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ABSTRACT  

Several profound changes, including those involving formation of the continental 

crust, occurred on Earth during the Neoarchaean Era. However, the tectonic settings 

associated with Neoarchaean crustal growth are not well understood and vigorously debated. 

The Neoarchaean Veligallu greenstone belt, eastern Dharwar craton hosts a variety of 

ultramafic, mafic and felsic volcanic rocks.  Whole-rock elemental and Nd isotope data along 

with zircon U-Pb dating on these rocks provide significant insights into the origin and 

tectonic setting of Neoarchaean crust formation. The volcanism in the Veligallu belt started 

with ~2.67 Ga tholeiitic basalts derived from shallow melting of a slightly depleted mantle 

(εNdt = +0.6 to +1.1). Moderate negative Nb anomalies, slightly elevated Th/Yb and LREE, 

and an absence of evidence for crustal contamination are consistent with extraction of these 

basalts from a mantle source weakly metasomatized by subducted slab-derived fluids in an 

incipient oceanic arc setting. As the arc matured, clastic sediments started forming with 

concurrent emplacement of komatiites, komatiitic basalts and ferropicrites showing strong 

signatures of contamination with continental crust (negative Nb and Ti anomalies, LREE 

enrichment and negative εNdt). In the final stage (~2.58 Ga), a variety of felsic volcanic rocks 

(sodic trachyandesite, high Mg# andesite, rhyolite, calc-alkaline andesite) formed. The rock 

association and distinct geochemical signatures (enrichment of LILE, negative Nb and Ti 

anomalies, Mesoarchaean Nd model ages and inherited older zircons) suggest a continental 
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margin arc environment which contained older crust. The evolutionary history of the 

Veligallu belt implies that both the arc- and plume-related processes, and their interplay 

contributed significantly to the growth of Neoarchaean crust.  

Keywords:  

Neoarchaean; Veligallu greenstone belt; Dharwar craton; Volcanic rocks; Geochemistry; 

Crustal evolution 

1. Introduction 

 Several profound changes occurred on Earth between 2.7 Ga and 2.6 Ga, such as, a 

major pulse in igneous activity, enhanced mantle depletion, a peak in the production of 

juvenile continental crust and widespread formation of orogenic gold and massive-sulphide 

deposits (Barley et al., 1998; Condie, 1998; Reddy and Evans, 2009). These events are 

commonly attributed to the 2.7 Ga worldwide mantle plume activity which was followed by 

increased rate of subduction, development of accretionary orogens, collision between 

continental blocks, crustal reworking and, possibly, formation of the first supercontinent 

Kenorland (Condie, 1998, 2004; Barley et al., 2005). Late Neoarchaean (2.7–2.5 Ga) 

greenstone belts act as windows into these profound changes. However, the nature of 

tectonics and actual mechanism(s) of growth of continental crust during the Neoarchaean Era 

remain contentious (Condie and Benn, 2006; Bedard, 2006 and 2013; Wyman, 2013). Many 

authors argue that Neoarchaean geodynamic processes were  similar to those of the 

Phanerozoic including plume–subduction/lithosphere interaction, subduction accretion, 

thrusting and imbrication, strike–slip faulting, continental rifting and orogenic collapse 

(Pease et al. 2008; Wyman and Kerrich, 2009; Polat et al. 2009). Others suggested non-plate 

tectonic models which assume production of TTG (tonalite-trondhjemite-granodiorite)  by 

melting of basaltic protocrust followed by mostly gravity-driven processes like sinking of 

dense greenstone belt mafic-ultramafic rocks and diapiric rising of TTG batholiths (Hamilton, 

2011). Repetitive delamination of dense restitic lower crust causing refertilization of rising 

mantle plumes and formation of new melts is one widely cited variant of the non-plate 

tectonic model (Bedard et al., 2013).            

 The eastern Dharwar craton (EDC) is a collage of several greenstone belts interleaved 

with 2.7–2.5 Ga granitoid bodies (Fig. 1). Available limited geochronological data suggests 

that the main period of EDC mafic-ultramafic volcanism was coeval with the global ~2.7 Ga 
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peak in juvenile crust generation (Balakrishnan et al., 1990; Naqvi et al., 2002; Anand and 

Balakrishnan, 2010; Jayananda et al., 2013a; Khanna et al., 2016). A felsic volcanic event is 

also recorded at 2.59–2.55 Ga (Sarma et al., 2008; Jayananda et al., 2013a; Dey et al., 2015). 

Previous on EDC volcanic rocks mostly concentrated on whole-rock elemental data (e.g. 

Naqvi et al., 2006; Manikyamba et al., 2008; 2009; Manikyamba and Kerrich, 2011; Khanna 

et al., 2015). Correlation of globally recognized Neoarchean events with those of the EDC is 

difficult because of insufficient geochronological (e.g. U-Pb zircon) and isotope geochemical 

data (e.g. Nd isotope). Also, the extent of mantle depletion and mantle heterogeneity below 

the EDC are still not adequately constrained (Dey, 2013).  

The Veligallu greenstone belt in the EDC (Fig. 1) hosts a variety of igneous rocks (De 

Smeth et al., 1985; Ramam and Murty, 1997; GSI, 2006; Subba Rao and Sesha Sai, 2012; 

Khanna et al., 2015, 2016) and can provide significant insights into the mechanism(s) of 

Neoarchaean crustal growth and geodynamic setting. In this contribution we present 

petrographic and geochemical (whole-rock elemental) information coupled with Nd-isotope 

and U-Pb zircon data on metavolcanic rocks of the Veligallu greenstone belt to constrain their 

source and petrogenesis. The nature juvenile crust formed, extent of crustal reworking and 

possible tectonic setting are discussed which may have wider implications in understanding 

Neoarchaean crustal evolution.   

 

2. Geology of the Dharwar craton 

 The Archaean Dharwar craton is divided into two blocks with different crust 

formation histories (Chadwick et al., 2000; Jayananda et al., 2006; Chardon et al., 2008). The 

western block (western Dharwar craton or WDC) consists of 3.35–3.30 Ga polyphase 

granitoids (mainly TTG) along with 3.4–3.0 Ga highly deformed, amphibolite to granulite 

facies supracrustal rocks of the Sargur schist belts (Swami Nath and Ramakrishnan, 1981; 

Meen et al., 1992; Peucat et al., 1993; Jayananda et al., 2008, 2015; Maya et al., 2016). 

Younger volcano-sedimentary basins, preserved in the 2.9–2.55 Ga Dharwar-type greenstone 

belts, unconformably overlie these granitoids and Sargur rocks (Chadwick et al., 1992; 

Kumar et al., 1996). The last phase of plutonism in the WDC is represented by minor 2.6 Ga 

potassic granites (Jayananda et al., 2006).  
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   In the eastern block (eastern Dharwar craton or EDC) only vestiges of 3.3–3.0 Ga 

granitoids are preserved (Jayananda et al., 2000; Bidyananda et al., 2011). Otherwise, 

granitoids include 2.72–2.53 Ga syntectonic (with respect to the formation of regional 

penetrative fabric) TTGs and transitional TTGs, 2.56–2.51 Ga late tectonic sanukitoids, the 

atypical 'Closepet-type' granitoid and anatectic potassic granitoids, and Palaeoproterozoic 

post-tectonic A-type granitoids and syenites (Jayananda et al., 1995, 2000, 2018; Dey et al., 

2003, 2009, 2012, 2014, 2016; Moyen et al., 2003; Ram Mohan et al., 2013). The granitoid 

bodies are interspersed with narrow greenstone belts (Kolar-type; Fig. 1), the latter containing 

greenschist to amphibolite facies volcanic rocks of diverse compositions including high-Mg 

andesites, boninites, Nb-enriched basalts, adakites, rhyolites, komatiites and tholeiitic, 

alkaline and high-Mg basalts (e.g. Balakrishnan et al., 1990; Naqvi et al. 2006; Manikyamba 

et al., 2008, 2009, 2015, 2017; Rogers et al., 2007; Manikyamba and Kerrich, 2011, 2012; 

Dey et al., 2015; Jayananda et al., 2013a; Khanna et al., 2015). Metasedimentary rocks such 

as iron formations, cherts, greywackes and metapelites occur in association with 

metavolcanic rocks.  

The whole Dharwar craton shows N–S to NNW trending structural fabric, which is 

attributed to Neoarchaean (2.56–2.51 Ga) transcurrent shear deformation due to shortening 

(Chardon et al., 2008). Zircon U-Pb and monazite chemical dating indicated that the Dharwar 

craton was affected by thermal events at 3.2–3.0, 2.62 and 2.55–2.51 Ga (Jayananda et al., 

2012, 2013b; Peucat et al., 2013).   

