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Abstract. Fuzzy Cognitive Map (FCMs) is an appropriate tool to describe, qual-
itatively analyze or simulate the behavior of complex systems. FCMs are bipolar 
fuzzy graphs: their building blocks are the concepts and the arcs. Concepts rep-
resent the most important components of the system, the weighted arcs define the 
strength and direction of cause-effect relationships among them. 

FCMs are created by experts in several cases. Despite the best intention the 
models may contain subjective information even if it was created by multiple 
experts. An inaccurate model may lead to misleading results, therefore it should 
be further analyzed before usage. Our method is able to automatically modify the 
connection weights and to test the effect of these changes. This way the hidden 
behavior of the model and the most influencing concepts can be mapped. Using 
the results the experts may modify the original model in order to achieve their 
goal. 

In this paper the internal operation of a department of a bank is modeled by 
FCM. The authors show how the modification of the connection weights affect 
the operation of the institute. This way it is easier to understand the working of 
the bank, and the most threatening dangers of the system getting into an unstable 
(chaotic or cyclic state) can be identified and timely preparations become possi-
ble. 

Keywords: banking, fuzzy cognitive maps, model uncertainty, multiobjective 
optimization, Bacterial Evolutionary Algorithm. 

1 Introduction 

Fuzzy Cognitive Maps (FCM) are suitable to describe complex systems for decision 
makers. The models include the most important system components and the direction 
and strength of relationships among them. There are numerous papers in the literature 
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dealing with how to establish models and how to perform simulations with them to 
support decision making tasks (e.g. [1]). The internal operation of a bank is described 
and analyzed in this paper with FCM. The behavioral uncertainty and stability of the 
model were also investigated. The applied method [2] examines the effect of small 
changes of weight on model behavior. At least two good reasons exists why such an 
analysis is worth performing. 

The original model was provided by experts, and according to our experience the 
connection matrix provided by humans is sometimes not perfect. It is not surprising 
that it is sometimes not easy to define the weight of a connection between two compo-
nents. Even if they do their best, the number of connections is commensurate with the 
square of the number of components. In our case the investigated system had 13 com-
ponents, thus the number of connections can theoretically be up to 156. In general, it is 
very hard to see the investigated system as a whole with all its details and to choose 
appropriate weights to represent the real relationships well. If these weights are not 
properly estimated, the simulation of the system will lead to outcomes that may never 
occur under real circumstances. 

Even if the weights are defined properly the results of this paper may be interesting, 
because this way a more complete understanding of the model behavior can be ob-
tained. This knowledge may lead to a modified model that eventuates better operation, 
helps exploring the effects that may jeopardize the operation of the system, etc. 

The next section describes briefly the theoretical background of the applied methods, 
including FCMs in general and the method of uncertainty analysis which is used to find 
the most interesting, slightly modified model versions. It is followed by the analysis 
and modeling results of the banking system. Finally, the directions of further improve-
ments and conclusions are summarized. 

2 A short overview of Fuzzy Cognitive Maps 

Axelrod [3] suggested first the use of cognitive maps to support decision making in 
politics. This idea was later extended to Fuzzy Cognitive Maps (FCMs) by Kosko [4, 
5]. FCMs are directed, bipolar fuzzy graphs [6]. The nodes of this structure represent 
the main components of a system, and are usually called ‘concepts’. Their values, which 
fall into the unit interval [0, 1] [7], express the current state of a component (e.g. a 
partially opened tap) [8]. The arcs among concepts represent the relationships in the 
system. The weights assigned to the arcs falls in the [-1, 1] interval, where the sign of 
weights define the direction (amplifying, suppressing), and the absolute value of it the 
strength of the connection. 

FCMs are often visualized by a graph or described by the connection matrix which 
contains the weights of arcs. According to Kosko’s original idea, self-loops are not 
allowed, therefore the main diagonal of the matrix contains only zeros. 

The most important capability of FCMs is that simulations can be performed with 
them in order to predict the future states of the system. If the initial values of concepts 
are known and also the connection weights are given, the next state of the model can 
be calculated by Eq. (1). 



