bx→Pxy

P;NLO ¼ fð0ÞP ½c0Pð1þ δfP;logsÞ þ cxPmx þ cyPmy

þ cseaP ðmu þmd þmsÞ þ cEPEþ cE
2

P E2 þ ca
2

P a2�;
ðA1Þ

where the subscript P stands for k or ⊥; ciP are coefficients
and the corresponding rescaled quantities in Eq. (A7) will be
determined by the chiral fits; δfP;logs contains the one-loop
nonanalytic contributions and wave-function renormaliza-
tions; mx and my are the corresponding valence quark
masses; mu, md, and ms are sea quark masses; E ¼ p · v
is the Pxy meson energy in the Bx meson rest frame; and a is
the lattice spacing. The leading order terms for fk and f⊥ are

fð0ÞP ¼ 1

f
g

Eþ Δ�
xy;P þDlogs

; ðA2Þ

where f is the decay constant involved; g is the coupling
constant; Δ�

xy;P is the mass difference between the quantum
number JP ¼ 0þ or 1− B�

y meson and the pseudoscalar Bx

meson masses at leading order in the chiral expansion, i.e.,
Δ�

xy ¼ B�
y − Bx; and Dlogs is the nonanalytic self-energy

contribution. The scalar pole was not included in Ref. [69] as
the 0þ meson is not in leading order HMrSχPT. It is added
here phenomenologically as explained in Sec. IVD.
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For the Bs → Klν analysis considered here, x ¼ s0 and
y ¼ u0 ¼ d0 ¼ u ¼ d. Here we use primed quantities to
denote the valence quarks and the unprimed for the sea
quarks.5 All the data generated for Bs → Klν analysis are
partially quenched points, i.e., m0

s ≠ ms.
In the SU(2) limit, the s-quark mass is treated as

infinitely heavy and all the explicit ms dependent terms
are removed from the formula. However, one will still need
to keep the mass difference, m0

s −ms, in the leading-order
analytic term to take the partial quenching effects into
account. In the hard-kaon limit, the kaon with a large
energy, E, is integrated out in the nonanalytic chiral
expressions. These two limits greatly simplify the expres-
sions of the chiral logs. Following the recipes presented in
the Appendix of Ref. [18], we obtain the SU(2) hard-kaon
chiral log terms in fk and f⊥ for the Bs → Klν as

δfSUð2ÞP;logs ¼
1

ð4πfÞ2
�
1

16

X
ξ

½−I1ðmπ;ξÞ� þ
1

4
I1ðmπ;IÞ

þ I1ðmπ;VÞ − I1ðmη;VÞ þ ½V → A�
	
; ðA3aÞ

DSUð2Þ
P;logs ¼ 0: ðA3bÞ

The summation ξ is over 16 staggered fermion tastes
(P, V, T, A, or I); I1ðmÞ is the chiral logarithm defined as

I1ðmÞ ¼ m2 ln

�
m2

Λ2

�
: ðA4Þ

Meson masses for the 2þ 1 case in the SU(2) limit
(mu ¼ md and ms → ∞) are [18,91]

m2
π;ξ ¼ m2

uu;ξ ¼ m2
dd;ξ; ðA5aÞ

m2
η;VðAÞ ¼ m2

uu;VðAÞ þ
1

2
a2δ0VðAÞ: ðA5bÞ

The ½V → A� in Eq. (A3a) stands for terms with subscripts
changed from V to A. The hairpin parameters δ0VðAÞ in

Eq. (A5b) are listed in Table XII. Them2
ij;ξ are defined later

in Eq. (A8).
We can regroup relevant terms in Eq. (A1), drop the m0

s
dependent term due to the SU(2) limit, and write the
formula as the following

fP;NLO ¼ fð0ÞP

�
c0Pð1þ δfP;logsÞ þ

ðcuP þ 2cseaP Þ
3

3mu

þ cseaP ðms −ms0 Þ þ cEPEþ cE
2

P E2 þ ca
2

P a2
�
:

ðA6Þ

We can further write all the expansion parameters in
terms of dimensionless ones

χl ¼
3ð2μmuÞ
8π2f2

; ðA7aÞ

χh ¼
2μðms −m0

sÞ
8π2f2

; ðA7bÞ

χE ¼
ffiffiffi
2

p
E

4πf
; ðA7cÞ

χa2 ¼
a2Δ̄
8π2f2

; ðA7dÞ

where μ is the leading-order low-energy constant that relates
the tree-level mass of a taste-ξmeson composed of quarks of
flavor i and j to the corresponding quark masses

m2
ij;ξ ¼ μðmi þmjÞ þ a2Δξ: ðA8Þ

HereΔξ is the staggered fermion taste splitting. The numeri-
cal values of μ and Δξ are determined by the MILC
Collaboration and are shown in Table XII. The average taste
splitting in Eq. (A7d) is Δ̄ ¼ 1

16

P
ξ Δξ.

Combining the above information, one arrives at the final
NLO form used in the chiral-continuum extrapolation in
this work, Eq. (4.6).

APPENDIX B: RECONSTRUCTING
THE Bs → Klν FORM FACTORS

In this appendix, we document the procedure of recon-
structing the form factors from the fitting results obtained
in Sec. VI B.