The Neoarchaean tectonic setting of the EDC is controversial. Suggested models 

include  

(i) Active margin model: Successive accretion of arcs or pieces of against an older 

foreland (the WDC) in a convergent setting resulting in  oblique convergence which 

partitioned into subduction parallel NNW-SSE sinistral transpression and subduction 

perpendicular NE-SW shortening (Chadwick et al., 2000, 2003, 2007). The greenstone belts 

of the EDC formed in intra-arc basins, whereas the Dharwar-type greenstone belts of the 

WDC represent back-arc basins. Convergence resulted in accretion of diverse plume- and 

arc-related terranes (Krogstad et al., 1995; Balakrishnan et al., 1999; Manikyamba and 

Kerrich, 2012).       
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(ii) Mantle plume model: A mantle plume supplied heat softening a pre-existing crust 

(Chardon et al., 1998, 2002; Jayananda et al. 2000). This induced inverse diapirism, 

metamorphism, partial melting of crust and granitic magmatism.  

(iii) Combined arc-plume model: Plume-related, juvenile 2.7–2.65 Ga mafic-

ultramafic and felsic magmatism followed by emplacement of arc-related 2.58–2.52 Ga felsic 

volcanic and TTG and calc-alkaline plutonic rocks. Subsequent mantle plume activity at 2.52 

Ga caused crustal reworking, granulite facies metamorphism and final cratonization of the 

EDC (Moyen et al., 2003; Jayananda et al., 2013a; Peucat et al., 2013). Some authors 

suggested that between 2.56-2.51 Ga the EDC was a hot orogen with soft, buoyant crust 

formed by magmatic accretion in a convergent set up. The convergence resulted in lateral 

constrictional flow of EDC lower crust against the older and rigid WDC (Chardon et al., 

2008, 2011; Chardon and Jayananda, 2008).  

 

3. Geology of the Veligallu greenstone belt 

 The Veligallu greenstone belt is exposed over a N-S trending narrow tract in the 

south-eastern part of the EDC (Fig. 2). In the southern part of the belt, mafic volcanic rocks 

and banded iron formations (BIF) are the major rock types. The mafic rocks are massive to 

well-foliated, fine to medium grained and, at places, pillowed (Fig. 3a). They consist mainly 

of hornblende, plagioclase and actinolite-tremolite with accessory opaque minerals (± biotite) 

(Fig. 3b). Subparallel alignment of prismatic and/or fibrous grains of actinolite-tremolite and 

hornblende defines the foliation. In some samples hornblende occurs also as porphyroblasts. 

Often hornblende grains are being replaced by actinolite-tremolite. Sericitization and 

saussuritization of plagioclase and chloritization of the hornblende and biotite grains are the 

common alteration types. These rocks contain subvertical NNW-SSE trending bodies of 

gabbro probably representing subvolcanic intrusions. The gabbros consist mainly of 

sericitized plagioclase laths and prismatic igneous clinopyroxene grains with subordinate 

opaque and orthopyroxene grains. The clinopyroxene grains show replacement by actinolite-

tremolite and chlorite along grain boundary. Some of the gabbroic bodies contain very coarse 

dark euhedral to subhedral hornblende grains (Fig. 3c). The interstitial spaces are occupied by 

anhedral plagioclase grains (Fig. 3d). Some of the samples of this rock have preserved 

intergranular texture (Fig. 3e). 
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 The northern part of the Veligallu greenstone belt is, however, dominated by quartz-

muscovite schists (psammopelites) with subordinate tuffs, BIF, agglomerates and cherts. 

Felsic and mafic-ultramafic volcanic/sub-volcanic rocks occur as subvertical conformable 

layers and lenses intercalated with the quartz-muscovite schist (Fig. 3f). Commonly, the 

mafic-ultramafic layers are a few meters thick and 10s of meters long. Only a few are wider 

(20–40 m), extending up to 10 km in length. The ultramafic units consist mainly of tremolite-

actinolite with subordinate anthophyllite, opaque and relict hornblende grains (Fig. 3g). 

Alteration products include serpentine and talc. The mafic bodies are fine to coarse grained 

consisting of flaky, prismatic to fibrous actinolite-tremolite, prismatic to wedge-shaped 

hornblende and clouded plagioclase laths with minor opaque grains. In some samples stubby 

to subrounded actinolite-tremolite grains form porphyroblasts. Often the hornblende grains 

are replaced by actinolite-tremolite. Chloritic and biotitic alterations are noted in some 

samples. Generally subparallel alignment of actinolite-tremolite and hornblende grains impart 

a weak to strong foliation within the mafic-ultramafic rocks. 

 Layers of felsic volcanic rocks are common within the Veligallu greenstone belt. The 

most prominent one extends along the eastern margin of the belt for about 25 km (Fig. 2). 

These rocks are weak to strongly foliated, commonly banded (Fig. 3h), and medium-grained 

rocks.  They consist mainly of quartz, plagioclase and hornblende (± biotite ± chlorite) with 

accessory opaque, zircon and apatite grains (Fig. 3i). Some of the rocks are plagioclase-

porphyritic. Hornblende grains are   commonly altered to actinolite-tremolite. The foliation is 

generally defined by parallel alignment of hornblende, biotite and chlorite grains (Fig. 3j). 

 Rocks of the Veligallu greenstone belt were affected by greenschist to amphibolite 

facies metamorphism and strong deformation, obscuring the stratigraphic relationship among 

the lithounits. Three generations of deformations were recorded in the greenstone belt 

(Ramam and Murty, 1997; GSI, 2006; Subba Rao and Sesha Sai, 2012). The first is 

represented by mesoscopic tight to isoclinal folds (F1) having steep to vertical plunging axes.  

The major N-S trending foliation within the greenstone belt is axial planar to F1. The F2 folds 

with gentle SSW plunge are regional in nature. These folds have NNW-SSE trending axial 

trace. Broad warps with subvertical ENE-WSW trending axial planes represent the third 

generation folds (F3). Shear zones/faults trending N-S, NW-SE and NE-SW cut across the 

volcano-sedimentary package of the belt. 
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 The Veligallu greenstone belt is associated with a variety of granitoids. Unpublished 

zircon U-Pb age data of the authors show that the oldest among them is a 2.66 Ga banded 

TTG gneiss. These gneisses, at places, form basement for the quartz-muscovite schist. Other 

granitoids include 2.56–2.53 Ga porphyritic granodiorites, anatectic biotite granites and two-

mica granites. Intrusion of these younger granitoids possibly dismembered the greenstone 

belt in to two N-S trending arms (Fig. 2).  

 

4. Geochemistry 

 Details of whole-rock major and trace element determination, whole-rock Sm-Nd 

isotope analysis and secondary ion mass spectrometry (SIMS) single grain zircon U–Pb 

dating are reported in the Appendix 1.  

  

4.1 Major and trace elements 

The major and trace elemental compositions of the Veligallu metaigneous rocks are 

presented in Table 1. The southern mafic rocks (SiO2 = 47.7–54.7 wt%) are classified mostly 

as tholeiitic basalts using the criteria of Ross and Bedard (2009) (Figs. 4a, b). These rocks 

(henceforth called southern basalts) display moderate to high MgO, TiO2 and Fe2O3
t
 , 

moderate to low Al2O3, and low Cr, Ni and Mg number (0.63–0.35) (Table 1, Fig. 5). REE 

patterns are flat with 7 to 28 times enrichment of absolute REE contents compared to the 

chondritic values (Fig. 6a). The primitive mantle (PM) normalized plots also show flat 

patterns except for moderate negative Nb anomaly and minor negative Ti and Y anomalies 

(Fig. 6b). From Zr to Lu (fluid immobile elements) the pattern is parallel to that of normal 

mid-ocean ridge basalt (N-MORB), although the absolute concentrations are generally lower 

than those of N-MORB. Unlike MORB, the fluid-mobile elements (Th and La to Nd) are not 

depleted. On the Nb/Yb vs. Th/Yb diagram the basalts mostly plot slightly above the mid-

ocean ridge basalt–ocean island basalt (MORB-OIB) array (Fig. 7).   

 The northern mafic-ultramafic rocks, barring the sample VB273, show high contents 

of MgO (34–9.5 wt%), Ni (1759‒216 ppm) and Cr (3630‒763 ppm). Three of these samples 

are classified as komatiites, three as komatiitic basalts and two as basalts on the Al2O3-

(Fe2O3+TiO2)-MgO triangular plot of (Jenson, 1976) (not shown). The absolute TiO2, REE, 

Zr and Y and abundances show wide variations which increase with decreasing MgO content 
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(Fig. 5). Besides, Cr and Ni display good positive correlation with MgO. The rocks have 

variable chondrite-normalized enrichment of LREE and flat HREE patterns (Fig. 6c). PM-

normalized patterns display varying degree of enrichment of highly incompatible elements 

(Th and LREE) with distinct negative Nb and Ti anomalies (Fig. 6d). Samples with higher 

LREE contents also display negative Zr and Hf anomalies. The Al2O3/TiO2 ratios scatter 

widely (38 to 5 against a chondritic value of 20) (Fig. 8). Three samples (VB273, VB288 and 

VB294) have distinctly higher Fe2O3, CaO, HFSE (Ti, Zr and Nb), Y and V contents with 

correspondingly higher Ti/Y, Ti/Zr, Ti/Gd, and lower Mg# and Al2O3/TiO2 ratios compared 

to other northern mafic-ultramafic samples (Table 1). All of the northern mafic-ultramafic 

rocks mostly plot significantly above the MORB-OIB array in the Nb/Yb vs. Th/Yb diagram 

(Fig. 7).  