 

௜ܣ 
(௧ାଵ) = 	݂ ቀ∑ ௝௜ெݓ

௝ୀଵ ௝ܣ
(௧) + ௜ܣ

(௧)ቁ , ݅ ≠ ݆ (1) 

In the equation ܣ௜
(௧) represents the value of concept i at time t (also called ‘activation’ 

value), ݓ௝௜ is the weight of the directed arc between concepts j and i, M is the number 
of concepts and f is the threshold function. 

We note here that several alternative equations are used besides (1), which alterna-
tives were first proposed in [9]. This version was chosen in this paper because it also 
uses the current value of the concept when calculating the next value. It means that 
concepts have a ‘memory’, and it affects their future states. This behavior is very com-
mon in real systems. 

The role of the threshold function is to keep the activation values in the allowed 
range. Several versions of this function are described in the literature [7], but only one 
of them, the most popular one, namely the sigmoidal function (2) was applied. 

 ݂ = ଵ
ଵା௘షഊೣ

 (2) 

The function has a λ parameter that defines the steepness. The value of λ =5 is often 
used in literature, and thus it was chosen by the authors as well. It must be noted how-
ever that this parameter value may change the results considerably, and the effect of 
different values should be further analyzed in the future. A simulation may end up in 
three different ways [7]: 

1. Generally the values of concepts converge to a final, stable value in a dozen 
discrete time steps. The final vectors of concept values are called the ‘fixed 
point attractors’. 

2. Sometimes a series of n state vectors appears repeatedly after a specific 
time step of the simulation, which is called a ‘limit cycle’. 

3. The last possible outcome is, when the values of concepts never stabilize, 
and the model behaves chaotically. 

 
Generally, limit cycles and most of all chaotic behavior should be avoided, because 

in these cases the future states of the system cannot be predicted. In some specific ap-
plications however, e.g. if the goal is predict time series data [10], this behavior can be 
useful. 

3 Description of the method applied to analyze the uncertainty 
of connection weights 

The main idea of uncertainty investigation is to modify the connection weights and 
then to analyze the effect of modifications by simulations. The modifications are di-
rected by the Bacterial Evolutionary Algorithm (BEA) [11-13], in order to find the most 



‘interesting’ model variants: models with more fixed point attractors and/or chaotic be-
havior. These outcomes are found here by starting simulations with the same set of 
1000 different, randomly generated initial state vectors, the so-called scenarios. 

BEA is an evolutionary algorithm which is able to find the quasi-optimum of even a 
non-continuous, non-linear, multimodal function. It starts with a population of possible 
solutions and improves these solution candidates (also called ‘bacteria’) in every con-
secutive generation. The two main operators, bacterial mutation and gene transfer help 
to achieve this goal. The first one explores the search space by the random modifica-
tions of genetic data, the second one combines the already existing genetic information 
of the population. 

In this specific case, the bacteria of the BEA represent modified connection matrices. 
In our experiment the population consisted of 50 bacteria, and 5 consecutive genera-
tions were created. The weights in an FCM model are represented by real numbers, thus 
their number is theoretically infinite. Obviously, the number of weights had to be lim-
ited to a certain number, in our case 9 (-1, -0.75, -0.5, …, 1). The investigated model 
used only five discrete levels according to the linguistic variables chosen by experts. 
The 9 levels made possible smoother changes in connection weights, and according to 
our experience, the use of more levels does not provide significant advantages. The 
concept values in scenarios were also limited to five discrete levels.  

In order to limit the computational demand of the algorithm, and because human 
experts can identify concepts without any connections with high confidence, the ele-
ments of the connection matrix containing zeroes were left untouched. 

Despite of these restrictions it is easy to see that an exhaustive search would have 
been impossible in practice: the model under investigation contains 13 concepts, all 
concepts can have one of the possible 9 levels, thus the number of possible connection 
matrices can be up to 7.275e+148 (depending on the number of zero weight connec-
tions), the number of scenarios with five discrete levels is 1.22e+9. That is why BEA 
was applied to find the interesting modified models. The λ parameter of the threshold 
function was set to five in all simulations, because it would have further increased the 
execution time of the program, and simulations themselves can be time consuming 
tasks. Limit cycles and chaotic behavior cannot be distinguished by the program yet, 
but the fixed point attractors were recognized automatically. 