TABLE XII. Fixed parameters used in the chiral-continuum
extrapolation fit function. The r21a

2Δξ with ξ ¼ P, A, T, V, I, and
r21a

2δ0V=A are taste splittings and hairpin parameters.

≈a ðfmÞ 0.12 0.09 0.06 0

r1μ 6.831904 6.638563 6.486649 6.015349

r21a
2ΔP 0 0 0 0

r21a
2ΔA 0.22705 0.07469 0.02635 0

r21a
2ΔT 0.36616 0.12378 0.04298 0

r21a
2ΔV 0.48026 0.15932 0.05744 0

r21a
2ΔI 0.60082 0.22065 0.07039 0

r21a
2δ0V 0.0 0.0 0.0 0

r21a
2δ0A −0.28 −0.09 −0.03 0

5This is different from the convention used in the main text.
For example, in Tables I and II the prime quantities denote the sea
quarks and the unprimed for the valence ones.
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1. Reconstructing the form factors as functions of z

The form factors are parametrized in a BCL [73] form
with coefficients bþ;0

i as shown in Eq. (6.7). The meson
masses used in the z-parametrization fit are listed in
Table IX. The fitted coefficients bþ;0

i are listed in
Table X. To get the form factors as functions of z and
reproduce the left panel result of Fig. 12, one should use
Eq. (6.7) withMB� ð1−Þ andMB�ð0þÞmeson mass values in
Table IX, and the bþ;0

i values and the correlation matrix in
Table X.

2. Reconstructing the form factors as functions of q2

To get the q2 dependence of the form factors as in the
right panel of Fig. 12, one needs the relation between
z and q2. In this paper, the mapping is defined in Eqs. (6.3),
(6.1), (6.4), and (6.6). One can then solve Eq. (6.3) to get q2

in terms of z:

q2ðz; t0Þ ¼ tcut −
�
1þ z
1 − z

�
2

ðtcut − t0Þ: ðB1Þ

Once we have the form factors as functions of z from
Appendix B 1, we can then use Eq. (B1) to change the
variable to get the q2 dependence.

3. Dealing with the near zero eigenvalue
in the covariance matrix

In Table X the fit parameter standard deviations and the
correlation matrix are listed. To get the covariance matrix,
one only needs to follow the usual procedure to rescale the
correlation matrix. The following is the detailed procedure.
Suppose the standard deviation of the fit parameters is

Σ ¼ ½σ1; σ2;…; σn�; ðB2Þ

and the matrix D is a diagonal matrix with diagonal
elements Σ. The correlation matrix is denoted as R and
the covariance matrix is denoted as S. The relations among
D, R, and S are

S ¼ D × R ×D; ðB3aÞ

R ¼ D−1 × S ×D−1: ðB3bÞ

Alternatively, one can use the following relation to
directly convert the matrix elements

Sij ¼ Rijσiσj; ðB4Þ

where there is no summation over the repeated indices. The
covariance matrix, or the inverse of it, is useful when

combining form factor results from different sources. It is
difficult to calculate the inverse of the covariance matrix
from the results listed in Table X. This is because we
imposed the kinematical constraint Eq. (6.9) with ϵ ¼
10−10 in the z-parametrization fit. This results in a near zero
eigenvalue in the covariance matrix. The kinematic con-
straint is equivalent to reducing one parameter in the z
parametrization. In principle, one can first reduce one
parameter, say b03, in Eq. (6.7), express it in terms of the
other bþ;0

i parameters, and then perform the z-parametriza-
tion fit. This, however, will make the expression Eq. (6.7b)
cumbersomely complicated to handle when performing the
fit. In practice, we use the expressions Eq. (6.7) and
perform the fits as described in Sec. VI B. Whenever
one needs to invert the covariance matrix, one simply
needs to reduce the size of the matrix by removing one
column and one row corresponding to one parameter br.
The parameter br can be any one of the bþ;0

i parameters.
Without loss of generality, let us pick br to be b0K−1 ¼ b03
for our K ¼ 4 preferred fit. From Eqs. (6.7) and (6.9), we
can get

b0K−1ðt0Þ ¼
XK−2
k¼0

�
ðbþk ðt0Þ − b0kðt0ÞÞzk−Kþ1

− ð−1Þk−K k
K
zbþk ðt0Þ

�

þ bþK−1ðt0Þ
�
1þ K − 1

K
z
�
; ðB5Þ

with

z≡ zðq2 ¼ 0; t0Þ ¼
ffiffiffiffiffiffi
tcut

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t0

pffiffiffiffiffiffi
tcut

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t0

p ; ðB6Þ

as derived from Eq. (6.3).

APPENDIX C: Bs → Klν DIFFERENTIAL
DECAY RATE BIN TABLES

In this appendix, we present the quantity

1

jVubj2
Z

q2
2

q2
1

dq2
dΓ
dq2

ðC1Þ

for the Bs → Kμν and Bs → Kτν decays, in bins of q2, in
Tables XIII and XIV. Since we also include the correlations
between q2 bins in these tables, the results therein can be
combined with the corresponding experimental measure-
ments to determine jVubj.
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