 The felsic volcanic rocks display a wide range of elemental compositions with low to 

high MgO (0.6 to 6 wt%) and Mg# (0.26–0.58). They vary from andesite, trachyandesite, 

dacite to rhyolite in compositions in the SiO2 vs. Zr/TiO2 plot of Winchster and Floyd (1977) 

(not shown). The chondrite normalized REE patterns show variable LREE enrichment, 

whereas HREE patterns range from flat to depleted (Fig. 6e). These samples show PM-

normalized enrichment of Th and LREE with distinct negative Nb and Ti anomalies (Fig. 6f).  

The HREE- and Y-depleted silicic sample VAV208 shows high values for Na2O, Sr (649 

ppm), Na2O/K2O (~2) and Sr/Y (130), and low total ferromagnesian element contents. These 

features indicate adakitic affinity (Martin et al. 2005).  

 

4.2 Zircon U-Pb dating  

 SIMS zircon U-Pb data for sample VAV127 are presented in Table 2. The sample was 

collected 4 km S65°E of Veligallu (Fig. 2). It is a medium-grained sub-volcanic rock of 

trachyandesite composition consisting dominantly of quartz and plagioclase with interstitial 

chloritized biotite and prismatic hornblende grains (Fig. 3i). Sub parallel alignment of biotite 

grains has imparted a moderate foliation within the rock. The zircon grains in the sample are 

prismatic with clear oscillatory zoning suggesting their igneous origin (Fig. 9a). Seventeen 

analyses on seventeen grains yielded moderate U (112–577 ppm) and low to moderate Th 

(61–410 ppm) with Th/U values ranging from 0.29 to 0.82. The analyses are concordant to 

variably discordant (Fig. 9b). Three concordant points yield a combined concordia age of 

2579±4 Ma (MSWD = 3.7). Seven among the nine most concordant analyses (discordance 
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<5%) define a similar weighted mean 
207

Pb/
206

Pb age of 2584±5 Ma (MSWD = 2.1). This age 

is interpreted as the age of crystallization of the rock. Two other sub-concordant analyses (#5 

and 13) provide an older mean 
207

Pb/
206

Pb age of 2605±5 Ma (MSWD = 0.14) and probably 

represent inherited zircons. In addition, four analyses (#8, 10, 12 and 14) are distinctly older 

whose 
206

Pb/
207

Pb ages range from 2919 to 2651 Ma. These ages are minimum estimates, as 

the analyses are discordant. These older zircons are also inherited.  

 

 4.3 Nd isotope 

Nd isotope data are presented in Table 3. Eleven samples of the southern tholeiitic 

basalts define an errochron age of the 2673 ± 200 Ma (MSWD = 2.3), with an initial 

143
Nd/

144
Nd value of 0.50921±0.00026 and a corresponding initial εNd value of +0.7 (Fig. 10). 

Absence of correlation between εNd and 1/Nd indicates that the collinear array is not due to 

mixing between basaltic material and continental crust. In spite of the large error, the age is 

consistent with the whole-rock Sm-Nd ages reported from the initial phase of mafic 

magmatism in other Neoarchaean greenstone belts of the eastern Dharwar craton, which 

cluster around 2.7 Ga (Balakrishnan et al., 1990; Naqvi et al., 2002; Anand and Balakrishnan, 

2010). Khanna et al. (2016) obtained a similar whole-rock Lu-Hf age estimation (2640 ± 150 

Ma; MSWD = 28) for the basaltic rocks of the Veligallu belt.    

 In the northern part of the Veligallu belt mafic-ultramafic bodies are concordantly 

intercalated with the quartz-sericite schists. At some places these supracrustal rocks occur 

unconformably over the ca. 2.66 Ga gneissic TTG granitoids (GSI, 2006) constraining the 

upper age limit of the former. The ca. 2.58 Ga felsic volcanic layer occurring along the 

eastern margin of the Veligallu belt is considered, on the basis of stratigraphic relation, to be 

the youngest igneous rock of the belt (Ramam and Murty, 1997; GSI, 2006).  Considering 

these facts, the time of formation of the northern mafic-ultramafic rocks are conservatively 

taken as 2.66-2.6 Ga.  Six analysed samples of the northern mafic-ultramafic rocks show 

mostly negative initial εNd (Table 3).  

Samples VAV127, VAV60 and VAV3 were collected over a small area from the 

same felsic volcanic layer running along the eastern margin of the Veligallu belt (Fig. 2). 

Among them, VAV127 yielded a U-Pb zircon age of 2.58 Ga. We surmise that these 

lithologies represent ca 2.58 Ga age due to field relationships (spatial closeness and 
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stratigraphic equivalence).  The first two samples (trachyandesite and rhyolite respectively) 

are characterized by negative initial εNd values (−3.7 and −2.8 respectively) with old Nd TDM 

ages (3.24 and 3.14 Ga respectively) (Table 3 and Fig. 10b). Sample VAV3, however, shows 

a juvenile character with a positive initial εNd value (+1.3).   

Jayananda et al. (2013) reported a SHRIMP zircon U-Pb age of 2697±5 Ma for a 

adakitic felsic volcanic rock from the Veligallu greenstone belt constraining the age of 

adakitic magmatism in the belt. This age is also similar to the southern tholeiitic basalt. The 

sample VAV208 also have adakitic composition and shows a positive initial εNd value (+2.5) 

at 2.7 Ga. The Nd TDM age (2.83 Ga) is close to its presumed crystallization age.      

   

5. Assessment of alteration 

Only fresh-looking samples were collected in the field, which were further screened 

for alterations (e.g. silicification and carbonatization) during microscopic study. Rocks of the 

Archaean greenstone belts generally were affected by sea-floor weathering, hydrothermal 

alteration and metamorphism. Commonly Al, Ti, Mg, REE (La–Lu), HFSE (Th, Nb, Ta, Zr 

and Hf), Y, Ni, Sc, V, Cr and Co are considered less likely to be mobile in such situations 

(Alt, 1999; Polat and Hofmann, 2003; Masters and Argue, 2005). These elements are mainly 

used for petrogenetic interpretation in this work. In the case of the felsic rocks and the 

southern tholeiitic basalts, most of these elements show coherent trends in chondrite 

normalized REE patterns and primordial mantle normalized spider diagrams attesting to the 

validity of this assumption (Fig. 6). They also have low LOI values (0.3–2.5 wt%) (Table 1). 

However, the northern komatiites and komatiitic basalts have higher LOI (mostly 2.1–5.7 

wt%) signifying fluid activity. They display slightly jagged patterns in the spidergrams along 

with negative Eu anomaly suggesting that some of the REE could have been mobilized. Yet 

these rocks consistently display enrichment of LREE, flat HREE and negative Nb and Ti 

anomalies. In addition, good correlations exist between MgO and oxides/elements like Al2O3, 

TiO2, Zr, Hf, Y, Yb, V and Ni (Fig. 5). These elements also display coherent magmatic trends 

with respect to Zr (not shown) which is generally considered to be immobile. These facts 

indicate that the data of the northern komatiites and komatiitic basalts can be used for 

petrogenetic interpretations with proper caution. 
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6. Petrogenesis 

6.1 Southern tholeiitic basalts 

6.1.1 Mantle source characteristics 

Fluids, especially those in subduction zones, can carry LILE (Th and LREE) and 

metasomatize parts of the adjacent mantle (Pearce and Peate, 1995). In contrast, the HFSE 

(Nb, Ti, Zr, Hf) and HREE (Gd to Lu) are more or less immobile except in the case of 

transport by melts (Pearce, 2008). Therefore, the HFSE/Yb ratios and HFSE ratios provide 

information on the nature of the pre-metasomatized mantle source of basaltic magmas 

(Pearce, 1996, 2008; Pearce and Peate, 1995; Condie, 2003, 2005). The southern basalts are 

confined within the MORB-OIB array in the Zr/Yb vs Nb/Yb (Fig. 11a) plot (after Pearce 

and Peate, 1995) suggesting absence of any external input of these elements into the source 

mantle. However, the moderate shifting of the samples towards the E-MORB reflects a less 

depleted mantle source compared to that of the NMORB. In the Zr/Y and Nb/Y diagram also 

(Condie, 2005) these basalts plot near primitive mantle extending towards the enriched 

mantle component (Fig. 11b). The Ti/Nb and Zr/Nb ratios (Table 1) are generally higher than 

the chondritic ratios (1800 and 16 respectively) and, but lower than those of the NMORB 

(2765 and 32 respectively) (McDonough and Sun, 1995; Arevalo and McDonough, 2010). 

Therefore, these elemental ratios suggest that the southern basalts were derived from a 

depleted mantle source, although the extent of depletion was to some extent less than that of a 

typical NMORB mantle source. Nevertheless, it is expected that the mantle source would be 

less depleted than the modern day NMORB source. So, it could still be the normal Archaean 

NMORB source.  