4 Results 

The model describes the components (concepts) of a bank playing the key roles in 
this research and their relations including their strength and direction. The concept id’s, 
their corresponding names are collected in Table 1. The concepts can be categorized 
into six different groups. Table 2 contains the connection matrix of the model. 



Table 1 Concept IDs, names and categories of the investigated model 

Concept ID Concept name Category 

C1 Clients 
Assets C2 Rules & regulations 

C3 New IT solutions 

C4 Funding 
Money 

C5 Cost reduction 

C6 Profit/loss 
Financials 

C7 Investments 

C8 Staff Human resources 

C9 New services 
Product and Process Development 

C10 Quality 

C11 Client development 
Output measures C12 Service development 

C13 Productivity 

Table 2 Connection matrix of the FCM model 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

C1 0 0 0.5 0 0 0.5 1 0.5 0 0.5 1 0.5 0 
C2 1 0 0.5 1 0 0 1 1 0.5 0 1 1 0 
C3 1 0.5 0 0 0 -1 0 -1 1 0 1 1 1 
C4 0 0 0 0 0 0 0 0 0 0 0 0 0 
C5 0 0 1 -0.5 0 0 0 -1 0 0 0 1 0 
C6 0 0 0 0 -0.5 0 0 0 0 0 0 0 0 
C7 0.5 0 0.5 1 0 0.5 0 0 0 -0.5 0 0 0 
C8 0 0 0 0 0 -0.5 0 0 0 0.5 0 0 -0.5 
C9 0 0 0 1 0 0.5 0.5 0.5 0 -0.5 0 0.5 0 
C10 0.5 0 0 0 0 0 0.5 0.5 0.5 0 1 0 0 
C11 0 0 0.5 0.5 0 0 0 0 0.5 0.5 0 0 1 
C12 0 0 0.5 0.5 0 0 1 0 0.5 0 0.5 0 -0.5 
C13 0 0 1 0 0 0.5 0 0 0 0 1 0 0 

 
First, the original model was investigated by simulations. The sigmoid type thresh-

old function was applied with λ=5 steepness parameter. Using a thousand element, ran-
dom-generated set of initial state vectors (scenarios), two possible outcomes were de-
tected by the K-Means clustering method. Both of them were fixed-point attractors 
(Fps), and most of the concepts had the same final values (1.0), except C6 (Profit/loss) 
and C8 (Staff). We remark here, that C4 was an input concept and as such it did not 
change its value during simulations, but the specific value itself depended on the con-
tent of the initial state vector only and was consequently left out from clustering. The 
final values of concepts are collected in Table 3. The first FP appeared in 23.1% of all 
investigated cases, and the second in the remaining 76.9%. 



Table 3 Fixed-point attractors of the model 

Concepts C1-C3, C5, C7, C9-C13 C6 C8 

FP#1 1.000 0.150 0.990 
FP#2 1.000 0.855 0.922 

Next, the model was further analyzed to reveal the effect of modified connection 
weights on its behavior. The search directed by BEA found 50 interesting model vari-
ants, but considering the size limitations of the paper, only two of them are presented 
here. The connection matrix of the first variant is shown in Table 4. The values in pa-
renthesis show the original connection weights to make comparisons easier. This mod-
ified model resulted in 12 different fixed-point attractors, but never behaved chaotically 
or produced limit cycles. The final state vectors are collected in Table 5. 

Table 4 Connection matrix of the first model variant 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

C1 0 0 -0.75 
(0.5) 0 0 1 (0.5) -1 (1) -0.25 

(0.5) 0 -0.5 (0.5) 0.5 (1) 0.75 
(0.5) 0 

C2 1 0 0.75 
(0.5) -0.5 (1) 0 0 0.5 (1) -0.25 (1) 0 (0.5) 0 0.25 (1) 1 0 

C3 0 (1) 0.75 
(0.5) 0 0 0 -0.25 

(-1) 0 -1 -0.75 
(1) 0 0.75 (1) -0.75 

(1) 1 

C4 0 0 0 0 0 0 0 0 0 0 0 0 0 
C5 0 0 -0.5 (1) 0 (-0.5) 0 0 0 1 (-1) 0 0 0 1 0 

C6 0 0 0 0 
-

0.75 
(-.5) 

0 0 0 0 0 0 0 0 

C7 1 (0.5) 0 1 (0.5) -0.25 (1) 0 -1 (0.5) 0 0 0 -0.75 (-
0.5) 0 0 0 

C8 0 0 0 0 0 -1 (-0.5) 0 0 0 -0.25 
(0.5) 0 0 -0.5 

C9 0 0 0 1 0 -0.25 
(0.5) 1 (0.5) 0.75 

(0.5) 0 0.75 
(-0.5) 0 -0.5 

(0.5) 0 

C10 -0.25 
(0.5) 0 0 0 0 0 -1 

(0.5) 
-0.25 
(0.5) -1 (0.5) 0 -0.75 

(1) 0 0 

C11 0 0 0 (0.5) -0.75 
(0.5) 0 0 0 0 1 (0.5) -1 (0.5) 0 0 -1 

(1) 

C12 0 0 -0.75 
(0.5) 0.5 0 0 -0.5 

(1) 0 0.25 
(0.5) 0 0.25 

(0.5) 0 0.75 
(-.5) 

C13 0 0 1 0 0 -0.75 
(0.5) 0 0 0 0 -0.5 (1) 0 0 

Table 5 Fixed-point attractors of the first model variant 
FP ID C1 C2 C3 C5 C6 C7 C8 C9 C10 C11 C12 C13 
FP#1 0.826 1.000 1.000 1.000 0.026 1.000 0.112 1.000 0.000 0.982 0.995 0.999 
FP#2 0.037 1.000 0.997 1.000 0.026 1.000 0.787 1.000 0.000 0.960 0.996 0.999 
FP#3 0.108 1.000 1.000 1.000 0.026 1.000 0.112 1.000 0.000 0.943 0.997 0.999 
FP#4 0.006 1.000 0.848 1.000 0.026 1.000 0.785 1.000 0.000 0.053 0.998 1.000 
FP#5 0.008 1.000 0.997 1.000 0.026 1.000 0.112 1.000 0.000 0.046 0.998 1.000 
FP#6 0.994 1.000 0.015 1.000 0.026 1.000 0.989 1.000 0.000 0.999 0.998 0.138 
FP#7 0.188 1.000 0.109 1.000 0.026 0.994 0.796 1.000 0.000 0.036 1.000 0.995 
FP#8 0.993 1.000 0.046 1.000 0.026 1.000 0.981 1.000 0.000 0.998 0.999 0.338 
FP#9 0.026 1.000 0.488 1.000 0.026 0.998 0.788 1.000 0.000 0.065 1.000 0.999 
FP#10 0.621 1.000 1.000 1.000 0.026 1.000 0.112 1.000 0.000 0.965 0.997 0.999 
FP#11 0.392 1.000 0.098 1.000 0.026 0.998 0.799 1.000 0.000 0.027 1.000 0.995 
FP#12 0.870 1.000 0.120 1.000 0.026 1.000 0.795 1.000 0.000 0.047 1.000 0.995 

Some interesting phenomena can be observed in Table 5. The value of C8 was very 
high in the original model (≈0.9), but it can be close to zero in the modified model. The 
values of C3, C11 and C13 were one, but in the modified model various values can be 
observed. The FP values of C2, C5, C7, C9 and C12 were 1 in the original model, it 



practically did not changed despite the modifications. C6 had two different values in 
the original model, but only a single one after the modifications. C10 changed its value 
from 1 to 0. 

The second selected model variant example behaved in a different way: it had only 
9 FPs, but 882 simulations out of 1000 did not result in stable state (chaotic behavior 
or limit cycles). 