 

6.1.2 The crustal signature 

The positive initial εNd values of the southern basalts (+0.3 to +1.1 at 2.67 Ga; Table 

3) also suggest a mantle source with small degree of LREE depletion. However, except two 

samples showing minor chondrite-normalized LREE depletion (La/Smcn = 0.8 and 0.9), 

others have flat to slightly enriched LREE patterns (La/Smcn= 1.02 to 1.6) (Fig. 6a). Further, 

the southern basalts generally plot slightly above the MORB-OIB mantle array in the Nb/Yb 

vs. Th/Yb plot (Fig. 7). These facts indicate introduction of minor amount of LREE and Th, 

the 'crustal signature', into the mantle source. This crustal signature, as also represented by 
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negative Nb and Ti anomalies in the PM-normalized plot (Fig. 6b), may be acquired by fluid-

fluxing of mantle carrying LREE and Th in preference to HFSE (e.g. Nb) (Pearce, 2008). 

Alternatively, contamination with continental crust during ascent of the basalt may impart 

this geochemical signature. However, the magnitudes of the crustal signatures are less in the 

southern basalts compared to what would be expected in the case of interaction with 

continental crust. For example, crustally contaminated Archaean basalts display (La/Sm)PM 

>1.5, Th/Ce >0.05 and Nb/Th <5 (Kerrich et al. 1999; Condie, 2003). In contrast, the 

southern basalts predominantly have lower values for the first two ratios, whereas Nb/Th 

ratios are mostly higher reflecting absence of crustal contamination. The initial εNd values 

also do not show any relationship with the magnitude of PM-normalized Nb and Ti anomalies 

or (La/Sm)PM values.  

Except for garnet fractionation, the Zr/Y ratio does not significantly change by 

fractionation of olivine, pyroxene and plagioclase. On the other hand continental crust has 

considerably higher Zr/Y value and might introduce obvious change in Zr/Y ratios in to 

basalts ascending through it. Involvement of garnet can be ruled out in case of southern 

basalts on the basis of flat HREE patterns. These basalts display flat pattern in the Y vs. Zr/Y 

plot without any distinct change in Zr/Y ratios (Fig.  12). Crustal contamination therefore 

seems to be unlikely for the southern basalts considering all the geochemical features. In 

conclusion, these basalts were possibly produced by partial melting of a fluid-fluxed, slightly 

depleted mantle source at shallow depth.  

 

6.1.3 Source melting and factional crystallization 

Primary melts in equilibrium with mantle generally have high Mg# (>70) and Cr 

(500–600 ppm) and Ni contents (250–350 ppm) (Perfit et al., 1980). The southern basalts 

display relatively lower Mg# (0.35‒0.63), Cr (<20 to 330 ppm) and Ni (30-280) values 

indicating that they do not represent primary magma and the parental magma have undergone 

some fractional crystallization.  The decrease in Ni with MgO suggests olivine fractionation 

(Fig. 5). Cr depletes very fast with increase of Y (not shown) pointing to fractionation of Cr-

spinel. The Zr/Y ratio remains constant with increasing Zr or Y (Fig. 12). This fact also 

points towards fractional crystallization of olivine. The TiO2 and V contents increase along 

with decrease of MgO contents. This probably reflects that Fe-Ti rich minerals (e.g. 

titanomagnetite) were not the fractionating phases. The flat HREE pattern indicate absence of 
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garnet either as residual or fractionating phase, consistent with shallow melting of a spinel-

lherzholite mantle.  

 

6.2 Northern komatiites, komatiitic basalts and basalts 

6.2.1 Source characteristic and melt generation  

The northern mafic-ultramafic rocks occur as intercalated concordant bodies within 

the metasediments. Cross cutting relationships were not observed during the course of this 

study, and the detailed mapping and drilling carried out by the Geological Survey of India 

(Subba Rao et al., 2012). This is consistent with a volcanic or near-volcanic origin of the 

northern mafic-ultramafic rocks. These rocks display a wide range of compositions. The three 

samples with the highest MgO contents (26–34 wt%) are characterized by near-chondritic 

Al2O3/TiO2 (~23) and flat HREE patterns similar to ‘Munro-type’ komatiites or Al-

undepleted komatiites (Arndt et al., 2008). This type of komatiites are common within ~2.7 

Ga greenstone belts globally. Experimental works and geochemical modelling indicated that 

‘Munro-type’ komatiites formed in mantle plumes at shallow depths and pressures at about 

5–7 GPa (Arndt, 1984; Herzberg, 1999; Arndt et al., 2008).   

 The relation between komatiites and associated high-MgO basalts is a controversial 

issue. Suggested mechanisms of formation of komatiitic basalts include fractionation and/or 

crustal contamination of komatiite magma, partial melting of a heterogeneous mantle source 

and variable partial melting within a homogeneous source mantle (Arndt et al., 2008). The 

northern komatiites and komatiitic basalts show some collinearity in the Harker diagrams 

(Fig. 5). However, the relation between them is complex given the fact that three of the 

northern basalt samples (VB273, VB294 and VB288) have relatively higher Fe2O3(T), CaO, 

HFSE (Ti, Zr and Nb), V, Y and HREE contents, and Nb/Y ratios coupled with lower 

Al2O3/TiO2 (5.4‒12.4) (Figs. 5, 8 and 11) making them similar to ferropicrites identified from 

several greenstone belts of the Superior craton (Stone et al., 1995; Goldstein and Francis, 

2008). Komatiitic basalts with elevated Fe, LREE, Ti and Nb contents and lower Al2O3/TiO2 

ratios (~6) have been reported from the ~2.7 Ga Boston Creek Flow, Abitibi greenstone belt, 

Superior craton (Stone et al., 1995). Melting of a depleted mantle source, mixed with a highly 

enriched small-degree melt fraction at mantle depth, was suggested for generation of these 

rocks (Stone et al., 1995).   However, the low Al2O3/TiO2 ratios of the Boston Creek samples 
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are mainly due to their distinctly low Al3O3 contents. Also, unlike the Veligallu samples, they 

have fractionated HREE patterns and positive Nb anomalies. Instead, the Veligallu samples 

bear more similarity with the Fe- and Ti-rich ~2.1 Ga picrites of northern Finland, where the 

low Al2O3/TiO2 ratios are mainly the result of higher abundances of TiO2 rather than low 

Al2O3 contents (Hanski, 2001). The distinctive chemical characteristics of these ferropicrites 

suggest that they cannot be derived from the same mantle source as that of the komatiites and 

komatiitic basalts.   Geochemical modelling coupled with Nd isotope data and phase relation 

studies indicated that alteration, crustal contamination and fractional crystallization cannot 

explain the formation of the Archaean ferropicrites (Barnes and Often, 1990; Goldstein and 

Francis, 2008). Rather, low-pressure (<5 GPa) melting of discrete Fe- and incompatible 

element-rich domains within mantle can explain the origin of these ferropicrites (Hanski, 

2001; Goldstein and Francis, 2008; Milidragovic et al., 2014; Milidragovic and Francis, 

2016).  

 Another alternative possibility is that the komatiites and komatiitic basalts represent 

cumulates of the southern tholeiitic basalts (Khanna et al., 2016). However, these two suites 

of rocks are spatially separated: the tholeiitic basalts are restricted to the southern part of the 

Veligallu belt, whereas the komatiites and komatiitic basalts occur intercalated with the 

quartz-sericite schists in the northern part (Fig. 2). Further, these two suites do not plot on the 

same trends in the Harker diagrams (Fig. 5). They display distinct REE and multielemental 

patterns (Fig. 6), trace element ratios (Figs. 4,7,11 and 12) and Nd isotope signatures (Fig. 

13). These facts preclude the suggested cumulate relationship between the komatiites-

komatiitic basalts and tholeiitic basalts.     

  

6.2.2 Crustal contamination 

Archaean komatiitic magmas had very high temperatures (Sobolev et al., 2016) and, 

therefore, high capability to assimilate crustal rocks (Sparks, 1986). Crustal contamination 

have been proposed to explain LREE-enriched komatiites and associated basalts with 

negative Nb anomaly from a number of Archaean terrains (e.g. Perring et al., 1996; Puchtel et 

al., 1997). The relatively higher SiO2 contents (at the level of MgO), LREE enriched 

character, distinct negative Nb anomalies and mostly negative initial εNd values of the 

northern mafic-ultramafic rocks indeed point towards significant interaction with continental 

crust. Further, in the Th/Yb vs. Nb/Yb diagram these rocks plot much above the MORB-OIB 
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mantle array (Fig. 7). In the Y vs. Zr/Y plot they show distinct increase in Zr/Y with Y 

extending towards the upper continental crust (Fig. 12).   The transitional character (between 

tholeiitic and calc-alkaline nature; Fig. 4b) is also consistent with contamination by 

continental crust.  

In detail, the process of crustal contamination may, however, vary from thermal erosion 

of the underlying crustal material (Perring et al., 1996) to assimilation and fractional 

crystallization during the ascent through the crust (Mungall, 2007). The northern mafic-

ultramafic rocks are intercalated with metamorphosed siliciclastic sediments and subordinate 

felsic volcanic rocks. A scenario of intermittent volcanic flows coeval with the deposition of 

sediments would apply for them. In such cases, crustal assimilation can take place by thermal 

erosion of the underlying silicic metasediments.  On the 
147

Sm/
144

Nd vs. εNd plot the northern 

mafic-ultramafic rocks, except the sample VB301, plot on trends consistent with 

contamination with the Veligallu metasediments or granitic gneisses of the eastern Dharwar 

craton (Fig. 13). The sample VB301 seems to be more fractionated one with distinctly higher 

absolute LREE and Th contents.  