Table 6 Connection matrix of the second model variant 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

C1 0 0 0.75 
(0.5) 0 0 -0.75 

(0.5) -0.25 (1) 0.25 
(0.5) 0 -1 (0.5) 0.25 (1) 1 (0.5) 0 

C2 -1 (1) 0 -0.75 
(0.5) -1 (1) 0 0 0.25 (1) -1 (1) 0.75 

(0.5) 0 0.25 (1) -1 (1) 0 

C3 -1 (1) 0.5 0 0 0 -0.25 
(-1) 0 -1 -0.5 (1) 0 -0.75 (1) -1 (1) 0.5 

(1) 

C4 0 0 0 0 0 0 0 0 0 0 0 0 0 

C5 0 0 -0.25 (1) 0.5 
(-0.5) 0 0 0 -0.75 

(-1) 0 0 0 -0.5 (1) 0 

C6 0 0 0 0 
-

0.75 
(-.5) 

0 0 0 0 0 0 0 0 

C7 -0.25 
(0.5) 0 -0.5 (0.5) 0.75 (1) 0 0.5 0 0 0 -1 (-0.5) 0 0 0 

C8 0 0 0 0 0 0.75 
(-0.5) 0 0 0 -0.25 

(0.5) 0 0 -1 
(-0.5) 

C9 0 0 0 -0.75 (1) 0 -0.5 (0.5) 0.25 
(0.5) 0 (0.5) 0 0 (-0.5) 0 -0.5 

(0.5) 0 

C10 0.5 0 0 0 0 0 1 (0.5) 0.75 
(0.5) 0.5 0 -0.25 (1) 0 0 

C11 0 0 0.25 
(0.5) 

-0.25 
(0.5) 0 0 0 0 1 (0.5) -0.25 

(0.5) 0 0 0 (1) 

C12 0 0 1 (0.5) -0.75 
(0.5) 0 0 0.5 (1) 0 0 (0.5) 0 -0.75 

(0.5) 0 0 
(-0.5) 

C13 0 0 0.5 (1) 0 0 0.75 
(0.5) 0 0 0 0 0.75 (1) 0 0 

Table 7 Fixed-point attractors of the second model variant 

FP ID C1 C2 C3 C5 C6 C7 C8 C9 C10 C11 C12 C13 

FP#1 0.053 0.000 0.000 0.010 0.993 0.957 0.846 0.012 1.000 0.964 0.883 1.000 
FP#2 0.001 0.020 0.001 0.201 0.985 0.979 0.834 0.065 1.000 0.968 0.103 1.000 
FP#3 0.970 0.000 0.000 0.994 0.027 0.883 0.002 0.007 1.000 0.158 0.923 0.997 
FP#4 0.002 0.280 0.001 0.046 0.992 0.137 0.844 0.182 1.000 0.990 0.041 1.000 
FP#5 0.002 0.887 0.006 0.045 0.992 0.134 0.844 0.180 1.000 0.990 0.041 1.000 
FP#6 0.002 0.995 0.001 0.046 0.992 0.137 0.844 0.880 1.000 1.000 0.039 1.000 
FP#7 0.013 0.001 0.000 0.024 0.992 0.979 0.845 0.013 1.000 0.957 0.656 1.000 
FP#8 0.033 0.044 0.000 0.073 0.991 0.829 0.135 0.023 1.000 0.977 0.961 1.000 
FP#9 0.020 0.000 0.000 0.061 0.991 0.998 0.843 0.001 1.000 0.146 0.950 1.000 

The FP values of C1, C2, C5, C7, C9, C11 and C12 were exclusively 1, but in the 
modified model their values could be significantly different. The value of C3 was al-
ways 1 in the original model, and it practically did not change after the model modifi-



cations. C6 had two different values (a low and a high one) in case of both model ver-
sions, but these pairs of values are not the same. C8 had two high FP values in the 
original model, but hold two smaller values in the modified model. The FP values of 
C10 and C13 are still 1. 

5 Conclusions and future research 

The applied method generated small modifications on FCM models that led to very 
different model behaviors. It proved to be very useful to find relationships that are sen-
sitive to changes and may cause unexpected simulation results. These connection 
weights need further investigations by experts of the specific field. 

The method should be further improved, however. The extent of weight modifica-
tions should be limited to a certain degree, depending on the application area. The effect 
of modified lambda value should be also analyze, because it may also heavily affect the 
simulation results. The differentiation of chaotic cases and limit cycles would be also 
important, and the improvement of some implementation details should be improved. 
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