Notably, the most LREE enriched samples among the northern mafic rocks show 

distinct primordial mantle-normalized depletion of Zr and Hf with respect to LREE, which is 

generally considered as signature of crustal contamination (e.g. Milidragovic et al., 2014). 

The Veligallu metasedimentary rocks display similar LREE enrichments and distinct negative 

Nb and Ti anomalies. However, they have rather PM-normalized Zr and Hf enrichment. Even 

the TTG gneisses, forming the basement for the Veligallu metasediments, the Veligallu 

intermediate to felsic volcanic rocks and the average upper continental crust show slight to 

moderate positive Zr-Hf anomaly. The average lower continental crust displays only slight 

negative Zr and Hf anomaly. Possibly, emplacement of the high-temperature mantle-derived 

parental magma of the northern mafic-ultramafic rocks was responsible for formation of low-

degree crustal melts (highly enriched in LREE) with retention of zircon in the residue 

(Hoffmann et al., 2016). Assimilation of this crustal melts and attendant fractional 

crystallization can explain the negative Zr and Hf anomalies of the most LREE-enriched 

samples of northern mafic rocks. In conclusion, the northern part of the Veligallu greenstone 

belt hosts mantle plume-derived Munro-type komatiites, komatiitic basalts and ferropicrites, 

which were emplaced onto and extensively contaminated by continental crust.   

 



  

16 

 

6.3 Felsic rocks – diverse origin 

The felsic volcanic rocks of the Veligallu belt display diverse compositions. They 

show somewhat scattered distribution for many elements (e.g. Al, La, Zr, Y, Yb and V) (Fig. 

5). Geochemical proxies for crustal contamination or slab melt (e.g. Th/Nb, La/Sm, La/Nb) 

do not display any trend with SiO2, MgO or Zr (not shown). In the Zr/Y vs.  Y and εNd vs. 

147
Sm/

144
Nd diagrams too, the felsic volcanic rocks do not show any trend (Figs. 12 and 13). 

Therefore, the observed variation within the felsic volcanic rocks cannot be explained by 

crustal contamination or mantle metasomatism by slab melt. They were most likely to have 

originated through distinct petrogenetic pathways. 

The 2.58 Ga highly sodic trachyandesite sample VAV127 is characterized by higher 

Al2O3, HFSE (Zr, Nb, Hf, Th and U), REE and Ga contents compared to the other Veligallu 

felsic volcanic rocks (Table 1). This is a common Archaean rock type that has a contentious 

origin (e.g. Said et al., 2012 vs. Barnes and Van Kranendonk, 2014). The enriched and 

fractionated LREE pattern, negative Eu anomaly and flat HREE pattern coupled with PM-

normalized depletion of Nb and Ti and distinctly negative εNd2.58Ga value (-3.7) testify 

involvement of a crustal material with either plagioclase as a fractionating phase or a residual 

phase after source melting. However, the intermediate level of SiO2 (59 wt%) and undepleted 

V, Cr and Ni contents (183, 130 and 70 ppm respectively) indicate that melting of mafic to 

felsic crustal lithologies followed by fractionation cannot explain the composition of the 

sample. It is difficult to constrain the origin of such magma from a single sample. A possible 

mechanism could be fractional crystallization of a metasomatized mantle-derived alkaline 

mafic magma and simultaneous assimilation of a crustal rock or mixing with melts derived 

from sialic crust (Hoffmann et al., 2016) with significantly old isotopic signature. The nearby 

quartz-muscovite schist, characterized by elevated Al2O3 and incompatible trace element 

contents and highly negative εNd2.58Ga (Figs. 6d and 13), is a possible assimilate. The high 

Na2O content and low K2O and Rb contents are notable. However, given the singular nature 

of the sample and the high mobility of these elements, it is not possible to pinpoint the origin 

of these features.         

The sample VAV3 is a calc-alkaline andesite with high Mg# (0.58), Cr (270 ppm) and 

Ni (310 ppm). The positive initial εNd value (+1.3) suggest a depleted mantle source, although 

the magnitude of this depletion is lower than that of the contemporary depleted mantle 
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(εNd2.6Ga ~4). The chondrite normalized moderately enriched LREE pattern and PM 

normalized negative Nb and Ti anomalies indicate contribution from crust (Fig. 6). 

Therefore, it is suggested that this sample represents a high Mg# andesite derived from a 

depleted mantle source. Either the source mantle was modified by crustal contaminant or the 

mantle-derived magma interacted with continental crust.     

The sample VAV60 is a rhyolite enriched in LREE and Th (16 ppm). The negative Eu 

anomaly and flat HREE pattern, negative Nb and Ti anomaly (Fig. 6) and negative initial Nd 

value (−2.8) suggest a low pressure origin and involvement of continental crust with older 

history. However, the high Mg# (0.48), Ba, Cr and Ni (1118, 120, and  60 ppm respectively) 

along with low contents of Al2O3, Rb (73 ppm) and Ga suggest contribution from mantle. An 

origin by partial melting or fractional crystallization of a mantle-derived high Mg# andesite 

(similar to VAV3) followed by contamination/assimilation with crustal material is consistent 

with the geochemical features of the rock (Kelemen et al., 2014).    

The silicic nature of the sample VAV208 along with high Na2O and Sr, and low total 

ferromagnesian element contents (Fe2O3+MgO+MnO+TiO2 = 4.9 wt%) and K2O/Na2O ratio 

(0.5) suggest it to be similar to high-silica adakites (Martin et al., 2005). The low Y and Yb 

contents and corresponding high Sr/Y ratio (130) and fractionated HREE pattern indicate 

high-pressure origin with garnet either as residual or fractionating phase (Martin et al. 2005; 

Richards and Kerrich, 2007; Moyen, 2010; Castillo, 2012). Jayananda et al. (2013) reported a 

zircon U-Pb age of 2697±5 Ma Ga for a Veligallu volcanic rock of very similar geochemistry 

constraining the age of adakitic magmatism within the belt. The εNd value of the sample 

VAV208 at 2.7 Ga (+2.5) and negative Nb and Ti anomalies imply a juvenile source 

(metabasalt) with arc signature. The low MgO content and Mg# value preclude a direct 

contribution from mantle.   

The sample VAV220 is a calc-alkaline andesite characterized by depleted HREE (Yb 

= 1.2 ppm, La/Yb = 18) and moderately high Sr/Y ratio (26) suggesting high-pressure origin 

involving garnet in their petrogenesis. The sample have moderate Mg# (0.44), Cr (200 ppm) 

and Ni (80 ppm) which are lower than those of the mantle-derived andesite sample VAV3. 

Moreover, VAV220 has distinctly higher LREE and Th contents indicating fractionation 

and/or contamination with more felsic crust. It also shows prominent primordial mantle-

normalized negative Nb and Ti anomalies reflecting an arc or crustal contamination 

signature.          
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7.  Discussion 

7.1. Mantle heterogeneity below the eastern Dharwar craton 

Isotope (especially Nd, Hf and Os) and elemental compositions of mantle-derived 

rocks from many cratons indicate significant heterogeneity within the Archaean mantle (e.g. 

Jahn et al., 1980; Vrevsky et al., 1996; Hoffmann and Wilson, 2017). A significant number of 

Neoarchaean (~2.7 Ga) basalt samples from the Kolar greenstone belt of the EDC show 

initial εNd values >3 suggesting existence of considerably depleted mantle (Balakrishnan et 

al., 1990; Dey, 2013). Mantle-derived ~2.7 Ga metabasalts from the Ramagiri and Hutti 

greenstone belts indicate moderately depleted sources (initial εNd = +1.4 to +3.5; Zachariah et 

al., 1997; Anand and Balakrishnan, 2010).  The southern basalts of the Veligallu belt reflect a 

slightly depleted mantle source (initial εNd = +0.3 to +1.1). Trace elemental and isotopic 

signatures do not indicate significant crustal contamination for none of these EDC basalts 

(Balakrishnan et al., 1990; Anand and Balakrishnan, 2010; Dey, 2013). The wide range of Nd 

isotope compositions therefore implies either significant regional chemical heterogeneity or 

introduction of material derived from older continental crust lowering the Sm/Nd ratio of 

parts of the mantle at about 2.7 Ga.   

The occurrence of ferropicrites in the Veligallu greenstone belt, along with those 

reported earlier from the Kolar greenstone belt (Rajamani et al., 1985 also documents 

heterogeneity in the form of Fe-rich domains within the 

Neoarchaean mantle beneath the EDC. It is becoming increasingly apparent that ferropicrites 

are volumetrically minor but common components of Neoarchaean greenstone belts of many 

cratons like Superior, Slave, Yilgarn, Kaapvaal and Karelia (Stone et al., 1995; Francis et al., 

1999; Goldstein and Francis, 2008; Milidagrovic et al., 2014; Milidragovic and Francis, 

2016). The Mg/(Mg+Fe) ratios (Mg#) of such Fe-rich mantle domains were  probably low 

(0.76–0.84)) compared to those of the more abundant pyrolytic mantle (Mg# = 0.88–0.92) 

(Milidragovic et al., 2014; Milidragovic and Francis, 2016).    

 

7.2. Evidence of older (Mesoarchaean to Palaeoarchaean) crust  
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Earlier studies reporting Nd (± Pb ± Sr ± Hf) isotope compositions of greenstone belt 

mafic-ultramafic volcanic rocks and granitoids proposed that EDC is made up mostly of 

Neoarchaean juvenile crust (Balakrishnan et al., 1990; Peucat et al., 1993; Krogstad et al., 

1995; Jayananda et al. 2000; Khanna et al., 2016). However, distribution of depleted mantle 

Nd model ages suggests that Palaeoarchaean to Mesoarchaean crust is abundant in the 

western part of the EDC extending from  the Chitradurga shear zone to the Kolar greenstone 

belt (Fig. 1) (Dey, 2013; Dey et al., 2016).  This zone is considered as a transitional domain 

(‘Central Dharwar province’) representing the eastern margin of the older (>3.0 Ga) WDC 

remobilized and reworked during 2.58–2.51 Ga hot orogenic magmatism (Jayananda et al. 

2013a; Peucat et al., 2013). Sparse data exist on the Neoarchaean (2.7–2.5 Ga) crust 

preserved to the eastern part of the EDC (east of the Kolar greenstone belt), which is claimed 

to be juvenile (Jayananda et al. 2013a; Peucat et al., 2013).  However, ≥ 3.0 Ga inherited 

zircons were recorded from the Neoarchaean felsic volcanic rocks of the Kolar, Kadiri and 

Hutti greenstone belts from the eastern part of the EDC (Jayananda et al., 2013a). Some of 

these felsic volcanic rocks and associated granitoids yielded Palaeoarchaean to Mesoarchean 

(3.6–2.9 Ga) Nd depleted mantle model ages (Jayananda et al., 2013a; Dey et al., 2014, 2015; 

Rajamanickam et al., 2014).  

Further evidence of older crust comes from the felsic volcanic rocks of the Veligallu 

greenstone belt, exposed in the far east of the EDC, displaying Mesoarchaean (3.2–3.0 Ga) 

Nd depleted mantle model ages (Table 3) and inherited zircon (sample VAV127). Notably, 

the northern Veligallu komatiites, ferropicrites and komatiitic basalts preserve Nd isotope 

signature that reveal interaction with Mesoarchaean crust. Cryptic Palaeoarchaean to 

Mesoarchaean isotope signatures in dominantly Neoarchaean terrains are common in other 

cratons too (e.g. Yilgarn, Karelia and Superior; Champion and Sheraton 1997; Mikkola et al. 

2011; Wyman et al. 2011). Accretion of microcontinental plates with older crustal history can 

explain these isotope signatures (Schmitz et al., 2006; Dey et al., 2016). Most of this older 

crust in the EDC was lost either by erosion (forming clastic sediments within the greenstone 

belts) or reworking during the 2.58–2.51 Ga hot orogenic magmatism (Chardon et al. 2011; 

Manikyamba and Kerrich 2012; Dey 2013; Dey et al., 2014, 2015).  

 

7.3. Tectonic setting 

7.3.1. Southern basalts – juvenile magmatism in a possible incipient oceanic arc  
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The southern basalts do not display evidences for contamination by continental crust. 

Therefore, the higher La/Yb and Th/Yb ratios compared to mantle array and negative PM-

normalized Nb and Ti anomalies (Figs. 6 and 7), may be acquired though metasomatism of 

the source mantle before partial melting. Introduction of fluid-mobile trace elements, LREE 

and Th in preference to HFSE and HREE in to an oceanic sub-arc mantle wedge through 

slab-derived fluids can impart these geochemical signatures (Pearce and Peate, 1995).   

Rudnick (1995) suggested that basalts derived from subduction-modified mantle have La/Nb 

(>1.4). Most of the southern basalts have marginally higher La/Nb ratios (mostly range 1.1–

1.9) indicating derivation from a mantle-wedge source slightly modified by slab-derive fluid.  

Slab dehydration generally produces basalts with lower Th enrichment (Th/Ce <0.1) 

compared to those characterized by melting of slab sediments (Hawkesworth et al, 1994). All 

the southern basalts samples are characterized by low Th/Ce (0.02–0.06) indicating slab 

dehydration only. The subduction contribution increases with maturity of the arc. Basalts 

generated in incipient arcs or protoarcs are generally tholeiitic and carry a small subduction 

component (lower Th/Nb) compared to mature arcs (Ishizuka et al., 2011; Wang et al., 2015). 

The southern basalts represent a similar case and, therefore, an incipient oceanic arc seems to 

be a likely tectonic setting for their generation. The adakite sample VAV208 was probably 

also formed through young oceanic slab melting during this initial period of oceanic arc 

formation (Castillo, 2012). However, it is noted with caution that rocks with adakite signature 

can form in a variety of tectonic settings (Bedard, 2006).   

 

7.3.2. Komatiites, ferropicrites and komatiitic basalts – mantle plume ascent in a continental 

margin or arc environment 

These rocks display prominent elemental and isotopic signatures of contamination by 

continental crust. They are associated with abundant quartzose clastic metasediments and 

felsic tuffs. The metasedimentary rocks have siliceous compositions (SiO2 ~ 66 wt%) with 

fractionated LREE and distinct PM-normalized negative Nb and Ti anomalies (unpublished 

data of the authors; Fig. 6 ). A majority of them show negative Eu anomaly with relative flat 

HREE patterns indicative of derivation from an evolved granitic source. We suggest mantle 

plume ascent into a volcanically active continental margin environment (e.g. Puchtel et al., 

1997; Mole et al., 2014). The related komatiites, ferropicrites and komatiitic basalts were 



  

21 

 

emplaced simultaneously with the deposition of continent-derived clastic sediments and felsic 

tuffs.   

Khanna et al. (2016) reported whole-rock Hf isotope data on five samples of the 

Veligallu ultramafic rocks whose εHf2.7Ga varies between +3.2 to +5.6. This is in contrast to 

the mostly negative εNd(t) values of the Veligallu ultramafic and associated mafic rocks 

(komatiites, ferropicrites and komatiitic basalts) reported in this study (Table 3). The 

decoupling of Hf from Nd, and the presence of ferropicrites could be related to incorporation 

of garnet pyroxenites in the depleted mantle sources, possibly during delamination 

(Hoffmann and Wilson 2017). This is compatible with a scenario proposed by Bédard (2006), 

where komatiites and ferropicrites form in response to delamination. The garnet pyroxenites 

may be the restites of TTG formation and, being denser than the mantle, can delaminate. At 

the present moment, it is very difficult to test the decoupling model because the Sm-Nd and 

Lu-Hf data were collected from different samples. However, we note that delamination can 

occur in an arc setting (Tatsumi, 2000; Lee and Anderson, 2015). Komatiites and komatiitic 

basalts are considered to be high-temperature rocks. Their emplacement within sedimentary 

rocks like quartz-muscovite schists (psammopelites) is expected to result in contamination. 

So our data and model of crustal contamination is more consistent with the geological setting. 

 

7.3.3. Felsic volcanic rocks – addition of juvenile crust and crustal reworking in a mature arc  

By 2.58 Ga, felsic volcanism became common in the area. The sub-arc mantle became 

progressively more metasomatized by fluids derived from melting of slab basalt and/or 

sediment. Partial melting of this metasomatized, previously depleted mantle probably 

generated LREE-enriched high Mg# andesite (VAV3) with juvenile character (εNd2.58Ga = 

+1.3) (Grove et al., 2003; Kelemen et al., 2014). This juvenile magma possibly underwent 

variable fractionation and assimilated continental crust producing rocks ranging in 

composition from andesites to rhyolites. The Na-, LILE- and HFSE-rich trachyandesite 

sample (VAV127) represent minor alkaline magmatism within the arc. Similar alkaline, 

incompatible trace element-rich trachyandesites, contemporaneous with calc-alkaline 

volcanic rocks, have been reported from recent subduction zones (e.g. Nelson and Livieres, 

1986; Parat et al., 2005) as well as Archaean greenstone belt associations (Said et al., 2012; 
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Szilas et al., 2012, 2016; Barnes and Van Kranendonk, 2014). They are interpreted to form 

during the final stage of volcanic arc evolution.  

The rock association (high Mg# andesites, andesites, rhyolites and trachyandesites), 

evidence of widespread explosive volcanism (agglomerates and tuffs) and distinct 

geochemical signatures (enrichment of LILE and negative Nb and Ti anomalies) suggest an 

arc setting for these felsic volcanic rocks.  The Mesoarchaean depleted mantle Nd model ages 

(Table 3) coupled with presence of inherited older zircons (2.92–2.65 Ga, 
207

Pb/
206

Pb ages) 

(Fig. 9) indicate reworking or assimilation of older continental crust. A continental margin 

arc environment, where crustal reworking generally is a major process (DeCelles et al., 2009), 

is the likely tectonic setting for emplacement of these volcanic rocks.     

 

7.4. Implications for the mechanism(s) of Neoarchaean crustal growth  

Opinions vary regarding the time at which plate tectonics started operating on Earth 

(Condie and Benn, 2006). A few authors opined that some form of horizontal tectonics (plate 

tectonics) operated during the Eoarchaean (Nutman et al., 2002; Shirey et. al., 2008 Komiya 

et al., 2015) or even Hadean (Maruyama et al., 2016). Some others argue that mantle plume 

related vertical tectonics was the dominant process of crust formation before the 

Mesoarchaean (Smithies et al., 2009; Van Kranendonk et al., 2015).  Recent investigations 

into the global fine-grained sediment Nd isotope, and detrital zircon O and Hf isotope dataset 

suggest a marked decrease in rate of continental growth at ~3Ga, which is attributed to the 

onset of subduction-driven plate tectonics and consequent higher rate of destruction of 

continental crust (Næraa et al., 2012; Dhuime et al., 2017). The period from 3.0 to 2.5 Ga is 

marked by a distinct change in the bulk composition of continental crust from mafic to felsic 

(Tang et al., 2016), appearance of eclogitic diamonds (Shirey and Richardson, 2011), and 

increased production and diversification of granitoids (Laurent et al., 2014; Halla et al., 

2017). These changes are linked to the growing importance of subduction and crust-mantle 

interaction.      

Late Neoarchaean (2.7–2.5 Ga) greenstone belts host diverse types of volcanic and 

sedimentary rocks which provide significant insights into the geodynamic processes. 

Komatiites, oceanic plateau basalts, flood basalts, giant dyke swarms and large layered 

intrusions have been considered as proxies for mantle plume activity (Condie, 2001; 
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Tomlinson et al., 2001; Dostal and Mueller, 2013). On the other hand, many workers 

interpret various tholeiitic, calc-alkaline to alkaline, mafic to felsic volcanic rocks as product 

of processes similar to those occurred in post-Archaean subduction zones or continental rifts 

(Polat and Kerrich, 2001, 2006; Wyman and Kerrich, 2009; Manikyamba and Kerrich, 2012). 

The relative contribution of the different processes (subduction vs. plume) in the origin of 

Neoarchaean crust is, however, still debated. The different types of volcanic rocks within the 

Veligallu greenstone belt represent a diversity of geodynamic processes. While the tholeiitic 

basalts and felsic volcanic rocks are linked to arc-related processes, the komatiites-komatiite 

basalts-ferropicrites are related to mantle plume. Such association can best be interpreted in a 

combined plume-arc plume model. Many of the Neoarchaean greenstone belts display 

coexistence of such rock associations, which indicate that interplay between mantle plume 

and plate tectonics was an important mechanism of crustal growth (Hollings et al., 1999; 

Puchtel et al., 1999; Wyman and Kerrich, 2009, 2010). This model has been contested by 

some workers (Bedard, 2006; Barnes and Van Kranendonk, 2014), on the basis of the fact 

that there may not be enough space for the mantle plume which may have large diameter 

(1000s of km).  Wyman (2017) envisages smaller Neoarchaean plumes derived from shallow 

mantle depth to reconcile this problem. This is consistent with the evolution of the eastern 

Dharwar craton where several Neoarchaean greenstone belts host both the presumed plume-

related and arc-related rock assemblages (Manikyamba et al., 2008, 2009, 2017, Manikyamba 

and Kerrich, 2012).   

 

8. Conclusions 

The Neoarchaean Veligallu greenstone belts contains various type of volcanic rocks 

which track the crustal evolutionary history of the terrane. Initially, a tholeiitic basalt was 

generated at ~2.67 Ga from a slightly depleted shallow mantle (εNdt = +0.6 to +1.1) possibly 

within an incipient oceanic arc. As the arc matured, deposition of clastic sediments started 

with synchronous emplacement of mantle plume-derived komatiites, komatiitic basalts and 

ferropicrites, the latter displaying strong geochemical evidences for crustal contamination. 

Finally outpouring of diverse types of felsic volcanic rocks took place when the area possibly 

became a continental margin arc at ~2.58 Ga. The volcanic rocks testify mantle heterogeneity 

and the presence of older (Mesoarchaean) crust within the eastern Dharwar craton. An 

http://www.sciencedirect.com/science/article/pii/S1674987117300531#bib56
http://www.sciencedirect.com/science/article/pii/S1674987117300531#bib43
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interplay between plume and arc is suggested to be an important mechanism of crustal growth 

during the Neoarchaean.      
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Figure Captions 

Fig. 1. Geological map of the Dharwar craton (modified after Chardon et al., 2008) showing 

the location of the Veligallu greenstone belt. Other greenstone/schist belts: Bb – Bababudan, 

C – Chitradurga, G – Gadwal, H – Hutti, HK – Hungund-Kushtagi, Hn – Holenarasipur, K – 

Kolar, Ka – Kadiri, Ku – Kudremukh, N – Nuggihalli, P – Penakacherla, R – Ramagiri, Rc – 

Raichur, S – Sandur, Sg – Sargur, Sh – Shimoga. CSZ – Chitradurga shear zone. Inset: EG – 

Eastern Ghats Mobile Belt, SGT – Southern Granulite Terrain. 

Fig. 2. Geological map of the Veligallu greenstone belt and associated granitoids showing the 

location of samples. The sample numbers are shown without prefix. Samples dated by zircon 

U–Pb method are marked by red stars.  

Fig. 3. Field and petrographic features of Veligallu greenstone belt: (a) Pillows (arrowed) in 

southern mafic rock, 2.8 km NE of Tamblapalle. (b) Photomicrograph showing association of 

http://www.sciencedirect.com/science/journal/00244937
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hornblende and plagioclase with minor quartz and opaques in southern mafic rock. The 

foliation defined by parallel alignment of amphibole grains. Crossed nicols (XPL). (c) 

Coarse-grained gabbro showing layering (indicated by the yellow dashed line). 3.5 km N of 

Tamblapalle. (d) Photomicrograph of coarse-grained gabbro consisting of hornblende 

(altering to tremolite-actinolite) with interstitial plagioclase grains. Plane polarized light 

(PPL). (e) Photomicrograph showing intergranular texture of gabbro in which subhedral 

uralised augite grains occupy the interstitial spaces between sericitised plagioclase laths. 

XPL. (f) Bands of ultramafic rocks (dark) intercalated with quartz-muscovite schist (light-

coloured). ~10 km SW of Veligallu.  (g) Photomicrograph showing association of tremolite-

actinolite and hornblende in the northern ultramafic rock. XPL. (h) Banded felsic volcanic 

rock (adakite), 4.8 km SE of Tamblapalle. (i) Photomicrograph showing association of 

plagioclase, quartz and hornblende in felsic volcanic rock. (j) Photomicrograph showing 

overall texture of felsic volcanic rock consisting of quartz, plagioclase and chlorite. Parallel 

alignment of chlorite defines a distinct foliation in the rock. Relict hornblende is being 

replaced by chlorite in the upper centre. XPL.   A – augite, C – chlorite, H – hornblende, P – 

plagioclase, Q – quartz, T- tremolite-actinolite.  

Fig. 4. (a) Nb/Y vs. Zr/Ti (Winchester and Floyd, 1977 as modified by Pearce (1996) (b) 

Zr/Y vs. Th/Yb (Ross and Bedard. 2009) classification of Veligallu metaigneous rocks.  

Fig. 5. Variation of major and trace elements with respect to MgO in Veligallu metaigneous 

rocks. The Ni and Cr concentrations are plotted in logarithmic scale due to their large 

variation. The Veligallu ultramafic rocks of Khanna et al. (2015), and basalts and felsic 

volcanic rocks (high-Mg andesites and adakites) of Khanna et al. (2016) presumably 

correspond to komatiite, southern basalt and felsic volcanic rocks, respectively, of the present 

work. They are plotted in grey with the same symbols. 

Fig. 6. Chondrite-normalized REE (Boynton, 1984) and primitive mantle-normalized (Sun 

and McDonough, 1989) trace element plots of the Veligallu metaigneous rocks: (a, b) 

southern basalts; (c, d) northern mafic-ultramafic rocks (komatiite, komatiitic basalts and 

ferropicrites); (e, f) felsic volcanic rocks. Note that among the northern mafic-ultramafic 

rocks, samples VB273, VB288 and VB294 are recognised as ferropicrites. Abbreviations: 

Sed high and sed low - the upper and lower compositional envelopes of the Veligallu 

sedimentary rocks. VGG - Veligallu granitoid gneiss (unpublished data of the authors). UCC 

and LCC - average upper and lower continental crust respectively - (Rudnick and Gao, 2003). 
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The Veligallu ultramafic rocks of Khanna et al. (2015), and basalts and felsic volcanic rocks 

(high-Mg andesites and adakites) of Khanna et al. (2016) presumably correspond to 

komatiite, southern basalt and felsic volcanic rocks, respectively, of the present work. They 

are plotted as grey background in the respective diagrams.  

Fig. 7. Veligallu metaigneous rocks rocks on Nb/Yb vs. Th/Yb space (after Pearce, 2008). 

Data source: average NMORB and OIB - Sun and McDonough (1989); average E-MORB - 

Niu et al. (2002). The Veligallu ultramafic rocks of Khanna et al. (2015), and basalts and 

felsic volcanic rocks (high-Mg andesites and adakites) of Khanna et al. (2016) presumably 

correspond to komatiite, southern basalt and felsic volcanic rocks, respectively, of the present 

work. They are plotted in grey with the same symbols. 

Fig. 8. Al2O3/TiO2 vs. GdN/YbN ratio plot of the Veligallu metaigneous rocks. The subscript 

‘N’ denotes chondrite-normalized values (Boynton, 1984). The Veligallu ultramafic rocks of 

Khanna et al. (2015), and basalts and felsic volcanic rocks (high-Mg andesites and adakites) 

of Khanna et al. (2016) presumably correspond to komatiite, southern basalt and felsic 

volcanic rocks, respectively, of the present work. They are plotted in grey with the same 

symbols. 

Fig. 9. Zircons from Veligallu andesite sample VAV127: (a) Representative back-scattered 

electron (BSE) images. Small circles shows SIMS analysis spots (numbers corresponding to 

Table 2). The black area outside each zircon is background. (b) Concordia diagram for U–Pb 

dating. The error ellipses drawn at 2σ level. 

Fig. 10. Sm-Nd whole-rock isochron for the southern basalts of the Veligallu greenstone belt. 

The decay constant used is 6.54×10
−12

a
−1

.  

Fig. 11. HFSE ratio plots for the metaigneous rocks of the Veligallu belt. (a) Nb/Yb vs. 

Zr/Yb (fields after Pearce and Peate, 1995) and (b) Zr/Y vs. Nb/Y (after Condie, 2005). Data 

source: average primitive mantle, NMORB and OIB - Sun and McDonough (1989); average 

E-MORB - Niu et al. (2002); Upper and total continental crust - Rudnick and Gao (2003). 

Enriched mantle component from Condie (2005). Basalts plotting in the non-plume source 

field are derived either from shallow depleted source or subduction zone, or formed from 

plume sources followed by contamination with continental crust or subcontinental 

lithosphere.    
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Fig. 12. Y vs. Zr/Y plots for the Veligallu metaigneous rocks. Data source: Upper, lower and 

total continental crust - Rudnick and Gao (2003); primitive mantle - Sun and McDonough 

(1989); depleted mantle (source of MORB)  - Salters and Stracke (2004).    

Fig. 13. 
147

Sm/
144

Nd vs. initial εNd  plot for the Veligallu metaigneous rocks. Data source: 

Granitic gneiss - Jayananda et al. (2000); Depleted mantle and chondrite - Goldstein et al. 

(1984); Veligallu sedimentary rocks - unpublished data of the authors. 

 

Table Captions 

Table 1. Major (wt%) and trace (ppm) element compositions of metaigneous rocks of the 

Veligallu greenstone belt, eastern Dharwar craton, India. 

Table 2. U-Pb isotopic data of zircons from the andesite sample VAV127. 

Table 3. Sm-Nd isotope data on metaigneous rocks of the Veligallu greenstone belt, eastern 

Dharwar craton, India.  

 

Appendix 1: Analytical Techniques 

Whole-rock major and trace element analysis 

The whole-rock samples were analyzed for major and trace elements in the laboratory of 

Actlabs, Ontario, Canada using their analytical package ‘code 4LITHO’ (data in Table 1). 

Powered samples weighing 200 mg along with standards were fused using a lithium 

metaborate/tetraborate flux and then totally dissolved using 5% HNO3. Major elements, Ba, 

Sr, Y, Zr, Be, Sc and V were analysed using an ICP (Varian 735 ICP-OES) and all other 

elements by an ICP-MS (ELAN 9000). Loss on ignition was determined by heating powdered 

samples for 2 hours at 1050 
0
C. Nineteen international rock standards of variable 

compositions were analysed simultaneously and the values obtained for them are available 

with the corresponding author on request. Analytical uncertainties depend on the 

concentration of elements. In general, the uncertainties are within 2% for SiO2, Al2O3, CaO 

and K2O, within 4% for Fe2O3, MnO, MgO, Na2O and within 5% for P2O5 and TiO2. 

Uncertainties for the trace elements are usually within 10%.    Further details of analytical 

techniques are given in http://www.actlabs.com/.  



  

43 

 

Zircon U-Pb dating 

The zircons were separated using standard procedures including crushing (in iron mortar 

and pestle), sieving (375 to 75 micron), tabling, heavy liquid separation (bromoform and 

methylene iodide) and magnetic separation. The grains were hand-picked under a binocular 

microscope and mounted in epoxy. For imaging and U-Pb analyses the sample mount was 

gold-coated. The zircon images were obtained at the Geological Survey of Finland with a 

Jeol JSM-5900LV scanning electron microscope in a back-scattered electron detection mode. 

The accelerating voltage was 20 kV and beam current was 54 mA. Working distance between 

the filament and the sample surface was 11 mm. 

The ion microprobe analyses were performed using the Cameca IMS 1280 of the 

NORDSIM laboratory at the Swedish Museum of Natural History, Stockholm (data in Table 

2). The spot diameter for the ∼4.5 nA primary O2
−
 ion beam was ∼20 µm and oxygen 

flooding in the sample chamber was used to increase the production of Pb
+
 ions. Three 

counting blocks, each including four cycles of the Zr, Hf (for mass calibration optimization), 

Pb, Th, and U species of interest, were measured from each spot. Sequential mono-collection 

mode with an electron multiplier was used. The mass resolution (M/ΔM) was 5300 (10%). 

The data were calibrated against a zircon standard (91,500; Wiedenbeck et al., 1995) and 

corrected for modern common Pb (T = 0; Stacey and Kramers, 1975). The procedure was 

essentially similar to that described in detail by Whitehouse et al. (1999) and Whitehouse and 

Kamber (2005). 

Whole-rock Nd isotope analysis 

The whole-rock samples were digested through acid digestion technique using double 

sub-boiled distilled HF, HNO3 and HCl acids in a 7 ml Savillex®  vial till a clear sample 

solution was obtained. Further the digested clear solution was dried and the residue was 

dissolved in 5ml of 2N HCl. About one third of the digested samples were spiked with 
152

Sm 

and 
150

Nd enriched spike solution for the determination of concentration of Sm and Nd by 

isotope dilution (ID) method. The remaining 2/3rd of the digested solution was used for the 

determination of the isotopic composition (IC) of Nd. The ID fractions of the samples were 

allowed to dry at about 90° C for equilibration of the spiked isotope thoroughly. The IC 

fractions were also dried to get the digested residue of the sample. The dried IC and ID 

fractions were dissolved in 2 ml of 2N HCl and were passed through Bio-Rad AG50-WX8 

cation-exchange resin filled HCl columns. The bulk REE were eluted with 6N HCl after 



  

44 

 

removing other cations using 2N HCl. The REE thus collected were dried and dissolved in 

0.18 N HCl from which Sm and Nd were separated using HDEHP coated Teflon
®
 resin with 

0.4N and 0.3N HCl respectively. Before loading the REE, the HDEHP columns were 

equilibrated using 0.18 N calibrated HCl. Detailed procedure for sample digestion and 

chemical separation of Sm and Nd for isotope studies is given in Anand and Balakrishnan, 

(2010).  

Nd and Sm were dissolved in 1 µl of 1N HNO3 and were loaded on degassed and pre 

warmed ‘Re’ double filaments, and the analysis were carried out using the Thermal 

Ionization Mass Spectrometer (Triton – Thermo Finnigan) at Pondicherry University (data in 

Table 3). Procedural blanks were below 0.2 ng for Sm, and below 0.4 ng for Nd.  

The isotopic composition of Nd was corrected for mass bias using the internal 

normalizing ratios of 
146

Nd/
144

Nd = 0.7219. Mass fractionation correction for the spiked 

fraction was carried out by applying the external correction factors determined by multiple 

measurements of isotopic standard AMES for Nd. Reproducibility of the AMES standard was 

143
Nd/

144
Nd = 0.511971 ± 9.8 (2σ, n = 33) (recommended 

143
Nd/

144
Nd = 0.511968 ± 4; 

Govindaraju, 1994). The error of the 
147

Sm/
144

Nd is estimated to be better than 0.5% 

The decay constant λ
147

Sm used is 6.54 x 10
-12

a
-1

. The εNd and Nd depleted mantle 

model ages (Nd TDM) are calculated using the parameters (
143

Nd/
144

Nd)CHUR = 0.512638, 

(
147

Sm/
144

Nd)CHUR = 0.1967, (
143

Nd/
144

Nd)DM = 0.513151 and (
147

Sm/
144

Nd)DM = 0.2136.  
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Highlights 

 Diverse types of volcanic rocks occur in the Neoarchaean Veligallu greenstone belt.  

 Initially a tholeiitic basalt formed from a slightly depleted mantle in an incipient 

oceanic arc.  

 Emplacement of mantle plume-derived komatiites and ferropicrites as the arc 

matured.  

 Finally outpouring of various types of felsic volcanic rocks in a possible continental 

margin arc. 

 Interplay between plume and arc was an important process of crustal evolution during 

Neoarchaean. 

 




